

1 **A new *indicator* on the impact of large-scale circulation on**
2 **wintertime particulate matter pollution over China**

3 Beixi Jia^{1,2}, Yuxuan Wang^{1,2,3}, Yu Yao¹ and Yuanyu Xie¹

4 ¹ Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth
5 System Science, Tsinghua University, Beijing, China.

6 ² Department of Marine Sciences, Texas A&M University at Galveston, Galveston,
7 TX, USA.

8 ³ Department of Atmospheric Sciences, Texas A&M University, College Station,
9 TX, USA.

10
11 Correspondence to: Y. Wang, yxw@tsinghua.edu.cn
12

13
14 **Abstract:**

15 Extreme particulate matter (PM) air pollution of January 2013 in China was found to
16 be associated with an anomalous eastward extension of the Siberian High (SH). We
17 developed a Siberian High position index (SHPI), which depicts the mean
18 longitudinal position of the SH, as a new indicator of the large-scale circulation
19 pattern that controls wintertime air quality in China. This SHPI explains 58%
20 (correlation coefficient of 0.76) of the interannual variability of wintertime aerosol
21 optical depth (AOD) retrieved by MODIS over North China (NC) during 2001-2013.
22 By contrast, the intensity-based conventional Siberian High Index (SHI) shows

23 essentially no skill in predicting this AOD variability. On the monthly scale, some
24 high-AOD months for NC are accompanied with extremely high SHPIs; notably,
25 extreme PM pollution of January 2013 can be explained by the SHPI value exceeding
26 2.6 times the standard deviation of the 2001-2013 mean. When the SH extends
27 eastward, thus higher SHPI, prevailing northwesterly winds over NC are suppressed
28 not only in the lower troposphere but also in the middle troposphere, leading to
29 reduced southward transport of pollution from NC to South China (SC). The SHPI
30 hence exhibits a significantly negative correlation of -0.82 with MODIS AOD over
31 SC during 2001-2013, although the robustness of this correlation depends on that of
32 satellite-derived AOD. The suppressed northwesterly winds during high-SHPI winters
33 also lead to increased relative humidity (RH) over NC. Both the wind and RH
34 changes are responsible for enhanced PM pollution over NC during the high-SHPI
35 winters.

36

37 **1. Introduction**

38 January 2013 saw persistent and severe haze outbreaks in China, with
39 monthly-mean fine particulate matter (PM_{2.5}) levels exceeding 130 $\mu\text{g m}^{-3}$ at 28 cities
40 in 16 provinces. Previous studies have identified certain features of meteorological
41 conditions during this month that are partly responsible for such extreme pollution.
42 An abnormal high at 500 hPa was found over east China which suggested a weakened
43 East Asian trough with suppressed vertical mixing (Zhang et al., 2014; Yang et al.,
44 2013). In the lower atmosphere, surface winds were much weaker during severe haze

45 episodes (Zhang et al., 2014; Y. S. Wang et al., 2014). The average height of planetary
46 boundary layer (PBL) over North China Plain was about 50% lower during the haze
47 episodes than that during non-episode days (Huang et al., 2014; L.T. Wang et al.,
48 2014). Ambient relative humidity (RH), an important meteorological parameter
49 affecting secondary aerosols formation and their hygroscopic growth (Sun et al., 2013;
50 Y. X. Wang et al., 2014), has also been reported to be significantly higher during the
51 haze periods (Huang et al., 2014; Y. S. Wang et al., 2014).

52 The aforementioned studies did not address the question whether extreme air
53 pollution of January 2013 over China is connected with the anomaly of large-scale
54 circulation patterns at a temporal scale broader than that of the episodic cases. The
55 East Asian monsoon is the most prominent feature of large-scale circulation patterns
56 over the Eurasia continent. While the summer monsoon has been shown to play a
57 significant role in regulating the interannual variation of air pollution over China
58 (Zhang et al., 2010, Zhu et al., 2012), few study has examined the wintertime
59 association between the variability of monsoon-related large-scale circulation patterns
60 and air pollution. As the most important large-scale circulation patterns in winter, the
61 Siberian High has a significant influence on winter climate in Northern Eurasia, East
62 Asia, and even the whole Northern Hemisphere (e.g., Cohen et al., 2001; Gong et al.,
63 2002; Chernokulsky et al., 2013). The sea level pressure difference between the
64 Siberian High over the Asian continent and the Aleutian Low over North Pacific
65 causes strong northwesterly winds along the east flank of the Siberian High and the
66 East Asian Coast, which characterizes the East Asian winter monsoon (Chang et al.,

67 2012). Wu et al. (2002) reported a significant positive correlation between the
68 intensity of the Siberian High and the East Asian winter monsoon on the interannual
69 to interdecadal time-scales. The variation of the Siberian High may have an impact on
70 wintertime air quality over east China, for example by ways of influencing large-scale
71 wind fields and local meteorological conditions which control pollutant transport and
72 transformation.

73 This study investigates the possible connections between wintertime PM_{2.5} in
74 eastern China and large-scale circulations on the interannual scale during 2001-2013.
75 Because long-term in situ observations of surface PM_{2.5} are not available in China, we
76 use satellite-derived aerosol optical depth (AOD) as a proxy to represent the
77 distribution and variability of atmospheric aerosols. The paper is organized as follows.
78 Section 2 describes the data used in the analysis. In Section 3, we analyze the
79 anomalous meteorological conditions of January 2013 and define our study regions.
80 Section 4 examines the relationship of the Siberian High and AOD over China, and
81 develops an index to represent Siberian High variability which is able to explain the
82 interannual variations of AOD. In Section 5, we discuss the robustness of the index
83 we develop and compare it with other existing meteorological indices that may
84 influence wintertime air quality in China.

85

86 **2. Data**

87 **2.1 Aerosol Optical Depth**

88 AOD products from satellites have been used to infer surface PM_{2.5}

89 concentrations at scales ranging from urban to regional and to global (Liu et al., 2007;
90 H. Zhang et al., 2009; Lee et al., 2011; Hu et al., 2014; Boys et al., 2014; van
91 Donkelaar et al. 2014; Xie et al., 2015). To circumvent data scarcity of longer-term in
92 situ surface measurement over China, here we used AOD retrieved from the Moderate
93 Resolution Imaging Spectroradiometer (MODIS) sensor aboard both NASA
94 EOS-Terra and Aqua satellite as the proxy data to represent the distribution and
95 variability of PM_{2.5} air quality. Terra and Aqua are both polar-orbiting satellites
96 launched in December 1999 and May 2002, respectively. They provide data every one
97 to two days since February 2000 (Terra) and July 2002 (Aqua). MODIS retrieves
98 aerosol properties in seven wavelengths from 0.47 to 2.13 μm and separate algorithms
99 are applied over land and ocean (Tanré et al., 1997; Remer et al., 2005; Levy et al.,
100 2007). To improve the retrieval over bright-reflecting source regions, the Deep Blue
101 AOD algorithm was developed using multiple narrow-band channels at near-UV
102 wavelengths (Hsu et al., 2004). Although the AOD uncertainty over land
103 ($\pm 0.05 \pm 0.2 \times \text{AOD}$) is higher than that over ocean ($\pm 0.03 \pm 0.05 \times \text{AOD}$) (Remer et al.,
104 2005; Chu et al., 2012), previous comparisons of MODIS AOD and ground-based
105 AOD measurements from AERONET sites over land
106 have shown tight correlations between the two, indicating that the MODIS AOD
107 product is capable of providing quantitative information on the spatial and temporal
108 variations of AOD over land (Levy et al., 2010; Prados et al., 2007).

109 Previous studies have indicated good correlations between the MODIS AOD
110 and surface PM_{2.5} concentrations over selected sites in China (Wang et al., 2003, Xie

111 et al., 2015). Here we used the MODIS level-3 monthly gridded AOD (550 nm) data
112 (Version 5.1) from December 2000 to February 2013 with a $1^\circ \times 1^\circ$ resolution. The
113 AOD values over bright surfaces were replaced by the Deep Blue aerosol retrieval
114 (550 nm) at the same grid.

115 To verify the robustness of our analysis using MODIS AOD, we also analyzed
116 level-3 monthly gridded AOD from Multi-angle Imaging SpectroRadiometer (MISR)
117 aboard of Terra. The MISR standard AOD products have a $0.5^\circ \times 0.5^\circ$ resolution at
118 558 nm for 2001-2013. MODIS has a large number of spectral bands, while MISR has
119 the multi-view-angle capabilities (Lyapustin et al., 2007).

120

121 **2.2 Reanalysis data**

122 The meteorological variables used to explore the mechanism behind the
123 variations of SH and AOD are obtained from National Centers for Environmental
124 Prediction (NCEP) reanalysis (Kalnay et al., 1996), including sea level pressure (SLP),
125 relative humidity (RH), geopotential heights, and winds. The NCEP/NCAR reanalysis
126 data provide a historical record of more than 50 years (Kistler et al., 2001) and are
127 available on the $2.5^\circ \times 2.5^\circ$ grid globally.

128 To verify the robustness of NCEP reanalysis in characterizing large-scale
129 circulation patterns, we also analyzed the reanalysis data from European Centre for
130 Medium-Range Weather Forecasts (ECMWF) Re-analysis Interim (ERA-Interim), the
131 latest global atmospheric reanalysis produced by ECMWF (Simons et al., 2007).
132 NCEP and ERA-Interim are the two widely used reanalysis products with relatively

133 long periods.

134

135 **3. Study domains**

136 Figure 1a shows the mean January SLP and 850 hPa wind fields during 2001-
137 2012 from NCEP. The Siberian High (SH) is a semi-permanent anticyclone high
138 pressure system centered over Mongolia and eastern Siberia (black rectangle in Figure
139 1a) that is formed by radiative cooling in winter. Driven by the pressure gradient
140 between the Siberian High and the Aleutian Low over northwest Pacific, the
141 prevailing winds over east China are northwesterly in winter. Figure 1b displays the
142 January 2013 SLP and the 850 hPa wind anomalies compared to the 2001-2012 mean.
143 The SLP was significantly lower over Mongolia in January 2013, indicating a
144 significantly weaker Siberian High and consequently a weaker East Asian winter
145 monsoon during this month. This anomalous SLP distribution of January 2013 is
146 associated with anomalous southerly winds in the lower atmosphere over east China
147 (Figure1b) and coincident with higher temperatures and RH (not shown), which all
148 present as favorable meteorological conditions for the buildup and recirculation of air
149 pollutants over this region (Sun et al., 2013; Zhang et al., 2014; Y.S. Wang et al.,
150 2014). Given the anomalously weak SH in January 2013, which was a
151 heavily-polluted month in China, we hypothesize that SH variability is a key indicator
152 of the variability in large-scale circulation patterns which control the variability of
153 wintertime PM pollutions over east China.

154 To test this hypothesis, we investigated if significant association exists in winter

155 between the SH variability and regional PM pollution over China on a longer-term
156 scale (2001-2013), using MODIS-derived AOD as an indicator of aerosols levels.
157 Figure 2a shows the 13-year mean winter AOD distribution over China and Figure 2b
158 displays the mean change of AOD from 2001-2006 to 2007-2013. North China (30°
159 N - $42^{\circ}N$, $115^{\circ}E$ - $123^{\circ}E$; black rectangle in Figure 2b) is among the regions with
160 highest aerosol loadings and largest increases of AOD during the two averaging
161 periods. According to current emission inventories, the emissions of SO_2 , NO_x , and
162 NH_3 from North China accounts for 25%-35% of total emissions in China, and SO_2
163 emissions from North China have increased faster than those from other regions of
164 China (Lu et al., 2010; Q. Wang et al., 2009, 2010). Therefore, North China (NC) is
165 defined as the source region of aerosols. According to the [climatological](#) 850 hPa
166 wind field (Figure1a), the wintertime pollution outflow from NC follows
167 southeastwards pathways and is expected to influence air quality over South China
168 (SC), which is shown as the red rectangle in Figure 2b ($22^{\circ}N$ - $30^{\circ}N$, $110^{\circ}E$ - $120^{\circ}E$).
169 Here SC is defined as the domestic receptor region of NC aerosols in winter.
170

171 **4. Development of the Siberian High position index and its association with AOD**

172 **4.1. Index development**

173 Figure 3 depicts the time series of winter AOD averaged over NC, showing a
174 significant increase in AOD from about 0.5 in 2001 to about 0.8 in 2013. A linear
175 regression of the time series gives a trend of $1.5\% \text{ year}^{-1}$ ($r = 0.65$, $p < 0.05$). Since the
176 meteorological variables and atmospheric circulation patterns are not expected to

177 drive such a large linear trend during this period, this AOD trend is mostly likely
178 caused by increasing anthropogenic emissions over this region (Lu et al., 2010, 2011;
179 Zhang et al., 2012; [Streets et al., 2009](#)). The departure of each winter's AOD from that
180 depicted by the linear trend is assumed to represent the influence of meteorology. The
181 years in which winter AOD lies above 30% of the residual confidence interval of the
182 linear trend line are referred to as the high-AOD winters (including 2001, 2003, 2007,
183 2008, 2013) and those below 30% of the residual confidence interval as the low-AOD
184 winters (including 2002, 2004, 2006, 2009, 2010, 2012). Since the high- or low-AOD
185 is defined relative to the trend line, the corresponding high- or low-AOD winters are
186 expected to be driven by the interannual variability of meteorology.

187 Mean meteorological conditions between the high- and low-AOD winters were
188 compiled and compared to identify any significant differences in large-scale
189 circulation patterns between them. The differences in winter-mean SLP and 850 hPa
190 wind fields are shown in Figure 4 (high-AOD winters minus low-AOD winters).
191 Surprisingly, Figure 4 does not reveal any significant decrease of SLP from low-AOD
192 to high-AOD winters over Mongolia where the climatological center of the Siberian
193 High locates (c.f. Figure 1a). Instead, significant changes of SLP are located over west
194 of Mongolia (negative differences) and over Japan (positive differences). The
195 high-AOD winters also have a stronger component of southeasterly winds at 850 hPa
196 over North China. This change of wind directions not only suppresses the
197 northwesterly flow that brings cleaner continental background air, but also reduces the
198 transport of pollution from NC to SC, both of which lead to higher pollution levels

199 over NC.

200 The index widely used in the literature to describe the SH variability is the
201 Siberian High intensity (SHI), defined as the mean SLP over northern Mongolia
202 between 80 °E -120 °E and 40 °N - 65 °N (black rectangle in Figure 1a and 4) (Jeong et
203 al., 2011; Hasanean et al., 2013). However, as shown by Figure 4, there is no
204 significant difference in SLP over northern Mongolia between the high- and
205 low-AOD winters, suggesting that this conventional index of SH may not be able to
206 explain the interannual variability of PM over North China. As an example, Figure 5
207 compares winter SLP and 850 hPa wind fields between 2003 (a high-AOD winter)
208 and 2004 (a low-AOD winter). While winter-mean AOD over NC was significantly
209 higher in 2003 (0.68) than that in 2004 (0.45), the SHI was almost the same between
210 the two winters. The noticeable difference, however, is that the high pressure isobars
211 in the 2003 winter extended further east over the continent than those in the 2004
212 winter. Through linear regression, we found a poor correlation between SHI and
213 detrended winter-mean AOD over NC (Figure 6a), with SHI explaining only 4% of
214 the AOD variance. [There is no significant \(p<0.05\) trend in SHI during 2001-2013.](#)

215 Figure 4 manifests the displacement of the high SLP center during the high-AOD
216 winters from northern Mongolia where the conventional SHI is defined. Figure 5
217 further illustrates that the main difference in SH between the two specific winters of
218 largely varying AODs lies in its spatial extension. Given this feature, we further
219 hypothesized that the position of the Siberian High is a more important factor than its
220 intensity in terms of affecting PM concentrations over NC. We thus proposed a

221 Siberian High position index (SHPI) as the weighted mean of the longitudes of all the
222 grids within the 1023 hPa isobar over the broad region of 60 °E -145 °E and 30 °N
223 -65 °N (black rectangle in Figure 5). The SHPI is defined by Equation 1:

$$SHPI = \frac{\sum (P_i \times L_i)}{\sum P_i} \quad (1)$$

224 where L_i is the longitude of any eligible grid i within the 1023 hPa isobar and the
225 definition domain, and P_i is the SLP of the corresponding grid i . The unit of SHPI is
226 degree in longitude. Our definition of SHPI is similar to the longitude index of SH
227 defined by Hou et al. (2003), but differs with regards to the region over which SHPI is
228 calculated. They defined the index as the weighted mean longitudes of all the grids
229 within the 1023 hPa isobar which may extend westward to Europe and northward to
230 the Arctic. Our definition of SHPI limits the spatial domain over which the 1023 hPa
231 isobar is considered in the SHPI calculation because of our focus on East Asia and
232 particularly China (Figure 5). The 2001-2013 time series of winter SHPI is displayed
233 in Figure 6b (black line) and the wintertime mean SHPI during this period is 98.9 °E.
234 A larger SHPI indicates that the center of the Siberian High is located further east of
235 its normal position. Referring back to Figure 5, the 2003 winter has a significantly
236 higher value of SHPI (102.3 °E) than that of 2004 (SHPI = 96.3 °E); so does the AOD
237 over NC but not SHI (c.f. Figure 6a).

238 Figure 6b shows the time series of winter-mean SHPI and NC AOD from 2001 to
239 2013. They exhibit a positive correlation of 0.39, which is not significant due to the
240 confounding effect of the increasing trend in AOD. Since the focus here is on
241 variability, the AOD time series were detrended by removing any significant linear
242

243 trend (detrended AOD) and the SHPI time series were normalized by their
244 climatological mean and standard deviation. As shown in Figure 6c, the detrended NC
245 AOD and normalized SHPI display a strong correlation of 0.76 ($p < 0.01$), which
246 means that the position-based SHPI captures 58% of the interannual variance in
247 winter AOD over NC. This indicates that on the interannual scale, winter AOD over
248 NC can be better explained by SHPI, an index of the SH position, than the
249 conventional SHI, an index of the SH intensity. According to Hou et al. (2008), the
250 longitude index and intensity index of the SH may not be significantly correlated. In
251 support of this point, we found the SHI and SHPI have a weak correlation of only
252 -0.32 during the study period (Figure S1).

253 Figure 6d displays the time series of normalized SHPI and detrended NC AOD on
254 the monthly scale. The corresponding raw data prior to the detrending and
255 normalization are provided in Figure S2. Here the normalization of SHPI is conducted
256 separately for November, December, and January to retain its intraseasonal variability.
257 At the monthly scale, the correlation between normalized SHPI and detrended NC
258 AOD is also significant at 0.45 ($p < 0.01$). Some extremely high values of monthly
259 AOD over NC show clear associations with higher values of SHPI. Taking January
260 2013 as an example, which has the highest AOD over NC among all the 39 winter
261 months studied here, the SHPI of that month is also the highest (106.5 °E), lying 2.6
262 times the standard deviation away from the 2001-2013 January mean (99.8 °E). This
263 association indicates that the anomalous feature of the Siberian High in January 2013
264 was not only the weakening of its strength (c.f. Figure 1b) but also its more eastward

265 extension, the latter being the primary factor contributing to high PM levels over NC.
266 Another example is February 2011. Both AOD and SHPI of that month are among the
267 highest values of the study period (Figure 6d and S2). We thus conclude that the SHPI
268 indicator of the SH variability is able to explain extremely high PM pollution over NC
269 on the monthly scale.

270

271 **4.2. Mechanism**

272 To understand the mechanistic connection between SHPI and winter AOD over
273 NC, we examine in this section how the SHPI variability is linked with the change of
274 large-scale circulation patterns using the NCEP reanalysis data which span 30 years
275 (1982-2011). The years with extremely high SHPI (beyond one standard deviation of
276 the mean) in winter are defined to be high-SHPI years and those below one standard
277 deviation of the mean as low-SHPI years. Figure 7a displays the climatological
278 distribution of 850 hPa wind fields during 1982-2011. The northwesterly winds larger
279 than 5 m s^{-1} over North China and Japan indicate the strong influence of the Siberian
280 High and East Asian winter monsoon. The area covered by the prevailing
281 northwesterly winds and the mean speed of those winds exhibit interannual variability
282 that correlates with SHPI to some extent. For example, the winter of 1990 has the
283 highest SHPI (105.9 °E) during the 30-year study period and that of 2004 has the
284 lowest SHPI (96.3 °E). As shown in Figure S3, the area covered by northwesterly
285 winds larger than 5 m s^{-1} is smaller in 1990 than that in 2004, and the average wind
286 speed over that area is also smaller in 1990. On average, 850 hPa wind speeds over

287 NC are about 0.5 m s^{-1} to 1 m s^{-1} lower during the high-SHPI winters than during the
288 low-SHPI years (Figure 7b). Table 1 summarizes wintertime-mean zonal and
289 meridional wind speeds over NC at different vertical levels for the 30-year average,
290 high-SHPI average, and low-SHPI average. In the high-SHPI winters, both zonal and
291 meridional wind speeds are lower not only at 850 hPa but also at the upper levels.
292 Lower wind speeds are conducive for pollution accumulation over the source region,
293 which partly contributes to higher AOD in the high-SHPI winters. To further illustrate
294 the connections between SHPI and wind changes, Figure 7c depicts the spatial
295 distribution of correlation coefficients between SHPI and surface RH from 1982 to
296 2011. SHPI shows a significant positive correlation with RH over NC, indicating
297 enhanced water vapor convergence over NC in the high-SHPI winters. This positive
298 correlation arises because weaker northerly winds lead to reduced transport of dry air
299 masses from the cold Siberian landmass, compensated by enhanced transport of moist
300 air masses through the anomalous southerly winds. Higher RH during the high-SHPI
301 winters leads to higher mass concentrations and extinction of aerosols as a result of
302 hygroscopic growth of aerosol species (Mu et al., 2014; Tai et al., 2010). Although
303 higher SHPI is always associated with lower northwesterly wind and higher RH over
304 NC, local wind speed or RH itself is not an indicator as good as SHPI in explaining
305 the interannual variation of NC AOD. One explanation is that SHPI represents the
306 combined effects of large-scale circulation change on local meteorological conditions.
307 In addition, systematic errors have been found for lower-level wind fields from NCEP
308 reanalysis (Shi et al., 2006).

309 To verify the above analysis of the mechanism, we tested the utility of SLP over
310 Japan (SLPJ, defined over 130 °E-145 °E and 40 °N-50 °N) as an alternative indicator
311 of the large-scale circulation in explaining the interannual variations of AOD over NC.
312 The reason why the SLPJ is used for comparison is because the high-AOD winters
313 also feature significant positive changes of SLP over (c.f. Figure 4). The time series of
314 SLPJ is shown in Figure S4. SLPJ shows a positive correlation with NC AOD and
315 explains 38% of the variance in detrended NC AOD (Figure S4a). By comparison,
316 SHPI explains 58% of the variance of detrended NC AOD. SLPJ also correlates well
317 with SHPI (Figure S4b), which indicates that in the high-SHPI years the eastward
318 extension of the SH leads to an increase of SLP over Japan and as a result SLPJ is not
319 independent from SHPI. The anomalously high SLP over Japan influences the PM
320 level over NC by reducing the prevailing northwesterly winds and increasing RH over
321 NC, which is consistent with the mechanism provided above.

322 To summarize, the SHPI indicator developed here is able to capture the
323 interannual variations of winter-mean and monthly-mean NC AOD to a large extent.
324 Comparing to the climatology, 850 hPa wind speeds over NC during the high-SHPI
325 years are suppressed by 13% and the surface relative humidity is enhanced by 12% as
326 a result of the eastward extension of the SH. Since the suppressed wind speed is
327 unfavorable for the dispersion of air pollution and higher surface relative humidity
328 enhances secondary aerosol formation and hygroscopic growth, both factors lead to
329 higher PM levels over NC in the high-SHPI years.

330

331 **4.3. AOD variability in South China**

332 Our above analysis suggests that the suppression of prevailing northwesterly
333 winds and the enhancement of surface RH are the key meteorological features during
334 the high-SHPI winters. The implication of such conditions for wintertime PM over SC,
335 the domestic receptor region of wintertime NC outflow, is not straightforward. On one
336 hand, suppressed northwesterly winds are unfavorable meteorological conditions for
337 the export of pollution from NC, which may lead to reduced PM levels over SC. On
338 the other hand, the Siberian High variability is expected to have an influence on local
339 meteorological conditions over SC. In this section, we examine the extent to which
340 the SHPI indicator developed in the previous section can explain the interannual
341 variability of AOD over SC.

342 Figure 8 displays the time series of winter mean AOD over SC from MODIS. The
343 multi-year mean AOD over SC is about 0.4, with a positive but not significant trend
344 of increase of $0.13\% \text{ year}^{-1}$. The two highest AOD winters for SC are 2004 (0.46) and
345 2008 (0.48), both corresponding to the lowest SHPI. The overall correlation between
346 detrended SC AOD and normalized SHPI is -0.82, suggesting that SHPI explains 67%
347 of the variance in SC AOD. In the high-SHPI winters, the meridional wind speed over
348 NC is reduced by 17%, 16% and 19% at 850 hPa, 700 hPa, and 500 hPa, respectively,
349 compared to the low-SHPI winters (Table 1). The suppressed northerly winds over
350 NC lead to the direct effect of reduced southward transport of pollution from NC to
351 SC, resulting in lower AOD over SC during the high-SHPI winters. Meanwhile, the
352 850 hPa wind speeds over SC does not show a significant difference between the

353 high-SHPI and low-SHPI winters (Figure 7b). Although there is a 7.5% enhancement
354 of surface relative humidity over SC during the high-SHPI years (Figure 7c), the
355 overall significantly negative correlation between SC AOD and SHPI indicate that the
356 suppressed pollution transport from NC to SC is the dominant factor to explain the
357 influence of SHPI on AOD over SC.

358

359 **5. Discussion**

360 To test the robustness of the relationship between AOD and SHPI developed
361 above using MODIS AOD and NCEP reanalysis, we conducted the same analysis
362 using AOD derived from MISR (MISR AOD) and SHPI derived from the
363 ERA-Interim reanalysis (ERA SHPI). Table 2 compares the correlation coefficients
364 derived using the different datasets. Significant positive correlations are consistently
365 found between the SHPI and AOD over NC, regardless of the data sources from
366 which the SHPI and AOD are derived. For example, the ERA SHPI has a correlation
367 of 0.65 with MISR AOD over NC, compared to that of 0.76 between NCEP SHPI and
368 MODIS AOD. This indicates the robustness of the SHPI indicator developed here
369 with regard to explaining the interannual variability of AOD over NC. However, the
370 correlation between SHPI and AOD over SC displays a dependence on the data source.
371 The ERA SHPI has a similarly strong negative correlation with MODIS AOD over SC
372 as the NCEP SHPI does, but neither NCEP SHPI nor ERA SHPI correlates well with
373 MISR AOD over this region. This discrepancy can be partly explained by the
374 inconsistency in the interannual variability of AOD between MODIS and MISR over

375 SC. As shown in Figure S5a, the correlation coefficient between the two AOD time
376 series is only 0.07 over SC during 2001-2013, although neither shows a significant
377 increasing trend. By comparison, the AOD time series from MODIS and MISR show
378 a strong correlation of 0.7 over NC (Figure S5b). Since SC has more cloud coverage
379 than NC (Li et al., 2004), the inconsistency between MODIS and MISR over SC may
380 lie in the different cloud-screening algorithms between MODIS and MISR. In
381 addition, MISR has a lower sampling frequency than MODIS which may also lead to
382 the inconsistency (Zhang et al., 2010). Therefore, our conclusion on the association of
383 SHPI with AOD variability over SC may require verification by later studies.

384 In addition to the conventional SHI, the number of cold air surges has been used
385 as an indicator of the strength of the SH in winter. A cold air surge is an influx of
386 unusually cold continental air from the Arctic Ocean and Siberia into the middle or
387 lower latitudes, and it is the main disastrous weather influencing China in the winter
388 half-year. Niu et al. (2011) reported that the number of cold air surges decreased
389 significantly from 1976 to 2007, which coincided with the increasing frequency of
390 wintertime fog over eastern-central China. A variety of definitions has been used for
391 cold air surges, such as changes in surface temperature, surface pressure, and wind
392 speed (Wang et al., 2006). The definition of cold air surges we used is as follows. We
393 took 8 sites in North China (Jiuquan, Lanzhou, Beijing, Shenyang, Changchun,
394 Haerbin, Xi'an, Ji'nan) and 7 sites in South China (Nanjing, Hankou, Chengdu,
395 Changsha, Guiyang, Fuzhou, Guangzhou). If the 15-site mean daily temperature
396 keeps decreasing for three days and the overall magnitude of this temperature

397 decrease is larger than 5°C , it is considered as a cold air surge. The number of cold air
398 surges per winter during 2001-2013 is shown in Figure S6, which explains less than
399 15% of the variance in the interannual variability of AOD over NC and SC. Thus,
400 SHPI fares better than the number of cold air surges in explaining the interannual
401 variability of AODs over different regions of China.

402 To summarize, through analyzing the anomalous meteorological conditions
403 during January 2013, we have revealed not only the weakening of the strength of the
404 Siberian High over Mongolia, but also its more eastward extension, the latter being
405 the key factor contributing to high PM levels over NC. Thus, the Siberian High
406 Position Index (SHPI) depicting the mean longitudinal position of the Siberian High is
407 developed, and this index captures 58% of the interannual variance in winter AOD
408 over NC during 2001-2013. The SHPI is able to indicate the occurrence of high PM
409 pollution levels over NC on the monthly scale; notably, the extreme PM pollution of
410 January 2013 over NC is associated with an extremely high value of SHPI (above 2.6
411 times standard deviation of the 2001-2013 mean). Mechanistic analysis indicates that
412 high SHPI is often associated with suppressed prevailing northwesterly winds and
413 higher relative humidity over NC, both of which are favorable for secondary
414 formation and accumulation of PM over NC. The suppressed prevailing winds over
415 NC also weaken the southward transport of pollution to SC, resulting in lower PM
416 levels over SC. The positive correlations between NC AOD and SHPI also exist
417 among different datasets we tested, including NCEP and ERA-Interim for SHPI and
418 MODIS and MISR for AOD. However, the negative correlation between AOD and

419 SHPI over SC is significant only using AOD derived from MODIS and thus needs to
420 be further confirmed.

421

422 **Acknowledgement:** This research was supported by the National Key Basic Research
423 Program of China (2013CB956603 and 2014CB441302) and the CAS Strategic
424 Priority Research Program (Grant No. XDA05100403). We thank Lu Shen for helpful
425 discussion.

426

427 **References**

428 Boys, B. L., Martin, R. V., van Donkelaar, A., MacDonell, R. J., Hsu, N. C., Cooper, M. J.,
429 Yantosca, R. M., Lu, Z., Streets, D. G., Zhang, Q., and Wang, S. W.: Fifteen-year global time
430 series of satellite-derived fine particulate matter, Environ. Sci. Technol., 48, 11109-11118,
431 doi:10.1021/es502113p, 2014.

432 Chang, C. P. and Lu, M. M.: Intraseasonal predictability of Siberian High and East Asian winter
433 monsoon and its interdecadal variability, J. Climate, 25, 1773-1778, doi:10.1175/JCLI-
434 D-11-00500.1, 2012.

435 Chernokulsky, A., Mokhov, I. I., and Nikitina, N.: Winter cloudiness variability over northern
436 Eurasia related to the Siberian High during 1966-2010, Environ. Res. Lett., 8, 045012,
437 doi:10.1088/1748-9326/8/4/045012, 2013.

438 Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., and Holben, B. N.: Validation of
439 MODIS aerosol optical depth retrieval over land, Geophys. Res. Lett., 29, 1617, doi:
440 10.1029/2001GL013205, 2002.

441 Cohen, J., Saito, K., and Entekhabi, D.: The role of the Siberian High in Northern Hemisphere

442 climate variability, *Geophys. Res. Lett.*, 28, 299-302, doi:10.1029/2000GL011927, 2001.

443 Gong, D. Y. and Ho, C. H.: The Siberian High and climate change over middle to high latitude

444 Asia, *Theor. Appl. Climatol.*, 72, 1-9, doi:10.1007/s007040200008, 2002.

445 Hasanean, H. M., Almazroui, M., Jones, P. D., and Alamoudi, A. A.: Siberian high variability and

446 its teleconnections with tropical circulations and surface air temperature over Saudi Arabia,

447 *Clim. Dynam.*, 41, 2003-2018, doi:10.1007/s00382-012-1657-9, 2013.

448 Hou, Y. H., Yang, X. Q., Li, G., and Wang, Q.: Four indexes and their change rates Siberian High,

449 *Journal of Nanjing Institute of Meteorology*, 31, 326-330, 2008 (in Chinese).

450 Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol properties over bright-reflecting

451 source regions, *IEEE T. Geosci. Remote*, 42, 557-569, doi:10.1109/TGRS.2004.824067, 2004.

452 Hu, X., Waller, L. A., Lyapustin, A., Wang, Y., and Liu, Y.: 10-year spatial and temporal trends

453 of PM_{2.5} concentrations in the southeastern US estimated using high-resolution satellite data,

454 *Atmos. Chem. Phys.*, 14, 6301-6314, doi:10.5194/acp-14-6301-2014, 2014.

455 Huang, K., Zhuang, G., Wang, Q., Fu, J. S., Lin, Y., Liu, T., Han, L., and Deng, C.: Extreme haze

456 pollution in Beijing during January 2013: chemical characteristics, formation mechanism and

457 role of fog processing, *Atmos. Chem. Phys. Discuss.*, 14, 7517-7556, doi: 10.5194/

458 acpd-14-7517-2014, 2014.

459 Jeong, J. H., Ou, T., Linderholm, H. W., Kim, B. M., Kim, S.-J., Kug, J. S., and Chen, D.: Recent

460 recovery of the Siberian High intensity, *J. Geophys. Res. -Atmos.*, 116, D23102, doi:

461 10.1029/2011JD015904, 2011.

462 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S.,

463 White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W.,
464 Higgins, W. , Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The
465 NCEP/NCAR 40-year reanalysis project, *B. Am. Meteorol. Soc.*, 77, 437-473, 1996.

466 Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W.,
467 Kanamitsu, M., Kousky, V., Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-year
468 reanalysis: monthly means CD-ROM and documentation, *B. Am. Meteorol. Soc.*, 82, 247-267,
469 2001.

470 Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., and Koutrakis, P.: A novel calibration approach of
471 MODIS AOD data to predict PM_{2.5} concentrations, *Atmos. Chem. Phys.*, 11, 7991-8002,
472 doi:10.5194/acp-11-7991-2011, 2011.

473 Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.: Second-generation
474 operational algorithm: retrieval of aerosol properties over land from inversion of Moderate
475 Resolution Imaging Spectroradiometer spectral reflectance, *J. Geophys. Res. -Atmos.*,
476 112(D13211), doi:10.1029/2006JD007811, 2007.

477 Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.:
478 Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, *Atmos.*
479 *Chem. Phys.*, 10, 10399-10420, doi:10.5194/acp-10-10399-2010, 2010.

480 Li, Y., Yu, R. C., Xu, Y. P., and Zhang, X. H.: [Spatial Distribution and Seasonal Variation of Cloud](#)
481 [over China Based on ISCCP Data and Surface Observations](#), *J. Meteorol. Soc. Jpn.*, 82, 761-773,
482 doi: 10.2151/jmsj.2004. 761, 2004.

483 Liu, Y., Franklin, M., Kahn, R., and Koutrakis, P.: Using aerosol optical thickness to predict
484 ground-level PM_{2.5} concentrations in the St. Louis area: a comparison between MISR and

485 MODIS, *Remote Sens. Environ.*, 107, 33-44, doi:10.1016/j.rse.2006.05.022, 2007.

486 Lu, Z., Streets, D. G., Zhang, Q., Wang, S., Carmichael, G. R., Cheng, Y. F., Wei, C., Chin, M.,

487 Diehl, T., and Tan, Q.: Sulfur dioxide emissions in China and sulfur trends in East Asia since

488 2000, *Atmos. Chem. Phys.*, 10, 6311-6331, doi:10.5194/acp-10-6311-2010, 2010.

489 Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions

490 in China and India, 1996-2010, *Atmos. Chem. Phys.*, 11, 9839-9864, doi:10.5194/acp-

491 11-9839-2011, 2011.

492 Lyapustin, A., Wang, Y., Kahn, R., Xiong, J., Ignatov, A., Wolfe, R., Wu, A., Holben, B., and

493 Bruegge, C.: Analysis of MODIS-MISR calibration differences using surface albedo around

494 AERONET sites and cloud reflectance, *Remote Sens. Environ.*, 107, 12-21, doi:

495 10.1016/j.rse.2006.09.028, 2007.

496 Mu, Q. and Liao, H.: Simulation of the interannual variations of aerosols in China: role of

497 variations in meteorological parameters, *Atmos. Chem. Phys.*, 14, 9597-9612, doi:10.5194/acp-

498 14-9597-2014, 2014.

499 Niu, F. Z., Li, Q., Li, C., Kwon-Ho, L., and Zhang, M. Y.: Increase of wintertime fog in China:

500 potential impacts of weakening of the eastern Asian monsoon circulation and increasing

501 aerosol loading, *J. Geophys. Res. -Atmos.*, 115, D00k20, doi:10.1029/2009JD013484, 2010.

502 Prados, A. I., Kondragunta, S., Ciren, P., and Knapp, K. R.: GOES Aerosol/Smoke Product

503 (GASP) over North America: comparisons to AERONET and MODIS observations, *J.*

504 *Geophys. Res. -Atmos.*, 112, D15201, doi:10.1029/2006jd007968, 2007.

505 Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku,

506 C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS

507 aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947-973,
508 doi:10.1175/JAS3385.1, 2005.

509 Shi, X. H., Xu, X., and Xie, L.: Reliability analysis if anomalies of NCEP/NCAR reanalysis wind
510 speed and surface temperature in climate change research in China, J. Meteor. Res., 6, 709-722,
511 2006 (in Chinese).

512 Simmons, A., Uppala, S., Dee, D., and Kobayashi, S.: ERA-Interim: new ECMWF reanalysis
513 products from 1989 onwards, ECMWF Newsletter, 110, 25-35, 2007.

514 Streets, D. G., Yan, F., Chin, M., Diehl, T., Mahowald, N., Schultz, M., Wild, M., Wu, Y., and Yu,
515 C.: Anthropogenic and natural contributions to regional trends in aerosol optical depth,
516 1980-2006, J. Geophys. Res., 114, D00D18, doi: 10.1029/2008JD011624, 2009.

517 Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity
518 on aerosol composition and evolution processes during wintertime in Beijing, China, Atmos.
519 Environ., 77, 927-934, doi:10.1016/j.atmosenv.2013.06.019, 2013.

520 Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine particulate matter (PM_{2.5})
521 and meteorological variables in the United States: implications for the sensitivity of PM_{2.5} to
522 climate change, Atmos. Environ., 44, 3976-3984, doi:10.1016/j.atmosenv.2010.06.060, 2010.

523 Tanré, D., Kaufman, Y. J., Herman, M., and Mattoo, S.: Remote sensing of aerosol properties over
524 oceans using the MODIS/EOS spectral radiances, J. Geophys. Res. -Atmos., 102, 16971, doi:
525 10.1029/96jd03437, 1997.

526 van Donkelaar, A. A., Martin, R. V., Brauer, M., and Boys, B. L.: Use of satellite observations for
527 long-term exposure assessment of global concentrations of fine particulate matter, Environ.
528 Health Persp., 123, 135-143, doi:10.1289/ehp.1408646, 2014.

529 Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived aerosol optical
530 thickness and PM2.5 mass: implications for air quality studies, *Geophys. Res. Lett.*, 30, 2095,
531 doi: 10.1029/2003gl018174, 2003.

532 Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang, Q.: The
533 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and
534 policy implications, *Atmos. Chem. Phys.*, 14, 3151-3173, doi: 10.5194/acp-14-3151-2014,
535 2014.

536 Wang, Y. X., Zhang, Q. Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang, Q., Philip, S.,
537 and Xie, Y.: Enhanced sulfate formation during China's severe winter haze episode in January
538 2013 missing from current models, *J. Geophys. Res. -Atmos.*, 119, 10425-10440, doi:
539 10.1002/2013JD021426, 2014.

540 Wang, Y. S., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B., and Xin, J.:
541 Mechanism for the formation of the January 2013 heavy haze pollution episode over central
542 and eastern China, *Sci. China Ser. D*, 57, 14-25, doi: 10.1007/s11430-013-4773-4, 2014.

543 Wu, B. and Wang, J.: Winter Arctic oscillation, Siberian High and East Asian winter monsoon,
544 *Geophys. Res. Lett.*, 29, 1897, doi: 10.1029/2002GL015373, 2002.

545 Xie, Y.Y., Wang, Y., Zhang, K., Dong, W., Lv, B., and Bai, Y.: Daily estimation of ground-level
546 PM_{2.5} concentrations over Beijing using 3 km resolution MODIS AOD, *Environ. Sci. Technol.*
547 (Just accepted manuscript), doi: 10.1021/acs.est.5b01413.

548 Yang, K., Dickerson, R. R., Carn, S. A., Ge, C., and Wang, J.: First observations of SO₂ from the
549 satellite Suomi NPP OMPS: widespread air pollution events over China, *Geophys. Res. Lett.*,
550 40, 4957-4962, doi: 10.1002/grl.50952, 2013.

551 Zhang, H., Hoff, R. M., and Engel-Cox, J. A.: The relation between Moderate Resolution Imaging
552 Spectroradiometer (MODIS) aerosol optical depth and PM_{2.5} over the United States: a
553 geographical comparison by U.S. Environmental Protection Agency regions, JAPCA J. Air
554 Waste Ma., 59, 1358-1369, doi:10.3155/1047-3289.59.11.1358, 2009.

555 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I.
556 S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian
557 emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153,
558 doi:10.5194/acp-9-5131-2009, 2009.

559 Zhang, Q., Geng, G. N., Wang, S. W., Richter, A., and He, K. B.: Satellite remote sensing of
560 changes in NO_x emissions over China during 1996-2010, Chinese Sci. Bull., 57, 2857-2864,
561 doi:10.1007/s11434-012-5015-4, 2012.

562 Zhang, R. H., Li, Q., and Zhang, R. N.: Meteorological conditions for the persistent severe fog and
563 haze event over eastern China in January 2013, Sci. China Ser. D, 57, 26-35,
564 doi:10.1007/s11430-013-4774-3, 2014.

565 Zhang, Y. and Sun, Z.: Comparisons of MODIS and MISR aerosol optical thickness over
566 eastcentral China, Journal of the Meteorological Sciences, 30, 48-54, 2010 (in Chinese).

567 Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N., and Zhang, F. S.: Agricultural
568 ammonia emissions inventory and spatial distribution in the North China Plain, Environ. Pollut.,
569 158, 490-501, doi:10.1016/j.envpol.2009.08.033, 2010.

570 Zhu, J., Liao, H., and Li, J.: Increases in aerosol concentrations over eastern China due to the
571 decadal-scale weakening of the East Asian summer monsoon, Geophys. Res. Lett., 39, L09809,
572 doi:10.1029/2012GL051428, 2012.

573

574 **Tables**

575 Table 1. Mean zonal (U) and meridional (V) wind speeds over NC at different
 576 pressure levels (850 hPa, 700 hPa, and 500 hPa) during all winters (1982-2011), the
 577 high-SHPI winters, and the low-SHPI winters. **The high- and low-SHPI winters are**
 578 **defined as the winters with the SHPI value lying outside of one standard deviation**
 579 **above or below the mean, respectively. Unit: m s⁻¹**

	850hPa		700hPa		500hPa	
	U	V	U	V	U	V
All winters (1982-2011)	4.18	-3.06	10.94	-3.22	23.30	-3.17
High-SHPI winters	3.83	-2.67	10.39	-2.66	21.58	-2.33
Low-SHPI winters	4.26	-3.18	11.23	-3.17	24.24	-2.94

580

581 Table 2. Correlation coefficients between SHPI and AOD derived from different
 582 datasets: NCEP and ERA-Interim for SHPI, and MODIS and MISR for AOD.

	North China (NC) AOD		South China (SC) AOD	
	MODIS	MISR	MODIS	MISR
NCEP SHPI	0.76	0.67	-0.82	0.03
ERA SHPI	0.79	0.65	-0.74	-0.09

583

584

585

586

587

588 **Figures**

589

590 Figure 1. (a) Multi-year (2001-2012) mean January SLP (shaded) and 850 hPa wind
 591 fields (vectors); (b) January 2013 SLP (shaded) and the anomalies 850 hPa wind
 592 fields (vectors); the black rectangle outlines the region used in the definition of
 593 conventional Siberian High intensity. The length of the wind vectors indicates wind
 594 speed (m s^{-1}).

595

596 Figure 2. (a) Multi-year mean winter AOD from 2001-2013; (b) the change of winter
 597 mean AOD between 2007-2013 and 2001-2006 (2007-2013 minus 2001-2006). The
 598 black rectangle outlines North China (NC); the red rectangle outlines South China
 599 (SC).

600
601 Figure 3. Time series of winter mean AOD over North China (solid thick line) and the
602 fitted linear regression line (dotted thin line). The insert shows the correlation
603 coefficient (r) and significance of the linear regression. The vertical thin line indicates
604 the residual confidence interval of the linear regression slope ($\alpha=0.7$).
605

606
607 Figure 4. Difference of SLP (shaded, hPa) and 850 hPa wind vectors (m s^{-1}) between
608 high- and low-AOD winters; areas with white pluses are differences at the 10%
609 significance level; the black rectangle outlines the region used in the definition of
610 conventional SHI. The length of the wind vectors indicates wind speed (m s^{-1}).

611

612 Figure 5. Distribution of winter SLP (shaded) and anomalous (minus 13-year mean)
 613 850 hPa wind fields (vector) in (a) 2003, and (b) 2004; the black solid rectangle
 614 outlines the region used in the definition of SHPI. The length of the wind vectors
 615 indicates wind speed (m s^{-1}).

616

617 Figure 6. Time series of wintertime AOD over North China (red lines) with (a) SHI
 618 and (b) SHPI during 2001-2013. (c) Same as (b), but for detrended NC AOD and
 619 normalized SHPI. (d) Detrended NC AOD and normalized SHPI for each winter

620 month (December, January, Feburary) during 2001-2013.

621

622 Figure 7. Geographic distributions of (a) Multi-year (1982-2011) mean winter 850
623 hPa wind direction (vector) and wind speed (shaded), (b) difference of wind speed
624 between high-SHPI year mean and low-SHPI year mean ($m s^{-1}$), and (c) winter
625 interannual correlation coefficients of SHPI with relative humidity (colored areas are
626 correlations above the 5% significance level).

627

628 Figure 8. Time series of AOD over South China and normalized SHPI.