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Abstract. The success of future geostationary (GEO) satellite observation missions depends on our

ability to design instruments that address their key scientific objectives. In this study, an Observation

System Simulation Experiment (OSSE) is performed to quantify the constraints on methane (CH4)

emissions in North America obtained from Short Wave Infrared (SWIR), Thermal Infrared (TIR),

and multi-spectral (SWIR+TIR) measurements in geostationary orbit and from existing SWIR low5

earth (LEO) measurements. An efficient stochastic algorithm is used to compute the information

content of the inverted emissions at high spatial resolution (0.5◦ × 0.7◦) in a variational framework

using the GEOS-Chem chemical transport model and its adjoint. Our results show that at sub-weekly

time-scales, SWIR measurements in GEO orbit can constrain about twice as many independent flux

patterns than in LEO orbit, with a degree of freedom for signal (DOF) for the inversion of 266 and10

115, respectively. Comparisons between TIR GEO and SWIR LEO configurations reveal that poor

boundary layer sensitivities for the TIR measurements cannot be compensated by the high spatiotem-

poral sampling of a GEO orbit. The benefit of a multi-spectral instrument compared to current SWIR

products in a GEO context is shown for sub-weekly time-scale constraints, with an increase in the

DOF of about 50% for a 3-day inversion. Our results further suggest that both the SWIR and multi-15

spectral measurements on GEO orbits could almost fully resolve CH4 fluxes at a spatial resolution

of at least 100km×100km over source hotspots (emissions > 4 × 105 kg day−1). The sensitivity of

the optimized emission scaling factors to typical errors in boundary and initial conditions can reach

30% and 50% for the SWIR GEO or SWIR LEO configurations, respectively, while it is smaller than

5% in the case of a multi-spectral GEO system. Overall, our results demonstrate that multi-spectral20

measurements from a geostationary satellite platform would address the need for higher spatiotem-
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poral constraints on CH4 emissions while greatly mitigating the impact of inherent uncertainties in

source inversion methods on the inferred fluxes.

1 Introduction

Methane (CH4) plays a key role in both atmospheric chemistry composition and climate. With a ra-25

diative forcing relative to preindustrial times that is one third that of carbon dioxide, CH4 is the

second most important greenhouse gas (Myhre, 2013). Further, as a precursor to tropospheric ozone,

CH4 also impacts surface-level air quality (Fiore et al., 2002; West et al., 2006; West and Fiore,

2005), crops (e.g., Shindell et al., 2012), and contributes to ozone radiative forcing (e.g., Fiore et al.,

2008). Considerable uncertainty remains in our understanding of CH4 sources (e.g., Dlugokencky30

et al., 2011; Kirschke et al., 2013), which include emissions from coal, wetlands, livestock, landfills,

biomass burning, geologic seepage, and leaks from the production and distribution of natural gas.

Although there is a growing interest in using CH4 emission regulations as an efficient lever to

simultaneously address current air quality and global warming challenges (e.g., West et al., 2012),

the lack of confidence in the available CH4 emission estimates remains a problematic limitation35

to design of efficient environmental policies. Indeed, recent studies showed discrepancies of up to

a factor of two between bottom-up inventories and top-down inversions using atmospheric CH4

concentration observations (Zavala-Araiza et al., 2015; Katzenstein et al., 2003; Kort et al., 2008;

Xiao et al., 2008; Karion et al., 2013; Miller et al., 2013; Wecht et al., 2012; Caulton et al., 2014;

Turner et al., 2015; Wecht et al., 2014a). Extrapolation of local emission characteristics to larger40

areas and/or the use of proxy data (e.g., energy consumption, emission ratios applied to co-emitted

species) are the main sources of error in bottom-up methods (Zhen et al., 2015). On the other hand,

top-down approaches using space-based measurements of CH4 from Low Earth Orbit (LEO) plat-

forms allow a global spatial coverage within one to six days but at the same local time. However, as

CH4 emissions can exhibit significant diurnal cycles, e.g., over wetland or boreal peatland (Morin45

et al., 2014; Gazovic et al., 2010), such temporal undersampling may affect our ability to accurately

quantify those fluxes. More generally, insufficient observational coverage and the diffusive nature of

transport considerably reduce our ability to spatially resolve grid-scale emissions from space.

Geostationary (GEO) remote-sensing measurements would alleviate the above mentioned short-

comings by providing an almost continuous monitoring and complete spatial coverage of CH4 con-50

centrations within the field of view. Previous studies have already demonstrated the potential of

column-integrated trace gas measurements from geostationary satellites to constrain surface fluxes at

regional scale, from single mega-city emissions down to power plant sources (Polonsky et al., 2014;

Rayner et al., 2014). The GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission

(Fishman et al., 2012) was recommended by the National Research Council’s Earth Science Decadal55

Survey in order to improve our understanding of both coastal ecosystems and air-quality from re-
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gional to continental scale. Its aim is to enable multiple daily observations of key atmospheric and

oceanic constituents over North and South America from a GEO platform. For air-quality applica-

tions, such high-spatial and high-temporal-resolution measurements would enable source estimates

of air quality pollutants and climate forcers and development of effective emission-control strategies60

at an unprecedented level of confidence. In order to provide more flexibility and to minimize the cost

and risk of the mission, the concept of a phased implementation that would launch remote-sensing

instruments separately on commercial host spacecrafts has been adopted. The first phase will consist

of the launching of the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument circa

2019 (Chance et al., 2013), which will provide GEO hourly measurements of ozone and precur-65

sors as well as aerosols over greater North America (from Mexico City to the Canadian tar sands,

and from the Atlantic to the Pacific ocean). For the second phase, which aims at completing GEO-

CAPE’s mission requirements by including measurements of important drivers of climate and air

quality such as CH4, CO, and ammonia (Zhu et al., 2015), a rigorous instrument design study is

critical to achieve the mission’s scientific objectives within its budget constraints.70

In this study we perform an Observation System Simulation Experiment (OSSE) in order to char-

acterize the constraints on grid-scale CH4 emissions over North America provided by different po-

tential GEO-CAPE instrument configurations. The simulation consists of a 4D-Var inversion of CH4

emissions using the GEOS-Chem chemical-transport model (CTM) over a 0.5◦×0.7◦ horizontal grid

resolution covering North America. In practice, quantifying the information content of such a high-75

dimensional problem requires either Monte-Carlo simulations or, for linear models, a numerical ap-

proximation of the inverse Hessian matrix of the 4D-Var cost function (Tarantola, 2005). Although

previous studies have used Monte-Carlo estimates (e.g., Chevallier et al., 2007; Liu et al., 2014;

Cressot et al., 2014), their computational cost can be prohibitive, since many perturbed inversions

(typically about 50) are needed, each of them usually requiring numerous forward and adjoint model80

integrations. Alternatively, inverse Hessian approximations based on information from the minimiza-

tion itself can be employed, but are usually of very low rank (e.g., Meirink et al., 2008; Bousserez

et al., 2015). Therefore, most information content analyses in previous trace-gas Bayesian inversion

studies have relied on explicit calculations of the inverse Hessian matrix, by either considering a re-

gional domain (e.g., Wecht et al., 2014a) or performing a prior dimension reduction of the control85

vector (e.g., Wecht et al., 2014b; Turner and Jacob, 2015). However, thus far dimension reduction

methods for high-dimensional problems have relied on suboptimal choices for the reduced space,

which preclude an accurate and objective quantification of the spatio-temporal constraints on the

optimized emissions.

In this study we use a gradient-based randomization algorithm to approximate the inverse Hessian90

of the cost function (Bousserez et al., 2015), which allows us to calculate the posterior errors as

well as the model resolution matrix (or averaging kernel) of our CH4 emission inversion at grid-

scale resolution. Such information is used to evaluate the impact of different instrumental designs
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(spatio-temporal sampling, vertical sensitivity of the measurements) on CH4 emission constraints.

In particular, the potential of CH4 retrievals from existing Short Wave Infrared (SWIR) and Thermal95

Infrared (TIR) measurements as well as from a hypothetical multi-spectral instrument on geostation-

ary orbit are examined. Section 2 describes the Observing System Simulation Experiment (OSSE)

framework considered in this study, which comprises the 4D-Var method, the forward model, as

well as the observations and prior information used. Section 3 presents the results of our experi-

ments, where the information content of the inversion is analyzed in detail. A conclusion to this100

work is presented in the last section of the paper.

2 Inverse method

2.1 4D-Var system and information content

The variational approach to Bayesian inference is the method of choice for high-dimensional prob-

lems, since the solution can be computed by iteratively minimizing a cost function instead of alge-105

braically solving for the minimum, which becomes computationally intractable for high-dimensional

systems. Provided the error statistics are all Gaussian, finding the maximum likelihood entails solv-

ing the following problem:

argmin
x

J(x) (1)

J(x) =
1

2
(H(x)−y)TR−1(H(x)−y) +

1

2
(x−xb)TB−1(x−xb),110

where xb is the prior vector, defined in the control space E of dimension n, x belongs to E, y is

the observation vector, defined in the observations vector space F of dimension p, H : E→ F is

the forward model operator (also called observational operator), which associates to any vector in

E its corresponding observation in F , and R and B are the covariance matrices of the observation115

and prior errors with dimension (p× p) and (n×n), respectively. The argument of the minimum of

Eq. (1) is called the analysis and is referred to as xa.

When the adjoint of the forward model (HT ) is available, the minimum of the cost function J can

be found iteratively using a gradient-based minimization algorithm (Lions, 1971). The gradient of

the cost function with respect to the control vector x can be written:120

∇J(x) = HTR−1(H(x)−y) +B−1(x−xb). (2)

An important result is that if the forward model is approximately linear the posterior error covari-

ance matrix Pa is equal to the inverse of the Hessian of the cost function:

Pa = (∇2J)−1(xa) = (B−1 +HTR−1H)−1. (3)125

This equivalence can be used to compute information content diagnostics prior to performing

the inversion. In this study, following Bousserez et al. (2015), the diagonal elements of Pa (error
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variances) are computed using a randomization estimate of HTR−1H. Here an ensemble of 500

random gradients of the cost function are used, based on the convergence of the uniform norm (‖.‖∞)130

of the inverse Hessian approximation. Bousserez et al. (2015) showed that good approximation of

both the error variances and the error correlations can be obtained using this approach. For the

present study we further validated our method by comparing direct finite-difference estimates of

selected diagonal elements of Pa to their stochastic approximations and found a relative error smaller

than 10 %.135

The model resolution matrix (or averaging kernel A) is defined as the sensitivity of the analysis

xa (optimized CH4 emissions) to the truth xt (true emissions):

A≡ ∂xa

∂xt
. (4)

The model resolution matrix in Eq. (4) can be rewritten in matrix form:140

A = I−PaB−1. (5)

Since B is diagonal in our experiments, Eq. (5) allows us to calculate any element of A using:

Ai,j = δij −
Pa

i,j

Bj,j
. (6)

145

Finally, the degree of freedom for signal (DOF) of the inversion is defined as the trace of A, that is:

DOF =
∑

iAi,i.

2.2 Forward model and prior emissions

The forward model in Eq. (1) includes the GEOS-Chem chemistry-transport model, which relates

the CH4 emissions to the 3-D concentration field of atmospheric CH4, and the satellite observation150

operator that transforms the CH4 concentration profiles into their corresponding retrieved profile or

columns. The GEOS-Chem simulation used in our experiment is described in Wecht et al. (2014a);

Turner et al. (2015). It consists of a nested simulation over North America at 0.5◦× 0.7◦ horizontal

resolution and 72 vertical levels, driven by offline meteorological data provided by GEOS-5 reanaly-

sis from the NASA Global Modeling and Assimilation Office (GMAO). Boundary conditions for the155

nested domain are used every three hours from a global 4◦×5◦ GEOS-Chem simulation. In the case

of profile assimilation (multi-spectral instrument), the application of the measurement averaging

kernels to the model profiles can be written as follows:

lnzretr = lnza +A(lnzmod− lnza), (7)160

where zretr is the profile that would be retrieved if the modeled profile concentrations (zmod) were

sounded, and za represents the prior profile concentrations. In the case of XCH4
columns assimila-

tion, we obtain (Parker et al., 2011):

XCH4
=

XCO2

ΩCO2

(Ωa +aT (ωmod−ωa)), (8)
165
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where ωmod is the modeled vertical profile of methane, ωa is the a priori profile, Ωa is the cor-

responding a priori column concentration of methane, a is a column averaging kernel vector that

describes the sensitivity as a function of altitude, is the measured vertical column concentration of

CO2, and XCO2 is a modeled column mixing ratio of CO2. For simplicity, we use a single averag-

ing kernel for each instrument. A larger ensemble of averaging kernels describing a potential range170

of sensitivities is beyond the scope of this study given the computational cost. However, based on

knowledge of thermal IR (e.g. TES) and total column (e.g. GOSAT) retrievals, use of a single av-

eraging kernel is a reasonable approximation as our study is constrained to Northern Hemisphere

summertime where the temperature and sunlight conditions provide sufficient signal for the present

evaluation, and because our study looks at the relative merits of different observing approaches.175

The prior methane emissions we use are from the EDGARv4.2 anthropogenic methane inventory

(European Commission, 2011), the wetland model from Kaplan (2002) as implemented by Pickett-

Heaps et al. (2011), the GFED3 biomass burning inventory (van der Werf et al., 2010), a termite

inventory and soil absorption from Fung et al. (1991), and a biofuel inventory from Yevich and Logan

(2003). Figure 3 shows the total average daily prior methane emissions for the entire North America180

nested domain. Strong hotspots of CH4 sources clearly appear over the Canadian wetlands, the

Appalachian Mountains (an extensive coal mining area) and densely urbanized areas (e.g., southern

California and the East Coast). Following previous assessments of the range of the prior error (Wecht

et al., 2014a; Turner et al., 2015). We assume a relative prior standard error of 40% for our bottom-up

emission inventory in every grid-cell. This results in a 2.9 Tg/month uncertainty in the total emission185

budget over North America, a magnitude comparable to the correction to the prior budget found in

the inversion of Turner et al. (2015) of 2.3 Tg/month. We assume no prior error correlations, which

means that the matrix B in Eq. 1 is diagonal. Accurately defining error correlations in bottom-

up inventories is a challenging problem due to the sparsity of available flux measurements, and is

beyond the scope of our study. However, it is likely that the diagonal B assumption made in our190

study is overly optimistic, resulting in an overestimation of the spatial resolution of the constraints

afforded by the satellite measurements.

2.3 Observations and model uncertainties

We consider several instrument configurations for our study, which are associated with different ver-

tical sensitivities. Constraints on CH4 emissions are evaluated for the following CH4 retrievals: the195

Greenhouse gases Observing SATellite (GOSAT) Proxy XCH4 v3.2 data described by Parker et al.

(2011) (available from http://www.leos.le.ac.uk/GHG/data/), which consists of CH4 column mixing

ratio XCH4 obtained from Short Wave Infrared (SWIR) measurements near 1.6 µm; the Tropospheric

Emission Spectrometer (TES) V005 Lite product (Worden et al., 2012) (http://tes.jpl.nasa.gov/data/),

which consists of CH4 vertical profile retrievals from Thermal Infra Red (TIR) measurements at200

7.58–8.55 µm; and a hypothetical multi-spectral CH4 profile retrieval, which allows to capture sig-
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nal in the boundary layer. Since the DOF for the TES retrievals is less than 2, we use a pressure-

weighted TES XCH4
column instead of the retrieved CH4 profiles. A multi-spectral averaging kernel

can be derived by first combining the Jacobians (or sensitivities) of the modeled radiances to methane

concentrations from the 1.6 micron and 8 micron bands. Both the TES and GOSAT retrievals also si-205

multaneously estimate interferences such as clouds, albedo, emissivity, temperature, and H2O. The

effects of these interferences can be included by further combining their corresponding Jacobians

with the methane Jacobians (e.g., Worden et al., 2004; Kulawik et al., 2006; Butz et al., 2010). Con-

straints for methane and the other radiative interferences are described in Worden et al. (2012) and

Parker et al. (2011). The combination of these Jacobians and constraints are then used to calculate210

the averaging kernel. The methane component of the resulting multi-spectral, multi-species averag-

ing kernel is then used for this study. The effect of the interferences with this simultaneous retrieval

approach is to reduce the overall sensitivity to methane but improve the posteriori errors. A proof

of concept for combining near IR and IR-based methane estimates to derived a lower tropospheric

estimate is discussed in Worden et al. (2015) using GOSAT and TES profile retrievals.215

Figure 2 shows the column averaging kernel for the GOSAT and TES XCH4
retrievals as well as

the averaging kernels at three different levels for the multi-spectral retrieval. The GOSAT retrieval

sensitivity is nearly uniform throughout the troposphere, with averaging kernel values close to 1.

The TES retrieval is mostly sensitive to CH4 concentrations in the upper troposphere, with a peak

of the column averaging kernel around 300 hPa. The multi-spectral profile retrieval shows a distinct220

signal in the boundary layer, with weaker sensitivities above.

Observation and model transport errors are assumed to be independent and therefore added in

quadrature to define the error covariance matrix R in Eq. 1. Observational errors for GOSAT XCH4

columns are uniformly set to 12 ppb, within the range of values reported in Parker et al. (2011).

For the TES retrievals, the profile error covariance matrix is averaged vertically using pressure-225

weighted functions to obtain XCH4
column errors , as described in Connor et al. (2008). This results

in 0.5-2% (or 10-40 ppb) uncertainties for the TES columns (Worden et al., 2012). For the multi-

spectral retrievals, a vertically resolved error covariance matrix is used. For comparison, the resulting

pressure-weighted column XCH4
error is similar to the one obtained for GOSAT retrievals (∼12

ppb).230

As shown by Locatelli et al. (2013), taking into account transport errors is critical in order to

mitigate uncertainties in the inversion, since neglecting them can lead to discrepancies in the pos-

terior estimates of more than 150% of the prior flux at model grid scale. We estimate model trans-

port error using model-data comparison statistics for North American in situ observations from the

NOAA/ESRL surface, tower, and flask network as well as observations from the HIPPO and CalNex235

measurement campaigns (Turner et al., 2015). Model error standard deviations are set to 46 ppb

in the boundary layer, and 22 ppb in the free-troposphere. Vertical error correlations between sim-

ulated concentrations are difficult to quantify with the limited observational sampling available in
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situ. Transport error correlations between the boundary layer and the free-troposphere are assumed

to be negligible due to the decoupling of the physical processes between those two regions. However,240

within both the boundary layer and the free-troposphere, a model error correlation of one is assumed

between all altitude levels, which is a conservative (pessimistic) assumption. Our gradient-based

estimates of the inverse Hessian matrix involve generating random perturbations that follow the ob-

servational error statistics (see Section2.1). For the multi-spectral configuration, a Singular Value

Decomposition (SVD) is first performed on the vertically resolved matrix R in order to generate245

independent perturbations (e.g., Bousserez et al., 2015).

In order to assess the relative impact of measurement sensitivity versus spatio-temporal sampling

on the CH4 emission constraints, both LEO and GEO orbit configurations are considered in our

study. The LEO orbit configuration follows GOSAT’s sun-synchronous polar orbit with an Equa-

tor overpass local time of ∼ 13:00. Measurements consist of five across-track points separated by250

∼ 100 km, with footprint diameters of 10.5 km. The GEO configuration corresponds to hourly ob-

servations over North America from 10 to 60◦ N. The GEO footprint considered is∼ 4 km, therefore

much finer than the GEOS-Chem resolution used (∼ 50 km). For both LEO and GEO configurations,

observations are therefore averaged together within each GEOS-Chem grid cell and the instrument

error is reduced by multiplying it by the square root of the number of observations.255

Finally, contamination by clouds is taken into account for each grid-cell by removing a fraction of

the total number of observations within that cell which corresponds to the GEOS-5 cloud fraction.

The resulting spatial distribution of the observational data density for each satellite configuration

(LEO or GEO) is shown in Fig. 3.

3 Results260

In the following experiments, we consider the inversion of 30 day, 7 day, and 3 day grid-scale emis-

sion scaling factors over North America. In particular, this means that the spatiotemporal variability

of the methane fluxes (e.g., diurnal cycle and spatial distribution) within each time-window is as-

sumed to be known, and only its magnitude is adjusted. The information content of the inversion is

analyzed for four different observational systems:265

– a GOSAT instrument onboard a low-Earth orbit platform (GOSAT_LEO)

– a GOSAT instrument onboard a geostationary orbit platform (GOSAT_GEO)

– a TES instrument onboard a geostationary orbit platform (TES_GEO)

– a multi-spectral instrument onboard a geostationary orbit platform (MULTI_GEO).
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3.1 Error reduction of optimized methane emissions270

Figures 4, 5, and 6 show the relative error variance reduction in the emission scaling factors for

a 30 day, 7 day, and 3 day inversion, respectively, for each of the observational configurations de-

scribed above. The DOF, which quantifies the number of pieces of information independently

constrained by the observations, is also indicated. For the monthly inversion, the GOSAT_LEO,

GOSAT_GEO, and MULTI_GEO configurations show error reductions close to 100% for sparse275

hotspots over the continent, in particular in the Los Angeles basin, the Central US, the Toronto

urban area, the Appalachian Mountains, and the Northeast US The TES_GEO configuration still

shows significant observational constraints in those locations, with error reductions > 70%. How-

ever, overall the error reductions afforded by using a TES-like instrument in geostationary orbit are

much smaller than the one obtained from a GOSAT-like or multi-spectral instrument. In particular,280

the DOF for the TES_GEO configuration (164) is about half that of the GOSAT_LEO configuration

(298). This demonstrates that using measurements with significant sensitivities to lower-tropospheric

concentrations is critical to obtain surface flux information, even in a geostationary framework with

high-frequency temporal sampling. The advantage of the GEO over the LEO configuration is more

pronounced when smaller emission time-scales are constrained (weekly, 3-day). In particular, the285

DOF for GOSAT_LEO varies from 88% to 43% of the DOF for GOSAT_GEO between the monthly

and the 3-day inversion. Similarly, but to a lesser extent, the benefit of a multi-spectral profile obser-

vation compared to a GOSAT-like column measurement is most evident when the temporal resolu-

tion of the flux inversion is increased, with a DOF ratio between GOSAT_GEO and MULTI_GEO

varying from 84% to 67% between the monthly and 3-day inversions.290

These results are synthesized in Figure 7, which shows the relative error variance reduction as

a function of emission magnitude, for each observational system and inversion time-window. The

convergence of the flux constraints provided by the GOSAT (LEO or GEO) and the multi-spectral

GEO instruments is well illustrated by the convergence of the corresponding curves as the tem-

poral scale of the optimization increases from 3-day to one-month. These results also show that295

for grid-cells with high CH4 emissions (> 4× 105 kg day−1 grid−1), a multi-spectral instrument in

geostationary orbit would reduce prior flux errors by more than 80% at time scales as small as 3

days. In particular, this could provide valuable information to monitor the variation of CH4 emis-

sion hotspot activities between workweek and weekend. Finally, we note that Turner et al. (2015)

obtained a DOF of 39 for a multi-year CH4 flux inversion over North America using GOSAT LEO300

observations, which constrasts with the much higher DOF (298) obtained for our monthly inversion.

However, in Turner et al. (2015), a prior dimension reduction of the inverse problem was performed

to enable an analytical computation of the solution with only 369 control vector elements. Although

it is claimed that the aggregation scheme used to define the reduced space is designed to account

for prior error correlations, the results obtained in Turner et al. (2015) indicate the reduction method305

is suboptimal (see interactive discussion of Turner et al. (2015) for more details) and there is no
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guarantee that the implicitly defined correlations are realistic. On the other hand, in our case neglect-

ing error correlations in the prior inventory results in an overestimation of the DOF. In the absence

of a rigorous methodology to accurately estimate the prior error correlations, the DOFs we derived

should be interpreted as an upper-limit for the different observational configurations, to which one310

can tend as the spatial and temporal resolutions of the bottom-up CH4 inventories are refined. In

relation to previous works by Turner et al. (2015) and Bocquet (2011), it should also be noted that

the gradient-based algorithm used in our study allows us to estimate the DOF of the inversion prior

to optimization; this information could therefore be used to objectively determine an appropriate

dimension for the inverse problem, upon which specific dimension reduction methods could be de-315

vised.

3.2 Spatial resolution of the inversion

An objective measure of the spatial resolution of the inversion, i.e., the ability of the observational

system to constrain grid-scale emissions independently from each other, is provided by the rows of

the model resolution matrix (see Eq. 5). Figure 8 shows the model resolution matrix rows of the320

weekly inversion corresponding to five different locations, chosen to span a range of characteris-

tics, in terms of emissions magnitude and error reduction. For readability, only grid-cells included

within the largest circle centered on each location and containing values greater than 0.05 are shown.

Table 1 summarizes the coordinates and CH4 emissions corresponding to each location. Since the

model grid-cell area depends on the latitude, the radiuses of each of the structures shown in Figure325

8 are also summarized in Table 2. Note that the 3-day inversion results (not shown) gave similar

results as the one-week inversion. The gain in spatial resolution of the optimized fluxes when a GEO

orbit is used is evident when comparing the GOSAT_LEO and GOSAT_GEO results. In particular,

Table 2 suggests that for the Central US and California regions, the spatial resolution of the inde-

pendently constrained flux patterns is about two times higher in the case of a GEO configuration330

(radius∼80 km) compared to a LEO configuration (radius∼160 km). Based on the comparison be-

tween the GOSAT_GEO and MULTI_GEO configurations, the gain in spatial resolution afforded

by the use of a multi-spectral instrument appears significant (factor of 2) only over the Eastern US

region. Note that although the size of the flux structures are similar between the TES_GEO and

GOSAT_LEO configurations, the average values of the model resolution matrix row within each335

structure are significantly higher in the case of GOSAT_LEO.

3.3 Impact of boundary and initial conditions uncertainties

Boundary and initial conditions used in the forward transport model contain errors. Therefore, any

consistent flux inversion system should jointly optimize the fluxes, initial state and boundary condi-

tions. However, in practice many studies overlook this issue and optimize those quantities separately340

(e.g., Basu et al., 2013; Wecht et al., 2014a; Deng et al., 2014). In the latter case, a flux-only inver-
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sion is performed with initial and boundary conditions that are effectively assumed perfectly known.

It is therefore of interest to estimate the impact of errors in the initial and boundary conditions on

the optimized fluxes. Figure 9 shows the perturbations in the optimized emission scaling factors

for the weekly inversion resulting from random gaussian perturbations of the boundary conditions345

with standard deviation 16 ppb. The choice for the standard error of the noise is based on model-

data comparisons from the HIAPER Pole-to-Pole Obsevations (HIPPO) experiment (Turner et al.,

2015), which consists in extensive aircraft measurements throughout the troposphere over the Pacific

ocean. Only weekly inversion results are shown here so that enough constraints are obtained for all

observational configurations while keeping the computational cost the inversions manageable.350

For all configurations, the results show scaling factor perturbations throughout the North America

domain, although they are less pronounced over the Eastern US due to the dominant westerly prop-

agation of the boundary condition perturbations into the domain. The TES_GEO and GOSAT_GEO

configurations show similar sensitivities of the optimized scaling factors to boundary conditions,

with large areas characterized by perturbations between 10% and 50%, and with impacts greater than355

50% locally. In comparison, the GOSAT_GEO configuration shows smaller sensitivities to boundary

conditions, with perturbations generally smaller than 30%. The MULTI_GEO results are in contrast

with the other configurations, with most scaling factor perturbations being smaller than 5%.

The differences between the sensitivities of the optimized fluxes to boundary conditions for dif-

ferent observational systems are driven by two factors: 1) the sensitivity of the observations to the360

underlying fluxes (defined by the operatorH) and 2) the model-data mismatch (i.e.,H(x)−y)). This

can be seen, e.g., by considering the observational term in the gradient formula of Eq. 2. Formally, a

perturbation of the boundary conditions will translate into a corresponding perturbation of the obser-

vations (y) in the model-data mismatch, which is propagated into flux scaling factor perturbations

through the adjoint matrix of sensitivities (HT ). The effect of 1) is clearly seen when comparing the365

GOSAT_GEO and GOSAT_LEO results, the higher temporal frequency of the geostationary obser-

vations providing higher sensitivity to the fluxes. The effect of 2) is best illustrated by comparing

the GOSAT_GEO and MULTI_GEO results. Indeed, since the multi-spectral measurements allow

for distinguishing boundary layer from free tropospheric CH4 concentrations, and given the uniform

(∼1) sensitivity of the GOSAT column measurements throughout the troposphere (see Figure 2), the370

boundary layer model-data mismatch (MULTI_GEO) is much smaller than the column model-data

mismatch (GOSAT_GEO), which results in much higher flux adjustments for the GOSAT_GEO

configuration.

The same analysis applies to the sensitivities of the optimized fluxes to initial conditions, which

are shown in Figure 10. Here the CH4 3D initial concentrations were perturbed with random gaus-375

sian noises of standard deviation 46 ppb and 22 ppb in the boundary layer and the free troposphere,

respectively, based on model-data comparisons with NOAA flasks, tall tower, and aircraft measure-

ments over North America (Turner et al., 2015). In the case of initial conditions, as opposed to
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boundary conditions, the forcing perturbations are applied only once at the beginning of the inver-

sion window, which results in the signal being quickly “diluted” and therefore in smaller impacts380

on the optimized fluxes. The GOSAT_GEO configuration, which combines significant sensitivi-

ties to CH4 concentrations throughout the troposphere with high-frequency measurements, is most

sensitive to initial condition perturbations, with up to 30% variability in the optimized scaling fac-

tors. The GOSAT_LEO and TES_GEO configurations show comparable sensitivities, with scaling

factors perturbations generally smaller than 10%. Similarly to the boundary condition case, initial385

condition sensitivities associated with the MULTI_GEO configuration are about one order of magni-

tude smaller than other configurations, with scaling factors perturbations generally smaller than 3%.

These results show that although the advantage of a multi-spectral instrument in term of spatiotem-

poral constraints on the fluxes becomes significant only for time-scales smaller than a week, there

is still a clear benefit in using this configuration to mitigate the impact of uncertainties in boundary390

and initial conditions on the inversion, even when optimizing fluxes at coarser temporal resolution

(e.g., weekly or monthly).

4 Conclusions

In this paper we evaluated top-down constraints on methane emissions in North America provided

by potential future geostationary observation missions (GEO-CAPE) and existing low-earth orbit re-395

mote sensing instruments (GOSAT). For the first time, a grid-scale estimate of the information con-

tent of a high-resolution inversion (0.5◦×0.7◦ over North America) in a 4D-Var inversion framework

has been performed using an efficient stochastic algorithm. In particular, this allowed us to compute

both the relative error reductions and the spatial correlations between observational constraints in

the inversion. Instrument configurations corresponding to current TIR and SWIR methane products400

(TES and GOSAT, respectively), as well as a potential multi-spectral retrieval, were considered. This

allowed us to assess the relative importance of the vertical sensitivity of the measurement versus the

spatiotemporal resolution of the sampling (GEO versus LEO) in methane flux inversions.

We found that a GEO configuration provides significant benefits over current LEO products in

term of error reductions in the optimized fluxes when the targeted time-scales are about a week or405

less. For a 3-day inversion, the number of pieces of information (DOF) independently constrained by

the GEO observations is about twice as many than in the case of a LEO configuration (DOF of 266

and 115, respectively). Experiments with TIR GEO and SWIR LEO configurations demonstrated

that the high temporal frequency of GEO observations cannot compensate for weak sensitivities

of the satellite measurement to boundary layer concentrations, since constraints from a TES-like410

instrument on GEO orbit correspond to only about a half of the information content afforded by

a GOSAT instrument on LEO orbit for a monthly inversion (DOF of 164 and 298, respectively).

The benefit of using a multi-spectral instrument in flux inversions compared to a SWIR instrument
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has been demonstrated for weekly to sub-weekly scale constraints, with an increase in the DOF of

about 50% for a 3-day inversion. For the multi-spectral GEO configuration, the information content415

is similar for a 3-day or a one-month optimization (DOFs of 397 and 398, respectively).

Over some local CH4 source hotspots (emissions > 4 × 105 kg day−1) in the Central US, Cal-

ifornia and Eastern US, both SWIR and multi-spectral GEO configurations allow for nearly com-

plete constraints on emissions (error reduction close to 100%) at spatial resolution smaller than

100km×100km. These estimates are optimistic, given the lack of spatial error correlation consid-420

ered in our prior emissions, which should be addressed in future work, but do reveal the potential

spatial resolution provided by the measurements alone.

The sensitivity of the optimized emission scaling factors to uncertainties in initial and boundary

conditions has also been assessed by propagating random perturbations of these forcings into the flux

estimates. While the flux responses to the boundary and initial condition perturbations can reach 50%425

and 30%, respectively, in the case of GOSAT column constraints, they were an order of magnitude

lower (<5%) in the case of multi-spectral profile observations.

With growing concerns about the environmental impacts of CH4 emissions from the oil and gas

industry and the urge for better monitoring of the nation’s CH4 budget, a multi-spectral instru-

ment onboard geostationary orbit would provide a key tool to characterize CH4 fluxes’ variability at430

weekly to sub-weekly time-scale, while greatly mitigating the impact of inverse method uncertainties

on the optimized fluxes. Moreover, such an observational system would allow for better understand-

ing of the critical role of wetlands in the global methane budget and their impact on climate change

(e.g., Bloom et al., 2012; Miller et al., 2014). Further investigations would be needed to quantify

the sensitivity of these results to the choice of the reference CH4 emission inventory, since signifi-435

cant discrepancies in the magnitude and spatiotemporal distributions of CH4 sources exist between

current bottom-up inventory (Kirschke et al., 2013).

In our study we have neglected prior error correlations in the absence of robust data and methodol-

ogy to rigorously estimate them. Since error correlations in prior bottom-up inventories nevertheless

exist, additional experiments should be performed to test the sensitivity of our information con-440

tent analysis to different error correlation structures. Likewise, spatial correlations associated with

model and observation errors should be included in future OSSEs in order to obtain more reliable er-

ror reduction estimates. We have also performed the inversion using emission scaling factors, which

effectively places a hard constraint on the spatial distribution of the emissions - an assumption that

warrants further investigations. The robustness of our results against model and observational biases445

should also be investigated. Finally, following recent studies investigating regional to urban con-

straints from geostationary remote-sensing instruments (Polonsky et al., 2014; Rayner et al., 2014),

it would be interesting to apply the present methodological framework to inversions at much higher

spatiotemporal resolution in order to analyze the ability of such observational system to extract in-

formation at spatial scales of only a few km2.450
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Table 1. Coordinates of the five locations considered for the rows of the model resolution matrix, with their

corresponding emission rate.

Region Coordinates Emission Emission

(lon, lat (◦)) (105 kg day−1 (grid cell)−1) (105 kg day−1 km−2)

Eastern US (−82, 38) 399 0.12

Central US (−104, 40) 830 0.26

California (−117.3, 34.5) 895 0.26

Western Canadian (−120, 61.5) 575 0.29

Wetlands

Eastern Canadian (−84.6, 52.5) 205 0.08

Wetlands

Table 2. Coordinates of the five locations considered for the rows of the model resolution matrix and approx-

imate radius of influence of neighboring grid cells (see text), for each satellite configuration and a weekly

methane flux inversion.

Region Coordinates TES_GEO GOSAT_LEO GOSAT_GEO MULTI_GEO

(lon, lat (◦)) Radius (km) Radius (km) Radius (km) Radius (km)

Eastern US (−82, 38) 160 160 160 80

Central US (−104, 40) 79 158 79 79

California (−117.3, 34.5) 164 164 82 82

Western Canadian (−120, 61.5) 130 196 131 196

Wetlands

Eastern Canadian (−84.6, 52.5) 283 213 142 142

Wetlands

20



(103%kg/day/grid%cell)%%0%%%%%%%%%%%%%%%%%%%%%%100%%%%%%%%%%%%%%%%%%%%%200%%%%%%%%%%%%%%%%%%%%300%%%%

Figure 1. Total daily average prior methane emissions for the nested North America domain (0.5◦× 0.7◦).
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Figure 2. Averaging kernels for the different instrument configurations: (a) GOSAT column averaging kernel;

(b) TES column averaging kernel; (c) Multi-spectral averaging kernels at three pressure levels: 908, 562 and

383hPa.
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Figure 3. Density of satellite observations (/grid cell/week) for LEO (left) and GEO (right) orbits for the nested

North America domain (0.5◦× 0.7◦) and for the period 1–8 July 2008.
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Figure 4. Relative error variance reduction for a 30 day methane emission optimization (1–30 July 2008)

using: (a) GOSAT low-earth orbit observations (GOSAT_LEO); (b) GEO-CAPE observations with a TES-

like instrument (TES_GEO); (c) GEO-CAPE observations with a GOSAT-like instrument (GOSAT_GEO); (d)

GEO-CAPE observations with a multi-spectral instrument (MULTI_GEO). Zero values correspond to emissions

with no constraints from observations, while values of one correspond to emissions entirely constrained by

observations. The DOF for each inversion, which is the sum of all diagonal elements of the model resolution

matrix, is also indicated.

24



a) b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

a) b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

a) b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

a) b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

a) b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

GOSAT	
  LEO	
   TES	
  GEO	
  

GOSAT	
  GEO	
   MULTI	
  GEO	
  

Figure 5. Relative error variance reduction for a 7 day methane emission optimization (1–8 July 2008) using: (a)

GOSAT low-earth orbit observations (GOSAT_LEO); (b) GEO-CAPE observations with a TES-like instrument

(TES_GEO); (c) GEO-CAPE observations with a GOSAT-like instrument (GOSAT_GEO); (d) GEO-CAPE

observations with a multi-spectral instrument (MULTI_GEO). Zero values correspond to emissions with no

constraints from observations, while values of one correspond to emissions entirely constrained by observations.

The DOF for each inversion, which is the sum of all diagonal elements of the model resolution matrix, is also

indicated.
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Figure 6. Relative error variance reduction for a 3 day methane emission optimization (1–3 July 2008) using: (a)

GOSAT low-earth orbit observations (GOSAT_LEO); (b) GEO-CAPE observations with a TES-like instrument

(TES_GEO); (c) GEO-CAPE observations with a GOSAT-like instrument (GOSAT_GEO); (d) GEO-CAPE

observations with a multi-spectral instrument (MULTI_GEO). Zero values correspond to emissions with no

constraints from observations, while values of one correspond to emissions entirely constrained by observations.

The DOF for each inversion, which is the sum of all diagonal elements of the model resolution matrix, is also

indicated.
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Figure 7. Relative error variance reduction as a function of methane emission magnitude for: (a) a 30 day (1–

30 July 2008); (b) a 7 day (1–8 July 2008); and (c) a 3 day (1–4 July 2008) inversion. Blue: GOSAT low-earth

orbit observations (GOSAT_LEO); green: GEO-CAPE observations with a TES-like instrument (TES_GEO);

red: GEO-CAPE observations with a GOSAT-like instrument (GOSAT_GEO); black: GEO-CAPE observations

with a multi-spectral instrument (MULTI_GEO). Results for a 3 day MULTI_GEO inversion are also shown in

purple (top). The vertical bars indicate the standard deviation of observational constraints within each bin.
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Figure 8. Rows of the model resolution matrix (unitless) for five locations for a 7 day inversion (1–8 July 2008),

using: (a) GOSAT low-earth orbit observations (GOSAT_LEO); (b) GEO-CAPE observations with a TES-

like instrument (TES_GEO); (c) GEO-CAPE observations with a GOSAT-like instrument (GOSAT_GEO); (d)

GEO-CAPE observations with a multi-spectral instrument (MULTI_GEO). Coordinates of the five locations

considered are reported in Table 1 and approximately correspond to the peak value of each structure on the

maps.
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Figure 9. Sensitivity of the optimized emission scaling factors to uncertainties in boundary conditions for

a 7 day inversion (1–8 July 2008), using: (a) GOSAT low-earth orbit observations (GOSAT_LEO); (b) GEO-

CAPE observations with a TES-like instrument (TES_GEO); (c) GEO-CAPE observations with a GOSAT-like

instrument (GOSAT_GEO); (d) GEO-CAPE observations with a multi-spectral instrument (MULTI_GEO).

Shown is the impact of perturbations of the boundary condition concentrations with gaussian distribution

N (0,16 ppb) on the optimized scaling factors. Note the different color scale for the MULTI_GEO configu-

ration.
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Figure 10. Sensitivity of the optimized emission scaling factors to uncertainties in initial condition concentra-

tions for a 7 day inversion (1–8 July 2008), using: (a) GOSAT low-earth orbit observations (GOSAT_LEO);

(b) GEO-CAPE observations with a TES-like instrument (TES_GEO); (c) GEO-CAPE observations with

a GOSAT-like instrument (GOSAT_GEO); (d) GEO-CAPE observations with a multi-spectral instrument

(MULTI_GEO). Shown is the impact on the optimized emission scaling factors of perturbations of the bound-

ary layer and free troposphere initial CH4 concentrations with gaussian distributions N (0,22 ppb) and N (0,46

ppb), respectively. Note the different color scale for the MULTI_GEO configuration.
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