



*Supplement of*

## **Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols**

**Y. Xu et al.**

*Correspondence to:* Y. Xu (yangyang@ucar.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1



2

3 Fig. S1. (a) Snow fraction same as Fig. 1 but for 2001-2012. (b) Snow fraction same as (a) but from MODIS.

4 (c) Snow fraction same as (a) but for 1980-1991.

5

1



2

3 Fig. S2. Similar to Fig. 3 but showing the vertical profile averaged over the Tibet region. (a) Radiative  
 4 heating rate ( $^{\circ}\text{C/day}$ ). Shortwave fluxes for BC and SO<sub>4</sub>, and longwave flux for CO<sub>2</sub>. (b) Normalized temperature  
 5 change relative to the average below 900 hPa. Note that the changes are tropospheric atmospheric temperature  
 6 change, not surface temperature. The domains of the Tibet (as in Table 1) are 30 to 40 $^{\circ}\text{N}$  and 80 to 100 $^{\circ}\text{E}$ .

7

1



2

3 Fig. S3. (a) Change of surface albedo due to BC deposition on snow; (b) Change of net shortwave radiation  
4 (downward as positive,  $\text{W/m}^2$ ). Over Tibet, the surface albedo is reduced by 2.2%, causing an increase in  
5 shortwave radiation reaching the surface by  $4.1 \text{ W/m}^2$  (heating). Globally, the radiative forcing at the surface is  
6 about  $0.1 \text{ W/m}^2$ . The change of surface albedo is calculated by using the first five years of atmospheric-only  
7 simulation in which BC emission is increased; therefore, the change largely represents the albedo decrease due to  
8 BC deposition, although we cannot completely rule out the associated melting during this period.

9