

1 **Aerosol dynamics within and above forest in relation to**
2 **turbulent transport and dry deposition**

3
4 **Ü. Rannik¹, L. Zhou¹, P. Zhou¹, R. Gierens¹, I. Mammarella¹, A. Sogachev² and M. Boy¹**

5
6 ¹Department of Physics, P.O. Box 48, University of Helsinki, 00014 Helsinki, Finland

7 ²Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark

8 Correspondence to: Ü. Rannik (ullar.rannik@heuristica.ee)

9
10 **Abstract**

11 One dimensional atmospheric boundary layer (ABL) model coupled with detailed
12 atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict
13 the ABL and detailed aerosol population (characterized by the number size distribution) time
14 evolution. The model was applied over a period of ten days in May 2013 to a pine forest site
15 in southern Finland. The period was characterized by frequent new particle formation events
16 and simultaneous intensive aerosol transformation. The aim of the study was to analyze and
17 quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols. It was of
18 particular interest to what extent the fluxes above canopy deviate from the particle dry
19 deposition on the canopy foliage due to the above mentioned processes. The model
20 simulations revealed that the particle concentration change due to aerosol dynamics
21 frequently exceeded the effect of particle deposition even an order of magnitude or more. The
22 impact was however strongly dependent on particle size and time. In spite of the fact that the
23 time scale of turbulent transfer inside the canopy is much smaller than the time scales of
24 aerosol dynamics and dry deposition letting to assume well mixed properties of air, the fluxes
25 at the canopy top frequently deviated from deposition inside forest. This was due to
26 transformation of aerosol concentration throughout the ABL and resulting complicated
27 pattern of vertical transport. Therefore we argue that the comparison of time scales of aerosol
28 dynamics and deposition defined for the processes below the flux measurement level do not
29 unambiguously describe the importance of aerosol dynamics for vertical transport above the
30 canopy. We conclude that under dynamical conditions reported in the current study the
31 micrometeorological particle flux measurements can significantly deviate from the dry

1 deposition into the canopy. The deviation can be systematic for certain size ranges so that the
2 time averaged particle fluxes can be also biased with respect to deposition sink.

3 **Keywords:** Aerosol size distribution, aerosol and atmospheric boundary layer dynamics,
4 turbulent transport, time scales.

5 **1 Introduction**

6 Turbulent fluxes of scalars are commonly measured by the eddy covariance (EC) technique
7 above forests. From flux measurements the exchange of scalars between the ecosystem and
8 the atmosphere is inferred by making simplifying assumptions, mainly horizontally
9 homogeneous and stationary conditions, considering usually transport of passive scalars.
10 From aerosol particle flux measurements deposition to ecosystem is inferred by neglecting all
11 additional terms including the storage term. However, there are several mechanisms affecting
12 the particle concentration, namely new particle formation, coagulation and source or sink term
13 for a particular size resulting from condensational growth. These processes govern the particle
14 size distribution evolution and which we refer to as the aerosol dynamical processes
15 throughout this study. The significance of aerosol dynamical terms in comparison to dry
16 deposition has been evaluated by comparing the respective time scales. The time scale for dry
17 deposition for measurement level z has been estimated according to $\tau_{dep}(z) = \frac{z}{V_d}$, where

18 $V_d = -\frac{F(z)}{C(z)}$ denotes the bulk deposition velocity defined as the ratio of the total flux divided
19 by the concentration at the same level (Pryor and Binkowski, 2004; Pryor et al., 2013). Such
20 a definition of the time scale of dry deposition implies that frequently the aerosol dynamical
21 terms have similar time scales to dry deposition and therefore affect the conservation of
22 aerosol particles concentration during the transport pathway between the EC measurement
23 level and the collecting surfaces. Depending on the prevailing conditions i.e. the nucleation
24 rate, the availability of condensing vapors determining the condensational growth, and the
25 shape of the particle size spectrum, the aerosol dynamical terms can vary significantly
26 depending on the particle size. The time scale of aerosol dynamical processes varies typically
27 between 10^3 to 10^5 seconds (Pryor and Binkowski, 2004; Pryor et al., 2013), i.e. being on the
28 hourly time scale and more. This is a sufficient time to allow well-mixed conditions to
29 establish within the unstable day-time ABL, where the mixing time scale is estimated to be
30 around 10 minutes (e.g. Stull, 1988). Under near-neutral and stable conditions such efficient

1 mixing throughout atmospheric column cannot be assumed. Instead the characteristic time
2 scales of turbulent transfer within and above forests have been estimated by different
3 approaches (e.g. Zelger et al., 1997; Rinne et al. 2000, 2012, Rannik et al., 2009b). Such time
4 scales of turbulent transfer depend on the observation conditions but typically remain in the
5 order from a few tens of seconds to a few hundreds of seconds. In spite of different definitions
6 used and large variation range of the time scales characterizing the scalar transport between
7 the observation level and the collecting surfaces within forest, the turbulent transfer can be
8 expected to occur much faster than the aerosol dynamical processes.

9

10 The aerosol particle dry deposition is strongly size-dependent as different mechanisms operate
11 at different particle sizes. Respectively, the time scale of dry deposition depends on particle
12 size and exhibits its maximum at around 100 nm. For small particles with a few nm in
13 diameter this dry deposition time scale can be orders of magnitudes smaller due to efficient
14 removal mechanism by Brownian diffusion. At particle sizes larger than 100 nm the particle
15 collection is again enhanced due to interception and inertial impaction mechanisms (Petroff et
16 al., 2008) and the respective time scale of dry deposition is smaller. In general, the dry
17 deposition time scale has been frequently estimated to be in the same order of magnitude as
18 the time scale for aerosol dynamics, leading to a conclusion that flux divergence may occur
19 during transport due to aerosol dynamics (Pryor and Binkowski, 2004; Pryor et al., 2013).

20

21 The time scales of turbulent transfer and the time scale of dry deposition embed essentially
22 different definitions and can lead also to different conclusions about the significance of
23 aerosol dynamical terms during the transport between the underlying surfaces and the
24 measurement level. The time scale of turbulent transfer is the characteristic time of the
25 transfer within turbulent air layer. Dry deposition includes in addition the transport pathway
26 within the laminar air layer surrounding the collecting surfaces. In the resistances framework
27 (e.g. Monteith and Unsworth, 1990), the dry deposition includes the aerodynamic
28 (corresponding to turbulent transport) as well as the leaf laminar sublayer resistances and
29 under most conditions the dry deposition is limited by the laminar boundary layer transfer
30 (e.g. Petroff and Zhang, 2010). Therefore comparison of the time scales of turbulent transport
31 and dry deposition with that of aerosol dynamics leads us to the assumptions that (i) turbulent
32 transport within and above forest is relatively fast and no significant transformation of aerosol
33 population occurs within the respective time scale, and (ii) depending on particle size the
34 removal of aerosols via dry deposition occurs at the comparable time scale with aerosol

1 dynamics and therefore the aerosol population can be modified during the removal process.
2 Such modification occurs on hourly time scale and therefore is expected to occur throughout
3 the ABL, where aerosol dynamical processes can depend strongly on height within the ABL
4 via vertical profiles of condensing vapors.

5
6 The purpose of this study is to analyze the magnitude of different terms in the particle number
7 conservation equation and to evaluate the time scales of particle turbulent transfer, aerosol
8 dynamical processes and dry deposition over wide range of particle sizes. Further, we
9 evaluate the effect of these terms on inferring particle deposition velocities from flux
10 measurements by micrometeorological techniques, in particular the influence on estimation of
11 functional dependencies as well as systematic biasing effects. The study relies on the
12 simulations by the model SOSAA and the measurements were used only to initialise the
13 model (see Section 2.2 and Appendix B) or for evaluation of model outputs in terms of
14 predicted particle size distributions and meteorological variables such as heat fluxes above
15 canopy (see Section 3 below). Non-stationary conditions will be considered by simulating
16 detailed ABL and aerosol dynamics inside and above the forest canopy during a period of 10
17 days, which includes highly dynamical conditions with new particle formation.

18

19 **2 Materials and methods**

20 The model was set up for a pine forest site in southern Finland and initialized with available
21 measurements performed at the SMEAR II station. For description of the site and
22 initialisation of the model see Appendices A and B, respectively. The analysis relies on
23 evaluation of the significance of different terms of the particle conservation equation.

24 **2.1 Conservation equation for aerosol size distribution**

25 In horizontally homogeneous conditions, neglecting molecular diffusivity and applying the
26 first order closure to turbulent flux

27

$$\overline{w'n'} = -D_t \frac{\partial \bar{n}}{\partial z}, \quad (1)$$

28 the conservation equation for time-averaged particle number density $\bar{n} = \frac{d\bar{N}}{d \log_{10} D_p}$ inside

29 the canopy can be written as

$$\frac{\partial \bar{n}}{\partial t} + \frac{\partial}{\partial z} \left(-D_t(z) \frac{\partial \bar{n}}{\partial z} - w_s \bar{n} \right) = -a(z) v_c \bar{n} + S_{ad}, \quad (2)$$

2 where N is the average particle number concentration, D_p the particle diameter, D_t the
 3 particle turbulent diffusivity, w_s the settling velocity, v_c the particle collection velocity by
 4 vegetation, and a denotes the all-sided leaf area density. The source/sink term S_{ad} incorporates
 5 all aerosol dynamical terms, consisting of nucleation S_{nucl} , condensational growth S_{cond} and
 6 coagulation S_{coag} terms. If the condensational growth rate is considered as

7 $I_{cond}(\log_{10} D_p) = \frac{d \log_{10} D_p}{dt}$, then the respective source/sink term in Eq. (2) is expressed as

8 $S_{cond} = \left[\frac{\partial \bar{n}}{\partial t} \right]_{cond} = - \frac{\partial (I_{cond} \bar{n})}{\partial \log_{10} D_p}$. For particle size range up to a few micrometers D_t can be

9 assumed to be equal to the eddy viscosity of the flow. The settling velocity w_s is given as

$$w_s = \frac{C_c g \rho_p D_p^2}{18\eta}, \quad (3)$$

11 where g is the acceleration due to the gravity, η the dynamic viscosity of air, ρ_p the particle
 12 density, and C_c the Cunningham slip correction factor (e.g. Hinds, 1982).

13 For the comparison of the significance of different terms of the conservation equation, the Eq.
14 (2) was re-written so that the sum of all terms equaled zero, and the transport due to settling
15 was merged with the particle collection by vegetation as
16

$$\left[-\frac{\partial \bar{n}}{\partial t} \right] + \left[\frac{\partial}{\partial z} \left(D_t(z) \frac{\partial \bar{n}}{\partial z} \right) \right] + \left[-a(z) v_c \bar{n} + \frac{\partial}{\partial z} \left(w_s \bar{n} \right) \right] + \left[S_{ad} \right] = 0, \quad (4)$$

18 where the terms were called consequently as the storage, the (vertical) transport, the particle
 19 deposition and the aerosol dynamical terms. Further, integration of Eq. (4) from the forest
 20 floor surface up to the canopy top h was used to define the change velocities in analogy to
 21 deposition velocity. The change velocity due to particle deposition was defined as

$$V_{dep} = \frac{1}{n(h)} \int_0^h \left[-a(z) v_c \bar{n} + \frac{\partial}{\partial z} (w_s \bar{n}) \right] dz \quad (5)$$

23 and the change velocity due to aerosol dynamics as

$$V_{ad} = \frac{1}{n(h)} \int_0^h S_{ad} dz. \quad (6)$$

25 In particular, for the transport term the respective change velocity was defined as

$$1 \quad V_{transp} = \frac{1}{n(h)} \int_0^h \frac{\partial}{\partial z} \left(-\overline{w' n'} \right) dz = -\frac{\overline{w' n'}(h) - \overline{w' n'}(0)}{\overline{n}(h)}. \quad (7)$$

2 Note that in the modelling approach the vertical flux at the canopy top was obtained from the
 3 gradient diffusion approximation (1) and the flux at the surface was defined by the ground
 4 deposition parameterization, which was applied as the sink term in the lowest model layer.
 5 Therefore in our model calculations $\overline{w' n'}(0) = 0$ and the transport velocity equaled to the
 6 exchange velocity defined at the canopy top by

$$7 \quad V_e = -\frac{F(h)}{\overline{n}(h)}. \quad (8)$$

8 The time scales of the processes affecting the particle concentration inside the canopy were
 9 defined by

$$10 \quad \tau = \frac{h}{V}, \quad (9)$$

11 with the change velocities V_{dep} , V_{ad} and V_e defining the time scales for deposition τ_{dep} ,
 12 aerosol dynamics τ_{ad} and exchange τ_e , respectively. These time scales were calculated based
 13 on the numerical modelling results by SOSAA.

14 **2.2 Simulation of aerosol transport and dynamics by model SOSAA**

15 The model to Simulate the concentration of Organic vapours, Sulphuric Acid and Aerosols
 16 (SOSAA) is a 1.5 order RANS (Raynolds Averaged Navier Stokes) model SCADIS (SCAlar
 17 DIStribution, 1D version, Sogachev et al., 2002, 2012) coupled with detailed biogenic
 18 emissions, chemistry and aerosol dynamics. SCADIS describes the exchange between the
 19 vegetative canopy and atmosphere by considering the vegetation as a multi-layer medium and
 20 implementing parameterizations for radiation transfer, drag forces on leaves, and stomatal
 21 conductance. The particle deposition processes in SOSAA are treated in the same manner as
 22 in the study by Lauros et al. (2011) based on the parameterization by Petroff et al. (2008). The
 23 parameterization considers Brownian diffusion and takes into account the influence of leaves
 24 on particle interception, impaction and settling. The model has been applied extensively in
 25 different forest sites for various studies concerning biogenic emissions, chemistry and aerosol
 26 formation (e.g. Kürten et al., 2011; Boy et al., 2013; Smolander et al., 2014; Mogensen et al.,
 27 2015; Zhou et al., 2015). Detailed model description is presented by Boy et al. (2011) and
 28 Zhou et al. (2014).

29

1 The model set-up in this study was the same as in the study by Zhou et al. (2014) except that
2 only kinetic nucleation mechanism was employed in aerosol dynamics simulation (Weber et
3 al., 1997; see also Sect. S2 in the Supplement). Zhou et al. (2014) presented the ability of
4 SOSAA to reconstruct new particle formation events at Hyytiälä, which was the same site as
5 in this study. The model was initialised with vertical profiles describing the initial
6 atmospheric state (see Appendix B) and aerosol size spectrum observed at the surface, and run
7 for 10 days time period similarly to Lauros et al. (2011). The aerosol size distribution was
8 initialised each day at 0:00 LT based on the measurements at 2 m height. The first day the
9 concentration profile was assumed constant (the same as at 2 m height) up to determined night
10 time Stable Boundary Layer (SBL) height (320 m) and 10% of the concentration values
11 within the SBL above this level. During the next days the concentration profile was taken
12 constant as per measurements at 2 m level up to the maximum ABL height occurring during
13 the previous day and 10% of the within SBL values above that level. The initialisation during
14 the first day corresponded to the conditions of horizontal advection with very different
15 properties of the air above the SBL, whereas during the other days the night time residual
16 layer was assumed to retain the same properties as the SBL. The implications of these two
17 contrasting assumptions for ABL mixing and vertical transport of aerosols will be discussed
18 in Sect. 3.4. For meteorology simulations 10 sec time step was used along with the explicit
19 forward in time integration method. The aerosol dynamics was simulated with 60 sec time
20 step.

21 **2.3 Lagrangian estimation of turbulent transfer time**

22 The Lagrangian stochastic (LS) simulations were used to estimate the turbulent transfer time.
23 The conventional approach of using a LS model is to release particles at the surface point
24 source and track their trajectories towards the point of interest forward in time (e.g., Wilson
25 and Sawford, 1996). In case of horizontally homogeneous and stationary turbulence, the mean
26 Lagrangian turbulent transfer time at the canopy top due to a sustained source located at
27 height z_0 (near forest floor) can be described as

$$28 \quad \tau_L(z) = \frac{1}{N} \sum_{i=1}^N \tau_i, \quad (10)$$

29 where τ_i denotes the travel time of trajectory i at the moment of intersection with observation
30 height. For LS modelling the turbulence statistics such as the turbulent kinetic energy (TKE)
31 and the vertical eddy diffusivity obtained from SOSAA were used to define the turbulent
32 profiles of the dissipation rate of TKE and variances of the wind speed components.

1

2 **3 Results**

3 The selected time period consisted of 10 days in May 2013, day of year (DOY) 121 (01 May)
4 to 130 (10 May). On several days clear particle formation patterns were observed at the
5 smallest particle sizes around mid-day, with subsequent growth to larger particle sizes (Fig.
6 1). In all days significant aerosol dynamics was taking place in terms of particle growth. The
7 model simulations reproduced the observed particle size distributions qualitatively, however
8 being not able to reproduce the exact particle size distribution patterns. In particular, during
9 days with new particle formation the observed nucleation modes were not as clear; also the
10 particle growth was overestimated, which can be observed clearly during the second half of
11 the period. With respect to condensational growth of aerosols and resulting patterns of aerosol
12 particle distributions a sensitivity analysis was performed (Fig. S2 in the Supplement). The
13 results of the sensitivity analysis are summarized in the end of Sect. 3.

14

15 The ABL height varied between about 600 (DOY 130) and 1400 m (DOY 123) as the peak
16 height during different days (Fig. 2a). The heat fluxes were the primary drivers of the ABL
17 growth and buoyancy driven TKE. The simulated latent and sensible heat fluxes corresponded
18 well to those measured at the site (Fig. 2b,c), but the simulated TKE had weak correlation
19 with the values observed above the canopy (Fig. S1 in the Supplement). We ascribe this to the
20 limited ability of the 1D model to reproduce the actual flow field at the site. However, for the
21 current study it is more important to reproduce diurnal variation and dynamics of the ABL,
22 which is mainly driven by surface heating. The selected ten days period showed significant
23 variability in terms of aerosol and ABL dynamics and was therefore selected as the study
24 case.

25 **3.1 Aerosol dynamics and transport inside and above forest**

26 The particle conservation terms were evaluated inside forest at 07 May (DOY 127), 12:00 and
27 21:00 LT (UTC+2 h). At noon the particle size spectrum was bi-modal, with nucleation and
28 larger particle modes, by evening the nucleation mode had grown and almost merged into a
29 single mode at around 200 nm (Fig. 3a). The rate of change by each term (as defined by the
30 terms in Eq. 4) showed large particle sink due to deposition, which was compensated by the
31 transport term at noon (Fig. 3b). The aerosol dynamical term was dominated by the
32 condensational growth term, except at sizes smaller than a few tens of nm where coagulation

1 was also important and at smallest sizes were particles due to nucleation appeared. The
2 aerosol dynamics reduced the particle number of small particles less than about 10 nm in
3 diameter, adding respectively particle counts at larger sizes. The aerosol dynamical terms
4 were reflected in relatively similar pattern in particle storage change (defined by the first term
5 of Eq. 4). The positive value of the storage term implies decrease of particle concentration and
6 negative increase, respectively. In the evening at 21:00 LT the change rates of small particles
7 (less than 20 nm) were small due to low particle counts in this part of the size spectrum (Fig.
8 3a). The similarity (in magnitude, but opposite in sign) of aerosol deposition vs. transport and
9 aerosol dynamical vs. storage change terms held also in the evening, letting to conclude that
10 particle loss due to deposition was mainly compensated by vertical transport and aerosol
11 dynamical processes modified the concentration in time.

12

13 The aerosol concentration inside and above forest was homogeneous at noon and small
14 vertical concentration gradients could not be observed from color presentation in Fig. 4a. The
15 deposition pattern (dependence on particle size and height) was again similar to transport
16 patterns (Figs. 4d and c). Aerosol dynamics affected the number concentration similarly
17 throughout the column as presented in Figs. 4e and b. The same qualitative conclusions held
18 also for the evening time 21:00 LT (not shown).

19

20 When integrating the terms of the conservation equation (Eq. 4) from the surface up to the
21 canopy top and normalizing with the concentration at the canopy top, one obtains change
22 velocities as defined in Sect. 2.1. Such change velocities are comparable with the deposition
23 velocity or the exchange velocity, which can be experimentally obtained from the flux
24 measurements above the canopy. In terms of change velocities the deposition velocity
25 (defined by Eq. 5) and the transport velocity (defined by Eq. 7 and being equivalent to the
26 exchange velocity in Eq. 8) appeared near symmetric for all particle sizes at noon (Fig. 5a).
27 However, the correspondence was not exact, meaning that the flux defined at the canopy top
28 did not correspond exactly to particle deposition. This was due to aerosol dynamics being
29 responsible for additional sink inside the canopy for sizes up to 10 nm, creating concentration
30 decrease as well as additional downward particle transport to compensate for the loss. Much
31 larger differences in the respective patterns were observed in the evening at 21:00 LT,
32 especially at small particle sizes (Fig. 5b). This implied a more complex relationship between
33 particle source sink/terms (deposition and aerosol dynamics) and vertical mixing.

1 The vertical profiles of the aerosol dynamical term (normalized to simulated local
2 concentrations, defining the local change rates) and the particle vertical fluxes (normalized
3 with local concentration, defining the local exchange velocity) differed significantly for
4 particle sizes and time of day (12:00 LT compared to 21:00 LT 07 May), Fig. 6 upper and
5 lower panels. The respective ABL heights were approximately 710 and 510 m according to
6 the model results. At noon the particle deposition and aerosol dynamics led to vertical particle
7 transport that depended on particle size and height. In the lower part of the ABL the small
8 particles (3 and 10 nm) were transported downward to compensate for deposition sink inside
9 forest and particle loss through aerosol dynamics. The 100 nm particles were transported
10 downward throughout the atmospheric column. For particles of 30 nm and 300 nm size it was
11 predominantly the aerosol dynamics that drove the vertical transport, leading mostly to
12 upward particle flux at heights above forest. The particle concentration gradients (Fig. 6a/u)
13 were consistent with the exchange velocities. In the evening, when the vertical transport was
14 more limited due to moderately stable conditions (the Obukhov length defined by the fluxes at
15 the canopy top being $L = +130$ m), the vertical profiles showed even more complex pattern
16 (Fig. 6 lower panels). Particles with 3 and 10 nm in diameter were transported downward up
17 to about 50 to 100 m height (to compensate for the loss inside the canopy), whereas above
18 these heights up to about 500 m upward flux occurred to compensate for aerosol dynamical
19 loss in the higher part of the atmospheric column. Note however that the concentration of
20 small particles was very low in the evening (Fig. 6a/l). The larger particle sizes (300 nm) were
21 little affected by the aerosol dynamics in the evening and downward transport occurred (in
22 contrast to noon). Figure 6 illustrates complex dynamics between the aerosol sources and
23 sinks and transport in the atmospheric column, leading to aerosol dynamical term and vertical
24 exchange that can differ in sign as a function of height for a certain particle size (for example
25 for 10 nm particles at 12:00 and 21:00 LT).

26 **3.2 Time scales of processes**

27 The importance of aerosol dynamics on particle exchange measurements has been frequently
28 assessed by comparing the time scales of aerosol dynamical and transport processes. Figure 7
29 presents the time scales defined in Sect. 2.1 and compares those with the Lagrangian turbulent
30 transfer time scale determined according to Sect. 2.3. The time of turbulent transfer within
31 forest (simulated as the time for an air parcel to travel between the surface and the forest
32 height) was mostly much shorter than the time scales of deposition and aerosol dynamics.
33 Only at smallest particle sizes and stable conditions the turbulent time scale became

1 comparable to the time scales of particle deposition and aerosol dynamics (Fig. 7b). The
2 transport time scale, defined by Eqs. (9) and (7), accounts also for the effect of sources and
3 sinks inside the canopy and is therefore very different from the turbulent transfer time scale
4 τ_L . The transport time scale was determined mainly by deposition and modified by the
5 impact of aerosol dynamics, reflecting the fact that particle vertical transport is mostly
6 controlled by the sources and sinks and being not limited by turbulent transfer speed.

7

8 The time scale of particle deposition strongly depended on particle size (resulting of
9 respective dependence of particle collection on particle size), whereas the time scale of
10 aerosol dynamics was occasionally shorter than the deposition time scale (even an order of
11 magnitude, depending on particle size). Even though the turbulent transfer time scale τ_L was
12 much shorter than the other time scales, the flux at the canopy top deviated from the
13 deposition to vegetation elements (can be inferred from the comparison of the deposition and
14 the transport time scales). Note that even the sign of the flux at the canopy top differed for
15 particles of about 100 to 300 nm in diameter, see the sign of the transport time scale in Fig.
16 7a. Although very short turbulent transfer time would suggest fast and efficient mixing (and
17 therefore correspondence of flux to deposition), the difference can be explained by the
18 importance of the aerosol dynamics which affects the concentrations throughout the
19 atmospheric column and therefore drives the vertical redistribution of particles via vertical
20 transport.

21 **3.3 Time evolution and statistics of particle exchange**

22 The idea behind micrometeorological particle flux measurements is to determine the particle
23 dry deposition fluxes or equivalently the deposition velocities. Thus it is assumed that the
24 fluxes observed above forest represent the deposition fluxes. Figure 8 compares the change
25 velocities defined in 2.1 to the respective deposition change velocities during the first day of
26 the simulations 01 May (DOY 121) and a following nucleation day 02 May 2013 (DOY 122).
27 These two days differ in terms of initialization of vertical aerosol profiles at midnight (see
28 Sect. 2.2). During the first day the aerosol dynamics affected little the particle concentrations
29 inside forest, but 100 and 300 nm sizes were affected strongly by vertical transport occurring
30 during the mixed layer (ML) growth period prior to noon. The initial concentration profile
31 during this day corresponded to the conditions of horizontal advection. During the second day
32 the aerosol dynamical term exceeded the deposition term several times (Fig. 8c).
33 Respectively, the storage change varied approximately in the same limits, being opposite in

1 phase (Fig. 8b). The variation of the exchange velocity with respect to deposition was smaller
2 (Fig. 8d), consistently with the analysis of Fig. 3 where the vertical transport was the main
3 mechanism compensating for aerosol loss due to deposition. Nevertheless, also the magnitude
4 of the exchange velocity can differ several times compared to that of deposition. During the
5 new particle formation and ABL growth period of the second day the vertical particle
6 exchange showed downward transport of small particles (3, 10 and 30 nm) and upward
7 transport of 100 nm particles. In particular during the first day (DOY 121), the upward
8 particle transport was synchronous with the storage change i.e. the concentration decrease
9 (Fig. 8b) referring to the dilution of concentration within the canopy. Downward transport of
10 10 nm particles during the second day in turn exceeded significantly the particle deposition.
11 This particle size range was affected then by changing (from negative to positive) aerosol
12 dynamical term during the morning hours due to particle growth (Fig. 8c), which was due to
13 the fact that 10 nm size was on the lower edge of the dominant mode of the particle size
14 spectrum (Fig. 8a). Note also that the storage change of 10 nm particles was similar to the
15 aerosol dynamical term (opposite in sign) and not to the exchange velocity. Therefore the
16 relatively large downward flux during the second day (DOY 122) was mainly driven by the
17 aerosol dynamics occurring at night, whereas the growth of the ML initiated strong vertical
18 mixing.

19 In order to understand overall trends and variability in aerosol dynamics and transport, the
20 diurnal patterns of the averages together with the range of variation were presented in Fig. 9
21 for three particle sizes characterizing the nucleation (10 nm), Aitken (50 nm) and
22 accumulation (300 nm) modes. For 50 nm particles the aerosol dynamics was a sink at nights,
23 whereas the condensational growth served as the source of 300 nm particles round the clock.
24 The variation range of the aerosol dynamical term can be very large indicating the role of
25 ABL development during different days. Whereas the variation range of the aerosol dynamics
26 and storage was large generally at nights, the vertical exchange deviated from deposition
27 mainly during the early morning SBL and further ABL growth period till noon (Fig. 9c).
28 During this period the 50 nm particle fluxes were larger than induced by deposition, and
29 during the ABL growth the 300 nm particle fluxes were lower than would have corresponded
30 to deposition, on the average.

31 Further we looked how different particle sizes were affected during different stages of the
32 ABL state. At night the aerosol dynamics affected wide range of particles and performed as
33 the sink for particles less than 100 nm and source for larger particles, on the average (Fig.

1 10c). The aerosol dynamical sink/source led primarily to particle concentration change.
2 During the morning hours from sunrise till noon the ABL growth induced enhanced
3 downward transport of about 30 nm to 200 nm particles, whereas vertical downward transport
4 of larger particles was less than deposition sink (Fig. 10a). During the afternoon all the change
5 velocities exhibited less variation compared to morning and night hours. Consequently
6 deposition was also the best represented by the averages fluxes at the canopy top in the
7 afternoon, with biggest deviation coinciding with the minimum in deposition velocity at
8 around 100 nm (Fig. 10b). Figures 8, 9 and 10 (see also Fig. S3 in the Supplement) illustrate
9 that both the aerosol dynamics and ABL growth can strongly affect the vertical transport of
10 aerosols and the fluxes above the canopy can deviate significantly from the deposition
11 occurring within the canopy.

12 Due to instrumental limitations or by intention (frequently to obtain statistically significant
13 particle counts in order to reduce particle flux random errors) a certain size interval of
14 particles is measured. Fig. 11 presents the vertical exchange velocity size integrated values to
15 represent the nucleation (3-30 nm), Aitken (30-100 nm) and accumulation (100 \AA 1000 nm)
16 mode particles. During the first day with assumed conditions of horizontal advection the size-
17 integrated particle fluxes showed clear upward transport during the morning hours for 30-100
18 and 100-1000 nm size ranges. The same has also been observed from the measurements and
19 interpreted as the upward transport due to ABL growth and resulting dilution of relatively
20 particle-rich air within forest with the particle-poor air transported down from aloft (e.g.
21 Nilsson et al., 2001). The days with very large (both positive and negative) values of the
22 exchange velocities compared to deposition velocities corresponded to the days with
23 preceding very low ABL heights at nights (DOY 127, 129, 130). Therefore the ABL
24 development can be identified as one of the main reasons for the large variation in vertical
25 transport of particles. In case of experimental flux measurements the statistical uncertainty as
26 well as natural variation originating from spatial heterogeneity and horizontal advection can
27 additionally contribute to the variance of the calculated fluxes, leading to flux patterns with
28 large variation, being often difficult to interpret.

29 Table 1 presents the statistics of the fluxes at the canopy top (relative to deposition) for
30 different particle sizes. Whereas for smaller particles 3-10 the time-average particle flux
31 statistics converged to particle deposition within forest, for larger particles the fluxes (if
32 measured by the micrometeorological technique) were biased in representing the particle
33 deposition even on the average. The largest deviations of the particle fluxes from dry

1 deposition sink occurred during the morning period when most intensive aerosol dynamics
2 and ABL development took place (Table 2). Consistently with Fig. 10b at that time 30-100
3 nm downward particle fluxes exceeded dry deposition and in the size range 100-1000 nm the
4 downward fluxes accounted for approximately half of the deposition sink.

5 Finally, we performed sensitivity analysis of our simulations with respect to saturation
6 concentration of condensing vapors, which affects the condensational growth of aerosols.
7 Two additional cases with low saturation vapor concentration (equivalent to more
8 condensation) and high saturation vapor concentration (equivalent to less condensation) were
9 tested (Sect. S2 in the Supplement). Whereas the high saturation vapor concentration case led
10 to less apparent nucleation mode in the particle size spectrum, the low saturation vapor
11 concentration implied more pronounced and clear particle growth patterns during the
12 nucleation days (Fig. S2 in the Supplement). The storage change, aerosol dynamics and
13 exchange velocities were studied for given scenarios (Figs. S3 to S5 in the Supplement). The
14 main difference observed was that in case of high saturation vapor concentration, due to
15 slower growth of particles, the effect of aerosol dynamics persisted longer in the morning and
16 affected the Aitken mode particles as represented by 50 nm (Fig. S4c in the Supplement)
17 along with similar impact on exchange velocity that overestimated dry deposition for given
18 particle size (Fig. S5c in the Supplement). However, as revealed by the sensitivity analysis of
19 different scenarios, the overall qualitative behavior was not significantly different.

20 **3.4 Discussion of results**

21 **3.4.1 Aerosol dynamics and deposition**

22 The simulations have shown that aerosol dynamics can have significant impact on aerosol
23 population depending on particle sizes. It is mainly the condensational growth that can
24 increase or decrease the particle numbers at certain sizes depending on the shape of the
25 particle size spectrum. The aerosol dynamical impact on particle concentration at certain sizes
26 can be equal to or even significantly exceed in magnitude the particle loss due to deposition
27 within the canopy. This is in particular true for particle sizes at which deposition rate is
28 minimal. Consistently with our result, Pryor and Binkowski (2004) and Pryor et al. (2013)
29 have found that frequently the time scales corresponding to particle deposition and aerosol
30 dynamical processes are in the same order of magnitude and therefore induce the
31 concentration change with comparable magnitude. Pryor et al. (2013) evaluated these time
32 scales to be in the order of 1 to 10 hours during the daytime in summer over a pine forest. In

1 the current study we presented that the aerosol dynamical time scale can be from
2 approximately half an hour to tens of hours.

3
4 The time scales of turbulent transfer and vertical transport were determined to be essentially
5 different. The vertical transport of aerosols was limited by the deposition and aerosol
6 dynamical processes and only at stable conditions the turbulent transfer could become
7 limiting to vertical transport of particles. The turbulent transfer time scales estimated in the
8 current study by using the LS trajectory simulations were in the order of minutes during the
9 day-time and could be up to a few tens of minutes under SBL conditions. Some other
10 definitions of the time scales have been used in the analysis of the significance of chemical
11 transformation of reactive scalars during transport pathway between the measurement level
12 and sources or sinks located primarily at leaf surface. Rinne et al. (2000, 2012) used the ratio
13 of the observation height to the friction velocity as the estimate for the mixing time scale.
14 Zelger et al. (1997) used the definitions of Eulerian and Lagrangian turbulent time scales to
15 characterize the turbulent transfer within and above forest. Holzinger et al. (2005) instead
16 used the estimate of the residence time and obtained the value about 1.5 minutes for day-time
17 conditions. The Lagrangian turbulent transfer times obtained in this study were consistent
18 with the previous studies including the time scales obtained by the same approach by Rannik
19 et al. (2009b).

20
21 **3.4.2 Dynamics within ABL**
22 The times scales of aerosol deposition and dynamics are much longer than the turbulent
23 transfer times within the forest canopy. Therefore, one would expect a minor impact of
24 aerosol dynamics on particle population during the vertical transfer within forest under most
25 of the observation conditions and a relatively good vertical mixing of aerosols within and
26 above forest. Nevertheless, we have seen in the current study that the vertical fluxes at the
27 canopy top can deviate significantly from what would be expected from dry deposition only.
28 From current model simulations we have seen that the aerosol dynamics is an important
29 mechanism of aerosol transformation throughout the ABL, whereas the aerosol deposition
30 occurs only inside the forest canopy. In addition, the impact of aerosol dynamics is height
31 dependent. Within the canopy the emissions of the precursor gases for particle condensational
32 growth (the volatile organic compounds) occur. The dominant condensing compounds are the
33 OH oxidation products of monoterpenes, which form during the transport pathway from
34 inside forest to higher levels in the ABL. The concentrations of the condensing compounds

1 are therefore larger within and immediately above the canopy and decrease with height. Such
2 height dependence of the condensational growth of particles can lead to modification of
3 concentration gradient and vertical flux profile. Even though the atmospheric mixing is fast
4 compared to above discussed processes, we believe it is the extensive source-sink term by
5 aerosol dynamics that operates throughout the atmospheric column (compared to the impact
6 of deposition inside the canopy only) and can thus create significant vertical flux divergence
7 and even upward particle transport.

8

9 The concentration time change, when summed up from the surface up to the measurement
10 level, is called the storage term and commonly accounted for in estimation of the net
11 ecosystem exchange of carbon dioxide from the EC flux measurements (e.g. Foken et al.,
12 2012). Such approach inherently assumes that the storage change results from the source/sink
13 activity below the observation level. Rannik et al. (2009a) studied the relevance of the storage
14 term in estimation of the dry deposition from particle flux measurements. They concluded that
15 in case of aerosol particles the relevance of the storage term could not be established because
16 of the different physical reasons for the concentration change during different phases of
17 diurnal development of the ABL. This study supports the conclusion with the observation that
18 the particle concentration change is primarily in correlation with the aerosol dynamics and the
19 change occurs throughout the ABL. Therefore the particle storage change (which corresponds
20 to accumulation or depletion) is not in general the sole component of the particle conservation
21 equation that could help to improve particle deposition estimation from the flux
22 measurements carried out above forest.

23

24 **3.4.3 Upward particle fluxes**

25 Particle fluxes determined by the micrometeorological techniques show typically large
26 variability in magnitude as well as in sign. Occurrence of upward particle fluxes has been
27 frequently reported in the literature (Pryor et al., 2007; Grönholm et al., 2007; Whitehead et
28 al., 2010; Pryor et al., 2013). Even after careful classification of observations according to
29 wind direction in order to remove the cases possibly affected by anthropogenic emissions,
30 flux observation analyses by Pryor et al. (2008) revealed significant fraction of observations
31 indicating emission. The upward particle flux values can be the result of large random
32 uncertainty or caused by upward particle transport due to physical processes. Random flux
33 errors of particle fluxes are due to stochastic nature of turbulence, instrumental noise, and
34 (limited) counting statistics of aerosol particles. The major source of the random uncertainty

1 of particle flux estimates is the non-stationarity of particle concentration as well as its flux
2 (for flux random uncertainties see Fairall, 1984). The particle fluxes have typically large
3 statistical uncertainty, in the order of 100% and more (Pryor et al., 2008, Rannik et al., 2003),
4 therefore it is frequently difficult to determine whether the calculated upward particle
5 occurrence reflects the true transport or was obtained by chance. Pryor et al. (2008)
6 investigated thoroughly the distribution and significance of upward fluxes as well as the
7 relevance to several physical mechanisms causing them by taking into account also the error
8 estimates of fluxes. They came to the conclusion of several possible physical mechanisms
9 responsible for upward particle transport including the entrainment of particle-free air from
10 above during the intensive ABL growth periods. Whitehead et al. (2010) observed similar
11 systematic pattern over a tropical rain forest in case of supermicron particles. Upward particle
12 fluxes were also observed on seasonal average diurnal patterns by Rannik et al. (2009a) in the
13 statistical analysis of long-term particle flux measurements over a pine forest, confirming that
14 the phenomenon is common over a long period of time.

15
16 Nilsson et al. (2001) also associated the occurrence of upward particle fluxes to the solar
17 radiation increase and boundary layer development. In addition, they studied the evolution of
18 the Aitken and Accumulation mode particle concentrations in the ML during the ABL growth
19 and inferred the particle concentrations being entrained by using a simple ML growth model
20 based on thermodynamical considerations. The model explained well the ML height as well
21 as the particle concentration evolution. The entrained particle concentrations were determined
22 to be virtually from 0% to 40% of the close-to-surface values, indicating that night-time
23 horizontal advection was a dominating process at the site affecting the vertical profiles of
24 aerosols above the SBL. The initialization of the aerosol concentration profiles during the first
25 day of simulations in the current study represent such advective conditions and resulted in
26 strong upward particle transport during the early morning ML growth. Whereas the night-time
27 advection can be typical to SMEAR II site, it is certainly a site specific phenomenon and
28 therefore for the rest of the period we intended to use the initialization of profiles with
29 uniform particle concentration up to the residual layer height. Therefore our simulation results
30 for the first day represent the conditions characteristic to strong horizontal advection and are
31 during the rest of the days expected to underestimate the vertical transport due to ML growth.

32
33 Gordon et al. (2011) observed major fraction (60%) of upward particle fluxes for size interval
34 18 to 450 nm above a mixed forest in Ontario, Canada, by the EC technique. The upward

1 particle flux rate was highest for 75 nm particles. One of the mechanisms for upward fluxes
2 was the entrainment of clean air from aloft as discussed previously. As additional mechanism,
3 the authors proposed the slowest growth rate of this particle size, suggesting that the authors
4 referred to the aerosol dynamics as one of the reasons.

5

6 Pryor et al. (2013) also suggested the depletion mechanism as the most common cause of the
7 upward fluxes above a sparse pine forest during the morning hours. Later in the day the
8 authors attributed the upward fluxes of sub-30-nm particles to the growth of the newly formed
9 particles by condensation of the BVOCs. All the mechanisms as the reasons for upward
10 particles fluxes discussed here appear to be the plausible reasons according to our model
11 simulations and can dominate depending on location, emission rates of BVOCs, time of day,
12 particle size and possibly some other factors. The results of the current study identified the
13 aerosol dynamics as one of the main mechanisms causing upward transport of particles with
14 30 nm in diameter and larger.

15

16 **3.4.4 Fluxes of above 100 nm particles**

17 Our results have shown that the aerosol and ABL dynamics can introduce significant
18 systematic deviation of the exchange velocities above the canopy from dry deposition on the
19 average. For around 100 nm particles the fluxes above the canopy exceeded the dry deposition
20 sink and for larger than 100 nm the deposition was poorly characterized by the fluxes above
21 the canopy (see Table 1). The range of the flux to deposition ratio varied from negative to
22 positive values, being especially large for about 100 nm particles, which coincides with the
23 minimum of the particle deposition rate at this size. The median values presented in Table 1
24 were closer to unity than the averages. This implies that the averages are affected by extreme
25 values corresponding to certain dynamical conditions occurring in the ABL. Such conditions
26 certainly can take place in the real atmosphere. The fact that the median exchange velocities
27 represent better deposition than the time average indicates that the median values are more
28 robust statistics than the averages and should be perhaps used in representing the particle
29 exchange instead of averages.

30

31 We note that the results based on model simulations were free of statistical uncertainty
32 introduced by random errors to experimentally determined fluxes. Rannik et al. (2003) used a
33 semi-empirical model to explain the size-integrated particle flux measurements performed at

1 the same site with our model simulations. The model appeared to explain well the flux
2 observation with particle population mainly consisting of below 100 nm particles. Deposition
3 velocities for above 100 nm sizes were very uncertain. The authors proposed several reasons
4 why the model was not able to explain the observations: presence of a mechanism controlling
5 deposition of above 100 nm particles not described by the semi-empirical model as well as
6 several other reasons such as temporary pollution sources in the measurement source area.
7 The possible reasons of meteorological origin were suggested to be horizontal advection of
8 particle concentration, boundary layer growth and concentration dilution, and roll circulation
9 in the ABL (e.g., Buzorius et al., 2001). This study has shown that such apparent uncertainty
10 in deposition pattern of above 100 nm particles could be the case even in horizontally
11 homogeneous conditions due to aerosol dynamical and ABL development processes.

12 **4 Conclusions**

13 Simulations performed by the model SOSAA coupling turbulent exchange within the ABL
14 with detailed atmospheric chemistry and aerosol dynamics indicated that the aerosol dynamics
15 is strongly size-dependent but a significant source-sink term to aerosol concentration
16 throughout the atmospheric column. Whereas the vertical transport is mostly compensating
17 for particle loss inside the canopy due to the deposition, the aerosol dynamics leads to the
18 concentration changes in the whole ABL. However, during the periods of intensive aerosol
19 dynamics when new particle formation frequently occurs, the particle deposition and aerosol
20 dynamics together with ABL development leads to complicated vertical transport patterns.
21 For small particles (up to a few tens of nm) the deposition sink is relatively strong (compared
22 to the aerosol dynamics) and the downward fluxes were predicted in the lower ABL.
23 However, for some particle size ranges, depending on the aerosol dynamical processes, the
24 stronger aerosol dynamical source inside and above forest (compared to higher ABL) can lead
25 to upward particle transport such that the vertical fluxes above the canopy might not be
26 coherent with dry deposition under such conditions. We have also observed that the ABL
27 dynamics occasionally leads to upward particle transport which can be interpreted as the
28 transport due to dilution of relatively particle-rich air within forest with the particle-poor air
29 transported down from aloft during the active ABL growth phase.

30

31 The simulated turbulent transfer time scales inside the forest were much shorter than the time
32 scales of deposition and aerosol dynamics for all sizes except the smallest at around 3 nm. In
33 spite of efficient mixing inside the canopy, the particle fluxes at the canopy top can deviate

1 from the deposition rates inside forest. This is due to the transformation of aerosol
2 concentration throughout the atmospheric column resulting in the complicated pattern of
3 particle vertical transport. Therefore, the within-canopy deposition and transformation
4 processes do not determine solely the particle vertical transport within and above the canopy
5 and the respective time scales are not sufficient to determine if the aerosol dynamics can
6 cause significant particle flux divergence below the measurement level.

7
8 We conclude that under dynamical conditions studied here the particle fluxes above the forest
9 canopy occasionally deviated from the particle dry deposition sink inside the forest canopy.
10 Such deviations can be very large and for certain particle sizes even systematic after
11 performing diurnal averaging of results.

12
13 **Acknowledgements**
14 This work was supported by the Academy of Finland (project No. 118780 and 127456). ICOS
15 (271878), ICOS-Finland (281255) and ICOS-ERIC (281250), and Nordic Center of
16 Excellence, CRAICC, are gratefully acknowledged for funding this work. This work was also
17 supported by institutional research funding (IUT20-11) of the Estonian Ministry of Education
18 and Research. We further thank Helsinki University Centre for Environment (HENVI) and the
19 Academy of Finland Centre of Excellence program (project no. 1118615). The CSC-IT
20 center, Finland, is acknowledged for providing the computing service.

21
22 **Appendix A. Description of measurements at SMEAR II**
23 The SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations) field
24 measurement station is located in Hyytiälä, Southern Finland ($61^{\circ} 51' N$, $24^{\circ} 17' E$, 181 m asl).
25 The station is located in the area covered mainly by pine-dominated forests. The dominant
26 height of the stand near the measurement tower was about 20 m in 2013. The main canopy at
27 the site is characterized by the total leaf area index (LAI) $\sim 6.5 \text{ m}^2 \text{ m}^{-2}$ and stand density 1400
28 ha^{-1} (Launiainen et al., 2011). The forest floor vegetation is relatively low (mean height
29 $\sim 0.2\text{--}0.3 \text{ m}$) but dense (total LAI $\sim 1.5 \text{ m}^2 \text{ m}^{-2}$). However, in model setup a beta distribution
30 of LAD was used that matched to observed turbulence statistics in and above the canopy and
31 the forest floor vegetation as a separate layer was neglected (Boy et al., 2011). More detailed
32 description of the station and the measurements can be found in Hari and Kulmala (2005).

33

1 Turbulent fluxes of momentum, heat, CO₂ and H₂O were measured by means of the EC
2 technique. The system, located at 23 m height above the ground on the top of a scaffolding
3 tower, included an ultrasonic anemometer (Solent Research HS1199, Gill Ltd., Lymington,
4 Hampshire, England) to measure the three wind velocity components and the sonic
5 temperature, a closed-path infrared gas analyser (LI-6262, LiCor Inc., Lincoln, NE, USA) that
6 measured the CO₂ and H₂O concentrations. The data were sampled at 21 Hz and a 2D rotation
7 of sonic anemometer wind components and filtering to eliminate spikes were performed
8 according to standard methods (e.g. Aubinet et al., 2000). The high-frequency flux attenuation
9 was corrected by using empirical transfer functions and co-spectral transfer characteristics
10 (Mammarella et al., 2009).

11

12 Aerosol size distribution (from 3 nm to 1 μ m) measurements were performed using a
13 Differential Mobility Particle Sizer (DMPS) system. The aerosol was sampled from inside the
14 forest at 2 m height. Details of the DMPS measurement system are presented in Aalto et al.
15 (2001).

16

17 **Appendix B. Initialisation of model SOSAA**

18 The chemistry scheme employed by the model for this study included the relevant Master
19 Chemical Mechanism (MCM) chemical paths (Jenkins et al., 1997; Jenkins et al., 2003;
20 Saunders et al., 2003) for the following parent molecules: methane, methanol, formaldehyde,
21 acetone, acetaldehyde, MBO, isoprene, alpha-pinene, beta-pinene, limonene and beta-
22 caryophyllene. For other emitted organic compounds including myrcene, sabinene, 3-carene,
23 ocimene, cineole and "other" monoterpenes, and farnesene and "other" sesquiterpenes, the
24 MCM chemistry paths are not available and we thus included their first-order oxidations with
25 OH, O₃ and NO₃. For the reactions of the stabilized Criegee intermediates (sCI) from alpha-
26 and beta-pinene and limonene, we used the rates from Mauldin III et al. (2012), similar to
27 δ Scenario Cö in Boy et al. (2013). For the sCI from isoprene, we used the rates from Welz et
28 al. (2012) as done in δ Scenario Dö in Boy et al. (2013). Sulfuric acid and nitric acid were
29 removed from the gas phase based on the condensation sinks calculated from background
30 aerosol loading.

31 There was no specific initialization of chemistry state for the model (all variables were
32 initialized as zero while created). Exceptions were the passive tracer concentrations (CO₂,

1 NO, NO₂, SO₂ and O₃), which were initialized with measurements. The concentrations of
2 these five passive tracers were always read in from measurements during the simulation. The
3 time resolution of input data was half an hour and the data was linearly interpolated for each
4 time step in model run. The vertical profiles of the particle concentrations were initialized
5 each night as described in Sect. 2.2.

6

7 Global short wave radiation, top boundary temperature, humidity and wind speed were fixed
8 to inputs throughout simulation. The global short wave radiation was measured at SMEAR II.
9 Temperature, humidity and wind speed at the top boundary were based on ECMWF
10 reanalysis data.

11 The initial temperature profile was assumed linear, using the input top border temperature and
12 input temperature gradient. The wind profile was set using the logarithmic wind law, the
13 roughness and wind speed at the top boundary. Initial humidity was taken constant throughout
14 the ABL and the heat fluxes and TKE were set to zero. Mixing length was initialized as

15
$$l = 0.40 \frac{z + z_0}{1 + 0.016z}.$$

16 At the lower boundary, soil humidity for the uppermost layer was set to 0.2 kg kg⁻¹. Soil
17 temperature was set -2 degrees from air temperature at the lowest level and leaf temperature
18 was set equal to air temperature. Heat flux to the soil was based on the measurements from
19 the SMEAR II station throughout simulations.

20

21 **References**

22 Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J.M., Hoell, C., O'Dowd, C.
23 D., Karlsson, H., Hansson, H.-C., Väkevä, M., Koponen, I. K., Buzorius, G., and
24 Kulmala, M.: Physical characterization of aerosol particles during nucleation events,
25 Tellus, 53B, 3446358, 2001.

26 Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken T., Kowalski, A.S.,
27 Martin, P.H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A.,
28 Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R.,
29 and Vesala, T.: Estimates of the annual net carbon and water exchange of European
30 forests: the EUROFLUX methodology, Adv. Ecol. Res., 30, 113-175, 2000.

1 Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dülmer,
2 C., Sipilä, M., Petäjä, T., Mauldin, R.L., III, Berresheim, H., and Kulmala, M., Oxidation
3 of SO₂ by stabilized Criegee Intermediate (sCI) radicals as a crucial source for
4 atmospheric sulphuric acid concentrations, *Atmos. Chem. Phys.*, 13, 3865-3879, 2013.

5 Boy, M., Sogachev, A., Lauros, J., Zhou, L., Guenther, A., and Smolander, S.: SOSA ó a new
6 model to simulate the concentrations of organic vapours and sulphuric acid inside the
7 ABL ó Part 1: Model description and initial evaluation, *Atmos. Chem. Phys.*, 11, 43651,
8 doi:10.5194/acp-11-43-2011, 2011.

9 Buzorius, G., Rannik, Ü., Nilsson, D., and Kulmala, M.: Vertical fluxes and
10 micrometeorology during aerosol particle formation events, *Tellus*, 53B, 394-405, 2001.

11 Fairall, C.W.: Interpretation of eddy-correlation measurements of particulate deposition and
12 aerosol flux, *Atm. Environ.*, 18, 1329-1337, 1984.

13 Foken, T., Aubinet, M., and Leuning, R.: The Eddy Covariance Method, in *Eddy Covariance,*
14 A Practical Guide to Measurement and Data Analysis, Editors Aubinet, M., Vesala, T.,
15 Papale, D., Springer, 2012, DOI 10.1007/978-94-007-2351-1.

16 Gordon, M., Staebler, R. M., Liggio, J., Vlasenko, A., Li, S.-M., and Hayden, K.: Aerosol
17 flux measurements above a mixed forest at Borden, Ontario, *Atmos. Chem. Phys.*, 11,
18 6773-6786, [doi:10.5194/acp-11-6773-2011, 2011](https://doi.org/10.5194/acp-11-6773-2011).

19 Grönholm, T., Aalto, P.P., Hiltunen, V., Rannik, Ü., Rinne, J., Laakso, L., Hyvönen, S.,
20 Vesala, T., and Kulmala, M.: Measurements of aerosol particle dry deposition velocity
21 using the relaxed eddy accumulation technique, *Tellus*, 59B, 381-386, DOI:
22 10.1111/j.1600-0889.2007.00268.x, 2007.

23 Hari P., Kulmala M.: Station for measuring ecosystem-atmosphere relations (SMEAR II),
24 *Boreal Environment Res.*, 10, 315-322, 2005.

25 Hinds, W.C.: *Aerosol Technology: Properties, Behavior, and Measurement of Airborne*
26 *Particles*, John Wiley and Sons, New York, 1982.

27 Holzinger, R., Lee, A., Paw U, K.T., and Goldstein, A.H.: Observations of oxidation products
28 above forest imply biogenic emissions of very reactive compounds, *Atmos. Chem. Phys.*,
29 5, 67-75, 2005.

30 Jenkin, M.E., Saunders, S.M., and Pilling, M.J., The tropospheric degradation of volatile
31 organic compounds: a protocol for mechanism development, *Atmos. Environ.*, 31(1), 81-
32 104, 1997.

1 Jenkin, M.E., Saunders, S.M., Wagner, V., an Pilling, M.J., Protocol for the development of
2 the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of
3 aromatic volatile organic compounds, *Atmos. Chem. Phys.*, 3(1), 181-193, 2003.

4 Kurten, T., Zhou, L., Makkonen, R., Merikanto, J., Räisänen, P., Boy, M., Richards, N., Rap,
5 A., Smolander, S., Sogachev, A., Guenther, A., Mann, G. W., Carslaw, K., and Kulmala,
6 M.: Large methane releases lead to strong aerosol forcing and reduced cloudiness, *Atmos.*
7 *Chem. Phys.*, 11, 6961-6969, 2011.

8 Launiainen, S., Katul, G. G., Kolari, P., Vesala, T., Hari, P., Empirical and optimal stomatal
9 controls on leaf and ecosystem level CO₂ and H₂O exchange rates, *Agricultural and*
10 *Forest Meteorology*, 151, 16726 1689, doi:10.1016/j.agrformet.2011.07.001, 2011.

11 Lauros, J., Sogachev, A., Smolander, S., Vuollekoski, H., Sihto, S.-L., Mammarella, I.,
12 Laakso, L., Rannik, Ü., and Boy, M.: Particle concentration and flux dynamics in the
13 atmospheric boundary layer as the indicator of formation mechanism, *Atmos. Chem.*
14 *Phys.*, 11, 559165601, doi:10.5194/acp-11-5591-2011, 2011.

15 Mammarella, I., Launiainen, S., Gronholm, T., Keronen, P., Pumpanen, J., Rannik, Ü.,
16 Vesala, T.: Relative humidity effect on the high frequency attenuation of water vapour
17 flux measured by a closed-path eddy covariance system, *J. Atmos. Ocean. Tech.*, 26(9),
18 1856-1866, 2009.

19 Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T.,
20 Stratmann, F., Kerminen, V.-M., and Kulmala, M.: A new atmospherically relevant
21 oxidant, *Nature*, 488, 1936196, doi:10.1038/nature11278, 2012.

22 Mogensen, D., Gierens, R., Crowley, J. N., Keronen, P., Smolander, S., Sogachev, A.,
23 Nölscher, A. C., Zhou, L., Kulmala, M., Tang, M. J., Williams, J., and Boy, M.:
24 Simulationsof atmospheric OH, O₃ and NO₃ reactivities within and above the boreal
25 forest, *Atmos. Chem. Phys.*, 15, 390963932, 2015.

26 Monteith, J. L., and Unsworth, M. H., *Principles of Environmental Physics*, London, Edward
27 Arnold, 1990.

28 Nilsson, E.D., Rannik, Ü., Kulmala, M., Buzorius, G., and O'Dowd, C.D.: Effects of
29 continental boundary layer evolution, convection, turbulence and entrainment, on aerosol
30 formation, *Tellus*, 53B, 441-461, 2001.

31 Petroff A., Mailliat A., Amielh M., Anselmet F.: Aerosol dry deposition on vegetative
32 canopies. Part II: A new modelling approach and applications, *Atmos. Environ.*, 42,
33 3654-3683, 2008.

1 Petroff, A., and Zhang, L.: Development and validation of a size-resolved particle dry
2 deposition scheme for application in aerosol transport models, *Geosci. Model Dev.*, 3,
3 7536769, doi:10.5194/gmd-3-753-2010, 2010.

4 Pryor, S. C. , Barthelmie, R. J., and Hornsby, K. E.: Size-Resolved Particle Fluxes and
5 Vertical Gradients over and in a Sparse Pine Forest, *Aerosol Science and Technology*,
6 47:11, 1248-1257, DOI: 10.1080/02786826.2013.831974, 2013.

7 Pryor, S. C. Barthelmie, R. J. Sørense, L. L., Larsen, S. E., Sempreviva, A. M., Grönholm, T.,
8 Rannik, Ü., Kulmala, M., Vesala, T.: Upward fluxes of particles over forests: when,
9 where, why?, *Tellus B*, 60, 372-380, 2008.

10 Pryor, S. C., and Binkowski, F. S.: An Analysis of the Time Scales Associated with Aerosol
11 Processes during Dry Deposition, *Aerosol Science and Technology*, 38:11, 1091-1098,
12 <http://dx.doi.org/10.1080/027868290885827>, 2004.

13 Pryor, S. C., Larsen, S. E., Sørensen, L. L., Barthelmie, R. J., Grönholm, T., Kulmala, M.,
14 Launiainen, S., Rannik, Ü., Vesala, T.: Particle fluxes over forests: Analyses of flux
15 methods and functional dependencies, *J. Geophys Res.*, 112, D07205,
16 doi:10.1029/2006JD008066, 2007.

17 Rannik, Ü., Aalto, P., Keronen, P., Vesala, T. and Kulmala, M.: Interpretation of aerosol
18 particle fluxes over a pine forest: Dry deposition and random errors, *J. Geophys Res.*, 108
19 (D17), AAC 3-16 3-11, 2003.

20 Rannik, Ü., Mammarella, I., Aalto, P., Keronen, P., Vesala, T., Kulmala, M.: Long-term
21 particle flux observations Part I: Uncertainties and time-average statistics, *Atmospheric
22 Environment*, 43, 3431-3439, 2009a.

23 Rannik, Ü., Mammarella, I., Keronen, P., and Vesala, T.: Vertical advection and nocturnal
24 deposition of ozone over a boreal pine forest, *Atmos. Chem. Phys.*, 9, 2089-2095, 2009b.

25 Rinne, J., Hakola, H., Laurila, T., and Rannik, Ü.: Canopy scale monoterpane emissions of
26 *Pinus sylvestris* dominated forests, *Atmos. Environ.*, 34, 1099-1107, 2000.

27 Rinne, J., Markkanen, T., Ruuskanen, T. M., Petäjä, T., Keronen, P., Tang, M.J., Crowley, J.
28 N., Rannik, Ü, and Vesala, T.: Effect of chemical degradation on fluxes of reactive
29 compounds óa study with a stochastic Lagrangian transport model, *Atmos. Chem. Phys.*,
30 12, 4843-4854, 2012.

31 Saunders, S.M., Jenkin, M.E., Derwent, R.G., and Pilling, M.J., Protocol for the development
32 of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-
33 aromatic volatile organic compounds, *Atmos. Chem. Phys.*, 3(1), 161-180, 2003.

1 Smolander, S., He, Q., Mogensen, D., Zhou, L., Bäck, J., Ruuskanen, T., Noe, S., Guenther,
2 Aaltonen, H., Kulmala, M., and Boy, M.; Comparing three vegetation monoterpene
3 emission models to measured gas concentrations with a model of meteorology, air
4 chemistry and chemical transport, *Biogeosciences*, 11, 5425–5443, doi:10.5194/bg-11-
5 5425-2014, 2014.

6 Sogachev, A., Menzhulin, G., Heimann, M., and Lloyd, J.: A simple three dimensional
7 canopy ó planetary boundary layer simulation model for scalar concentrations and fluxes,
8 *Tellus*, 54B, 784-819, 2002.

9 Sogachev, A., Kelly, M. and Leclerc, M.: Consistent Two-Equation Closure Modelling for
10 Atmospheric Research: Buoyancy and Vegetation Implementations, *Bound.-Layer
11 Meteor.*, 145, 307-327, 2012.

12 Stull, R. B.: An introduction to boundary layer meteorology, Dordrecht, The Netherlands:
13 Kluwer Academic Publishers, 1988.

14 Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., and Jefferson, A.:
15 Measurements of new particle formation and ultrafine particle growth rates at a clean
16 continental site, *J. Geophys. Res. Atmos.*, 102, 4375-4385, doi:10.1029/96JD03656,
17 1997.

18 Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and
19 Taatjes, C. A., Direct kinetic measurements of Criegee Intermediate (CH_2OO) formed by
20 reaction of CH_2I with O_2 , *Science*, 335, 204-207, 2012.

21 Whitehead, J. D., Gallagher, M.W., Dorsey, J. R., Robinson, N., Gabey, A. M., Coe, H.,
22 McFiggans, G., Flynn, M. J., Ryder, J., Nemitz, E., and Davies, F., Aerosol fluxes and
23 dynamics within and above a tropical rainforest in South-East Asia, *Atmos. Chem. Phys.*,
24 10, 9369-9382, doi:10.5194/acp-10-9369-2010, 2010.

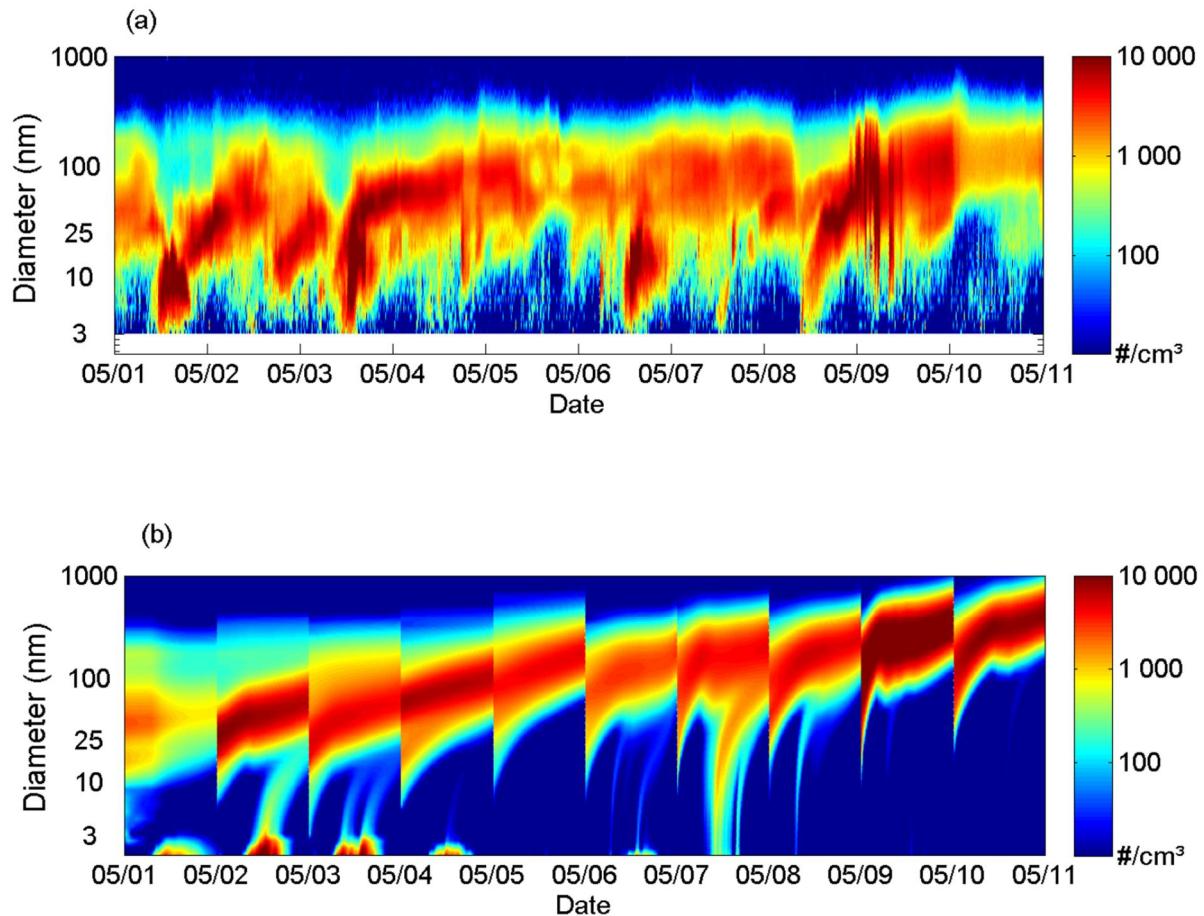
25 Wilson, J.D., and Sawford, B.L.: Review of Lagrangian stochastic models for trajectories in
26 the turbulent atmosphere, *Boundary-Layer Meteorol.*, 78, 191-210, 1996.

27 Zelger, M., Schween, J., Reuder, J., Gori, T., Simmerl, K., and Dlugi, R.: Turbulent
28 transport, characteristic length and time scales above and within the BEMA forest site at
29 Castelporziano, *Atm. Environm.*, 31, 2176-227, [http://dx.doi.org/10.1016/S1352-
30 2310\(97\)00112-X](http://dx.doi.org/10.1016/S1352-2310(97)00112-X), 1997.

31 Zhou, L., Nieminen, T., Mogensen, D., Smolander, S., Rusanen, A., Kulmala, M., and Boy,
32 M.: SOSAA ó a new model to simulate the concentrations of organic vapours, sulphuric
33 acid and aerosols inside the ABL ó Part 2: Aerosol dynamics and one case study at a
34 boreal forest site, *Boreal Environ. Res.*, 19, 237-256, 2014.

1 Zhou, L., Gierens, R., Sogachev, A., Mogensen, D., Ortega, J., Smith, J. N., Harley, P. C.,
2 Prenni, A. J., Levin, E. J. T., Turnipseed, A., Rusanen, A., Smolander, S., Guenther, A.
3 B., Kulmala, M., Karl, T., and Boy, M.: Contribution from biogenic organic compounds
4 to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate
5 needle leaf forest, *Atmos. Chem. Phys. Discuss.*, 15, 9033-9075, 2015.
6

1 **Table 1.** Statistics of the ratio of the flux at the canopy top to deposition sink integrated over
 2 the canopy over 10 days period in May 2013. The average statistics $\langle V_e \rangle$ and $\langle |V_{dep}| \rangle$ were
 3 averaged over the simulation period first and then the ratio was found, whereas the percentile
 4 statistics apply for the ratios $\frac{V_e}{|V_{dep}|}$ obtained from model simulations for each 10 minute
 5 period.

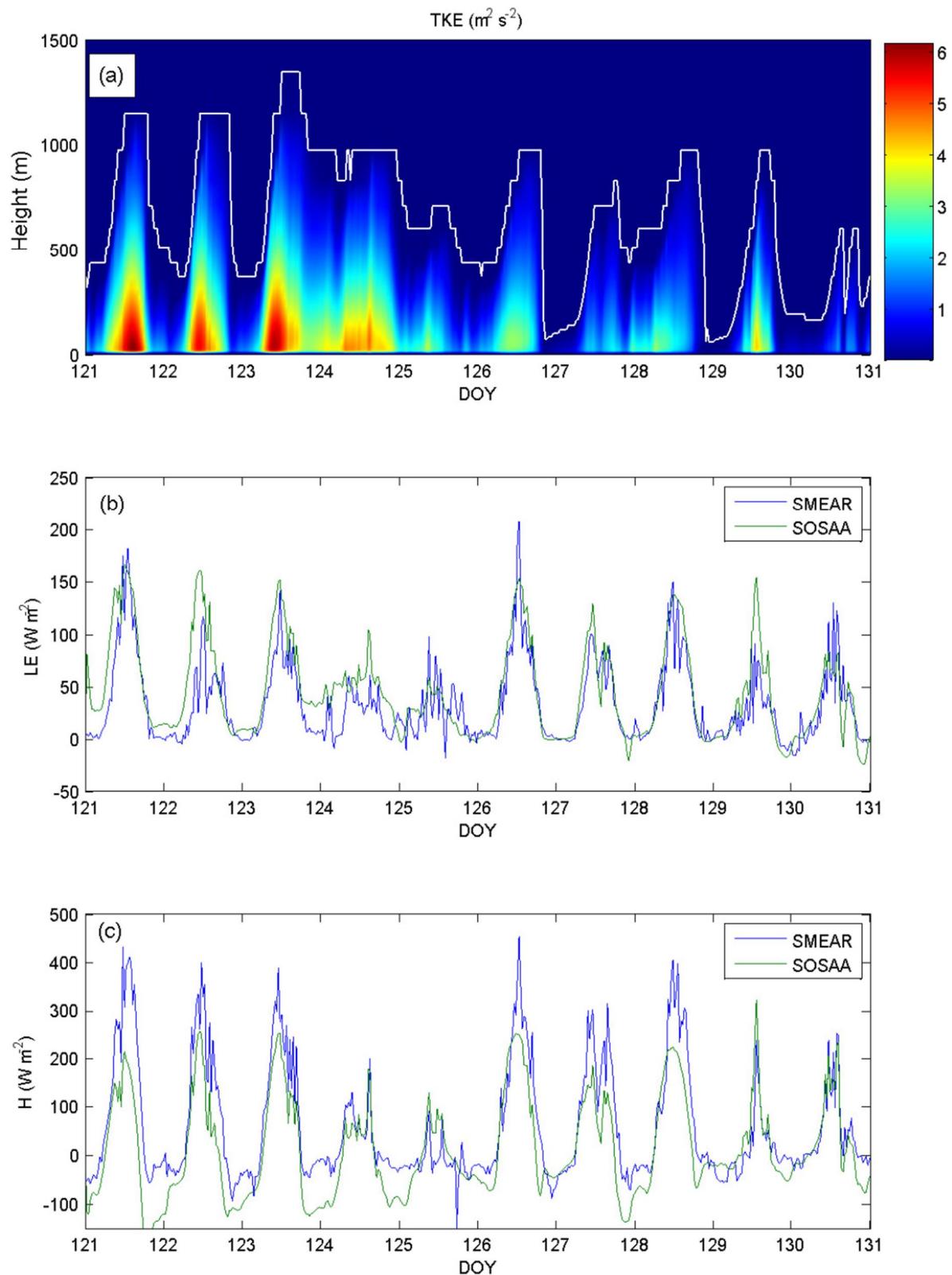

Particle size (nm)	3	10	30	100	300	850	3-30	30-100	100-1000
$\frac{\langle V_e \rangle}{\langle V_{dep} \rangle}$	0.90	0.99	1.36	2.09	0.53	0.82	1.11	1.99	0.66
Q5	-0.24	-0.18	-0.32	0.15	-1.30	0.20	0.33	0.70	-0.76
Q25	0.77	0.87	0.93	0.82	0.32	0.73	0.97	0.95	0.56
Median	0.97	1.00	1.06	0.94	0.85	0.92	1.06	1.04	0.86
Q75	1.15	1.09	1.31	1.34	0.92	0.96	1.20	1.57	0.92
Q95	1.81	1.70	3.36	9.59	1.01	1.00	2.12	10.5	0.98

6
 7 **Table 2.** Statistics of the ratio of the flux at the canopy top to deposition sink integrated over
 8 the canopy over 10 days period in May 2013. For more details see Table 1. Morning refers to
 9 time period from sunrise till noon, afternoon from noon till sunset and night from sunset till
 10 sunrise.

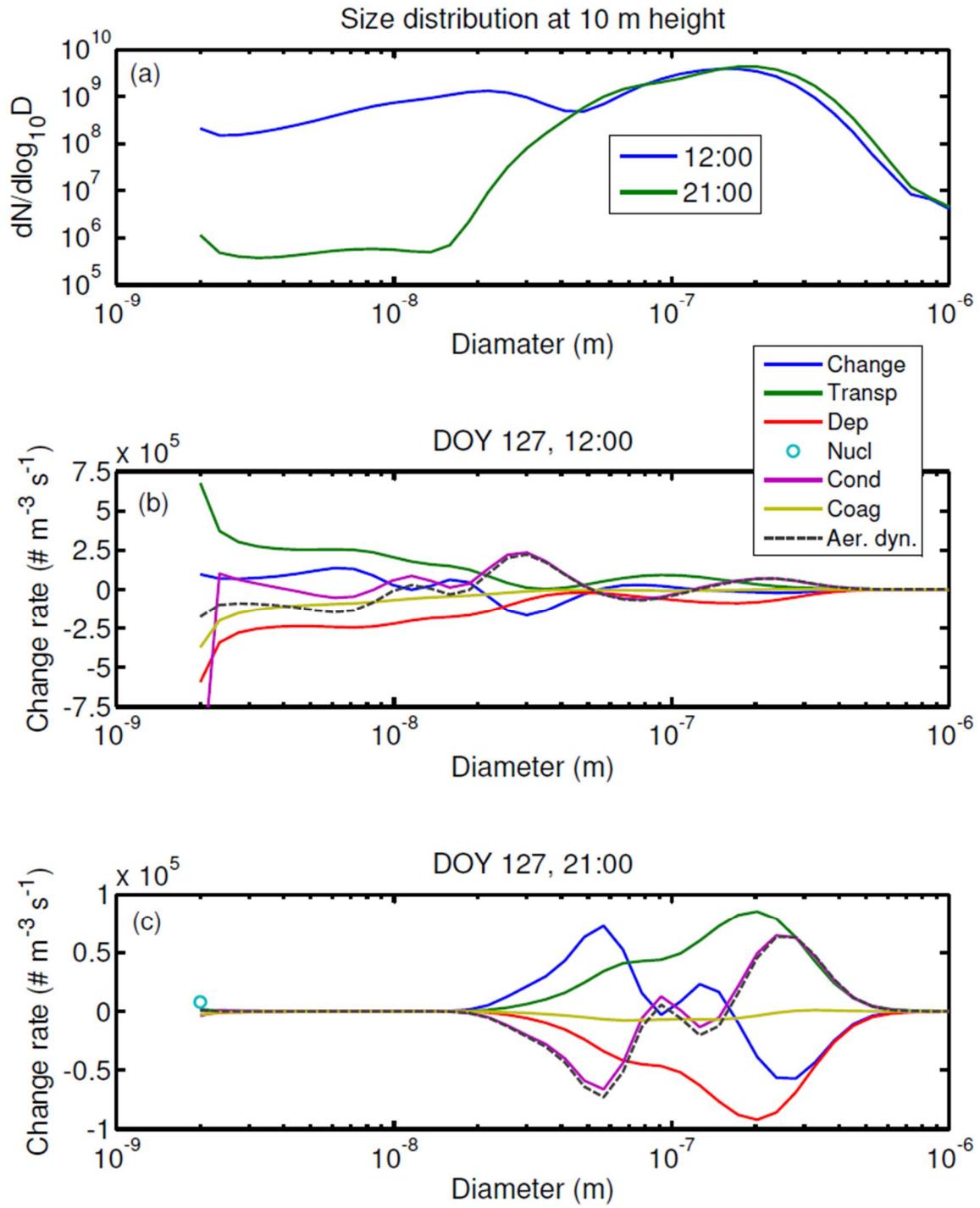
Time	Morning			Afternoon			Night		
Particle size (nm)	3-30	30-100	100-1000	3-30	30-100	100-1000	3-30	30-100	100-1000
$\frac{\langle V_e \rangle}{\langle V_{dep} \rangle}$	1.25	2.92	0.48	1.12	1.67	0.73	0.84	1.19	0.81
Q5	0.68	0.20	-1.36	0.77	0.70	0.07	-0.27	0.87	-0.16
Q25	1.04	0.94	0.33	0.97	0.94	0.56	0.92	0.96	0.77
Median	1.17	1.17	0.84	1.03	1.03	0.84	1.03	1.01	0.86
Q75	1.46	2.96	0.91	1.13	1.40	0.91	1.11	1.17	0.93
Q95	2.21	29.6	0.98	1.69	7.21	0.99	3.85	3.04	0.96

1 **Figure captions**

2

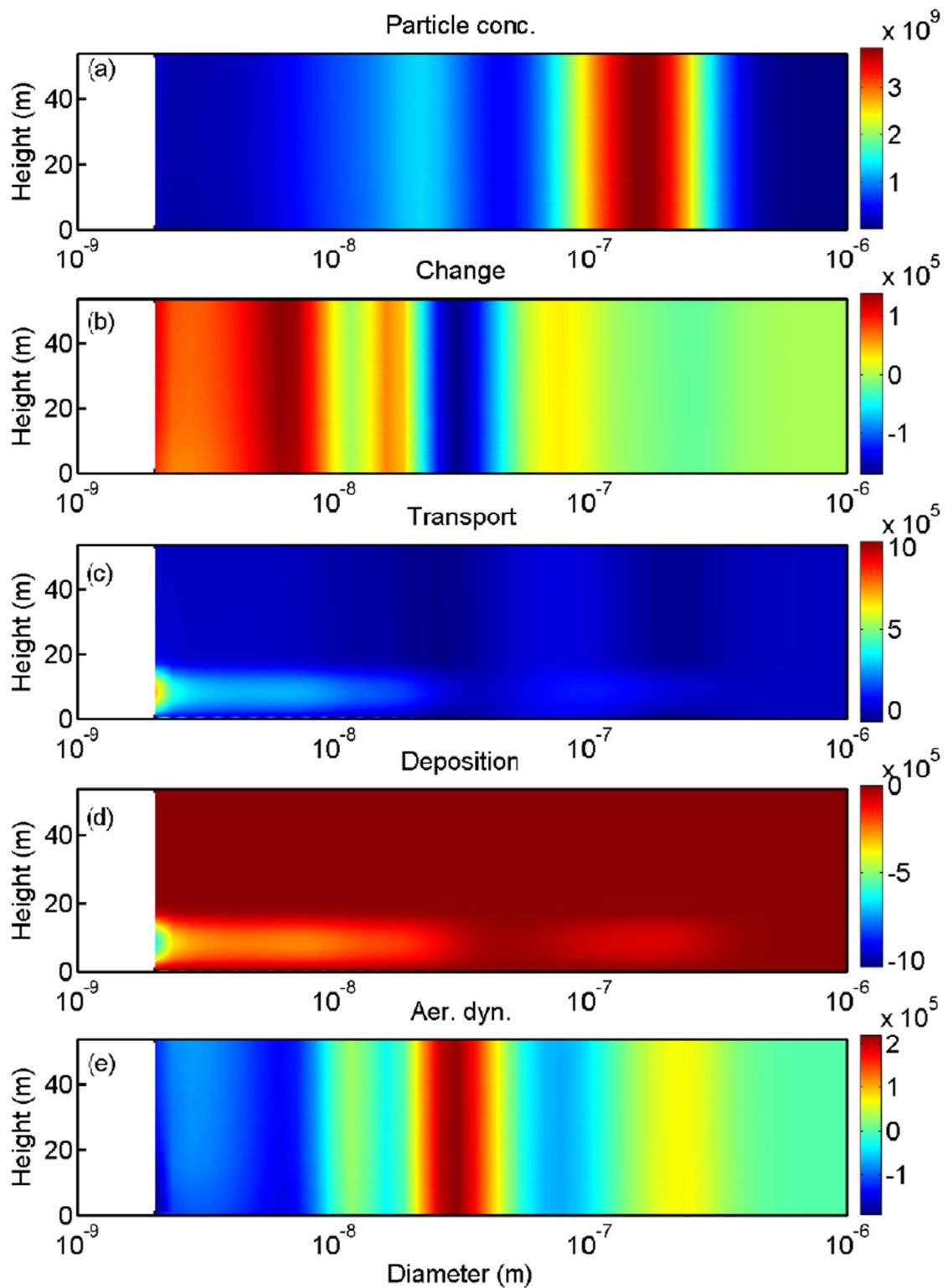


3

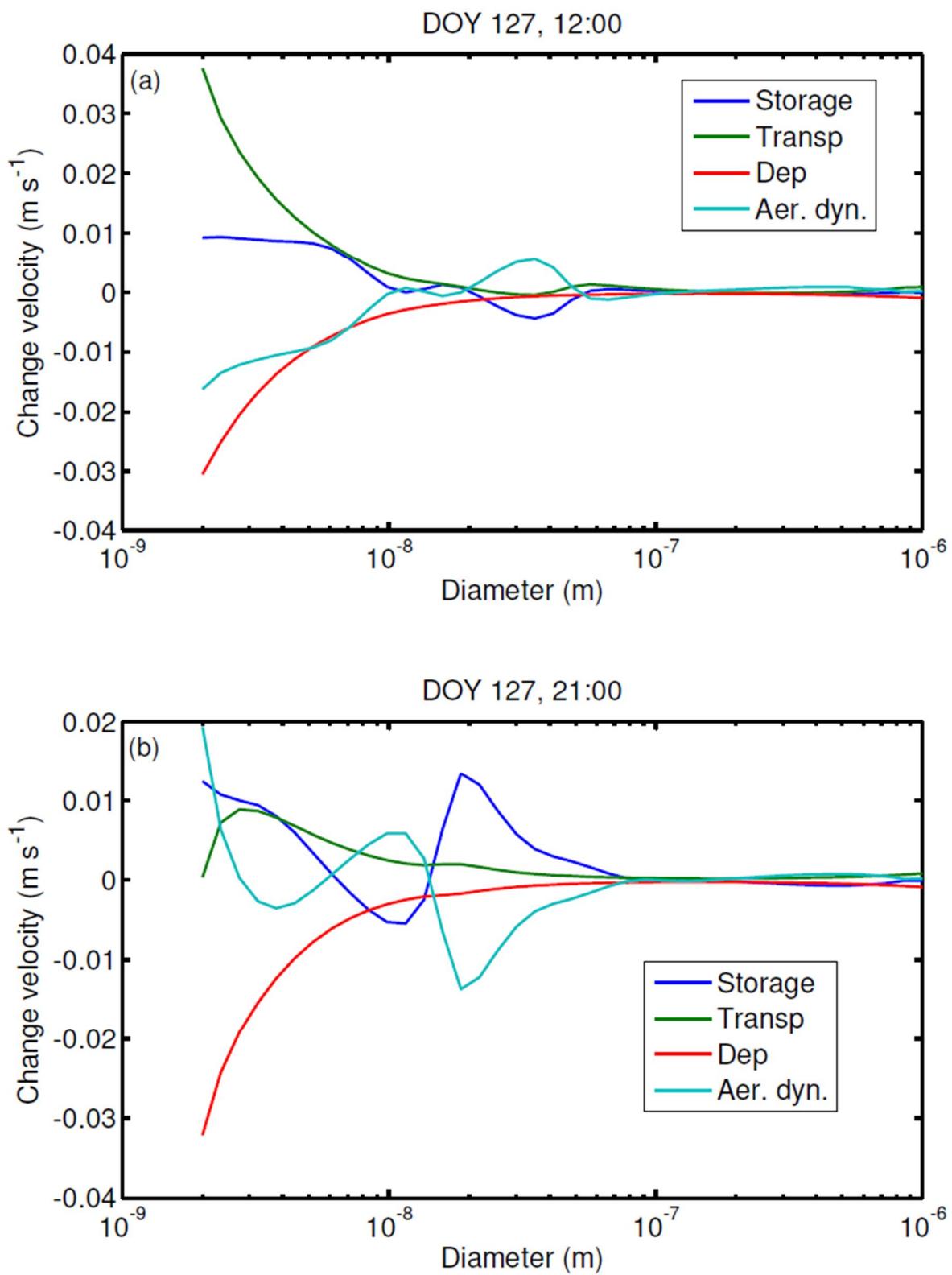

4 **Figure 1.** Aerosol size distribution at 2 m height during 10 days period in May 2013 as (a)

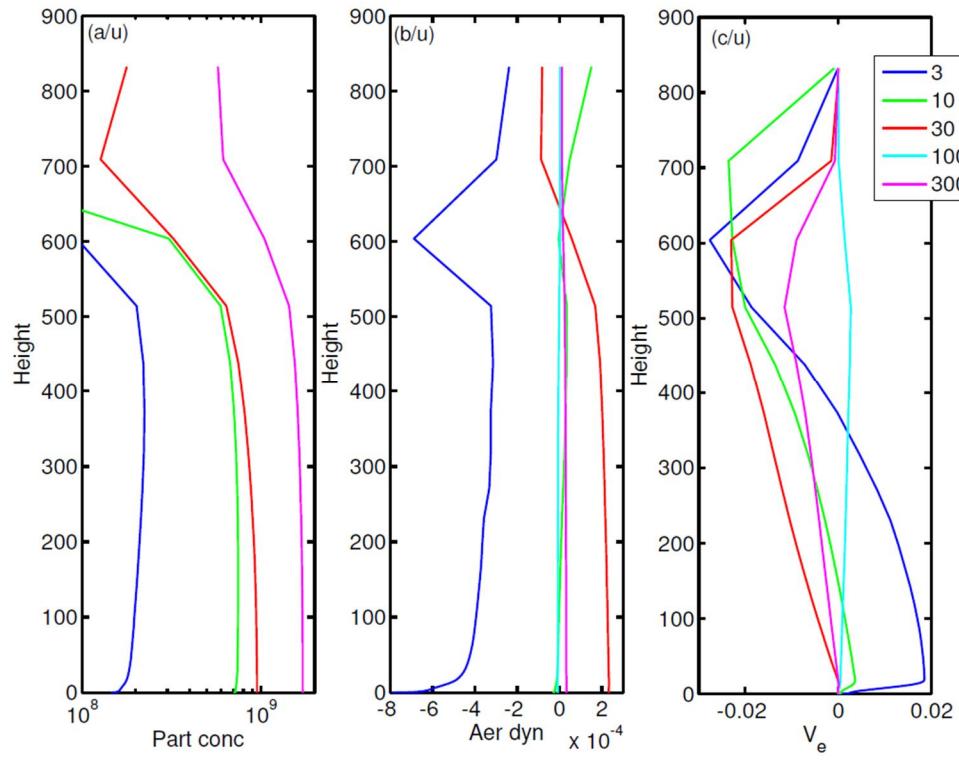
5 measured by the DMPS system and (b) predicted by the model SOSAA.

6



1
2 **Figure 2.** General meteorology: (a) TKE and ABL height, (b) latent heat flux LE and (c) sensible
3 heat flux H during 10 days period in May 2013. SMEAR refers to measurements at the
4 station.


1
2 **Figure 3.** (a) Aerosol size distributions and the conservation terms at (b) 12:00 LT (the values
3 for nucleation and condensation terms at 2 nm are out of scale, being in absolute values
4 about $1.3 \times 10^6 \# m^3 s^{-1}$ but opposite in sign) and (c) 21:00 LT as a function of particle size at
5 10 m height 07 May. The storage change (Change), the (vertical) transport (Transp), the
6 particle deposition (Dep) and the aerosol dynamical (Aer. Dyn.) terms denote the respective
7 terms in Eq. (4). The aerosol dynamical term is the sum of the numcleation (Nucl),
8 condensation growth (Cond) and coagulation (Coag) terms.


1

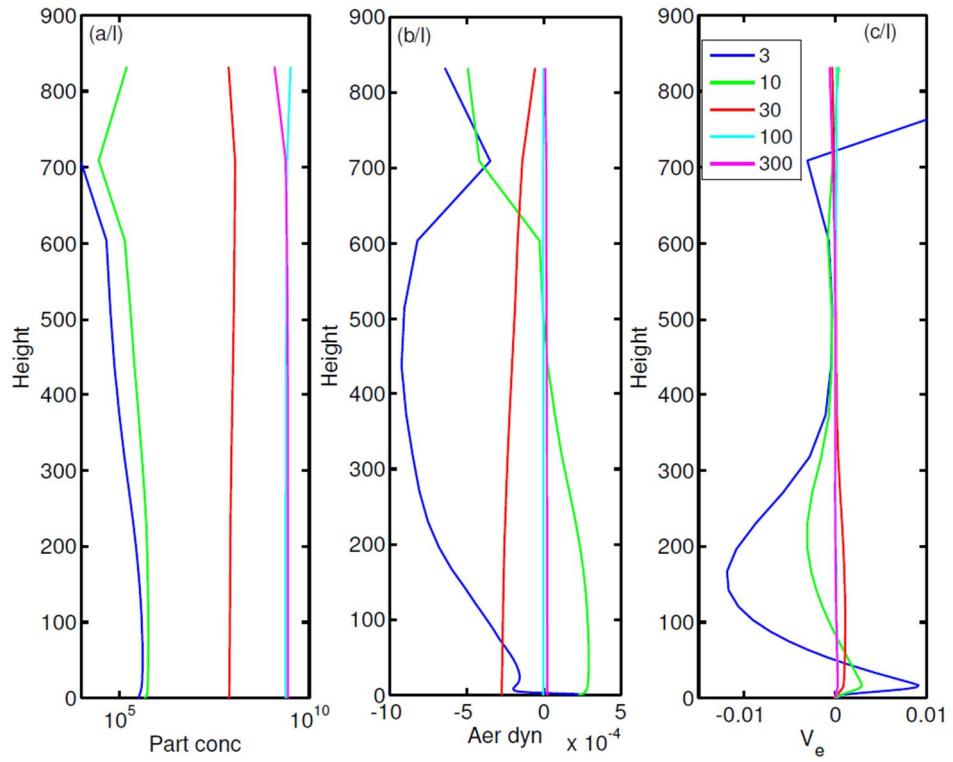
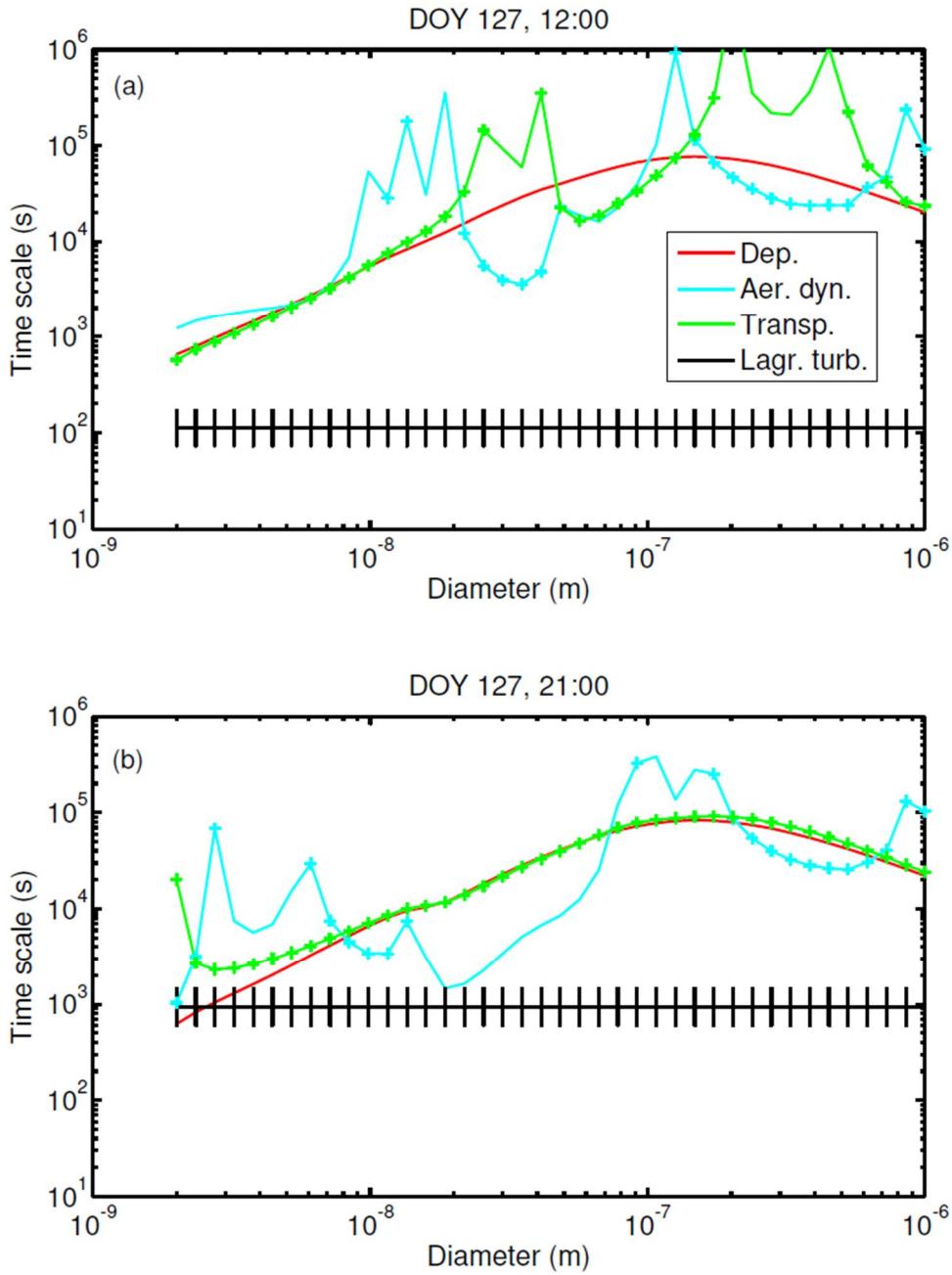
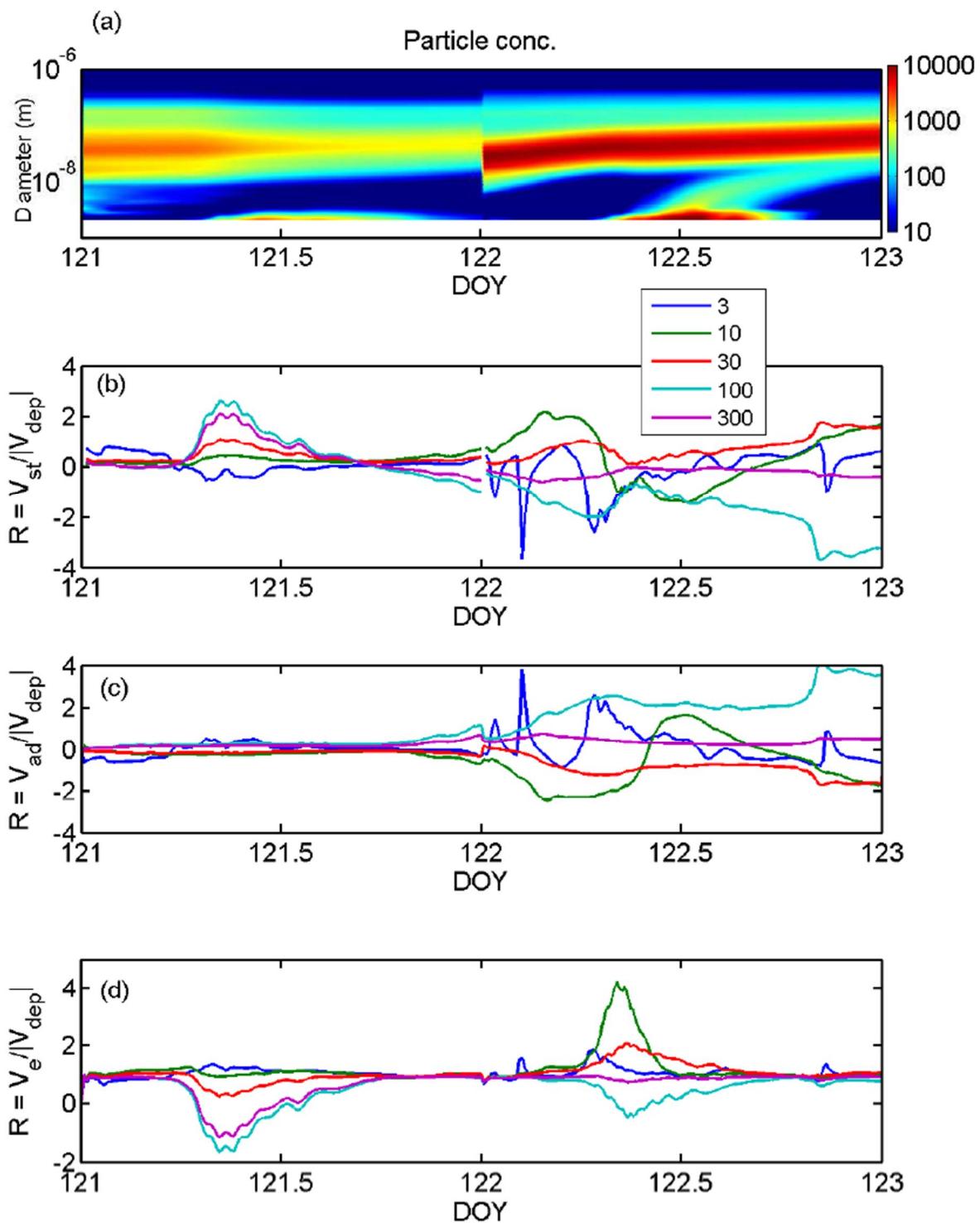

2

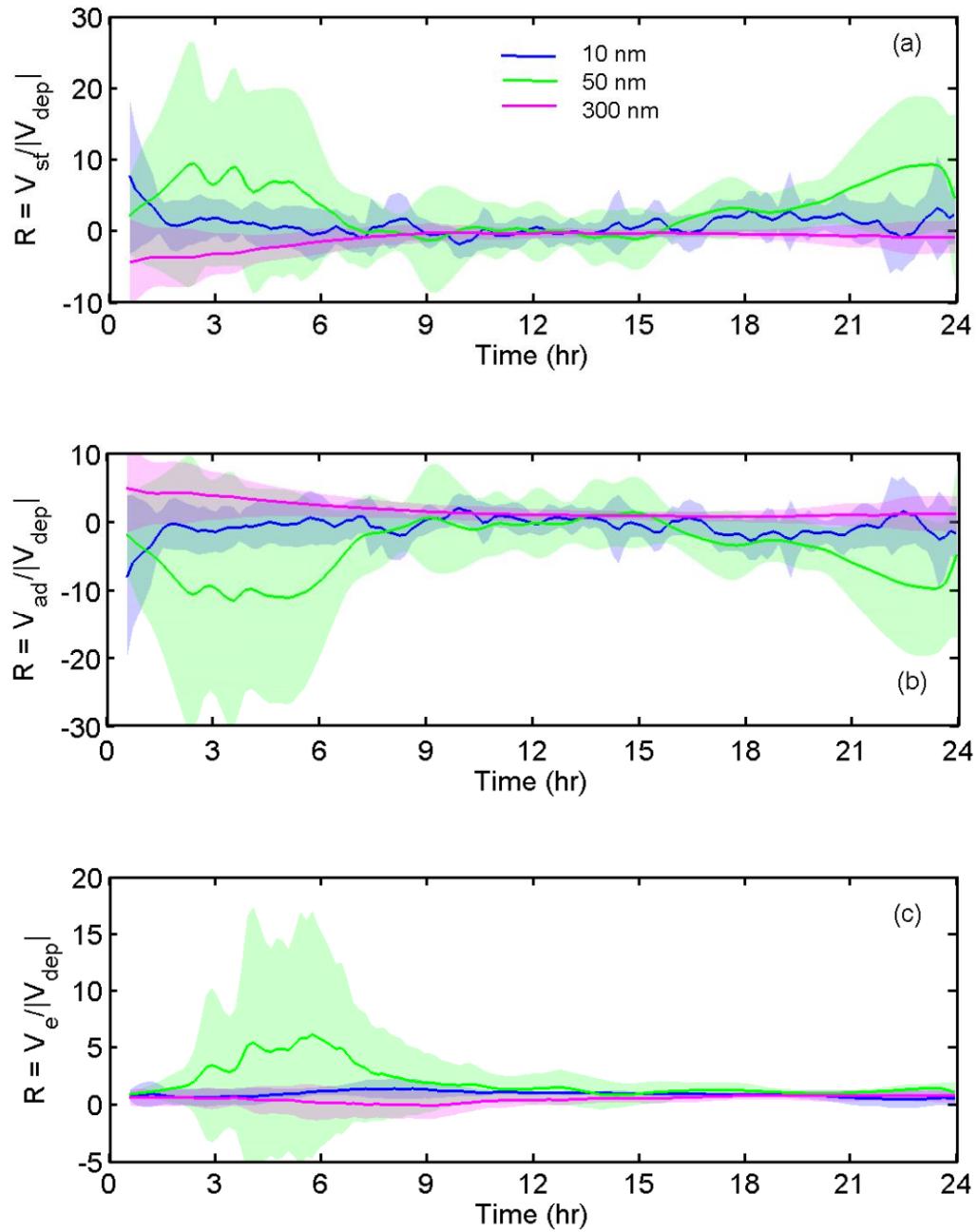
Figure 4. Vertical profiles of aerosol (a) number concentration ($\# \text{ m}^{-3}$) and conservation terms: (b) storage change ($\# \text{ m}^{-3} \text{s}^{-1}$), (c) transport (in $\# \text{ m}^{-3} \text{s}^{-1}$), (d) deposition (in $\# \text{ m}^{-3} \text{s}^{-1}$), (e) aerosol dynamical (in $\# \text{ m}^{-3} \text{s}^{-1}$) on 07 May at 12:00 LT for particle size range from 2 nm to 1 μ m.



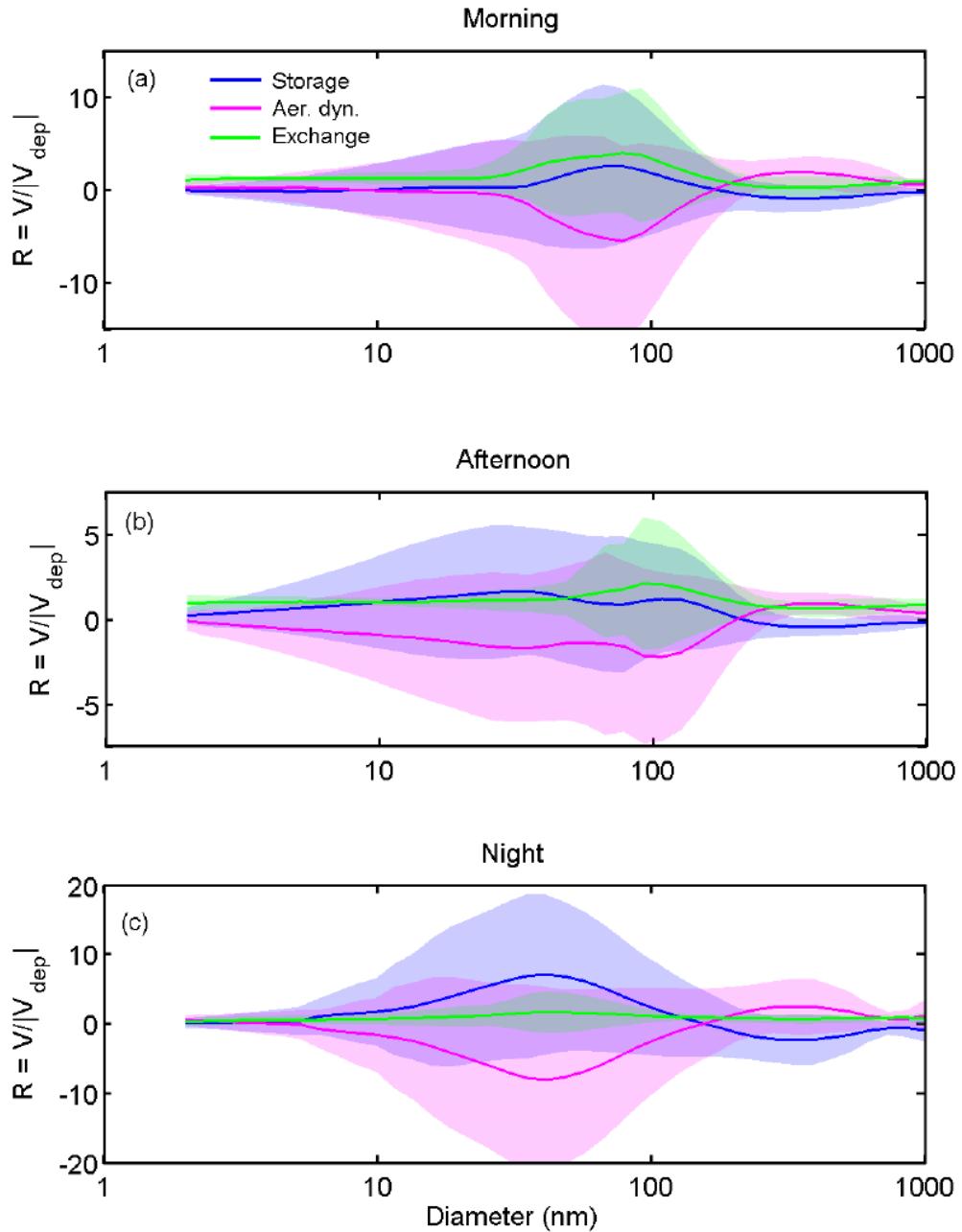
1



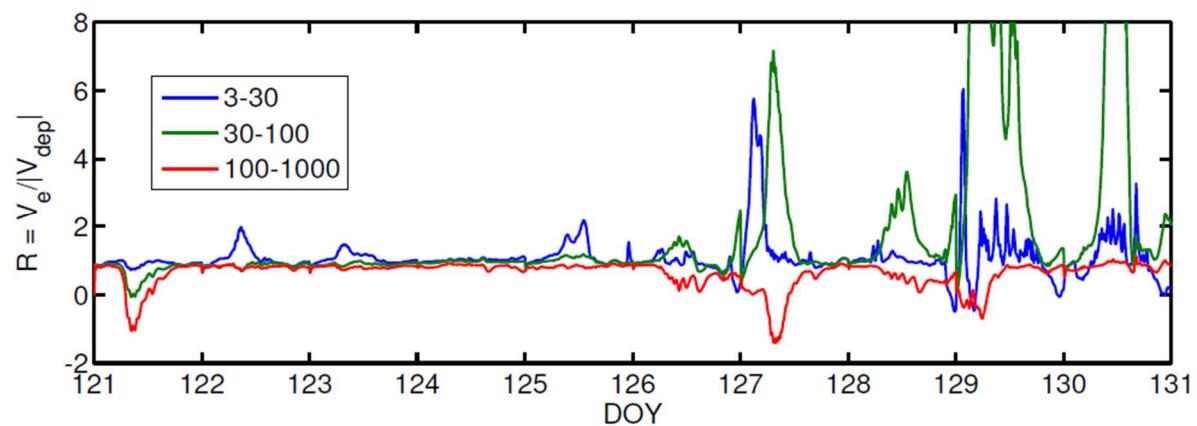
2


3 **Figure 6.** Vertical profiles of (a) the particle concentration ($\# \text{ m}^{-3}$), (b) change rate due to
4 aerosol dynamics (s^{-1}), and (c) the vertical exchange velocity defined to be positive for
5 downward transport (m s^{-1}) for selected particle sizes 07 May at 12:00 LT (upper panels
6 denoted by /u) and 21:00 LT (lower panels denoted by /l). For panels (b) and (c)
7 normalisation with local concentrations was used.

1
2 **Figure 7.** The time scales of deposition, aerosol dynamics and transport (equivalent to
3 vertical exchange) as defined by Eqs. (9) together with (5), (6) and (7) at (a) 12:00 LT (the
4 values for the transport term are out of scale at about 200 and 450 nm, being about
5 $+3.7 \times 10^6$ and -1.05×10^6 s, respectively) and (b) 21:00 LT 07 May 2013. In addition the
6 Lagrangian time scale for turbulent transfer (corresponding to aerodynamic resistance only)
7 as simulated according to Eq. (10), being presented as the median air parcel travel time
8 between the forest floor and the canopy top with upper and lower quartiles. The „+“ sign
9 reflects the positive sign of the respective term (the source), whereas no such sign infers the
10 negative (sink) term.


Figure 8. (a) Particle size spectrum, and the change velocities (presented as the ratios to the absolute value of the deposition term) for selected particle sizes for (b) storage, (c) aerosol dynamics and (d) vertical exchange during 01 and 02 May (DOY 121 and 122) 2013.

1 **Figure 9.** Diurnal variation of change velocity for (a) storage, (b) aerosol dynamics and (c)
2 vertical exchange for selected particle sizes. The lines present the ratios of the average
3


4 change velocities to the average deposition term according to $\frac{\langle V \rangle}{\langle |V_{dep}| \rangle}$ obtained from model
5

6 simulations for each 10 minute period and the shaded areas the variation range as $\pm \frac{\sigma_V}{\langle |V_{dep}| \rangle}$
7 around the averages.

1 **Figure 10.** Variation of change velocities with particle size for (a) morning (from sunrise till
2 noon), (b) afternoon (from noon till sunset) and (c) night (sun below horizon) periods for: blue
3 line the storage, magenta the aerosol dynamics and green the vertical exchange velocities.
4 The lines present the ratios of the average exchange velocities to the average deposition
5 term according to $\frac{\langle V_e \rangle}{\langle |V_{dep}| \rangle}$ obtained from model simulations for each 10 minute period and the
6 shaded areas the variation range as $\pm \frac{\sigma_{V_e}}{\langle |V_{dep}| \rangle}$ around the averages.

1

2

3 **Figure 11.** The exchange velocity V_e at the canopy top for selected particle size intervals
4 during 10 days period in May 2013 normalised with the absolute value of the deposition
5 velocity $|V_{dep}|$. Peak values for the size range 30-100 nm at doy 129 and 130 were about 30-
6 35.