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Abstract:

Extreme particulate matter (PM) air pollution of January 2013 in China was found to
be associated with an anomalous eastward extension of the Siberian High (SH). We
developed a Siberian High position index (SHPI), which depicts the mean
longitudinal position of the SH, as a new indicator of the large-scale circulation
pattern that controls wintertime air quality in China. This SHPI explains 58%
(correlation coefficient of 0.76) of the interannual variability of wintertime aerosol
optical depth (AOD) retrieved by MODIS over North China (NC) during 2001-2013.

By contrast, the intensity-based conventional Siberian High Index (SHI) shows
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essentially no skill in predicting this AOD variability. On the monthly scale, some
high-AOD months for NC are accompanied with extremely high SHPIs; notably,
extreme PM pollution of January 2013 can be explained by the SHPI value exceeding
2.6 times the standard deviation of the 2001-2013 mean. When the SH extends
eastward, thus higher SHPI, prevailing northwesterly winds over NC are suppressed
not only in the lower troposphere but also in the middle troposphere, leading to
reduced southward transport of pollution from NC to South China (SC). The SHPI
hence exhibits a significantly negative correlation of -0.82 with MODIS AOD over
SC during 2001-2013, although the robustness of this correlation depends on that of
satellite-derived AOD. The suppressed northwesterly winds during high-SHPI winters
also lead to increased relative humidity (RH) over NC. Both the wind and RH
changes are responsible for enhanced PM pollution over NC during the high-SHPI

winters.

1. Introduction

January 2013 saw persistent and severe haze outbreaks in China, with
monthly-mean fine particulate matter (PM, ) levels exceeding 130 ug m™ at 28 cities
in 16 provinces. Previous studies have identified certain features of meteorological
conditions during this month that are partly responsible for such extreme pollution.
An abnormal high at 500 hPa was found over east China which suggested a weakened
East Asian trough with suppressed vertical mixing (Zhang et al., 2014; Yang et al.,

2013). In the lower atmosphere, surface winds were much weaker during severe haze
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episodes (Zhang et al., 2014; Y. S. Wang et al., 2014). The average height of planetary
boundary layer (PBL) over North China Plain was about 50% lower during the haze
episodes than that during non-episode days (Huang et al., 2014; L.T. Wang et al.,
2014). Ambient relative humidity (RH), an important meteorological parameter
affecting secondary aerosols formation and their hygroscopic growth (Sun et al., 2013;
Y. X. Wang et al., 2014), has also been reported to be significantly higher during the
haze periods (Huang et al., 2014; Y. S. Wang et al., 2014).

The aforementioned studies did not address the question whether extreme air
pollution of January 2013 over China is connected with the anomaly of large-scale
circulation patterns at a temporal scale broader than that of the episodic cases. The
East Asian monsoon is the most prominent feature of large-scale circulation patterns
over the Eurasia continent. While the summer monsoon has been shown to play a
significant role in regulating the interannual variation of air pollution over China
(Zhang et al., 2010, Zhu et al., 2012), few study has examined the wintertime
association between the variability of monsoon-related large-scale circulation patterns
and air pollution. As the most important large-scale circulation patterns in winter, the
Siberian High has a significant influence on winter climate in Northern Eurasia, East
Asia, and even the whole Northern Hemisphere (e.g., Cohen et al., 2001; Gong et al.,
2002; Chernokulsky et al., 2013). The sea level pressure difference between the
Siberian High over the Asian continent and the Aleutian Low over North Pacific
causes strong northwesterly winds along the east flank of the Siberian High and the

East Asian Coast, which characterizes the East Asian winter monsoon (Chang et al.,
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2012). Wu et al. (2002) reported a significant positive correlation between the
intensity of the Siberian High and the East Asian winter monsoon on the interannual
to interdecadal time-scales. The variation of the Siberian High may have an impact on
wintertime air quality over east China, for example by ways of influencing large-scale
wind fields and local meteorological conditions which control pollutant transport and
transformation.

This study investigates the possible connections between wintertime PM,s in
eastern China and large-scale circulations on the interannual scale during 2001-2013.
Because long-term in situ observations of surface PM, s are not available in China, we
use satellite-derived aerosol optical depth (AOD) as a proxy to represent the
distribution and variability of atmospheric aerosols. The paper is organized as follows.
Section 2 describes the data used in the analysis. In Section 3, we analyze the
anomalous meteorological conditions of January 2013 and define our study regions.
Section 4 examines the relationship of the Siberian High and AOD over China, and
develops an index to represent Siberian High variability which is able to explain the
interannual variations of AOD. In Section 5, we discuss the robustness of the index
we develop and compare it with other existing meteorological indices that may

influence wintertime air quality in China.

2. Data
2.1 Aerosol Optical Depth

AOD products from satellites have been used to infer surface PMys
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concentrations at scales ranging from urban to regional and to global (Liu et al., 2007;
H. Zhang et al., 2009; Lee et al., 2011; Hu et al., 2014; Boys et al., 2014; van
Donkelaar et al. 2014; Xie et al., 2015). To circumvent data scarcity of longer-term in
situ surface measurement over China, here we used AOD retrieved from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor aboard both NASA
EOS-Terra and Aqua satellite as the proxy data to represent the distribution and
variability of PM,s air quality. Terra and Aqua are both polar-orbiting satellites
launched in December 1999 and May 2002, respectively. They provide data every one
to two days since February 2000 (Terra) and July 2002 (Aqua). MODIS retrieves
aerosol properties in seven wavelengths from 0.47 to 2.13 um and separate algorithms
are applied over land and ocean (Tanréet al., 1997; Remer et al., 2005; Levy et al.,
2007). To improve the retrieval over bright-reflecting source regions, the Deep Blue
AOD algorithm was developed using multiple narrow-band channels at near-UV
wavelengths (Hsu et al.,, 2004). Although the AOD uncertainty over land
(20.0540.2%A0D) is higher than that over ocean (3).03#).05%A0D) (Remer et al.,
2005; Chu et al., 2012), previous comparisons of MODIS AOD and ground-based
AOD measurements from AErosol RObotic NETwork (AERONET) sites over land
have shown tight correlations between the two, indicating that the MODIS AOD
product is capable of providing quantitative information on the spatial and temporal
variations of AOD over land (Levy et al.,2010; Prados et al., 2007).

Previous studies have indicated good correlations between the MODIS AOD

and surface PM, s concentrations over selected sites in China (Wang et al., 2003, Xie
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et al., 2015). Here we used the MODIS level-3 monthly gridded AOD (550 nm) data
(Version 5.1) from December 2000 to February 2013 with a 1° > 1<resolution. The
AOD values over bright surfaces were replaced by the Deep Blue aerosol retrieval
(550 nm) at the same grid.

To verify the robustness of our analysis using MODIS AOD, we also analyzed
level-3 monthly gridded AOD from Multi-angle Imaging SpectroRadiometer (MISR)
aboard of Terra. The MISR standard AOD products have a 0.5° > 0.5°resolution at
558 nm for 2001-2013. MODIS has a large number of spectral bands, while MISR has

the multi-view-angle capabilities (Lyapustin et al., 2007).

2.2 Reanalysis data

The meteorological variables used to explore the mechanism behind the
variations of SH and AOD are obtained from National Centers for Environmental
Prediction (NCEP) reanalysis (Kalnay et al., 1996), including sea level pressure (SLP),
relative humidity (RH), geopotential heights, and winds. The NCEP/NCAR reanalysis
data provide a historical record of more than 50 years (Kistler et al., 2001) and are
available on the 2.5°x2.5<grid globally.

To verify the robustness of NCEP reanalysis in characterizing large-scale
circulation patterns, we also analyzed the reanalysis data from European Centre for
Medium-Range Weather Forecasts (ECMWF) Re-analysis Interim (ERA-Interim), the
latest global atmospheric reanalysis produced by ECMWF (Simons et al., 2007).

NCEP and ERA-Interim are the two widely used reanalysis products with relatively
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long periods.

3. Study domains

Figure 1a shows the mean January SLP and 850 hPa wind fields during 2001-
2012 from NCEP. The Siberian High (SH) is a semi-permanent anticyclone high
pressure system centered over Mongolia and eastern Siberia (black rectangle in Figure
1a) that is formed by radiative cooling in winter. Driven by the pressure gradient
between the Siberian High and the Aleutian Low over northwest Pacific, the
prevailing winds over east China are northwesterly in winter. Figure 1b displays the
January 2013 SLP and the 850 hPa wind anomalies compared to the 2001-2012 mean.
The SLP was significantly lower over Mongolia in January 2013, indicating a
significantly weaker Siberian High and consequently a weaker East Asian winter
monsoon during this month. This anomalous SLP distribution of January 2013 is
associated with anomalous southerly winds in the lower atmosphere over east China
(Figurelb) and coincident with higher temperatures and RH (hot shown), which all
present as favorable meteorological conditions for the buildup and recirculation of air
pollutants over this region (Sun et al., 2013; Zhang et al., 2014; Y.S. Wang et al.,
2014). Given the anomalously weak SH in January 2013, which was a
heavily-polluted month in China, we hypothesize that SH variability is a key indicator
of the variability in large-scale circulation patterns which control the variability of
wintertime PM pollutions over east China.

To test this hypothesis, we investigated if significant association exists in winter
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between the SH variability and regional PM pollution over China on a longer-term
scale (2001-2013), using MODIS-derived AOD as an indicator of aerosols levels.
Figure 2a shows the 13-year mean winter AOD distribution over China and Figure 2b
displays the mean change of AOD from 2001-2006 to 2007-2013. North China (30°
N-42N, 115€-123<E; black rectangle in Figure 2b) is among the regions with
highest aerosol loadings and largest increases of AOD during the two averaging
periods. According to current emission inventories, the emissions of SO,, NOy, and
NH; from North China accounts for 25%-35% of total emissions in China, and SO,
emissions from North China have increased faster than those from other regions of
China (Lu et al., 2010; Q. Wang et al., 2009, 2010). Therefore, North China (NC) is
defined as the source region of aerosols. According to the climatological 850 hPa
wind field (Figurela), the wintertime pollution outflow from NC follows
southeastwards pathways and is expected to influence air quality over South China
(SC), which is shown as the red rectangle in Figure 2b (22N -30N, 110E -120E).

Here SC is defined as the domestic receptor region of NC aerosols in winter.

4. Development of the Siberian High position index and its association with AOD
4.1. Index development

Figure 3 depicts the time series of winter AOD averaged over NC, showing a
significant increase in AOD from about 0.5 in 2001 to about 0.8 in 2013. A linear
regression of the time series gives a trend of 1.5% year™ (r =0.65, p<0.05). Since the

meteorological variables and atmospheric circulation patterns are not expected to
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drive such a large linear trend during this period, this AOD trend is mostly likely
caused by increasing anthropogenic emissions over this region (Lu et al., 2010, 2011;
Zhang et al., 2012; Streets et al., 2009). The departure of each winter’s AOD from that
depicted by the linear trend is assumed to represent the influence of meteorology. The
years in which winter AOD lies above 30% of the residual confidence interval of the
linear trend line are referred to as the high-AOD winters (including 2001, 2003, 2007,
2008, 2013) and those below 30% of the residual confidence interval as the low-AOD
winters (including 2002, 2004, 2006, 2009, 2010, 2012). Since the high- or low-AOD
is defined relative to the trend line, the corresponding high- or low-AOD winters are
expected to be driven by the interannual variability of meteorology.

Mean meteorological conditions between the high- and low-AOD winters were
compiled and compared to identify any significant differences in large-scale
circulation patterns between them. The differences in winter-mean SLP and 850 hPa
wind fields are shown in Figure 4 (high-AOD winters minus low-AOD winters).
Surprisingly, Figure 4 does not reveal any significant decrease of SLP from low-AOD
to high-AOD winters over Mongolia where the climatological center of the Siberian
High locates (c.f. Figure 1a). Instead, significant changes of SLP are located over west
of Mongolia (negative differences) and over Japan (positive differences). The
high-AOD winters also have a stronger component of southeasterly winds at 850 hPa
over North China. This change of wind directions not only suppresses the
northwesterly flow that brings cleaner continental background air, but also reduces the

transport of pollution from NC to SC, both of which lead to higher pollution levels
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The index widely used in the literature to describe the SH variability is the
Siberian High intensity (SHI), defined as the mean SLP over northern Mongolia
between 80E -120E and 40N - 65N (black rectangle in Figure 1a and 4) (Jeong et
al., 2011; Hasanean et al., 2013). However, as shown by Figure 4, there is no
significant difference in SLP over northern Mongolia between the high- and
low-AOD winters, suggesting that this conventional index of SH may not be able to
explain the interannual variability of PM over North China. As an example, Figure 5
compares winter SLP and 850 hPa wind fields between 2003 (a high-AOD winter)
and 2004 (a low-AOD winter). While winter-mean AOD over NC was significantly
higher in 2003 (0.68) than that in 2004 (0.45), the SHI was almost the same between
the two winters. The noticeable difference, however, is that the high pressure isobars
in the 2003 winter extended further east over the continent than those in the 2004
winter. Through linear regression, we found a poor correlation between SHI and
detrended winter-mean AOD over NC (Figure 6a), with SHI explaining only 4% of
the AOD variance. There is no significant (p<0.05) trend in SHI during 2001-2013.

Figure 4 manifests the displacement of the high SLP center during the high-AOD
winters from northern Mongolia where the conventional SHI is defined. Figure 5
further illustrates that the main difference in SH between the two specific winters of
largely varying AODs lies in its spatial extension. Given this feature, we further
hypothesized that the position of the Siberian High is a more important factor than its

intensity in terms of affecting PM concentrations over NC. We thus proposed a
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Siberian High position index (SHPI) as the weighted mean of the longitudes of all the
grids within the 1023 hPa isobar over the broad region of 60E -145E and 30N

-65N (black rectangle in Figure 5). The SHPI is defined by Equation 1:

shp1 - 280

2.F @

L is the longitude of any eligible grid i within the 1023 hPa isobar and the

where

definition domain, and R is the SLP of the corresponding grid i. The unit of SHPI is

degree in longitude. Our definition of SHPI is similar to the longitude index of SH
defined by Hou et al. (2003), but differs with regards to the region over which SHPI is
calculated. They defined the index as the weighted mean longitudes of all the grids
within the 1023 hPa isobar which may extend westward to Europe and northward to
the Arctic. Our definition of SHPI limits the spatial domain over which the 1023 hPa
isobar is considered in the SHPI calculation because of our focus on East Asia and
particularly China (Figure 5). The 2001-2013 time series of winter SHPI is displayed
in Figure 6b (black line) and the wintertime mean SHPI during this period is 98.9E.
A larger SHPI indicates that the center of the Siberian High is located further east of
its normal position. Referring back to Figure 5, the 2003 winter has a significantly
higher value of SHPI (102.3E) than that of 2004 (SHPI = 96.3E); so does the AOD
over NC but not SHI (c.f. Figure 6a).

Figure 6b shows the time series of winter-mean SHPI1 and NC AOD from 2001 to
2013. They exhibit a positive correlation of 0.39, which is not significant due to the
confounding effect of the increasing trend in AOD. Since the focus here is on

variability, the AOD time series were detrended by removing any significant linear
1
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trend (detrended AOD) and the SHPI time series were normalized by their
climatological mean and standard deviation. As shown in Figure 6c, the detrended NC
AOD and normalized SHPI display a strong correlation of 0.76 (p < 0.01), which
means that the position-based SHPI captures 58% of the interannual variance in
winter AOD over NC. This indicates that on the interannual scale, winter AOD over
NC can be better explained by SHPI, an index of the SH position, than the
conventional SHI, an index of the SH intensity. According to Hou et al. (2008), the
longitude index and intensity index of the SH may not be significantly correlated. In
support of this point, we found the SHI and SHPI have a weak correlation of only
-0.32 during the study period (Figure S1).

Figure 6d displays the time series of normalized SHPI and detrended NC AOD on
the monthly scale. The corresponding raw data prior to the detrending and
normalization are provided in Figure S2. Here the normalization of SHPI is conducted
separately for November, December, and January to retain its intraseasonal variability.
At the monthly scale, the correlation between normalized SHPI and detrended NC
AOD is also significant at 0.45 (p < 0.01). Some extremely high values of monthly
AOD over NC show clear associations with higher values of SHPI. Taking January
2013 as an example, which has the highest AOD over NC among all the 39 winter
months studied here, the SHPI of that month is also the highest (106.5E), lying 2.6
times the standard deviation away from the 2001-2013 January mean (99.8E). This
association indicates that the anomalous feature of the Siberian High in January 2013
was not only the weakening of its strength (c.f. Figure 1b) but also its more eastward

12
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extension, the latter being the primary factor contributing to high PM levels over NC.
Another example is February 2011. Both AOD and SHPI of that month are among the
highest values of the study period (Figure 6d and S2). We thus conclude that the SHPI
indicator of the SH variability is able to explain extremely high PM pollution over NC

on the monthly scale.

4.2. Mechanism

To understand the mechanistic connection between SHPI and winter AOD over
NC, we examine in this section how the SHPI variability is linked with the change of
large-scale circulation patterns using the NCEP reanalysis data which span 30 years
(1982-2011). The years with extremely high SHPI (beyond one standard deviation of
the mean) in winter are defined to be high-SHPI years and those below one standard
deviation of the mean as low-SHPI years. Figure 7a displays the climatological
distribution of 850 hPa wind fields during 1982-2011. The northwesterly winds larger
than 5 m s over North China and Japan indicate the strong influence of the Siberian
High and East Asian winter monsoon. The area covered by the prevailing
northwesterly winds and the mean speed of those winds exhibit interannual variability
that correlates with SHPI to some extent. For example, the winter of 1990 has the
highest SHPI (105.9E) during the 30-year study period and that of 2004 has the
lowest SHPI (96.3<E). As shown in Figure S3, the area covered by northwesterly
winds larger than 5 m s™ is smaller in 1990 than that in 2004, and the average wind

speed over that area is also smaller in 1990. On average, 850 hPa wind speeds over

13
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NC are about 0.5 m s™ to 1 m s lower during the high-SHPI winters than during the
low-SHPI years (Figure 7b). Table 1 summarizes wintertime-mean zonal and
meridional wind speeds over NC at different vertical levels for the 30-year average,
high-SHPI average, and low-SHPI average. In the high-SHPI winters, both zonal and
meridional wind speeds are lower not only at 850 hPa but also at the upper levels.
Lower wind speeds are conducive for pollution accumulation over the source region,
which partly contributes to higher AOD in the high-SHPI winters. To further illustrate
the connections between SHPI and wind changes, Figure 7c depicts the spatial
distribution of correlation coefficients between SHPI and surface RH from 1982 to
2011. SHPI shows a significant positive correlation with RH over NC, indicating
enhanced water vapor convergence over NC in the high-SHPI winters. This positive
correlation arises because weaker northerly winds lead to reduced transport of dry air
masses from the cold Siberian landmass, compensated by enhanced transport of moist
air masses through the anomalous southerly winds. Higher RH during the high-SHPI
winters leads to higher mass concentrations and extinction of aerosols as a result of
hygroscopic growth of aerosol species (Mu et al., 2014; Tai et al., 2010). Although
higher SHPI is always associated with lower northwesterly wind and higher RH over
NC, local wind speed or RH itself is not an indicator as good as SHPI in explaining
the interannual variation of NC AOD. One explanation is that SHPI represents the
combined effects of large-scale circulation change on local meteorological conditions.
In addition, systematic errors have been found for lower-level wind fields from NCEP
reanalysis (Shi et al., 2006).
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To verify the above analysis of the mechanism, we tested the utility of SLP over
Japan (SLPJ, defined over 130 E-145 E and 40 N-50 N) as an alternative indicator
of the large-scale circulation in explaining the interannual variations of AOD over NC.
The reason why the SLPJ is used for comparison is because the high-AOD winters
also feature significant positive changes of SLP over (c.f. Figure 4). The time series of
SLPJ is shown in Figure S4. SLPJ shows a positive correlation with NC AOD and
explains 38% of the variance in detrended NC AOD (Figure S4a). By comparison,
SHPI explains 58% of the variance of detrended NC AOD. SLPJ also correlates well
with SHPI (Figure S4b), which indicates that in the high-SHPI years the eastward
extension of the SH leads to an increase of SLP over Japan and as a result SLPJ is not
independent from SHPI. The anomalously high SLP over Japan influences the PM
level over NC by reducing the prevailing northwesterly winds and increasing RH over
NC, which is consistent with the mechanism provided above.

To summarize, the SHPI indicator developed here is able to capture the
interannual variations of winter-mean and monthly-mean NC AOD to a large extent.
Comparing to the climatology, 850 hPa wind speeds over NC during the high-SHPI
years are suppressed by 13% and the surface relative humidity is enhanced by 12% as
a result of the eastward extension of the SH. Since the suppressed wind speed is
unfavorable for the dispersion of air pollution and higher surface relative humidity
enhances secondary aerosol formation and hygroscopic growth, both factors lead to

higher PM levels over NC in the high-SHPI years.
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4.3. AOD variability in South China

Our above analysis suggests that the suppression of prevailing northwesterly
winds and the enhancement of surface RH are the key meteorological features during
the high-SHPI1 winters. The implication of such conditions for wintertime PM over SC,
the domestic receptor region of wintertime NC outflow, is not straightforward. On one
hand, suppressed northwesterly winds are unfavorable meteorological conditions for
the export of pollution from NC, which may lead to reduced PM levels over SC. On
the other hand, the Siberian High variability is expected to have an influence on local
meteorological conditions over SC. In this section, we examine the extent to which
the SHPI indicator developed in the previous section can explain the interannual
variability of AOD over SC.

Figure 8 displays the time series of winter mean AOD over SC from MODIS. The
multi-year mean AOD over SC is about 0.4, with a positive but not significant trend
of increase of 0.13% year™. The two highest AOD winters for SC are 2004 (0.46) and
2008 (0.48), both corresponding to the lowest SHPI. The overall correlation between
detrended SC AOD and normalized SHPI is -0.82, suggesting that SHPI explains 67%
of the variance in SC AOD. In the high-SHPI winters, the meridional wind speed over
NC is reduced by 17%, 16% and 19% at 850 hPa, 700 hPa, and 500 hPa, respectively,
compared to the low-SHPI winters (Table 1). The suppressed northerly winds over
NC lead to the direct effect of reduced southward transport of pollution from NC to
SC, resulting in lower AOD over SC during the high-SHPI winters. Meanwhile, the

850 hPa wind speeds over SC does not show a significant difference between the
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high-SHPI and low-SHPI winters (Figure 7b). Although there is a 7.5% enhancement
of surface relative humidity over SC during the high-SHPI years (Figure 7c), the
overall significantly negative correlation between SC AOD and SHPI indicate that the
suppressed pollution transport from NC to SC is the dominant factor to explain the

influence of SHPI on AOD over SC.

5. Discussion

To test the robustness of the relationship between AOD and SHPI developed
above using MODIS AOD and NCEP reanalysis, we conducted the same analysis
using AOD derived from MISR (MISR AOD) and SHPI derived from the
ERA-Interim reanalysis (ERA SHPI). Table 2 compares the correlation coefficients
derived using the different datasets. Significant positive correlations are consistently
found between the SHPI and AOD over NC, regardless of the data sources from
which the SHPI and AOD are derived. For example, the ERA SHPI has a correlation
of 0.65 with MISR AOD over NC, compared to that of 0.76 between NCEP SHPI and
MODIS AOD. This indicates the robustness of the SHPI indicator developed here
with regard to explaining the interannual variability of AOD over NC. However, the
correlation between SHPI and AOD over SC displays a dependence on the data source.
The ERA SHPI has a similarly strong negative correlation with MODIS AOD over SC
as the NCEP SHPI does, but neither NCEP SHPI nor ERA SHPI correlates well with
MISR AOD over this region. This discrepancy can be partly explained by the
inconsistency in the interannual variability of AOD between MODIS and MISR over

17
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SC. As shown in Figure S5a, the correlation coefficient between the two AOD time
series is only 0.07 over SC during 2001-2013, although neither shows a significant
increasing trend. By comparison, the AOD time series from MODIS and MISR show
a strong correlation of 0.7 over NC (Figure S5b). Since SC has more cloud coverage
than NC (Li et al., 2004), the inconsistency between MODIS and MISR over SC may
lie in the different cloud-screening algorithms between MODIS and MISR. In
addition, MISR has a lower sampling frequency than MODIS which may also lead to
the inconsistency (Zhang et al., 2010). Therefore, our conclusion on the association of
SHPI with AOD variability over SC may require verification by later studies.

In addition to the conventional SHI, the number of cold air surges has been used
as an indicator of the strength of the SH in winter. A cold air surge is an influx of
unusually cold continental air from the Arctic Ocean and Siberia into the middle or
lower latitudes, and it is the main disastrous weather influencing China in the winter
half-year. Niu et al. (2011) reported that the number of cold air surges decreased
significantly from 1976 to 2007, which coincided with the increasing frequency of
wintertime fog over eastern-central China. A variety of definitions has been used for
cold air surges, such as changes in surface temperature, surface pressure, and wind
speed (Wang at al., 2006). The definition of cold air surges we used is as follows. We
took 8 sites in North China (Jiuguan, Lanzhou, Beijing, Shenyang, Changchun,
Haerbin, Xi’an, Ji’nan) and 7 sites in South China (Nanjing, Hankou, Chengdu,
Changsha, Guiyang, Fuzhou, Guangzhou). If the 15-site mean daily temperature

keeps decreasing for three days and the overall magnitude of this temperature
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decrease is larger than 5°C, it is considered as a cold air surge. The number of cold air
surges per winter during 2001-2013 is shown in Figure S6, which explains less than
15% of the variance in the interannual variability of AOD over NC and SC. Thus,
SHPI fares better than the number of cold air surges in explaining the interannual
variability of AODs over different regions of China.

To summarize, through analyzing the anomalous meteorological conditions
during January 2013, we have revealed not only the weakening of the strength of the
Siberian High over Mongolia, but also its more eastward extension, the latter being
the key factor contributing to high PM levels over NC. Thus, the Siberian High
Position Index (SHPI) depicting the mean longitudinal position of the Siberian High is
developed, and this index captures 58% of the interannual variance in winter AOD
over NC during 2001-2013. The SHPI is able to indicate the occurrence of high PM
pollution levels over NC on the monthly scale; notably, the extreme PM pollution of
January 2013 over NC is associated with an extremely high value of SHPI (above 2.6
times standard deviation of the 2001-2013 mean). Mechanistic analysis indicates that
high SHPI is often associated with suppressed prevailing northwesterly winds and
higher relative humidity over NC, both of which are favorable for secondary
formation and accumulation of PM over NC. The suppressed prevailing winds over
NC also weaken the southward transport of pollution to SC, resulting in lower PM
levels over SC. The positive correlations between NC AOD and SHPI also exist
among different datasets we tested, including NCEP and ERA-Interim for SHPI and

MODIS and MISR for AOD. However, the negative correlation between AOD and
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SHPI over SC is significant only using AOD derived from MODIS and thus needs to

be further confirmed.
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Tables

Table 1. Mean zonal (U) and meridional (V) wind speeds over NC at different
pressure levels (850 hPa, 700 hPa, and 500 hPa) during all winters (1982-2011), the
high-SHPI winters, and the low-SHPI winters. The high- and low-SHPI winters are
defined as the winters with the SHPI value lying outside of one standard deviation

above or below the mean, respectively. Unit: m s™

850hPa 700hPa 500hPa
U Y U Y U v
All winters 418 | -3.06 | 1094 | -322 | 23.30 | -3.17
(1982-2011)
High-SHPI winters | 3.83 | -2.67 | 10.39 | -2.66 | 21.58 | -2.33
Low-SHPI winters | 4.26 | -3.18 | 11.23 | -3.17 | 24.24 | -2.94

Table 2. Correlation coefficients between SHPI and AOD derived from different

datasets: NCEP and ERA-Interim for SHPI, and MODIS and MISR for AOD.

North China (NC) AOD

South China (SC) AOD

MODIS MISR MODIS MISR
NCEP SHPI 0.76 0.67 -0.82 0.03
ERA  SHPI 0.79 0.65 -0.74 -0.09

27




586

587

588

589

590

591

592

593

594

595

596

597

598

599

Figures
70N 70N
60N
50N
40N

30N

20N 20N
60E 70E 80OE 90E 100E 110E 120E 13QE 140E 150E 60E 70E 8OE

10" m/s 2 m/s

90E 100E 110E 120E 130E 140E 150E

| | [ T
1010 1020 1022 1024 1026 1028 1030 1032 1034 hPa

Figure 1. (a)Multi-year (2001-2012) mean January SLP (shaded) and 850 hPa wind
fields (vectors); (b) January 2013 SLP (shaded) and the anomalies 850 hPa wind
fields (vectors); the black rectangle outlines the region used in the definition of
conventional Siberian High intensity. The length of the wind vectors indicates wind

speed (m s™).
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Figure 2. (a) Multi-year mean winter AOD from 2001-2013; (b) the change of winter
mean AOD between 2007-2013 and 2001-2006 (2007-2013 minus 2001-2006). The
black rectangle outlines North China (NC); the red rectangle outlines South China

(SC).
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Figure 3. Time series of winter mean AOD over North China (solid thick line) and the
fitted linear regression line (dotted thin line). The insert shows the correlation
coefficient (r) and significance of the linear regression. The vertical thin line indicates

the residual confidence interval of the linear regression slope (a=0.7).
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Figure 4. Difference of SLP (shaded, hPa) and 850 hPa wind vectors (m s™) between
high- and low-AOD winters; areas with white pluses are differences at the 10%
significance level; the black rectangle outlines the region used in the definition of

conventional SHI. The length of the wind vectors indicates wind speed (m s™).
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Figure 5. Distribution of winter SLP (shaded) and anomalous (minus 13-year mean)
850 hPa wind fields (vector) in (a) 2003, and (b) 2004; the black solid rectangle
outlines the region used in the definition of SHPI. The length of the wind vectors

indicates wind speed (m s%).
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Figure 6. Time series of wintertime AOD over North China (red lines) with (a) SHI
and (b) SHPI during 2001-2013. (c) Same as (b), but for detrended NC AOD and

normalized SHPI. (d) Detrended NC AOD and normalized SHPI for each winter
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Figure 7. Geographic distributions of (a) Multi-year (1982-2011) mean winter 850
hPa wind direction (vector) and wind speed (shaded), (b) difference of wind speed
between high-SHPI year mean and low-SHPI year mean (m s™), and (c) winter
interannual correlation coefficients of SHPI with relative humidity (colored areas are

correlations above the 5% significance level).
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Figure 8. Time series of AOD over South China and normalized SHPI.

31



