

Dear Dr. Zhang:

Please find below our itemized responses to the reviewer's comments. We have addressed the comments raised by both reviewers, and incorporated their comments / suggestions in the revised manuscript. In addition, we have added two new co-authors (Dr. Y. X. Sun and Prof. J. Ren) in the paper, both of them made substantial contribution to the revision of manuscript as well as the monitoring study (we forgot to include them as co-authors in the ACPD paper).

Thank you very much for your consideration.

Sincerely,

Xuejun Liu and Wen Xu

On behalf of all co-authors

Anonymous Referee #1

General comments

The manuscript 'Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China' presents the results from 5 years of reactive nitrogen atmospheric concentrations and bulk deposition monitoring combined with modeled dry nitrogen deposition across China. This is an important contribution to the field of reactive nitrogen monitoring in a rapidly developing hotspot of air pollution. However, some general aspects may need to be improved so that results can be interpreted correctly.

Response: The authors are grateful to the referee for the valuable and insightful suggestions. We believe that addressing the issues raised by the referee will considerably improve the quality of manuscript. Please see our response to each comment below.

Specific comments

1. The description of the results is based on ranking Chinese regions according to their levels of reactive nitrogen pollution and nitrogen deposition levels. However, the monitoring sites since some regions include more urban sites, with higher pollution levels, than others or a higher proportion of background sites, away from pollution sources. Thus, the mean value obtained in each region may not be informative of the pollution levels of the whole region. Alternatively, the comparisons between regions can be based on the analysis across urban sites, rural and background sites. For instance, the regional ranking based on mean dry deposition levels can change depending on whether all sites are considered (as it is now in the manuscript), only background sites or only rural sites. The same may be true for wet and total deposition. The comparisons across regions would be fairer this way.

Response: We agree with the reviewer that the monitoring sites included within

each region are not homogeneously distributed but they reflected the real situation in China: more research has been done in eastern and mid eastern regions and less work been conducted in western (including Tibetan Plateau) and northwestern regions. To our best knowledge, there is no systematic and comprehensive measurement study focused on comparisons of wet and dry N deposition fluxes between different land use types across China. Thus, according to the reviewer's suggestion we have reanalyzed the data on N_r concentrations as well as N deposition (dry, wet/bulk and total) fluxes based on the three land use types (urban, rural and background sites) within each region, among six regions, and across the country in the revised paper.

2. In the same line with the previous comment, Table 2 presents a comparison between NNDMN results and other monitoring networks. This comparison is biased by the fact that CASTNET monitoring sites, unlike NNDMN, are located in rural and protected areas, with no sites in urban environments. EMEP data considered here is produced from modelled data representing large scale areas within each grid cell that make comparisons with point measurements difficult. EMEP also has a monitoring network of background sites across Europe with data downloadable from the internet that maybe more useful for comparisons in Table 2. Also, of the 10 EANET sites presented by Endo et al. (2011), 8 were classified as remote stations, one rural and only one urban. The latter two stations showed higher nitrogen deposition fluxes than remote sites. It was recognized in this study that concentrations in Japan were generally lower compared to other EANET sites in East Asia because most locations were categorized as remote sites. Thus, comparisons in Table 2 with CASNET, EMEP and EANET Japan should be based only on rural and/or background sites of the NNDMN.

Response: We agree to this comment. We have improved Table 2 (now being Table 1 in the revision) as suggested by the reviewer, i.e. removed the urban sites in NNDMN and then made comparisons with other 3 networks. But the revised Table 2 is still not perfect because of the following two reasons: 1) the data on concentrations and deposition fluxes of N_r species for the three land use types (i.e. remote, rural and urban) presented by Endo et al. (2011) cannot be extracted separately; 2) to our knowledge the observation data of EMEP was not available, though the gridded data can be downloaded via the website of EMEP. Since the current study is a Chinese survey, the aim here is to give a general summary of how the range of nitrogen deposition values which we have measured in China compares with other regions of the world and demonstrate that China is a global hot spot for N deposition. During the literature review, we find the most appropriate way of comparison is to use the conclusion from the WMO/GAW assessment work (Vet et al, 2014). So, we have revised the text at the end of Section 4.2 to make a more comprehensive and scientific comparison, instead of comparison from EANET and EMEP.

“On the basis of 2001 ensemble-mean modeling results from 21 global chemical transport models (Vet et al., 2014), three regions of the globe where total

deposition is very high: western Europe (with levels from 20.0 to 28.1 kg N $\text{ha}^{-1} \text{yr}^{-1}$); South Asia (Pakistan, India and Bangladesh) from 20.0 to 30.6 kg N $\text{ha}^{-1} \text{yr}^{-1}$ and East Asia from 20 to 38.6 kg N $\text{ha}^{-1} \text{yr}^{-1}$ in eastern China (the global maximum). Extensive areas of high deposition from 10 to 20 kg N $\text{ha}^{-1} \text{yr}^{-1}$ appear in the eastern U.S. and southeastern Canada as well as most of central Europe. Small areas with total deposition of N from 10 to 20 kg N $\text{ha}^{-1} \text{yr}^{-1}$ are present, and very large areas of the continents have deposition from 2 to 10 kg N $\text{ha}^{-1} \text{yr}^{-1}$. In contrast, the present study shows much higher total deposition flux (39.9 kg N $\text{ha}^{-1} \text{yr}^{-1}$) at a national scale. In China, the consumption rates of chemical fertilizer and fossil fuel have increased 2.0-and 3.2-fold, respectively, between the 1980s and the 2000s (Liu et al., 2013). As a result, the estimated total emission of NH_3 reached 9.8 Tg in 2006, contributing approximately 15% and 35% to the global and Asian NH_3 emissions (Huang et al., 2012), and NO_x emissions from fossil fuel combustion increased from 1.1 Tg N in 1980 to about 6.0 Tg N in 2010 (Liu et al., 2013). The increasing NO_x and NH_3 emissions in China led to higher atmospheric N deposition than those observed in other regions. In addition, emissions of nitrogen compounds in other parts of the world are declining. In the US, for example, NO_x emissions from the power sector and mobile sources were reduced by half from 1990 to 2010 (Xing et al., 2013), which explained the declined N deposition fluxes during period of 1990-2009 observed at 34 paired dry and wet monitoring sites in the eastern US (Sickles II et al., 2015). In Europe, the total NO_x and NH_3 emissions decreased by 31% and 29% from 1990 to 2009 (Torseth et al., 2012). N deposition has decreased or stabilized in the United States and Europe since the late 1980s or early 1990s with the implementation of stricter legislation to reduce emissions (Goulding et al., 1998; Holland et al., 2005). However, wet deposition of ammonium, due to no regulation on NH_3 emission, has increased over recent decades in the US (Du et al., 2014)."

Table 1 Comparison of dry, wet (wet/bulk), and total deposition fluxes of N_r compounds between NNDMN in China and 3 networks in other countries.

Network	Japan EANET network ^a			CASTNET ^b			EMEP ^c			NADMM ^d		
Number of sites or grids	10 sites			130 sites			2447 girds (0.5° × 0.5°)			33 sites		
Observation period	Apr. 2003-Mar. 2008			Apr. 2006-Dec. 2013			Jan. 2003-Dec. 2007			Aug. 2006-Sep. 2014		
N deposition (kg N ha ⁻¹ yr ⁻¹)	Dry	Wet	Total	Dry	Wet	Total	Dry	Wet	Total	Dry	Wet/bulk	Total
Average	3.9	6.6	10.6	3.1	1.3	4.4	3.9	4.8	8.7	18.7	18.2	36.9
Median	4.1	5.9	11.2	3.0	0.7	4.1	3.7	4.7	8.5	18.7	21.3	36.5
Max	7.0	15.8	18.2	9.7	10.3	19.6	15.8	16.9	28.0	43.1	32.4	70.9
Min	1.0	2.1	3.0	0.03	0.1	0.3	0.1	0.6	0.7	1.1	1.5	2.9

^aThe Japan EANET data are sourced from Endo et al. (2011). Gaseous NO₂ was not included in estimates of dry N deposition.

^bThe CASTNET data are available online (<http://www.epa.gov/castnet/>). Gaseous NH₃ was not included in estimates of dry N deposition.

^cThe EMEP data are sourced from Endo et al. (2011), in which the dry and wet deposition amounts at each grid covering 27 EMEP countries were estimated by the unified EMEP models (Simpson et al., 2003).

^dOnly including the rural and background sites in NNDMN

References:

Du, E. Z., Vries, W. D., Galloway, J. N., Hu, X. Y., and Fang, J. Y.: Changes in wet nitrogen deposition in the United States between 1985 and 2012, *Environ. Res. Lett.*, 9, 095004, doi:10.1088/1748-9326/9/9/095004, 2014.

Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., and Sawada, K.: Regional characteristics of dry deposition of

sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008, *Atmos. Environ.*, 45, 1259–1267, doi:10.1016/j.atmosenv.2010.12.003, 2010.

Goulding, K. W. T., Bailey, N. J., Bradbury, N. J., Hargreaves, P., Howe, M., Murphy, D. V., Poulton, P. R., and Willison, T. W.: Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes, *New Phytol.*, 139, 49–58, 1998.

Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J. F.: Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models, *Ecol. Appl.*, 15, 38–57, 2005.

Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and Zhang, H. S.: A high-resolution ammonia emission inventory in China, *Global Biogeochem. Cy.*, 26, GB1030, doi:10.1029/2011GB004161, 2012.

Liu, X. J., Zhang, Y., Han, W. X., Tang, A., Shen, J. L., Cui, Z. L., Vitousek, P., Erismann, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.: Enhanced nitrogen deposition over China, *Nature*, 494, 459–462, doi:10.1038/nature11917, 2013.

Sickles, J. E. and Shadwick, D. S.: Air quality and atmospheric deposition in the eastern US: 20 years of change, *Atmos. Chem. Phys.*, 15, 173–197, doi: 10.5194/acp-15-173-2015, 2015.

Simpson, D., Fagerli, H., Jonson, J.E., Tsyro, S., Wind, P., and Tuovinen, J. P.: Trans-boundary Acidification and Eutrophication and Ground Level Ozone in Europe: Unified EMEP Model Description, EMEP Status Report 1/2003 Part I, EMEP/MSC-W Report, The Norwegian Meteorological Institute, Oslo, Norway, 2003.

Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G., Myhre, C. L., Solberg, S., Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, *Atmos. Chem. Phys.*, 12, 5447–5481, doi: 10.5194/acp-12-5447-2012, 2012.

Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C-U., Aas, W., Baker, A., and 14 authors: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, *Atmos. Environ.*, 93, 3–100, doi:10.1016/j.atmosenv.2013.10.060.

Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., Wei, C.: Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010, *Atmos. Chem. Phys.*, 13, 7531–7549, doi: 10.5194/acp-13-7531-2013, 2013.

3. Another general comment is related with the terminology. Throughout the manuscript it is said that wet deposition was measured with precipitation gauges. However, in the discussion it is acknowledged that dry deposition in precipitation gauges can account for 20 to 40% of the deposition measured in precipitation. Thus, bulk deposition was in fact monitored and the terminology should be clarified in the manuscript.

Response: Thank you for pointing this out. We have clarified the difference between bulk and wet-only deposition in the revision. Indeed, the wet deposition fluxes determined with precipitation gauges were commonly regarded as bulk deposition fluxes which contain wet plus unquantifiable dry deposition (including both gases and particles) and therefore it should be higher than wet deposition (Liu et al., 2015). Throughout the revised manuscript we have changed “wet deposition” to “wet/bulk deposition”.

Reference:

Liu, X. J., Xu, W., Pan, Y. P., and Du, E. Z.: Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic nitrogen (N) but overestimated total particulate N in wet deposition in China, Sci. Total Environ., 520, 300–301, doi.org/10.1016/j.scitotenv.2015.03.004, 2015

4. The analysis of uncertainties in section 4.4 does not mention the uncertainties associated with the location and spatial coverage of the network. From Figure 1 it is evident that large areas of the country or islands lack of sampling points may be missing hotspots of nitrogen deposition and/or pristine sites. Some recommendations about this issue could probably be suggested.

Response: We agree that some hotspots of nitrogen deposition and/or pristine sites may be missing due to incomplete coverage of the network. We have added some recommendations about this issue in the uncertainty section 4.4 as follows: “Although the NNDMN is the only long-term national deposition network to monitor both N wet/bulk and dry deposition in China till now, large areas of the country or islands lack of sampling points may be missing hotspots or pristine sites of N deposition. The implementation of an adequate monitoring program is also difficult at present in some regions (e.g., northwest China and Tibetan Plateau). To address this issue, more new monitoring sites, covering regions with both extremely low and high N_r emissions, should be set up in the NNDMN in future work.”

5. P18368, L18: Include some measure of variability in the averaged nitrogen deposition fluxes in China to show that important reactive nitrogen deposition gradients exist in the country.

Response: Thank you for this suggestion. We have changed the sentence to “(...) Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean \pm standard deviation) and 19.3 ± 9.2 kg N ha⁻¹ yr⁻¹ across China, with reduced N deposition dominating both dry and wet/bulk deposition.”

6. P18374, L20 and S5: Which land use map was used to model the deposition velocities across China and how was the land use selected in each sampling point?

Response: We now state in the Section 2.5: “The model uses the land map of the Global Land Cover Characteristics Data Base Version 2.0 (http://edc2.usgs.gov/glcc/globdoc2_0.php), which defines the land types (e.g., urban, forest, etc.) at the native $1\text{ km} \times 1\text{ km}$ resolution and is then binned to the model resolution as fraction of the grid cell covered by each land type. The model $1/2^\circ$ resolution may coarsely represent the local land characteristics at the monitoring sites. Future work using a single-point dry deposition model as for CASTNET (Clarke et al., 1997) would further improve the dry deposition flux estimates, but that requires concurrent *in-situ* measurements of meteorological variables which are not available at present.”

Added reference:

Clarke, J. F., Edgerton, E. S., and Martin, B. E.: Dry deposition calculations for the Clean Air Status and Trends Network, *Atmos. Environ.*, 31, 3667-3678, 1997.

7. P18376, L2: The comparison presented here is also true for other regions apart from NC, SE and SW?

Response: Not the same but the fact is that NH_3 concentrations were higher at urban and rural sites than at background sites in almost all regions. We have revised the sentence as follows:

“(...) In NC, SE and SW, the NH_3 concentrations at the urban sites (average for the three regions, $9.5 \pm 2.1 \mu\text{g N m}^{-3}$) were about 1/3 higher than at the rural sites ($6.2 \pm 2.3 \mu\text{g N m}^{-3}$) and were almost twice of those at the background sites ($4.8 \pm 1.4 \mu\text{g N m}^{-3}$), whereas in NE and NW NH_3 concentrations at the urban sites were lower (average two regions, $5.5 \pm 3.2 \mu\text{g N m}^{-3}$) than at the rural sites ($8.8 \pm 0.3 \mu\text{g N m}^{-3}$) but 4.6-times greater than at the background sites ($1.2 \pm 0.5 \mu\text{g N m}^{-3}$).”

8. P18376, L4: What about NH_3 levels in urban and background sites?

Response: We have added the following sentence here “Comparing land use types by region, annual NH_3 concentrations at the rural sites in northern regions (NC, NE and NW) were approximately equal, which on average were 1.8-times greater than the average of southern rural sites. In contrast, annual NH_3 concentrations at urban and background sites ranked in the order: SW > NC > NW > SE > TP > NE, and SW > NC > SE > NW > TP > NE, respectively (Fig. 3a).”

9. P18376, L9: The comparison of urban and rural areas for NO_2 also holds for other regions of China?

Response: Yes, we have revised this sentence to read: “In the six regions, the NO_2 concentrations at urban sites were 1.4-4.5 times higher than those at rural sites, and were even 2.0-16.6 times higher than the background sites (except for

SW)."

10. P18379, L5: Were there any differences in reduced/oxidized nitrogen ratios depending on the site type (urban, rural or background)?

Response: Yes, we noticed some differences in reduced/oxidized N ratios based on site types: urban (1.2 ± 0.4) < rural (1.3 ± 0.5) < background (1.6 ± 0.4). However, such changes were not significantly different ($p>0.05$). We add the following sentence in the revision: "In our network, the NH_x (i.e. wet/bulk NH_4^+ -N deposition plus dry deposition of NH_3 and particulate NH_4^+)/ NO_y (wet/bulk NO_3^- -N deposition plus dry deposition of NO_2 , HNO_3 and particulate NO_3^-) ratio at urban sites (from 0.8 to 1.8, averaging 1.2) was not significantly different ($p>0.05$) from rural (from 0.5 to 2.7, averaging 1.3) and background (from 1.0 to 2.5, averaging 1.6) sites."

11. P18379, L13: It is interesting that, despite reactive nitrogen concentrations in rural sites are consistently lower than in urban sites, total annual mean deposition fluxes are quite similar. Have the authors any hypothesis to explain this result?

Response: The reason for this result should be mainly due to lower V_d for N_r species (esp. V_d of NO_2 and HNO_3) at urban sites than at rural sites. We assume that urban areas act as greater N_r pollution sources (more N_r emission than deposition) compared with rural areas (based on per unit land area). On average, annual N_r concentrations of NH_3 , NO_2 , HNO_3 , and particulate NH_4^+ and NO_3^- at rural sites were 14.8, 39.1, 32.1 19.3 and 30.3% lower than those at urban sites. Correspondingly, annual dry deposition fluxes of NH_3 , NO_2 , HNO_3 , and particulate NH_4^+ and NO_3^- at rural sites were 17.3, 11.2, 22.7, 11.9 and 28.8% lower than those at urban sites. Therefore, it is quite clear that comparable total dry deposition flux between urban sites (averaged $26.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) and rural sites (averaging $23.0 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) probably resulted from similar dry deposition fluxes of NO_2 and HNO_3 between rural (averaging 3.6 and $5.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, respectively) sites and urban sites (averaging 4.0 and $7.2 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, respectively), which can be attributed to somewhat higher deposition velocities of NO_2 and HNO_3 at rural sites (averaging 0.17 and 1.49 cm s^{-1} , respectively), compared with those at urban sites (averaging 0.12 and 1.22 cm s^{-1} , respectively).

12. P18379, L14: grassland sites-> background sites

Response: Changed as suggested.

13. P18380, L23: I believe the authors refer here to Figure S2 d and e

Response: Yes, and we have included a reference here to Figure S2 d and e in the revision.

14. P18381, L10: The discussion here would have benefited from an analysis of differences between regions across land use types. Are all the rural sites in China homogeneously affected by reactive nitrogen pollution?

Response: This is a good suggestion. All the rural sites in China were not homogeneously affected by reactive N pollution. We have revised the sentence to be as following: “Rural sites in this study also had relatively high concentrations of all measured N_r species in air, altogether ranking in the order of NC > NE > NW > SE > SW (Fig. 3f). The higher concentrations in northern China are mainly due to the combined effect of high NH_3 emissions from N fertilized farmland (Zhang et al., 2008a) and urban air pollution (e.g. NO_2 , HNO_3 , pNH_4^+ and pNO_3^-) transported from population centers to the surrounding rural areas (Luo et al., 2013).”

References:

Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang, L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An evaluation of atmospheric N_r pollution and deposition in North China after the Beijing Olympics, *Atmos. Environ.*, 74, 209–216, doi:10.1016/j.atmosenv.2013.03.054, 2013.

Zhang, F. S., Wang, J. Q., Zhang, W. F., Cui, Z. L., Ma, W. Q., Chen, X. P., and Jiang, R. F.: Nutrient use efficiency of major cereal crops in China and measures for improvement. *Acta Pedologia Sinica*, 45, 915–924, 2008a (in Chinese with English abstract).

15. P18383, L4: Does this hypothesis work in the monitoring sites in China? In other words, was the NHx/NOy ratio in urban sites different from rural or background sites in this network?

Response: Yes, the NH_4^+-N/NO_3^-N ratio in wet/bulk deposition still works for indicating the relative contribution of N_r from agricultural and industrial activities to N deposition at monitoring sites in China. We found that NH_4^+-N/NO_3^-N ratios in wet/bulk deposition followed the sequence of urban sites < rural sites < background sites across our monitoring network.

16. P18384, L19: There is no mention in this section of the discussion to differences in modelled deposition velocities for China compared with other estimates, as presented in table S4. This is also applicable in P18387, L8.

Response: We now state in the section 4.4 “The dry deposition fluxes were estimated by combining measured concentrations with modeled V_d . As summarized in Table S4, our estimates of dry deposition velocities for different N_r species are generally consistent with the estimates in previous studies (e.g., Flechard et al., 2011; Pan et al., 2012). Some uncertainties may still exist in the inputs for dry deposition modeling.”

We also have revised the sentence (P18387, L8) to read: “In previous work, dry deposition flux was inferred from atmospheric N_r concentrations and a literature-based annual mean deposition velocity (Shen et al., 2009), or reported by Luo et al. (2013) who did not consider the different dry deposition velocities of various N_r species among different land use types. Clearly, in this study we have greatly improved the estimation of dry deposition, but further work is still

required to increase the reliability and accuracy of N dry deposition values.”

References:

Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., and Sawada, K.: Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008, *Atmos. Environ.*, **45**, 1259–1267, doi:10.1016/j.atmosenv.2010.12.003, 2010.

Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang, L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An evaluation of atmospheric N_r pollution and deposition in North China after the Beijing Olympics, *Atmos. Environ.*, **74**, 209–216, doi:10.1016/j.atmosenv.2013.03.054, 2013.

Shen, J. L., Tang, A. H., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.: High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain, *Environ. Pollut.*, **157**, 3106–3113, doi:10.1016/j.envpol.2009.05.016, 2009.

17. Figures 2 and 4: Vertical lines could be included to separate regions or even land use categories within regions in order to ease comparisons.

Response: Thanks for the suggestion. In the revision, Figure 4 was changed to Figure 5. We have added vertical lines in Figures 2 and 5 to separate regions and land use categories within regions. Please see the revised Figures 2 and 5 as below.

Figure 2. Annual mean concentrations of N_r compounds in air (a) and volume-weighted concentrations of inorganic nitrogen species in precipitation (b) at all monitoring sites. U, R, and B denote urban, rural, and background sites, respectively. TP denotes the Tibetan

Plateau.

Figure 5. Annual deposition flux of various N_r species at the forty-three selected sites in China: (a) dry deposition flux; (b) wet/bulk deposition flux; (c) total deposition flux. Yellow dots denote ratios of reduced N to oxidized N in dry deposition (a), NH_4^+ -N to NO_3^- -N in wet/bulk deposition (b) and/or reduced N to oxidized N in total deposition (c) at all sampling sites.

18. Supplement S2: Renumber subsections as 2. X.

Response: We have renumbered subsections as suggested: S2.1 Sampling sites in north China (NC), S2.2 Sampling sites in northeast China (NE), S2.3 Sampling sites in northwest China (NW), S2.4 Sampling sites in southeast China (SE), S2.5 Sampling sites in southwest China (SW), S2.6 Sampling sites in the Tibetan plateau (TP).

19. Supplement S2.1: Thirty -> Thirteen

Response: Changed as suggested.

20. Supplement S2.5: 2 rural sites -> 5 rural sites

Response: Changed as suggested.

21. Supplement S5: The tables referenced here should be S3 and S4

Response: Yes, we have referenced the tables S3 and S4 in Supplement S5. The text is revised to be: “the monthly V_d at each site was averaged based on the hourly dataset for further estimation of dry deposition flux of each N_r species during the observation, which was statistically summarized according to land use type and is presented in Table S3. Annual mean dry deposition velocities of N_r species for three land use types in this study, averaged from monthly mean values, fit well into range of annual values calculated and used for similar land use types in other studies (Table S4 of Supplement).”

Anonymous Referee #2

General comments:

This paper is a useful contribution to the issue of atmospheric nitrogen (N) deposition in China. It presents a 5-year monitoring data of dry and wet N deposition at 43 sites across China. However, the methods to obtain deposition fluxes are questionable which can result in large uncertainties to the conclusions made in this study. Some of the uncertainties are not necessary and could be constrained. I explained this in detail below.

Response: The authors appreciate the reviewer for the valuable comments and suggestions that greatly help us improve our work. To reduce uncertainties to the conclusion made in this study, we have optimized the methods for computing dry deposition flux, and have made more clarification on the method of wet/bulk deposition measurement and discussion for wet/bulk deposition fluxes. Detailed responses to the comments are given below.

Specific comments

1. Site locations:

Different from the air quality monitoring networks which focus on the protection of human health, the deposition networks are used to assess the pollutant impacts on sensitive ecosystem and vegetation. Therefore, many networks, for example, CASTNET/NADP in US, CAPMoN in Canada, and IMPACTS in China, locate their sites in rural or protected areas in order to minimize effects from local pollution sources. In this paper, 10 out of the total 43 sites are located in urban areas, which are not homogeneously distributed in China. The comparison of regional averages including results from urban sites may not reveal the real spatial differences. For example, southeast China has two of the largest industrial centres and megacity clusters (the Pearl River Delta region and the Yangtze River Delta region) in China. Severe air pollution has been reported in this region (e.g., Chan and Yao, 2008). But this study shows the mean concentrations of reactive N species in southeast China were 15-25% lower than the national averages (Table 1). I suggest to remove all the

urban results in the analysis.

Response: Thank you for your suggestion on site locations. We agree many deposition networks worldwide mainly located in rural or protected areas. But the main objective of our study focuses on a systematic evaluation of dry plus wet deposition along different anthropogenic impacts (with differing reactive N emission intensities) across China. That's why we include ten urban sites in our network. We admit the current monitoring network is not complete and some more sites should be added in the future studies (please see our reply to reviewer #1's comment No. 4). We have noticed that atmospheric reactive N concentrations in southeast China (covering the Pearl River Delta and Yangtze River Delta regions) even lower than the national averages. Two reasons may explain this: 1) reactive N pollutants removed by frequent and high precipitation; 2) only three of total ten monitoring sites located in Pearl River Delta and Yangtze River Delta regions. In addition, our monitoring sites were mainly located at rural areas in southeast China and this could also lead to lower atmospheric N_r concentration and deposition. To avoid misunderstanding, we have deleted Table 1 and related comparison in the revision.

2. The method to derive the dry deposition flux: This paper estimated the dry deposition flux by the inferential method where the modeled dry deposition velocity (Vd) is paired with the measured concentration. Vd results were extracted from the 1-year productions by a global CTM model (GEOS-Chem), which has a horizontal resolution of 1/2 x 2/3 degree. This resolution is in fact too coarse for this study. Many sites (for example, NC1-NC2, NC4-NC5, NE2-NE3, SE9-SE10, SW5-SW6-SW7) are too close from each other and located within the same grid. It means the same Vd values are used for different sites although they may have different surface characteristics. What is the height where the Vds were calculated? 70 m AGL? Vd for HNO₃ is very sensitive to the calculation of Ra and the values computed at 70 m AGL should be much smaller than that at 2 m AGL. This also applies to the other species at some extend. The Vd calculations highly rely on the landuse types. Did you confirm the landuse map used in the simulation with the actual landuse types of the monitoring sites? They may not be consistent. In this paper, only 1-year simulation (2012) was used to derive Vds for the 5-year (2010-2014) period. This ignored the year-to-year variations in Vd. Several approaches can be taken to improve this. For example, you can run the GEOS-Chem model from 2010 to May 2013 and fill the gap in the period when GEOS meteorological data is unavailable using the means calculated from all the available simulations. Or you may try a single-point dry deposition model which can use the meteorological driving forces from various sources (e.g., field measurements if available, MM5/WRF simulation).

Response: We have re-modelled dry deposition velocities (V_{ds}) of N_r species at 2 m AGL. Indeed, the V_{ds} of N_r species computed at 2 m AGL show various degrees of increases compared to those at 70 m AGL. Meanwhile, we have run the GEOS-Chem model from January 2010 to May 2013 for all the 43 sites and fill the gap for the period when GEOS meteorological data is unavailable using

the mean values calculated from all the available simulations, as suggested by the reviewer. This approach of dry deposition estimate provides large improvements compared to previous work on nitrogen deposition over China as described below in addressing the Comment No. 6.

We now state in the text: "For a detailed description of the V_d calculation as well as the estimation of N dry deposition, the reader is referred to the Supplement (Sect. S5), with monthly and annual dry deposition velocities of N_r for different land use types presented in Tables S3 and S4 therein. The model uses the land map of the Global Land Cover Characteristics Data Base Version 2.0 (http://edc2.usgs.gov/glcc/globdoc2_0.php), which defines the land types (e.g., urban, forest, etc.) at the native 1 km \times 1 km resolution and is then binned to the model resolution as fraction of the grid cell covered by each land type. The model 1/2° resolution may coarsely represent the local land characteristics at the monitoring sites. Future work using a single-point dry deposition model as for CASTNET (Clarke et al., 1997) would further improve the dry deposition flux estimates, but that requires concurrent *in-situ* measurements of meteorological variables which are not available at present. "

Added reference:

Clarke, J. F., Edgerton, E. S., and Martin, B. E.: Dry deposition calculations for the Clean Air Status and Trends Network, *Atmos. Environ.*, 31, 3667-3678, 1997.

Table S3 has been corrected to show the improved dry deposition velocities over the different land types.

Table S3. Statistics of monthly mean dry deposition velocities of N_r species for three land use types, basing on the modeled hourly values at the forty-three sites during January 2010 and May 2013^a.

Land use type	Monthly mean deposition velocities (cm s ⁻¹)				
	NH_3	NO_2	HNO_3	pNH_4^+	pNO_3^-
Urban	N	410	410	410	410
	Min	0.30	0.01	0.12	0.06
	Max	1.63	0.44	5.78	0.35
	Mean	0.45	0.12	1.22	0.17
	Median	0.34	0.10	1.15	0.17
	SD	0.29	0.10	1.00	0.07
Rural	N	902	902	902	902
	Min	0.09	0.01	0.05	0.07
	Max	1.10	0.46	5.78	0.37
	Mean	0.40	0.17	1.49	0.18
	Median	0.35	0.16	1.49	0.18
	SD	0.16	0.12	1.10	0.06
Background	N	451	451	451	451
	Min	0.20	0.01	0.06	0.05
	Max	1.48	0.57	8.88	0.31
	Mean	0.47	0.17	1.78	0.16
	Median	0.43	0.13	1.48	0.16

SD	0.22	0.15	1.66	0.06	0.06
----	------	------	------	------	------

^aThe forty-three sites consist of 10 urban, 22 rural and 11 background sites. Among the forty-three monitoring sites, 20 farmland, 5 coastal, 6 forest and 2 grassland sites were included in the rural and background sites.

3. The sampling method of wet deposition: This study utilized a bulk sampler instead of a wet-only sampler to collect the wet depositions. A well-known problem about the bulk sampler is that the wet deposition samples can be contaminated by the dry deposition. This is even worse in the north region of China where precipitation is not frequent and dry deposition may dominate the total deposition. As mentioned in the manuscript, the bulk deposition flux of N can be 20-39% higher than the wet-only deposition. This needs to be emphasized in the conclusion and abstract of the manuscript to remind the readers be careful when comparing your results with previous studies.

Response: We have answered this question in the Reviewer #1's similar comment (Response to Reviewer #1's Comment No. 3). Briefly we have replaced "wet deposition" by "wet/bulk deposition" in the revision, and have emphasized the difference between bulk and wet-only deposition.

4. P18372: The description of sampling methods is not clear. At the sites without power, how HNO₃ was sampled? Was NO₂ sampled using Gradko diffusion tubes at all sites? If yes, there is no need to mention this twice in the same section.

Response: Thanks for pointing it out. At the seven sites (i.e., NC2, NE4, NE5, SW5, SW7, TP1 and TP2) without power supply, ambient HNO₃ concentrations were not measured due to lack of passive samplers for HNO₃. Thus, there were no data on HNO₃ concentrations and dry deposition fluxes shown for those seven sites in corresponding Figures (e.g. Figs 2, 3 and 5, Fig. S2c). As for total dry deposition fluxes at the seven sites, gaseous HNO₃ was not taken into consideration. At all sites in the network, gaseous NO₂ was sampled using Gradko diffusion tubes.

As suggested we have made more clarification on above issues in the revised Sect. 2.2.

5. P18378L23: annual precipitation -> annual precipitation amount?

Response: Yes, we have changed "annual precipitation" to "annual precipitation amount"

6. P18387L8: According to the references given, I think it means this study made improvements compared with previous work in China. It is better to clarify this.

Response: Thank you for this suggestion. We have revised the corresponding sentences in the Section 4.4 to clarify this.

"In previous work, dry deposition flux was inferred from atmospheric N_r concentrations and a literature-based annual mean deposition velocity (Shen et al., 2009), or reported by Luo et al. (2013) which did not consider the different

dry deposition velocities of various N_r species among different land use types. Clearly, in this study we have greatly improved the estimation of dry deposition, but further work is still needed to increase the reliability and accuracy of N dry deposition values.”

References:

Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang, L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An evaluation of atmospheric N_r pollution and deposition in North China after the Beijing Olympics, *Atmos. Environ.*, 74, 209–216, doi:10.1016/j.atmosenv.2013.03.054, 2013.

Shen, J. L., Tang, A. H., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.: High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain, *Environ. Pollut.*, 157, 3106–3113, doi:10.1016/j.envpol.2009.05.016, 2009.

7. P18387L20-25: The organic N species have been found as important contributors to the N dry deposition. For example, Turnipseed et al. (2006) reported that PAN accounted for 20% of the daytime NO_y flux at a forest site. This should be included in the uncertainty discussion (section 4.4).

Response: Thank you for this valuable suggestion. We have added the following sentences to discuss this issue in the revised Section 4.4.

“On the other hand, the total dry deposition flux in this study may be underestimated due to omission of the dry-deposited organic N species in our network and missing HNO₃ data at very few sites as noted earlier (Sect. 2.2). The organic N species have been found as important contributors to the N dry deposition. For example, PAN accounted for 20% of the daytime, summer time NO_y (NO + NO₂ + HNO₃ + NO₃⁻ + PAN) dry deposition at a coniferous forest site (Turnipseed et al., 2006). However, the contribution of PAN and other known atmospheric organic nitrates to total N_r inputs must be minor on the annual time scale, as reported by Flechard et al. (2012).”

References:

Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A.T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network, *Atmos. Chem. Phys.*, 11, 2703–2728, doi:10.5194/acp-11-2703-2011, 2011.

Turnipseed, A. A., Huey, L. G., Nemitz, E., Stickel, R., Higgs, J., Tanner, D. J., Slusher, D. L., Sparks, J. P., Flocke, F., and Guenther, A.: Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NO_y to a coniferous forest, *J. Geophys. Res.*, 111, D09304, doi:10.1029/2005JD006631, 2006.

8. Supplement section S5: As stated in the manual of GEOS-Chem(http://wiki.seas.harvard.edu/geos-chem/index.php/Dry_deposition), the dry deposition for particles followed Zhang et al.(2001) scheme, instead of Wesely

(1989), which is a dry deposition scheme for gases.

Response: Yes, we now state in both the Section 2.5 and Section S5 "The model calculation of dry deposition of N_r species follows a standard big-leaf resistance-in-series model as described by Wesely (1989) for gases and Zhang et al. (2001) for aerosols."

Added Reference:

Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35 (3), 549-560, doi:10.1016/s1352-2310(00)00326-5, 2001.

Technical corrections:

9. P18372L3: Sutton et al. (2001) -> Sutton et al. (2001))

Response: Revised as suggested.

10. P18372L11: delete "produced by"

Response: Deleted as suggested.

11. Supplement section S1: South China (SC) -> Southeast China (SE)

Response: Revised as suggested (changed "South China (SC)" to "Southeast China (SE)".

Quantifying atmospheric nitrogen deposition through a nationwide monitoring
network across China

W. Xu¹, X. S. Luo^{1,2}, Y. P. Pan³, L. Zhang⁴, A. H. Tang¹, J. L. Shen⁵, Y. Zhang⁶, K. H. Li⁷, Q. H. Wu¹, D. W. Yang¹, Y. Y. Zhang¹, J. Xue¹, W. Q. Li⁸, Q. Q. Li^{1,9}, L. Tang⁹, S. H. Lu¹⁰, T. Liang¹¹, Y. A. Tong¹¹, P. Liu¹², Q. Zhang¹², Z. Q. Xiong¹³, X. J. Shi¹⁴, L. H. Wu¹⁵, W. Q. Shi¹⁶, K. Tian¹⁷, X. H. Zhong¹⁷, K. Shi¹⁸, Q. Y. Tang¹⁹, L. J. Zhang²⁰, J. L. Huang²¹, C. E. He²², F. H. Kuang²³, B. Zhu²³, H. Liu²⁴, X. Jin²⁵, Y. J. Xin²⁵, X. K. Shi²⁶, E. Z. Du²⁷, A. J. Dore²⁸, S. Tang²⁸, J. L. Jr. Collett²⁹, K. Goulding³⁰, [Y. X. Sun³¹](#), [J. Ren³²](#), F. S. Zhang¹, X. J. Liu^{1,*}

¹College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

²Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

⁴Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China

⁵Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 4410125, China

⁶College of Nature Conservation, Beijing Forestry University, Beijing 100083, China

⁷Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

⁸Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China

⁹College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650224, China

¹⁰Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

¹¹Nature Resource and Environment College, Northwest A&F University, Yangling 712100, China

¹²Institute of Agricultural Environment and Resource, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China

¹³College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210009, China

¹⁴College of Resources and Environment, Southwest University, Chongqing 400716, China

¹⁵College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China

¹⁶South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China

¹⁷Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640,

39 China
40 ¹⁸College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian
41 116028, China
42 ¹⁹College of Agriculture, Hunan Agricultural University, Changsha 410128, China
43 ²⁰College of Resources and Environment, Agricultural University of Hebei, Baoding 071001,
44 China
45 ²¹College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
46 ²²Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Bei
47 jing 100101, China
48 ²³Institute of Mountain, Hazards and Environment, Chinese Academy of Sciences, Chengdu
49 610041, China
50 ²⁴Research Institute of Soil & Fertilizer and Agricultural Water Conservation, Xinjiang Academy
51 of Agricultural Sciences, Urumqi 830091, China
52 ²⁵The Bureau of Qinghai Meteorology, Xining 810001, China
53 ²⁶Agriculture, Forestry and Water Department of Changdao County, Changdao 265800, China
54 ²⁷State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of
55 Resources Science & Technology, Beijing Normal University, Beijing 100875, China
56 ²⁸Centre for Ecology & Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
57 ²⁹Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
58 ³⁰The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden
59 AL5 2JQ, UK
60 ³¹Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031, China
61 ³²Institute of Soil and Fertilizer, Jilin Academy of Agricultural Sciences, Changchun 130124,
62 China

63 Corresponding author: liu310@cau.edu.cn (X. J. Liu).

64

65 **Abstract:** Global reactive nitrogen (N_r) deposition to terrestrial ecosystems has
66 increased dramatically since the industrial revolution. This is especially true in recent
67 decades in China due to continuous economic growth. However, there are no
68 comprehensive reports of both measured dry and wet/bulk N_r deposition across China.
69 We therefore conducted a multiple-year study during the period mainly from 2010 to
70 2014 to monitor atmospheric concentrations of five major N_r species of gaseous NH_3 ,
71 NO_2 and HNO_3 , and inorganic nitrogen (NH_4^+ and NO_3^-) in both particles and
72 precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network
73 (NNDMN, covering 43 sites) in China. Wet/bulk deposition fluxes of N_r species were
74 collected by precipitation gauge method and measured by continuous flow analyzer;
75 dry deposition fluxes were estimated using airborne concentration measurements and

刪除的內容: measured directly

77 inferential models. Our observations reveal large spatial variations of atmospheric N_r
78 concentrations and dry and wet/bulk N_r deposition. On a national basis, the annual
79 average concentrations ($1.3\text{--}47.0 \mu\text{g N m}^{-3}$) and dry plus wet/bulk deposition fluxes
80 ($2.9\text{--}83.3 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) of inorganic N_r species ranked by land use as urban > rural >
81 background sites, reflecting the impact of anthropogenic N_r emission. Average dry
82 and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean \pm standard deviation), and
83 $19.3 \pm 9.2 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ across China, with reduced N deposition dominating both dry
84 and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally
85 important to wet/bulk N deposition at the national scale. Therefore both deposition
86 forms should be included when considering the impacts of N deposition on
87 environment and ecosystem health.

88 **Keywords:** air pollution; reactive nitrogen; dry deposition; wet deposition; ecosystem;
89 China

90 1. Introduction

91 Humans continue to accelerate the global nitrogen (N) cycle at a record pace as rates
92 of anthropogenic reactive nitrogen (N_r) fixation have increased 20-fold over the last
93 century (Galloway et al., 2008). New N_r from anthropogenic fixation is formed
94 primarily through cultivation of N -fixing legumes, the Haber-Bosch process and
95 combustion of fossil-fuel (Galloway et al., 2013). As more N_r have been created,
96 emissions of N_r ($\text{NO}_x=\text{NO}+\text{NO}_2$, and NH_3) to the atmosphere have increased from
97 approximately 34 Tg N yr^{-1} in 1860 to 109 Tg N yr^{-1} in 2010 (Fowler et al., 2013;
98 Galloway et al., 2004); most of this emitted N_r is deposited back to land and water
99 bodies. As an essential nutrient, N supplied by atmospheric deposition is useful for all
100 life forms in the biosphere and may stimulate primary production in an ecosystem if it
101 does not exceed the ecosystem-dependent critical load (Liu et al., 2010, 2011).
102 However, long-term high levels of atmospheric N_r and its deposition can reduce
103 biological diversity (Clark et al., 2008), degrade human health (Richter et al., 2005),
104 alter soil and water chemistry (Vitousek et al., 1997) and influence the greenhouse gas
105 balance (Matson et al., 2002).

106 Nitrogen deposition occurs via dry and wet processes. Neglecting dry deposition can
107 lead to substantial underestimation of total flux as dry deposition can contribute up to
108 $2/3$ of total N deposition (Flechard et al., 2011; Vet et al., 2014). For quantification of
109 atmospheric deposition at the national scale, long-term monitoring networks such as
110 CAPMoN (Canada), IDAF (Africa), CASTNET/NADP (the United States), EMEP

删除的内容: The

删除的内容: 75.2

删除的内容: by region as North
China > Southeast China > Southwest
China > Northeast China > Northwest
China > the Tibetan Plateau or

删除的内容: 18.5

删除的内容: , respectively,

删除的内容: and

删除的内容: globally

删除的内容: EMEP

120 (Europe) and EANET (East Asia) have been established; such networks are essential
121 for quantification of both wet and dry deposition and revealing long-term trends and
122 spatial patterns under major environmental and climate change (Skeffington and Hill,
123 2012). Wet deposition, by means of rain or snow, is relatively easily measured in
124 existing networks. In contrast, dry deposition of gases and particulate matter is much
125 more difficult to measure, and strongly influenced by factors such as surface
126 roughness, surface wetness, and climate and environmental factors (Erisman et al.,
127 2005). Direct methods (e.g., eddy correlation, chambers) and indirect methods (e.g.,
128 inferential, gradient analysis) can determine dry deposition fluxes (Seinfeld and
129 Pandis, 2006). The inferential method is widely used in many monitoring networks
130 (e.g. CASTNET and EANET), where dry deposition rates are derived from measured
131 ambient concentrations of N_r species and computed deposition velocities (Endo et al.,
132 2011; Holland et al., 2005; Pan et al., 2012). Additionally, atmospheric modeling has
133 been used as an operational tool to upscale results from sites to regions where no
134 measurements are available (Flechard et al., 2011; Zhao et al., 2015).

135 According to long-term trends observed by the above monitoring networks, N
136 deposition has decreased over the last two decades in Europe (EEA, 2011).
137 Measurements of wet deposition in the US show a strong decrease in NO_3-N
138 deposition over most of the country (Du et al., 2014), but NH_4-N deposition increased
139 in agricultural regions. China, as one of the most rapidly developing countries in East
140 Asia, has witnessed serious atmospheric N_r pollution since the late 1970s (Hu et al.,
141 2010; Liu et al., 2011). Accurate quantification of N deposition is key to assessing its
142 ecological impacts on terrestrial ecosystems (Liu et al., 2011). Previous modeling
143 studies (e.g., Dentener et al., 2006; Galloway et al., 2008; Vet et al., 2014) suggested
144 that central-east China was a global hotspot for N deposition. More recently, based on
145 meta-analyses of historic literature, both Liu et al. (2013) and Jia et al. (2014)
146 reported a significant increase in N wet/bulk deposition in China since the 1980s or
147 1990s. However, most measurements in China only reported wet/bulk deposition (e.g.,
148 Chen et al., 2007; Zhang et al., 2012a; Huang et al., 2013; Zhu et al., 2015) and/or dry
149 deposition (Luo et al., 2013; Shen et al., 2009; Pan et al., 2012) at a local or regional
150 scale. Although national N deposition has been investigated by Lü and Tian (2007,
151 2014), the deposition fluxes were largely underestimated due to the inclusion only of
152 gaseous NO_2 in dry deposition and not NH_3 , HNO_3 and particulate ammonium and
153 nitrate etc. Therefore, the magnitude and spatial patterns of *in situ* measured N wet

156 | /bulk and dry deposition across China are still not clear.

157 | Against such a background, we have established a Nationwide Nitrogen Deposition
158 | Monitoring Network (NNDMN) in China in 2010, measuring both wet//bulk and dry
159 | deposition. The NNDMN consists of forty-three *in-situ* monitoring sites, covering
160 | urban, rural (cropland) and background (coastal, forest and grassland) areas across
161 | China. The focus of the network is to conduct high-quality measurements of
162 | atmospheric N_r in gases, particles and precipitation. These data provide a unique and
163 | valuable quantitative description of N_r deposition in China, but have never been
164 | published as a whole. The objectives of this study were therefore to: (1) obtain the
165 | first quantitative information on atmospheric N_r concentrations and pollution status
166 | across China; and (2) analyze overall fluxes and spatial variations of N wet//bulk and
167 | dry deposition in relation to anthropogenic N_r emissions in different regions.

168 | **2. Materials and Methods**

169 | *2.1 Sampling sites*

170 | The distribution of the forty-three monitoring sites in the NNDMN is shown in **Fig. 1**.
171 | Although sampling periods varied between sites, most of our monitoring started from
172 | 2010 to 2014 (see Supporting Materials for details). The NNDMN comprise 10 urban
173 | sites, 22 rural sites and 11 background sites (**Table S1** of the online Supplement). To
174 | better analyze atmospheric N deposition results among the sites, we divided the
175 | forty-three sites into six regions: north China (NC, 13 sites), northeast China (NE, 5
176 | sites); northwest China (NW, 6 sites), southeast China (SE, 11 sites), southwest China
177 | (SW, 6 sites), and Tibetan Plateau (TP, 2 sites), representing China's various
178 | social-economical and geo-climatic regions (for details, see **Sect. A1** of the online
179 | Supplement). The sites in the six regions are described using region codes (i.e., NC,
180 | NE, NW, SE, SW, TP) plus site numbers such as NC1, NC2, NC3, ..., NE1, NE2, etc.
181 | The longitudes and latitudes of all 43-sites ranged from 83.71 to 129.25 °E, and from
182 | 21.26 to 50.78 °N, respectively. Annual mean rainfall ranged from 170 to 1748 mm
183 | and the annual mean air temperature ranged from -6.2 to 23.2 °C. Site names, land use
184 | types and population densities are summarized in **Table S1** of the Supplement. More
185 | detailed information on the monitoring sites, such as specific locations, surrounding
186 | environment and possible emission sources are provided in **Sect. A2** of the
187 | Supplement.

188 | *2.2 Collection of gaseous and particulate N_r samples*

189 | In this study ambient N_r concentrations of gaseous NH₃, NO₂ and HNO₃, and

190 particulate NH_4^+ (pNH_4^+) and NO_3^- (pNO_3^-) were measured monthly at the 43 sites
191 using continuous active and passive samplers. DELTA active sampling systems
192 (DENuder for Long-Term Atmospheric sampling, described in detail in detail in [Flechard et al.](#)
193 ([2011](#)) and [Sutton et al. \(2001\)](#)), were used to collect NH_3 , HNO_3 , pNH_4^+ and pNO_3^- ;
194 NO_2 samples were collected using Gradko diffusion tubes (Gradko International
195 Limited, UK) [at all sampling sites](#). The air intakes of the DELTA system and the NO_2
196 tubes were set at a height of 2 m above the ground (at least 0.5 m higher than the
197 canopy height) at most sites. At a few sites, the DELTA systems could not be used due
198 to power constraints. Therefore, NH_3 [samples were collected using ALPHA passive](#) 删除的内容: and NO_2
199 samplers (Adapted Low-cost High Absorption, designed by the Center for Ecology
200 and Hydrology, Edinburgh, UK), while the pNH_4^+ and pNO_3^- in PM_{10} were collected
201 using particulate samplers (TSH-16 or TH-150III, [Wuhan Tianhong Corp., Wuhan,](#) 删除的内容: and Gradko diffusion tubes, respectively
202 China). [However, \$\text{HNO}_3\$ measurements were not performed due to lack of](#) 删除的内容: produced by
203 [corresponding passive samplers](#). Briefly, all the measurements of N_r concentration
204 were based on monthly sampling (one sample per month for each N_r species) except
205 at the very few sites without DELTA systems, where pNH_4^+ and pNO_3^- samples were
206 calculated from daily sampling transformed to monthly averaged data. Detailed
207 information on measuring methods, sample replication and collection are given in
208 **Sect. A3** of the Supplement with sampling periods listed in **Table S2** of the
209 Supplement. Comparisons between the ALPHA samplers and the DELTA systems at
210 six network sites for gaseous NH_3 measurements indicated that the two methods
211 provided comparable NH_3 concentrations (values between the two methods were not
212 significantly different) (cf. **Sect. A4** in the Supplement and **Fig. S1** therein).

213 2.3 Collection of precipitation

214 At all monitoring sites precipitation [\(here we define it as wet/bulk deposition which](#)
215 [contains wet and part dry deposition\)](#) samples were collected using precipitation
216 gauges (SDM6, Tianjin Weather Equipment Inc., China) located beside the DELTA
217 systems (c. 2 m). The collector, consisting of a stainless steel funnel and glass bottle
218 (vol. 2000-2500 ml), collects precipitation (rainwater, snow) without a power supply.
219 Precipitation [amount](#) was measured using a graduated cylinder (scale range: 0-10 mm;
220 division: 0.1 mm) coupled with the gauge. After each daily (8:00 am-8:00 am next
221 day) event, the collected samples were thoroughly mixed and then immediately stored
222 in clean polyethylene bottles (50 mL). All collected samples (including melted snow)
223 samples were frozen at -18°C at each site until delivery to the laboratory at China

228 Agricultural University (CAU) for analysis of inorganic N (NH_4^+ and NO_3^-). The
229 gauges were cleaned with high-purity water after each collection and once every week
230 in order to avoid cross contamination.

231 *2.4 Analytical procedures*

232 In CAU's analytical laboratory, the exposed sampling trains of the DELTA systems
233 and passive samples were stored at 4 °C and analyzed at one-month intervals. The
234 ~~HNO_3 denuders and alkaline-coated filters were extracted with 10 mL 0.05 % H_2O_2~~ 删除的内容:1
235 in aqueous solution. The NH_3 denuders and acid-coated filters, and ALPHA samplers
236 ~~were extracted with 10 mL high-purity water. The loaded PM_{10} filters were extracted~~ 删除的内容:1
237 with 50 mL high-purity water by ultrasonication for 30-60 min and then filtered 删除的内容:1
238 through a syringe filter (0.45 μm , Tengda Inc., Tianjin, China). Ammonium (NH_4^+)
239 and nitrate (NO_3^-) in the extracted and filtered solutions were measured with an AA3
240 continuous-flow analyzer (Bran+Luebbe GmbH, Norderstedt, Germany). The
241 detection limits were 0.01 mg N L⁻¹ for NH_4^+ and NO_3^- . It should be noted that
242 NO_3^- was converted to NO_2^- during the chemical analysis. So, NO_2^- here was included
243 in the analysis, and NO_3^- equals to the sum of NO_2^- and NO_3^- . The disks from the
244 Gradko samplers were extracted with a solution containing sulphanilamide, H_3PO_4
245 and N-1-Naphthylethylene-diamine, and the NO_2^- content in the extract determined
246 using a colorimetric method by absorption at a wavelength of 542 nm. The detection 删除的内容:absorbance
247 limit for NO_2^- was 0.01 mg N L⁻¹. Three laboratory and three field blank samples
248 were extracted and analyzed using the same methods as the exposed samples. After
249 correcting for the corresponding blanks, the results were used for the calculation of
250 ambient concentrations of gaseous and particulate N_r. Each collected precipitation
251 sample was filtered with a 0.45 μm syringe filter, and 15 mL filtrates frozen and 删除的内容:ml
252 stored in polypropylene bottles until chemical analysis within one month. The NH_4^+
253 and NO_3^- concentrations of the filtrates were determined using an AA3
254 continuous-flow analyzer as described above.

255 *2.5 Deposition flux estimation*

256 The inferential technique, which combines the measured concentration and a modeled
257 dry deposition velocity (V_d), was used to estimate the dry deposition fluxes of N_r
258 species (Schwede et al., 2011; Pan et al., 2012). The concentrations of gases (HNO_3 ,
259 NO_2 and NH_3) and aerosols (NH_4^+ and NO_3^-) were measured as described in Section
260 2.2. The monthly average V_d over China was calculated by the GEOS-Chem chemical
261 transport model (CTM) (Bey et al., 2001; <http://geos-chem.org>). The GEOS-Chem

267 CTM is driven by GEOS-5 (Goddard Earth Observing System) assimilated
268 meteorological data from the NASA Global Modeling and Assimilation Office
269 (GMAO) with a horizontal resolution of $1/2^\circ$ latitude \times $2/3^\circ$ longitude and 6-h
270 temporal resolution (3-h for surface variables and mixing depths). We used a
271 nested-grid version of GEOS-Chem for Asia that has the native $1/2^\circ \times 2/3^\circ$ resolution
272 over East Asia (70°E - 150°E , 11°S - 55°N) (Chen et al., 2009). The nested model has
273 been applied to examine atmospheric nitrogen deposition to the northwestern Pacific
274 (Zhao et al., 2015), and a similar nested model for North America has been used to
275 analyze nitrogen deposition over the United States (Zhang et al., 2012b; Ellis et al.,
276 2013). The model calculation of dry deposition of N_r species follows a standard
277 big-leaf resistance-in-series model as described by Wesely (1989) for gases and Zhang
278 et al. (2001) for aerosol. For a detailed description of the V_d calculation as well as the
279 estimation of N dry deposition, the reader is referred to the Supplement (Sect. A5),
280 with monthly and annual dry deposition velocities of N_r for different land use types
281 presented in **Tables S3 and S4** therein. The model uses the land map of the Global
282 Land Cover Characteristics Data Base Version 2.0
283 (http://edc2.usgs.gov/glcc/globdoc2_0.php), which defines the land types (e.g., urban,
284 forest, etc.) at the native $1 \text{ km} \times 1 \text{ km}$ resolution and is then binned to the model
285 resolution as fraction of the grid cell covered by each land type. The model $1/2^\circ$
286 resolution may coarsely represent the local land characteristics at the monitoring sites.
287 Future work using a single-point dry deposition model as for CASTNET (Clarke et al.,
288 1997) would further improve the dry deposition flux estimates, but that requires
289 concurrent *in-situ* measurements of meteorological variables which are not available
290 at present.

291 Wet/bulk N deposition flux was calculated as the product of the precipitation amount
292 and the concentration of N_r species in precipitation, using the following equations (1)
293 and (2):

$$C_w = \sum_{i=1}^n (C_i P_i) / \sum_{i=1}^n P_i \quad (1)$$

294 where C_w is the volume-weighted mean (VWM) concentration (mg N L^{-1}) calculated
295 from the n precipitation samples within a month or a year, and the individual sample
296 concentration C_i is weighted by the rainfall amount P_i for each sample.

$$D_w = P_t C_w / 100 \quad (2)$$

297 where D_w is the wet/bulk deposition flux (kg N ha^{-1}), P_t is the total amount of all
298

删除的内容: 2012a

删除的内容: (Wesely, 1989)

删除的内容: -

303 precipitation events (mm), and 100 is a unit conversion factor.

304 2.6 Statistics

305 A one-way analysis of variance (ANOVA) and nonparametric t-tests were conducted
306 to examine the differences in the investigated variables between sites (urban, rural and
307 background) and between the six regions. Linear regression analysis was used to
308 analyze the relationships among annual wet N deposition flux, annual precipitation
309 amount and annual VWM concentration of inorganic N in precipitation. All analyses
310 were performed using SPSS 11.5 (SPSS Inc., Chicago, IL, USA). Statistically
311 significant differences were set at P values < 0.05 .

312 3. Results

313 3.1 Concentrations of N_r species in air

314 Monthly mean concentrations of NH_3 , NO_2 , HNO_3 , pNH_4^+ and pNO_3^- were
315 0.08-34.8, 0.13-33.4, 0.02-4.90, 0.02-55.0 and 0.02-32.1 $\mu\text{g N m}^{-3}$, respectively (Fig.
316 S2a-e, Supplement). The annual mean concentrations of gaseous and particulate N_r
317 were calculated for each site from the monthly N_r concentrations (Fig. 2a), and
318 further were averaged for land use types in the six regions (Fig. 3a-e and the whole
319 nation (Fig. 4a) according to geographical location and the classification of each site.
320 Annual mean NH_3 concentrations ranged from 0.3 to 13.1 $\mu\text{g N m}^{-3}$, with an overall
321 average value of 6.1 $\mu\text{g N m}^{-3}$. In NC, SE and SW, the NH_3 concentrations at the
322 urban sites (average for the three regions, $9.5 \pm 2.1 \mu\text{g N m}^{-3}$) were about 1/3 higher
323 than at the rural sites ($6.2 \pm 2.3 \mu\text{g N m}^{-3}$) and were almost twice of those at the
324 background sites ($4.8 \pm 1.4 \mu\text{g N m}^{-3}$), whereas in NE and NW NH_3 concentrations
325 were lower at the urban sites (average two regions, $5.5 \pm 3.2 \mu\text{g N m}^{-3}$) than at the
326 rural sites ($8.8 \pm 0.3 \mu\text{g N m}^{-3}$) but 4.6-times greater than at the background sites (1.2
327 $\pm 0.5 \mu\text{g N m}^{-3}$). Comparing land use types by region, annual NH_3 concentrations at
328 the rural sites in northern regions (NC, NE and NW) were approximately equal, which
329 on average were 1.8-times greater than the average of southern rural sites. In contrast,
330 annual NH_3 concentrations at urban and background sites ranked in the order: SW >
331 NC > NW > SE > TP > NE, and SW > NC > SE > NW > TP > NE, respectively (Fig.
332 3a). Annual mean NO_2 concentrations showed similar spatial variations (0.4 to 16.2
333 $\mu\text{g N m}^{-3}$) to those of NH_3 , and overall averaged 6.8 $\mu\text{g N m}^{-3}$. In the six regions, the
334 NO_2 concentrations at urban sites were 1.4-4.5 times higher than those at rural sites,
335 and were even 2.0-16.6 times higher than the background sites (except for SW). By

刪除的內容: over region and

刪除的內容: as listed in Table 1

刪除的內容: Among the six regions, the gaseous NH_3 concentrations decreased in the order of NC > SW > NW > SE > NE > TP. In NC, SE and SW, the NH_3 concentrations at the urban sites (average three regions, $9.5 \mu\text{g N m}^{-3}$) were slightly higher than at the rural sites ($6.2 \mu\text{g N m}^{-3}$). The annual mean NH_3 concentration across northern rural sites, on average, was 1.8-times greater than the average of southern rural sites

350 comparison among regions, annual mean NO_2 concentrations at rural sites in NC were
351 about 2.6-times higher than in NE and NW, and overall averaged NO_2 concentrations
352 in northern rural China (NC, NE and NW, $5.7 \pm 3.5 \mu\text{g N m}^{-3}$) were comparable to
353 those at southern rural sites (average of SE and SW, $5.1 \pm 0.1 \mu\text{g N m}^{-3}$). As for urban
354 and background sites, the annual mean NO_2 concentrations followed the order: NC >
355 NW > SE > SW > NE > TP, and SW > NC > SE > NE > NW > TP, respectively (Fig.
356 3b).

357 Annual mean HNO_3 concentrations were relatively low everywhere (from 0.1 to
358 $2.9 \mu\text{g N m}^{-3}$, averaging $1.3 \mu\text{g N m}^{-3}$). In all regions except NE and TP, the HNO_3
359 concentrations were highest at the urban sites (averages: $1.7\text{--}2.4 \mu\text{g N m}^{-3}$), followed
360 by the rural sites ($0.8\text{--}1.6 \mu\text{g N m}^{-3}$), and were lowest at the background sites ($0.2\text{--}1.1$
361 $\mu\text{g N m}^{-3}$). The HNO_3 concentrations were comparable for the same land use types
362 across northern and southern monitoring sites, on average, 1.8 vs. 1.8 , 1.2 vs. 1.0 , and
363 0.6 vs. $0.8 \mu\text{g N m}^{-3}$ at the urban, rural and background sites, respectively (Fig. 3c).

364 The annual mean concentrations of pNH_4^+ and pNO_3^- were in the ranges of $0.2\text{--}18.0$
365 $\mu\text{g N m}^{-3}$ (average $5.7 \mu\text{g N m}^{-3}$) and $0.2\text{--}7.7 \mu\text{g N m}^{-3}$ (average $2.7 \mu\text{g N m}^{-3}$),
366 respectively. Annual pNH_4^+ concentrations show a decreasing trend of urban > rural >
367 background in all regions (except NE), where relatively higher concentrations were
368 observed at the rural sites than the urban sites, and in SE, where no clear difference
369 were observed among three land use types (Fig. 3d). In contrast, annual
370 pNO_3^- concentrations showed a declining trend of urban > rural > background in all
371 regions (Fig. 3e). Overall, annual mean concentrations of both pNH_4^+ and pNO_3^- at
372 all land use types were both slightly higher in northern China (NC, NE and NW) than
373 in southern China (SE, SW and TP).

374 In total, annual mean concentrations of gaseous and particulate N_r in air were $1.3\text{--}47.0$
375 $\mu\text{g N m}^{-3}$ among all sampling sites. The total annual concentrations of measured N_r
376 generally decreased in the order of urban > rural > background in all regions except
377 NE (Fig. 3f).

378 3.2 Concentrations of N_r species in precipitation

379 The monthly VWM concentrations of inorganic N_r species at the forty-three sampling
380 sites during the study period ranged from 0.01 to 27.1 mg N L^{-1} for NH_4^+ -N and from
381 0.02 to 27.9 mg N L^{-1} for NO_3^- -N (Fig. S3, Supplement). The annual VWM
382 concentrations of NH_4^+ -N and NO_3^- -N across all sites were in the ranges of $0.2\text{--}4.3$
383 and $0.1\text{--}2.5 \text{ mg N L}^{-1}$, respectively, with averages of 1.6 and 1.3 mg N L^{-1} (Fig. 2b).
The urban-rural-background distributions of annual VWM concentrations of NH_4^+ -N

删除的内容: The highest NO_2 concentrations were found in NC, with an average value of $10.1 \mu\text{g N m}^{-3}$, 1.5-3.6 times greater than the averages of the other five regions. Both the urban and rural sites in NC had relatively high NO_2 concentrations (on average, 13.9 vs. $9.7 \mu\text{g N m}^{-3}$)

删除的内容: and ranked by order of NC > NW ≈ SW > SE > NE

删除的内容: in

删除的内容: China

删除的内容: The regional variation of annual pNH_4^+ concentrations was consistent with that of NH_3 , whereas annual pNO_3^- concentrations followed the order: NC > SE > SW > NE ≈ NW TP.

删除的内容: Annual

删除的内容: the

删除的内容: , compared with those in the other three regions

删除的内容: ; ranked in the order of NC > NW ≈ SW > SE > NE > TP

删除的内容: Comparing land use types, t

删除的内容: , as well as each N_r species,

删除的内容: S3, Supplement

删除的内容: S4

414 and NO_3^- -N were, respectively, fairly coincided with corresponding reduced (i.e. NH_3
415 and pNH_4^{\pm}) and oxidized N_r (i.e. HNO_3 and pNO_3^-) in all regions except NH_4^{\pm} -N in
416 SE and NO_3^- -N in NW (Figs. 3g and h). Conversely, the regional variations in annual
417 VWM concentrations of NH_4^{\pm} -N and NO_3^- -N for the three land use types were not
418 consistent with corresponding reduced and oxidized N_r , respectively. On a national
419 basis, the VWM concentrations of NH_4^{\pm} -N and NO_3^- -N were both decreased in the
420 order urban \geq rural $>$ background (Fig. 4b). The annual total inorganic N (TIN)
421 concentrations in precipitation across all sites were $0.4\text{--}6.0 \text{ mg N L}^{-1}$, decreasing from
422 urban to background sites in all regions (except NE) as well as on a national basis
423 (Figs. 3i and 4b).

424 3.3 Dry deposition of N_r species

425 The annual dry deposition fluxes of NH_3 , NO_2 , HNO_3 , pNH_4^{\pm} and pNO_3^- were in the
426 ranges of $0.5\text{--}16.0$, $0.2\text{--}9.8$, $0.2\text{--}16.6$, $0.1\text{--}11.7$ and $0.1\text{--}4.5 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, and averaged
427 8.2 , 3.2 , 5.4 , 3.2 and $1.5 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, respectively (Fig. 5a). The total dry N
428 deposition across all sites ranged from 1.1 to $52.2 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ (averaged 20.6 ± 11.2
429 $\text{kg N ha}^{-1} \text{ yr}^{-1}$). Gaseous N species were the primary contributors to total
430 dry-deposited N, ranging from 60% to 96%, despite of the missing HNO_3 data at a
431 few sites. In general, NH_3 was predominant N_r species in total dry N deposition and
432 accounted for 24–72%, compared with 1–43% from NO_2 and 9–37% from HNO_3 .
433 Comparing land use types in each region, spatial pattern of individual fluxes is fairly
434 consistent with that of their respective concentrations except that of NH_3 for NC, that
435 of NO_2 for SW, those of NO_2 and pNH_4^{\pm} for NW and those of almost all measured N_r
436 species for NE (Figs. 3a-e and 6a-e). Furthermore, a consistent picture is also seen
437 for the total flux (sum of fluxes of five N_r species) at each land use type (Figs. 5f and
438 6f). Among the six regions, regional variations of individual fluxes at each land use
439 type generally differed from those of their respective concentrations. Similarly, the
440 inconsistent behavior appeared for the total fluxes at urban and rural sites but not at
441 background site. On a national basis, there was no significant difference ($p>0.05$) in
442 the total dry N deposition fluxes between urban ($26.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) and rural (23.0
443 $\text{kg N ha}^{-1} \text{ yr}^{-1}$) sites, both of which were significantly higher than background site
444 ($10.1 \text{ kg N ha}^{-1} \text{ yr}^{-1}$). Also, a similar pattern was found for the dry deposition flux of
445 each N_r species among different land use types (Fig. 4c).

446 3.4 Wet/bulk deposition of N_r species

刪除的內容: The regional variations in NH_4^+ -N and NO_3^- -N were not totally consistent with ambient gaseous and particulate N_r (Figs. S2 and S4, Supplement). For example, monthly mean concentrations of NH_3 and pNH_4^{\pm} were significantly higher (both $p<0.05$) in NC than NW, whereas the opposite was observed for precipitation NH_4^+ -N. In addition, monthly mean pNO_3^- concentrations were significantly lower ($p<0.05$) in NE than SE, but significantly higher precipitation NO_3^- -N concentrations were found in NE. The annual VWM concentrations of NH_4^+ -N and NO_3^- -N across all sites were in the ranges of $0.2\text{--}4.3$ and $0.1\text{--}2.5 \text{ mg N L}^{-1}$, respectively, with averages of 1.6 and 1.3 mg N L^{-1} (Fig. 2b) and showing no significant difference ($p>0.05$) between them. Among regions, annual VWM concentrations ranked in the order of NW > NC > NE \approx SW \approx TP > SE for NH_4^+ -N, whereas the order was NC > NW > NE > SW > SE > TP for NO_3^- -N (Table 1). Annual total inorganic N concentrations in precipitation averaged 4.3 , 2.3 , 3.9 and 2.0 mg N L^{-1} in NC, NE, NW and SW respectively, and 1.9 mg N L^{-1} in both SE and TP

刪除的內容: 15

刪除的內容: 2

刪除的內容: 1

刪除的內容: 2

刪除的內容: 10

刪除的內容: 0

刪除的內容: 7.7

刪除的內容: 1

刪除的內容: 3.7

刪除的內容: 4

刪除的內容: 4a

刪除的內容: Comparing individual fluxes by region (Table 1), NC showed higher deposition levels for gaseous and particulate species. The deposition fluxes of gaseous species followed NC > SW > NE > SE > NW > TP for NH_3 , NC > SW > SE > NE \approx TP > NW for NO_2 , and NC > SE > SW > NE > NW for HNO_3 , while those of pNH_4^{\pm} and pNO_3^- were NC > SW > SE > NE > NW > TP and NC > SW > SE \approx TP > NW > NE, respectively. The total dry N deposition across all sites ranged from 1.0 to $44.1 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ (averaged $18.5 \text{ kg N ha}^{-1} \text{ yr}^{-1}$).

Gaseous N species were the primary contributors to total dry-deposited

548 Annual wet/bulk N deposition fluxes at the forty-three sites ranged from 1.0 to 19.1
549 kg N ha⁻¹ yr⁻¹ for NH₄⁺-N and from 0.5 to 20.1 kg N ha⁻¹ yr⁻¹ for NO₃⁻-N (Fig. 5b). 删除的内容: 4b
550 The annual wet/bulk deposition fluxes of NH₄⁺-N were, on average, 1.3 times those
551 of NO₃⁻-N. The total annual wet/bulk N (NH₄⁺-N+ NO₃⁻-N) deposition fluxes across
552 all the sites were 1.5-32.5 kg N ha⁻¹ yr⁻¹ (average 19.3 kg N ha⁻¹ yr⁻¹), with a large
553 spatial variation. Region variation of annual wet N deposition followed the order of
554 NC > SE > SW > NE > NW > TP for NH₄⁺-N, and SE > NC > SW > NE > TP > NW
555 for NO₃⁻-N, both of which differed from their orders of annual VWM concentration,
556 reflecting differences in annual precipitation amount. Annual total wet/bulk N
557 deposition fluxes averaged 24.6, 13.6, 7.4, 24.4, 17.6 and 7.6 kg N ha⁻¹ yr⁻¹,
558 respectively, in NC, NE, NW, SE, SW and TP (Fig. 5b). At national scale, annual
559 wet/bulk deposition fluxes of total inorganic N and/or each N_r species at urban and
560 rural sites were comparable but significantly higher (p<0.05) than those at
561 background sites (Fig. 4d).

562 3.5 Total annual dry and wet deposition of N_r species

563 The total (dry plus wet/bulk) annual N deposition at the 43 sites ranged from 2.9 to
564 83.3 kg N ha⁻¹ yr⁻¹ (average 39.9 kg N ha⁻¹ yr⁻¹) for the period, with 23-83%
565 dry-deposited (Fig. 5c). Separated by land use types, total annual mean N deposition
566 fluxes were 49.7, 44.3 and 26.0 kg N ha⁻¹ at the urban, rural and background sites,
567 respectively, reflecting different anthropogenic impacts. In our network, the NH_x (i.e.
568 wet/bulk NH₄⁺-N deposition plus dry deposition of NH₃ and particulate NH₄⁺)/NO_y
569 (wet/bulk NO₃⁻-N deposition plus dry deposition of NO₂, HNO₃ and particulate NO₃⁻)
570 ratio at urban sites (from 0.8 to 1.8, averaging 1.2) was not significantly different
571 (p>0.05) from rural (from 0.5 to 2.7, averaging 1.3) and background (from 1.0 to 2.5,
572 averaging 1.6) sites. On a regional basis, the relative importance of dry vs. wet/bulk N
573 deposition to the total deposition were different in the six regions, 57% vs. 43% in NC,
574 54% vs. 46% in NE, 61% vs. 39% in NW, 42% vs. 58% in SE, 55% vs. 45% in SW,
575 and 50% vs. 50% in TP (Fig. 7).

576 4. Discussion

577 4.1 Concentration of N_r species in air and precipitation

578 China is facing serious atmospheric N_r pollution induced by anthropogenic N_r
579 emissions (Liu et al., 2011, 2013). The present study shows that monthly N_r
580 concentrations of species, through comparisons among regions, have a distinct spatial
581 variability with values significantly higher (all p<0.05) in NC and significantly lower

删除的内容: 4b

删除的内容: 75.2

删除的内容: 37.8

删除的内容: 22-82

删除的内容: S5, Supplement

删除的内容: The contribution of reduced N deposition (NH_x, that is, wet NH₄⁺-N deposition plus dry deposition of NH₃ and pNH₄⁺) to the total N deposition (39-76%) was, on average, 1.4 times greater than that of oxidized N deposition (NO_y; wet NO₃⁻-N deposition plus dry deposition of NO₂, HNO₃ and pNO₃⁻). On a regional basis, the total deposition fluxes across the six regions were in the range of 14.9-53.0 kg N ha⁻¹ yr⁻¹, with 54-66% in the form of NH_x

删除的内容: The

删除的内容: 54

删除的内容: 46

删除的内容: 49

删除的内容: 51

删除的内容: 59

删除的内容: 41

删除的内容: 38

删除的内容: 62

删除的内容: 52

删除的内容: 48

删除的内容: 49

删除的内容: 51

删除的内容: 5

删除的内容: Separated by land use types, total annual mean N deposition fluxes were 47.0, 42.0 and 24.7 kg N ha⁻¹ yr⁻¹ at the urban, rural and grassland sites, respectively, reflecting different anthropogenic impacts. ■

620 (all $p<0.05$) in TP. Annual mean NH_3 and NO_2 concentrations at most sampling sites
621 are in good agreement with the emission inventory and satellite observations by [Gu et](#)
622 [al. \(2012\)](#), who reported NH_3 hotspots in the North China Plain and South Central
623 China such as Jiangsu and Guangdong provinces, while NO_x hotspots were mainly in
624 more developed regions such as the Jing-Jin-Ji (Beijing-Tianjin-Hebei), the Yangtze
625 River Delta and the Pearl River Delta. Our results confirm that NC, which consumes
626 large quantities of fertilizers (for food production) and fossil fuel (for energy supply)
627 ([Zhang et al., 2010](#)) experiences the most serious N_r pollution in China; TP is the least
628 polluted region due to much less human activity. When considering different land use
629 types, the average total annual N_r concentrations ranked urban > rural > background,
630 with significant differences (all $p<0.05$) among them, despite site-to-site variability
631 within regions. This reflects the dominant role of human activity on atmospheric N_r .

632 For individual N_r species, higher mean concentrations were observed at the urban
633 sites than at rural and background sites ([Fig. 4a](#)). Higher NH_3 concentration in urban
634 areas may be associated with NH_3 emissions from biological sources, such as human,
635 sewage disposal systems and refuse containers ([Reche et al., 2002](#)). In addition, NH_3
636 can be produced by over-reduction of NO in automobile catalytic converters ([Behera](#)
637 [et al., 2013](#)), increasing ambient NH_3 concentrations in urban areas with high traffic
638 densities. Between 2006 and 2013, the number of civil vehicles increased from 2.39 to
639 5.17 million in Beijing and from 0.46 to 1.72 million in Zhengzhou ([CSY, 2007-2014](#)),
640 which is likely to have resulted in elevated NH_3 emissions. Higher NO_2
641 concentrations are expected in urban areas due to NO_x emissions from the combustion
642 of fossil fuels ([Li and Lin, 2000](#)), and also lead to higher HNO_3 concentrations in
643 urban areas via NO_2 oxidation.

644 The higher pNH_4^+ and pNO_3^- concentrations observed at urban sites mainly resulted
645 from the high concentrations at the northern urban sites (NC1~3, NW1 and NW2)
646 ([Fig. 2a](#) and [Fig. S2d, e](#) in Supplement). This is probably due to the fact that cities in
647 northern China, such as Beijing and Zhengzhou in NC and Urumqi in NW, are being
648 surrounded by intensive agricultural production. Rapid developments along with
649 urbanization in suburban areas shorten the transport distance between NH_3 emitted
650 from agriculture and SO_2 and NO_x emitted from fossil fuel combustion ([Gu et al.,](#)
651 [2014](#)). This allows the pollutants to react more readily and form aerosols (e.g. $\text{PM}_{2.5}$),
652 leading to high concentrations of pNH_4^+ and pNO_3^- near or within cities. This
653 explanation is supported by the recent [MEPC \(2013\)](#) report that the annual average

删除的内容: S3, Supplement

删除的内容: 1c

删除的内容: d

657 PM_{2.5} concentrations in the cities of Beijing, Zhengzhou and Urumqi were more than
658 twice the Chinese annual mean PM_{2.5} standard value of 35 $\mu\text{g m}^{-3}$, whereas cities such
659 as Guangzhou and Xining with little surrounding agricultural production had lower
660 PM_{2.5} concentrations. In China's 12th Five Year Plan (2011–2015), nationwide
661 controls on NO_x emissions will be implemented along with controls on SO₂ and
662 primary particle emissions (Wang et al., 2014). In order to better improve the regional
663 air quality for metropolitan areas; our results suggest that strict control measures on
664 both NH₃ and NO_x would be beneficial in NC, at least in the suburban areas.

665 Rural sites in this study also had relatively high concentrations of all measured N_r
666 species in air, altogether ranking in the order of NC > NE > NW > SE > SW (Fig. 3f).
667 The higher concentrations in northern China are mainly due to the combined effect of
668 high NH₃ emissions from N fertilized farmland (Zhang et al., 2008a) and urban air
669 pollution (e.g. NO₂, HNO₃, pNH₄⁺ and pNO₃⁻) transported from population centers to
670 the surrounding rural areas (Luo et al., 2013). The lower air concentrations of N_r
671 species at background sites can be ascribed to the lack of both substantial agricultural
672 and industrial emissions. Additionally, higher wind speeds occurred at some
673 background areas (e.g. NC12, NC13 and NW4) (Table S1, Supplement), favoring the
674 dispersion of atmospheric pollutants.

675 We found that regional variations in N_r concentrations in precipitation were not fully
676 in accordance with ambient N_r concentrations (see Sect. 3.2) when assessed by land
677 use types. It is commonly accepted that N concentrations in precipitation are affected
678 by the amount of precipitation (Yu et al., 2011). Negative correlations between
679 precipitation amount and monthly volume-weighted concentrations of NH₄⁺-N and
680 NO₃⁻-N were obtained by fitting exponential models in all six regions (Fig. S4,
681 Supplement), indicating a dilution effect of rainwater on inorganic N concentration.
682 The relationships were not significant ($p>0.05$) in NW and TP, which is probably
683 caused by low precipitation amounts at or near the sampling sites (Fig. S5,
684 Supplement). Nevertheless, dilution could explain some of the regional differences in
685 precipitation N concentrations.

686 4.2 Dry and wet/bulk deposition of N_r species

687 A significant ($p<0.001$) positive correlation was observed between annual dry N
688 deposition and total annual concentrations of atmospheric N_r species across all sites
689 (Fig. S6, Supplement). Therefore, higher concentrations of N_r species at urban sites
690 led to higher dry deposition rates compared with rural and background sites, mainly

删除的内容: Rural sites in this study also had relatively high concentrations of NO₂, HNO₃, pNH₄⁺ and pNO₃⁻, especially in northern China

删除的内容: This is

删除的内容: the VWM concentrations of NH₄⁺-N and NO₃⁻-N were significantly higher (both $p<0.05$) in northern China than in southern China and TP (Table 1), although the differences were not significant ($p>0.05$) when comparing NE and NW with SW. This was due to multiple factors such as relative high N_r levels in northern China balanced by high rainfall in southern China (Figs. S2 and S6, Supplement). However,

删除的内容: S7

删除的内容: S8

删除的内容: In NC higher concentrations of N_r species led to higher dry deposition rates. In TP, a remote region of China, atmospheric N_r concentrations were lower than those in the other five regions, and thus dry deposition was also lower than in the other regions. Among land use types the highest total N deposition was observed at urban sites

720 attributable to elevated N_r emissions from urban sources (e.g., non-agricultural NH_3
721 emissions from landfills, wastewater treatments and NO_x emissions from traffic
722 vehicles and power plants) and rapid development of intensive agricultural production
723 in suburban areas surrounding cities; regardless of differences in dry deposition
724 velocities of various N_r species in different land use types. At the national scale, dry N
725 deposition rates contributed almost half 23-83%, averaging 52% of the total
726 inorganic N deposition, indicating the importance of dry deposition monitoring for
727 comprehensive N deposition quantification.

728 In this study, regional variations of annual wet/bulk N deposition fluxes of NH_4^+-N , NO_3^- -N and their sum
729 showed different spatial patterns to those of corresponding
730 annual VWM concentrations of them in precipitation (see Sect. 3.4). These findings,
731 together with no significant differences ($p>0.05$) in total annual wet/bulk N deposition
732 between NC and SE, reflect, not surprisingly, that regional wet/bulk N deposition is
733 dependent not only on N_r concentrations in precipitation but also on annual rainfall
734 amounts. As shown in Fig. 8, annual wet/bulk deposition fluxes of NH_4^+-N and
735 NO_3^- -N both showed significantly positive correlations with the corresponding annual
736 VWM concentrations of inorganic N and annual precipitation amount, especially for
737 NH_4^+-N , that more significant was found for precipitation amount than concentration.
738 The measured wet/bulk N deposition rates (average $19.3 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) were almost
739 twice the earlier average wet deposition value of $9.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for period of
740 1990-2003 in China (Lü and Tian, 2007). Our results show similar regional patterns
741 and comparable magnitudes to those measured in the 2000s in China as reported by
742 Jia et al. (2014) ($\sim 14 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, wet deposition) and Liu et al. (2013) ($\sim 21 \text{ kg N}$
743 $\text{ha}^{-1} \text{ yr}^{-1}$, bulk deposition).

744 The NH_4^+-N/NO_3^-N ratio in wet/bulk deposition can be used to indicate the relative
745 contribution of N_r from agricultural and industrial activities to N deposition (Pan et al.,
746 2012; Zhan et al., 2015; Zhu et al., 2015) because the major anthropogenic source of
747 NH_4^+-N in precipitation is NH_3 volatilized from animal excrement and the application
748 of nitrogenous fertilizers in agriculture, while anthropogenic sources of NO_3^-N in
749 precipitation originate from NO_x emitted from fossil fuel combustion in transportation,
750 power plant and factories (Cui et al., 2014). In this study the overall annual average
751 ratio of NH_4^+-N/NO_3^-N in wet/bulk deposition was 1.3 ± 0.5 (standard deviation),
752 with an increasing (but not significant) trend for urban (1.2 ± 0.6), rural (1.3 ± 0.4),
753 and background (1.5 ± 0.4) sites (Fig. 5b). Our measured ratio was slightly lower than

删除的内容: (22)

删除的内容: 82

删除的内容: 48

删除的内容: the

删除的内容: a

删除的内容: that

删除的内容: annual mean total N_r concentrations

删除的内容: 6

删除的内容: (Fig. 6a, b)

删除的内容: Fahey et al., 1999

765 average values of 1.6 in Europe (Holland et al., 2005) and 1.5 in the United States (Du
766 et al., 2014), and similar to an average value (1.2) reported elsewhere for 2013 in
767 China (Zhu et al., 2015). Based on these findings, we conclude that NH_4^+ -N from
768 agricultural sources still dominates wet/bulk N deposition but the contribution has
769 decreased drastically between the 1980s and the 2000s (Liu et al., 2013). Reduced N
770 also contributed more than oxidized N to the total N deposition, and the ratio of
771 reduced to oxidized N deposition overall averaged 1.6 ± 0.7 in dry deposition and 1.4
772 ± 0.4 in the total deposition (Fig. 5a, c).

773 The overall mean annual deposition fluxes (wet/bulk plus dry) of NH_x and NO_y for
774 the period 2010-2014 was graded into five levels and plotted on maps showing the
775 spatial distribution of NH_3 and NO_x emissions (Fig. 9a, b). The anthropogenic
776 emission data of NH_3 and NO_x for the year 2010 in China were obtained from
777 the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model
778 (<http://www.iiasa.ac.at/>), and emission details for the 33 provinces of China are
779 summarized in Table S5 of the Supplement. The spatial patterns of estimated NH_x
780 and NO_y deposition compare reasonably well with the regional patterns of NH_3 and
781 NO_x emissions, respectively, even though the emission data were estimated at the
782 province scale. With emission data, N deposition can be used to distinguish regional
783 differences in reactive N_r pollution. Across six regions, significantly positive
784 correlations were found between NH_3 emissions and NH_x deposition fluxes
785 ($R^2=0.888$, $p<0.01$) (Fig. 9c), and between NO_x emissions and NO_y deposition fluxes
786 ($R^2=0.805$, $p<0.05$) (Fig. 9d), implying that the N deposition fluxes to the six regions
787 are strongly dependent on the spatial pattern of anthropogenic N_r emissions among
788 the regions. The slopes of the relationships of NH_x vs NH_3 , and NO_y vs NO_x were
789 0.51 and 0.48 , which could be roughly interpreted that NH_x and NO_y deposition
790 fluxes represent about 51% NH_3 and 48% NO_x emissions, respectively.

791 For all Chinese regions except NC we cannot compare our data with other studies
792 because observations for different pollution climate sites in other regions are lacking.
793 For NC, the overall average total N deposition was $56.2 \pm 14.8 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, 13-32%
794 lower than the previously estimated values in Northern China (Pan et al., 2012; Luo et
795 al., 2013). This difference may reflect differences in the numbers of sampling sites,
796 land use type and assumed dry deposition velocities. As expected, our estimated
797 deposition was substantially higher than the results of Lü and Tian (2007), who
798 suggested that the total N deposition ranged from 13 to 20 $\text{kg N ha}^{-1} \text{ yr}^{-1}$ in NC. This

删除的内容: There was no significant difference ($p=0.385$) between annual mean ratios of NH_4^+ -N/ NO_3^- -N among northern China, southern China and TH

删除的内容: 1.7

删除的内容: 1.4

删除的内容: 4a and Fig. S5 in the online Supplement

删除的内容: 7a

删除的内容: 883

删除的内容: 7c

删除的内容: 796

删除的内容: 7d

删除的内容: 50

删除的内容: 43

删除的内容: 50

删除的内容: 43

删除的内容: 53.0 ± 13.6

817 is attributed to their omission of many major species (e.g., gaseous NH₃, HNO₃ and
818 particulate N_r) from their data.

819 Compared to dry and wet N deposition fluxes estimated by CASTNET in the United
820 States, EMEP in Europe, and EANET sites in Japan, the average values of dry and
821 wet/bulk deposition in China are much higher (Table 1). In addition, on the basis of
822 2001 ensemble-mean modeling results from 21 global chemical transport models (Vet
823 et al., 2014), three regions of the globe where total deposition is very high: western
824 Europe (with levels from 20.0 to 28.1 kg N ha⁻¹yr⁻¹); South Asia (Pakistan, India and
825 Bangladesh) from 20.0 to 30.6 kg N ha⁻¹yr⁻¹ and East Asia from 20 to 38.6 kg N
826 ha⁻¹yr⁻¹ in eastern China (the global maximum). Extensive areas of high deposition
827 from 10 to 20 kg N ha⁻¹yr⁻¹ appear in the eastern U.S. and southeastern Canada as
828 well as most of central Europe. Small areas with total deposition of N from 10 to 20
829 kg N ha⁻¹yr⁻¹ are present, and very large areas of the continents have deposition from
830 2 to 10 kg N ha⁻¹yr⁻¹. In contrast, the present study shows much higher total
831 deposition flux (39.9 kg N ha⁻¹yr⁻¹) at a national scale. In China, the consumption
832 rates of chemical fertilizer and fossil fuel have increased 2.0- and 3.2-fold,
833 respectively, between the 1980s and the 2000s (Liu et al., 2013). As a result, the
834 estimated total emission of NH₃ reached 9.8 Tg in 2006, contributing approximately
835 15% and 35% to the global and Asian NH₃ emissions (Huang et al., 2012), and NO_x
836 emissions from fossil fuel combustion increased from 1.1 Tg N in 1980 to about 6.0
837 Tg N in 2010 (Liu et al., 2013). The increasing NO_x and NH₃ emissions in China led
838 to higher atmospheric N deposition than those observed in other regions.

839 According to Endo et al. (2011), the low dry deposition fluxes in CASTNET, EMEP
840 and Japan's EANET network are due at least partly to low concentrations of N_r
841 compounds and/or the omission of dry deposition fluxes of major N_r species (e.g.,
842 NO₂ and NH₃) from the data. Meanwhile, the low wet deposition fluxes at these
843 networks are likely to be a result of the combined effects of low amounts of
844 precipitation and, especially, low atmospheric N_r concentrations. In addition,
845 emissions of nitrogen compounds in other parts of the world are declining. In the U.S.,
846 for example, NO_x emissions from the power sector and mobile sources were reduced
847 by half from 1990 to 2010 (Xing et al., 2013), which explained the declined N
848 deposition fluxes during period of 1990-2009 observed at 34 paired dry and wet
849 monitoring sites in the eastern US (Sickles II et al., 2015). In Europe, the total NO_x
850 and NH₃ emissions decreased by 31% and 29% from 1990 to 2009 (Torseth et al.,

刪除的內容: 2

刪除的內容: NO_x emissions from the electric power industry and from vehicles were reduced from 1990 to 2007 (and continue to decline), which explained the declined N deposition fluxes observed at CASTNET (MACTEC, 2008)

刪除的內容: In EMEP, the total NO_x emissions decreased from 2006 to 2007 in the 27 EMEP countries (Benedictow et al., 2009)

859 | 2012), N deposition has decreased or stabilized in the United States and Europe since
860 | the late 1980s or early 1990s with the implementation of stricter legislation to reduce
861 | emissions (Goulding et al., 1998; Holland et al., 2005). However, wet deposition of
862 | ammonia, which is not regulated, has increased in recent years in the U.S. (Du et al.,
863 | 2014).

864 | *4.3 Implications of monitoring N_r concentration and deposition on regional N
865 | deposition simulation*

866 | Our results show that atmospheric concentrations and deposition of N_r in China were
867 | high in the 2000s, although the government has made considerable efforts to control
868 | environmental pollution by improving air quality in mega cities during and after the
869 | 2008 Beijing Summer Olympic Games (Wang et al., 2010; Chan and Yao, 2008).

870 | Ideally, the spatial distribution of monitoring sites should reflect the gradients in the
871 | concentrations and deposition fluxes of atmospheric N_r species. Given the fact that the
872 | arithmetic averages used in this study cannot give a completely accurate evaluation of
873 | N_r levels for the regions of China due to the limited numbers of monitoring sites and
874 | ecosystem types, it is important to develop and improve the quantitative methods for
875 | determining N deposition across China.

876 | Numerical models are very useful tools to quantify atmospheric N deposition
877 | (including both spatial and temporal variations), but a challenge to the modeling
878 | approaches is that observations to validate the simulated concentrations and
879 | deposition fluxes are often lacking. In our study 43 monitoring sites were selected in a
880 | range of ecosystem types to provide more representative regional information on
881 | atmospheric N deposition in China. Although those measurements cannot define all
882 | aspects of N deposition across different regions, they add substantially to existing
883 | knowledge concerning the spatial patterns and magnitudes of atmospheric N
884 | deposition. The present measurements will be useful for better constraining emission
885 | inventories and evaluating simulations from atmospheric chemistry models. In future
886 | studies we will use models (e.g., FRAME, Dore et al., 2012) integrated with
887 | measurements from our monitoring network to fully address the spatial-temporal
888 | variations of atmospheric N deposition and its impacts on natural and semi-natural
889 | ecosystems at the regional/national level.

890 | *4.4 Uncertainty analysis of the N dry and wet deposition fluxes*

891 | The dry deposition fluxes were estimated by combining measured concentrations with
892 | modeled V_d. As summarized in Table S4, our estimates of dry deposition velocities

897 for different N_r species are generally consistent with the estimates in previous studies
898 (e.g., Flechard et al., 2011; Pan et al., 2012). Some uncertainties may still exist in the
899 inputs for dry deposition modeling. For example, underlying surface parameters (e.g.,
900 surface roughness length and land type) strongly affect dry deposition through their
901 effect on both deposition velocity and the absorbability of the ground surface to each
902 of the gaseous and particulate N_r species (Loubet et al., 2008). In addition, there is
903 uncertainty in the deposition fluxes for both pNH_4^+ and pNO_3^- in our network,
904 resulting from the difference between the cut-off sizes of particles in the samplers and
905 that defined in the modeled V_d which were calculated for atmospheric $PM_{2.5}$ in
906 GEOS-Chem model. For example, the cut-off sizes of the samples can collect also
907 coarse NO_3^- particles (e.g. calcium nitrate) but should have little effect on NH_4^+
908 particles (mainly in the fine scale $<1\mu m$) (Tang et al., 2009), resulting in an
909 underestimation of pNO_3^- deposition. Furthermore, NH_3 fluxes over vegetated land
910 are bi-directional and the net direction of this flux is often uncertain. A so-called
911 canopy compensation point was used in previous studies (Sutton et al., 1998) to
912 determine the direction of the NH_3 flux. Since the principle of bi-directional NH_3
913 exchange was not considered in this study, NH_3 deposition may be overestimated at
914 rural sites with relatively high canopy compensation points (e.g. up to $5\mu g N m^{-3}$) due
915 to fertilized croplands or vegetation (Sutton et al., 1993). On the other hand, the total
916 dry deposition flux in this study may be underestimated due to omission of the
917 dry-deposited organic N species in our network and missing HNO_3 data at very few
918 sites as noted earlier (see Sect. 2.2). The organic N species have been found as
919 important contributors to the N dry deposition. For example, PAN accounted for 20%
920 of the daytime, summertime NO_y ($NO + NO_2 + HNO_3 + NO_3^- + PAN$) dry deposition
921 at a coniferous forest site (Turnipseed et al., 2006). However, the contribution of PAN
922 and other known atmospheric organic nitrates to total N_r inputs must be minor on the
923 annual time scale, as reported by Flechard et al. (2012). In previous work, dry
924 deposition flux was inferred from atmospheric N_r concentrations and a
925 literature-based annual mean deposition velocity (Shen et al., 2009), or reported by
926 Luo et al. (2013) who did not consider the different dry deposition velocities of
927 various N_r species among different land use types. Clearly, in this study we have
928 greatly improved the estimation of dry deposition, but further work is still required to
929 increase the reliability and accuracy of N dry deposition values.

930 Since wet/bulk deposition was measured directly, the reported fluxes are considered

删除的内容: Thus,

删除的内容: some

删除的内容: arise

删除的内容: Dry deposition velocities of N_r in this study were only modeled for 2012 (The production of GEOS-5 meteorological data ended in May 2013). We used monthly mean V_d values for 2012 for corresponding months in other years at each site. This may also lead to uncertainty in our dry deposition estimation while small differences in monthly dry deposition velocities of N_r between different years were reported at ten sites (~10%) in the northern China (Pan et al., 2012) and at a forest site (~11%) in southern China (Fan et al., 2009).

删除的内容: Although we have improved the estimation of dry deposition greatly compared with previous work (e.g., Shen et al., 2009; Luo et al., 2013), further work is still required to increase the reliability and accuracy of N dry deposition values

956 more accurate than dry deposition fluxes but still some uncertainties exist. On one
957 hand, the estimated fluxes obtained from the open precipitation samplers contain
958 contributions from wet plus unquantifiable dry deposition (including both gases and
959 particles) and therefore likely overestimate actual wet deposition (Cape et al., 2009).
960 For example, our previous research showed that annual unquantifiable dry deposition
961 (the difference between bulk and wet deposition, approx. 6 kg N ha^{-1} on average)
962 accounted for 20% of bulk N deposition based on observations at three rural sites on
963 the North China Plain (Zhang et al., 2008b). This contribution increased to 39% in
964 urban areas based on a recent measurement (Zhang et al., 2015). On the other hand,
965 dissolved organic N compounds, which have been observed to contribute to be around
966 25-30% of the total dissolved nitrogen in wet deposition around the world (Jickells et
967 al., 2013) and approximately 28% of the total atmosphere bulk N deposition in China
968 (Zhang et al., 2012b), were not considered in the present study. Their exclusion here
969 would contribute to an underestimation of the total wet N deposition.

970 Although the NNDMN is the only long-term national deposition network to monitor
971 both N wet/bulk and dry deposition in China till now, large areas of the country or
972 islands lack of sampling points may be missing hotspots or pristine sites of N
973 deposition. The implementation of an adequate monitoring program is also difficult at
974 present in some regions (e.g., northwest China and Tibetan Plateau). To address this
975 issue, more new monitoring sites, covering regions with both extremely low and high
976 N_r emissions, should be set up in the NNDMN in future work.

977 **Conclusions**

978 Our study represents the first effort to investigate inorganic dry and wet/bulk N
979 deposition simultaneously, based on a nationwide monitoring network in China. We
980 consider this unique dataset important not only for informing policy-makers about the
981 abatement of pollutant emissions and ecosystem protection but also to validate model
982 estimations of N deposition at the regional/national scale in China. The major results
983 and conclusions are as follows.

984 1. Distinct spatial variability in annual mean concentrations of N_r species in air and
985 precipitation was observed, with different regional variations based on land use
986 type across the six regions. On a national basis, the order of total concentrations of
987 N_r species, as well as each species, was urban > rural > background.

删除的内容: averaged total N_r concentrations following the order of
NC > NW \approx SW > SE > NE > TP

删除的内容: .

删除的内容: The

删除的内容: based on land use type

994 2. Large spatial variations were observed for both dry and wet/bulk N deposition. The
995 spatial patterns of dry and wet/bulk deposition both followed urban > rural >
996 background at the national scale. Dry N deposition correlated well with total
997 concentrations of N_r in the air, but differences were found between patterns of
998 wet/bulk N deposition and the N_r concentration in precipitation. This reflects the
999 combining effect of both N_r concentrations and precipitation amounts on regional
1000 wet/bulk N deposition.

删除的內容: The spatial pattern of dry deposition followed NC > SW > SE > NE > NW > TP, whereas the pattern was NC > SE > SW > NE > TP > NW for wet N deposition.

1001 3. Spatial distribution of total annual N deposition fluxes across all sites compared
1002 well with the spatial pattern of nitrogen emissions at the regional level. When
1003 considering land use type, the total N deposition was highest at urban sites,
1004 followed by rural sites and background sites, mainly attributable to N_r emissions
1005 from urban sources and rapid development of intensive agricultural production in
1006 suburban areas.

删除的內容: the dependence of regional wet N deposition on both N_r concentration and precipitation amounts.

删除的內容: Total annual N regional deposition fluxes followed NC > SE SW > NE > NW > TP, which

1007 4. Dry deposition fluxes of N_r species on average contributed 52% of the total N
1008 deposition (39.9 kg N ha⁻¹ yr⁻¹) across all sites, indicating the importance of dry
1009 deposition monitoring for a complete N deposition assessment at the national
1010 scale.

删除的內容: 48

删除的內容: 37.8

1011 5. Annual average ratios of reduced N/oxidized N in dry and wet/bulk deposition
1012 were respectively 1.6 and 1.3, and 1.4 for the total deposition. It shows that
1013 reduced N, mainly from agricultural sources, still dominates dry, wet/bulk, and
1014 total N deposition in China.

删除的內容: 1.7

1016 Acknowledgments

1017 This study was supported by the Chinese National Basic Research Program
1018 (2014CB954202), the China Funds for Distinguished Young Scholars of NSFC
1019 (40425007), and the National Natural Science Foundation of China (31121062,
1020 41321064 and 41405144). The authors thank all technicians at monitoring sites in
1021 NNDMN.

1022
1023

1039 **References**

1040 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q.,
1041 Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric
1042 chemistry with assimilated meteorology: Model description and evaluation, *J.
1043 Geophys. Res.*, 106(D19), 23,073 –23,096, 2001.

1044 Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the
1045 atmosphere: a review on emission sources, atmospheric chemistry and deposition
1046 on terrestrial bodies, *Environ. Sci. Pollut. Res.*, 20, 8092–8131,
1047 doi:10.1007/s11356-013-2051-9, 2013.

1048 ~~Cape, J.N., Van Dijk, N., and Tang, Y.S.: Measurement of dry deposition to bulk
1049 collectors using a novel flushing sampler. *J. Environ. Monit.*, 11, 353-358,
1050 doi: 10.1039/B813812E, 2009.~~

1051 Chan, C.K. and Yao, X.H.: Air pollution in mega cities in China, *Atmos. Environ.*, 42,
1052 1–42, doi: 10.1016/j.atmosenv.2007.09.003, 2008.

1053 Chen, D., Wang, Y. X., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.:
1054 Regional CO pollution in China simulated by high-resolution nested-grid
1055 GEOS-Chem model, *Atmos. Chem. Phys.*, 11, 3825-3839, 2009.

1056 Chen, X. Y. and Mulder, J.: Atmospheric deposition of nitrogen at five subtropical
1057 forested sites in South China, *Sci. Total Environ.*, 378, 317–330, doi:
1058 10.1016/j.scitotenv.2007.02.028, 2007.

1059 Clark, C. M. and Tilman, D.: Loss of plant species after chronic low-level nitrogen
1060 deposition to prairie grasslands, *Nature*, 451, 712–715, doi:10.1038/nature06503,
1061 2008.

1062 ~~Clarke, J. F., Edgerton, E. S., and Martin, B. E.: Dry deposition calculations for the
1063 Clean Air Status and Trends Network, *Atmos. Environ.*, 31, 3667-3678, 1997.~~

1064 CSY (China Statistical Yearbook), 2007-2014. Available at: <http://www.stats.gov.cn>.

1065 Cui, J., Zhou, J., Peng, Y., He, Y. Q., Yang, H., Mao, J. D., Zhang, M. L., Wang, Y. H.,
1066 and Wang, S. W.: Atmospheric wet deposition of nitrogen and sulfur in the
1067 agroecosystem in developing and developed areas of Southeastern China, *Atmos.
1068 Environ.*, 89, 102–108, doi:10.1016/j.atmosenv.2014.02.007, 2014.

删除的内容: Benedictow, A., Fagerli, H., Gauss, M., Jan E., Tyro, S., Nyri, A., Simpson, D., Steensen, B. M., Klein, H., Valdebenito, A., Wind, P., Kirkevag, A., Griesfeller, J., Bartnicki, J., Olivie, D., Grini, A., Iversen, T., Semeena, V., Fagerli, H., Aas, W., Hjellbrekke, A. G., Mareckova, K., Wankmuller, R., Schneider, P., Solberg, S., Svendby, T., Liu, L., Posh, M., Vieno, M., Reis, S., Kryza, M., Werner, M., and Walaszek, K.: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2007. EMEP Report 1/2009. The Norwegian Meteorological Institute, Oslo, Norway, pp. 19–28, 2009. ■

1089 Dentener, F., Drevet, J., Lamarque, J. F., Bey, L., Eickhout, B., Fiore, A.
1090 M. Hauglustaine, D., Horowitz, L. W., Krol, M., and Kulshrestha, U. C.:
1091 Nitrogen and sulfur deposition on regional and global scales: a multimodel
1092 evaluation, *Global Biogeochemical Cy.*, 20, GB4003, doi: 10.1029/2005GB002672,
1093 2006.

1094 Dore, A.J., Kryza, M., Hall, J. Hallsworth, S., Keller, V., Vieno, M. and Sutton, M.A.:
1095 The influence of model grid resolution on estimation of national scale nitrogen
1096 deposition and exceedance of critical loads, *Biogeosciences*, 9, 1597-1609, 2012.

1097 Du, E. Z., Vries, W. D., Galloway, J. N., Hu, X. Y., and Fang, J. Y.: Changes in wet
1098 nitrogen deposition in the United States between 1985 and 2012, *Environ. Res.*
1099 *Lett.*, 9, 095004, doi:10.1088/1748-9326/9/9/095004, 2014.

1100 EEA: Air Quality in Europe-2011 Report. Technical Report 12/2011. EEA,
1101 Kopenhagen, 2011.

1102 Ellis, R. A., Jacob, D. J., Sulprizio, M. P., Zhang, L., Holmes, C. D., Schichtel, B. A.,
1103 Blett, T., Porter, E., Pardo, L. H., and Lynch, J. A.: Present and future nitrogen
1104 deposition to national parks in the United States: critical load exceedances, *Atmos.*
1105 *Chem. Phys.*, 13, 9083-9095, doi:10.5194/acp-13-9083-2013, 2013.

1106 Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., and Sawada, K.:
1107 Regional characteristics of dry deposition of sulfur and nitrogen compounds at
1108 EANET sites in Japan from 2003 to 2008, *Atmos. Environ.*, 45,
1109 1259–1267, doi:10.1016/j.atmosenv.2010.12.003, 2010.

1110 Erisman, J. W., Vermeulen, A., Hensen, A., Flechard, C., Dammgen, U., Fowler, D.,
1111 Sutton, M., Grunhage, L., and Tuovinen, J.P.: Monitoring and modelling of
1112 biosphere/atmosphere exchange of gases and aerosols in Europe, *Environ. Pollut.*,
1113 133, 403–413, doi:10.1016/j.envpol.2004.07.004, 2005.

1114 Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A.,
1115 Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry
1116 deposition of reactive nitrogen to European ecosystems: a comparison of inferential
1117 models across the NitroEurope network, *Atmos. Chem. Phys.*, 11,
1118 2703–2728, doi:10.5194/acp-11-2703-2011, 2011.

删除的内容: ■

Fahey, T. J., Williams, C. J.,
Rooney-Varga, J. N., Cleveland, C. C.,
Postek, K. M., Smith, S. D., and
Bouldin, D. R.: Nitrogen deposition in
and around an intensive agricultural
district in central New York, *J. Environ.*
Qual., 28, 1585–1600,
doi:10.2134/jeq1999.00472425002800
050025x, 1999. ■
Fang, J. L., Hu, Z. Y., Wang, T. J.,
Zhou, J., Wu, C. Y. H., and Xia, X.:
Atmospheric inorganic nitrogen
deposition to a typical red soil
forestland in southeastern China,
Environ. Monit. Assess., 159,
241–253,
doi:10.1007/s10661-008-0626-6,
2009.

1138 Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J.,
1139 Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F.,
1140 Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., and Voss, M.: The
1141 global nitrogen cycle in the twenty-first century, *Phil. Trans. R. Soc. B*, 368,
1142 20130164, doi:10.1098/rstb.2013.0164, 2013.

1143 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
1144 Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl,
1145 D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorusmarty, C. J.:
1146 Nitrogen cycles: past, present, and future, *Biogeochem.*, 70, 153–226, 2004.

1147 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
1148 Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the
1149 Nitrogen Cycle: Recent trends, questions, and potential solutions, *Science*, 320,
1150 889–892, 2008.

1151 Galloway, J. N., Leach, A. M., Bleeker, A., and Erisman, J. W.: A chronology of
1152 human understanding of the nitrogen cycle, *Phil. Trans. R. Soc. B*, 368, 20130120,
1153 doi:10.1098/rstb.2013.0120, 2013.

1154 Goulding, K. W. T., Bailey, N. J., Bradbury, N. J., Hargreaves, P., Howe, M., Murphy,
1155 D. V., Poulton, P. R., and Willison, T. W.: Nitrogen deposition and its contribution
1156 to nitrogen cycling and associated soil processes, *New Phytol.*, 139, 49–58, 1998.

1157 Gu, B. J., Ge, Y., Ren, Y., Xu, B., Luo, W. D., Jiang, H., Gu, B. H., and Chang, J.:
1158 Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs,
1159 *Environ. Sci. Technol.*, 46, 9240–9247, doi:10.1021/es301446g, 2012.

1160 Gu, B. J., Sutton, M. A., Chang, S. X., Ge, Y., and Jie, C.: Agricultural ammonia
1161 emissions contribute to China's urban air pollution, *Front. Ecol. Environ.*, 12,
1162 265–266, doi:10.1890/14.WB.007, 2014.

1163 Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J. F.: Nitrogen deposition
1164 onto the United States and Western Europe: synthesis of observations and models,
1165 *Ecol. Appl.*, 15, 38–57, 2005.

1166 Hu, H., Yang, Q., Lu, X., Wang, W., Wang, S., and Fan, M.: Air pollution and control
1167 in different areas of China. *Crit. Rev. Environ. Sci. Technol.*, 40, 452–518,

1168 doi:10.1080/10643380802451946, 2010.

1169 Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and
1170 Zhang, H. S.: A high-resolution ammonia emission inventory in China, *Global
1171 Biogeochem. Cy.*, 26, GB1030, doi:10.1029/2011GB004161, 2012.

1172 Huang, Y. L., Lu, X. X., and Chen, K.: Wet atmospheric deposition of nitrogen: 20
1173 years measurement in Shenzhen City, China, *Environ. Monit. Assess.*, 185, 113–
1174 122, doi: 10.1007/s10661-012-2537-9, 2013.

1175 Jia, Y. L., Yu, G. R., He, N. P., Zhan, X. Y., Fang, H. J., Sheng, W. P., Zuo, Y., Zhang,
1176 D. Y., and Wang, Q. F.: Spatial and decadal variations in inorganic nitrogen wet
1177 deposition in China induced by human activity. *Sci. Rep.*, 4, 3763, doi:
1178 10.1038/srep03763, 2014.

1179 Jickells, T., Baker, A. R., Cape, J. N., Cornell, S.E., and Nemitz, E.: The cycling of
1180 organic nitrogen through the atmosphere. *Philos. Trans. R. Soc. B* 368, 20130115,
1181 doi:org/10.1098/rstb.2013.0115, 2013.

1182 Li, Y. E. and Lin, E. D.: Emissions of N_2O , NH_3 and NO_x from fuel combustion,
1183 industrial processes and the agricultural sectors in China. *Nutr. Cycl. Agroecosys.*,
1184 57, 99–106, 2000.

1185 Liu, X. J., Song, L., He, C. E., and Zhang, F. S.: Nitrogen deposition as an important
1186 nutrient from the environment and its impact on ecosystems in China, *J. Arid Land*,
1187 2, 137–143, 2010.

1188 Liu, X. J., Duan, L., Mo, J. M., Du, E., Shen, J. L., Lu, X. K., Zhang, Y., Zhou, X. B.,
1189 He, C. E., and Zhang, F. S.: Nitrogen deposition and its ecological impact in China:
1190 An overview, *Environ. Pollut.*, 159, 2251–2264, doi:10.1016/j.envpol.2010.08.002,
1191 2011.

1192 Liu, X. J., Zhang, Y., Han, W. X., Tang, A., Shen, J. L., Cui, Z. L., Vitousek, P.,
1193 Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.:
1194 Enhanced nitrogen deposition over China, *Nature*, 494, 459–462,
1195 doi:10.1038/nature11917, 2013.

1196 Liu, X. J., Xu, W., Pan, Y. P., and Du, E. Z.: Liu et al. suspect that Zhu et al. (2015)
1197 may have underestimated dissolved organic nitrogen (N) but overestimated total

1198 particulate N in wet deposition in China, *Sci. Total Environ.*, 520, 300–301,
1199 doi.org/10.1016/j.scitotenv.2015.03.004, 2015.

1200 Loubet, B., Asman, W. A. H., Theobald, M. R., Hertel, O., Tang, S. Y., Robin, P.,
1201 Hassouna, M., Dämmgen, U., Genermont, S., Cellier, P., and Sutton, M. A.:
1202 Ammonia deposition near hot spots: processes, models and monitoring methods. In:
1203 Sutton MA, Reis S, Baker SMH, editors. *Atmospheric ammonia: detecting*
1204 *emission changes and environmental impacts.* Netherlands: Springer;
1205 205-251.,2008.

1206 Lü, C. Q. and Tian, H. Q.: Spatial and temporal patterns of nitrogen deposition in
1207 China: Synthesis of observational data, *J. Geophys. Res.*, 112, D22S05,
1208 doi:10.1029/2006JD007990, 2007.

1209 Lü, C. Q. and Tian, H. Q.: Half-century nitrogen deposition increase across China: A
1210 gridded time-series data set for regional environmental assessments. *Atmos.*
1211 *Environ.*, 97, 68-74, 2014.

1212 Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang,
1213 L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An
1214 evaluation of atmospheric Nr pollution and deposition in North China after the
1215 Beijing Olympics, *Atmos. Environ.*, 74, 209–216,
1216 doi:10.1016/j.atmosenv.2013.03.054, 2013.

1217 Maston, P., Lohse, K. A., and Hall, S. J.: The globalization of nitrogen deposition:
1218 Consequences for terrestrial ecosystems, *Ambio*, 31, 113–119, 2002.

1219 MEPC (Ministry of Environmental Protection of the People's Republic of China):
1220 China's environment and data center. www.zhb.gov.cn/. Viewed 23 April 2014,
1221 2014

1222 Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of
1223 atmospheric nitrogen at ten sites in Northern China. *Atmos. Chem. Phys.*, 12,
1224 6515-6535, doi:10.5194/acp-12-6515-2012, 2012.

1225 Reche, C., Viana, M., Pandolfi, M., Alastuey, A., Moreno, T., Amato, F., Ripoll, A.,
1226 and Querol, X.: Urban NH₃ levels and sources in a Mediterranean environment.
1227 *Atmos. Environ.*, 57:153–164, doi:10.1016/j.atmosenv.2012.04.021, 2012.

删除的内容: MACTEC Engineering
and Consulting, Inc. (MACTEC):
Clean Air Status and Trends Network
(CASTNET) 2007, Annual Report,
U.S. Environmental Protection
Agency, Washington, D.C, pp. 5–30,
2008. ■

1235 Richter, D. D., Burrows, J. P., N Nüß, H., Granier, C., and Niemeier, U.: Increase in
1236 tropospheric nitrogen dioxide over China observed from space, *Nature* 437,
1237 129–132, 2005.

1238 Seinfeld, J. and Pandis, S.: *Atmospheric Chemistry and Physics: From Air Pollution*
1239 to *Climate Change*, John Wiley and Sons, 2nd Edition, 1203 pp., 2006.

1240 Schwede, D., Zhang, L., Vet, R., and Lear, G.: An intercomparison of the deposition
1241 models used in the CASTNET and CAPMoN networks, *Atmos. Environ.*, 45,
1242 1337–1346, doi:10.1016/j.atmosenv.2010.11.050, 2011.

1243 Shen, J. L., Tang, A. H., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F.
1244 S.: High concentrations and dry deposition of reactive nitrogen species at two sites
1245 in the North China Plain, *Environ. Pollut.*, 157, 3106–3113,
1246 doi:10.1016/j.envpol.2009.05.016, 2009.

1247 Simpson, D., Fagerli, H., Jonson, J.E., Tsyro, S., Wind, P., and Tuovinen, J. P.:
1248 Trans-boundary Acidification and Eutrophication and Ground Level Ozone in
1249 Europe: Unified EMEP Model Description, EMEP Status Report 1/2003 Part I,
1250 EMEP/MSC-W Report, The Norwegian Meteorological Institute, Oslo, Norway,
1251 2003.

1252 Skeffington, R. A. and Hill, T. J.: The effects of a changing pollution climate on
1253 throughfall deposition and cycling in a forested area in southern England, *Sci. Total*
1254 *Environ.*, 434 , 28–38, doi:10.1016/j.scitotenv.2011.12.038, 2012.

1255 Sickles, J. E. and Shadwick, D. S.: Air quality and atmospheric deposition in the
1256 eastern US: 20 years of change, *Atmos. Chem. Phys.*, 15, 173–197, doi:
1257 10.5194/acp-15-173-2015, 2015.

1258 Sutton, M.A., Pitcairn, C.E.R., and Fowler, D.: The exchange of ammonia between
1259 the atmosphere and plant communities. *Adv. Ecol. Res.*, 24, 301-393,
1260 doi:10.1016/S0065-2504(08)60045-8, 1993.

1261 Sutton, M. A., Burkhardt, J. K., Guerin, D., Nemitz, E., and Fowler, D.: Development
1262 of resistance models to describe measurements of bi-directional ammonia
1263 surface-atmosphere exchange, *Atmos. Environ.*, 32, 473–480,
1264 doi:10.1016/S1352-2310(97)00164-7, 1998.

1265 Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A new diffusion denuder
1266 system for long-term, regional monitoring of atmospheric ammonia and ammonium,
1267 Water Air Soil Poll. Focus, 1, 145–156, 2001.

1268 Tang, Y. S., Simmons, I., van Dijk, N., Di Marco, C., Nemitz, E., Dammgen,
1269 U., Gilke, K., Djuricic, V., Vidic, S., Gliha, Z.: European scale application of
1270 atmospheric reactive nitrogen measurements in a low-cost approach to infer dry
1271 deposition fluxes. Agr. Ecosyst. Environ., 133, 183–195, doi:
1272 10.1016/j.agee.2009.04.027, 2009.

1273 [Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G.,](#)
1274 [Myhre, C. L., Solberg, S., Yttri, K. E.: Introduction to the European Monitoring and](#)
1275 [Evaluation Programme \(EMEP\) and observed atmospheric composition change](#)
1276 [during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, doi:](#)
1277 [10.5194/acp-12-5447-2012, 2012.](#)

1278 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler,
1279 D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of the global
1280 nitrogen cycle: Sources and consequences, Ecol. Appl., 7, 737–750, 1997.

1281 [Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C-U., Aas, W., Baker, A., and 14 authors:](#)
1282 [A global assessment of precipitation chemistry and deposition of sulfur, nitrogen,](#)
1283 [sea salt, base cations, organic acids, acidity and pH, and phosphorus, Atmos.](#)
1284 [Environ., 93, 3–100, doi:10.1016/j.atmosenv.2013.10.060, 2014.](#)

1285 Wang, S. X., Xing, J., Zhao, B., Jang, C., and Hao, J. M.: Effectiveness of national air
1286 pollution control policies on the air quality in metropolitan areas of China, J.
1287 Environ. Sci., 26, 13–22, doi: 10.1016/S1001-0742(13)60381-2, 2014.

1288 Wang, T., Nie, W., Gao, J., Xue, L. K., Gao, X. M., Wang, X. F., Qiu, J., Poon, C. N.,
1289 Meinardi, S., Blake, D., Wang, S. L., Ding, A. J., Chai, F. H., Zhang, Q. Z., and
1290 Wang, W. X.: Air quality during the 2008 Beijing Olympics: secondary pollutants
1291 and regional impact, Atmos. Chem. Phys., 16, 7603–7615,
1292 doi:10.5194/acp-10-7603-2010, 2010.

1293 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in
1294 regional-scale numerical-models, Atmos. Environ., 23, 1293–1304, 1989.

1295 [Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., Wei, C.:](#)
1296 [Historical gaseous and primary aerosol emissions in the United States from 1990 to](#)
1297 [2010, *Atmos. Chem. Phys.*, 13, 7531–7549, doi: 10.5194/acp-13-7531-2013, 2013.](#)

1298 Yu, W. T., Jiang, C. M., Ma, Q., Xu, Y. G., Zou, H., and Zhang, S. C.: Observation of
1299 the nitrogen deposition in the lower Liaohe River Plain, Northeast China and
1300 assessing its ecological risk, *Atmos. Res.*, 101, 460–468,
1301 doi:10.1016/j.atmosres.2011.04.011, 2011.

1302 [Zhan, X., Yu, G., He, N., Jia, B., Zhou, M., Wang, C., Zhang, J., Zhao, G., Wang, S.,](#)
1303 [Liu, Y., and Yan, J.: Inorganic nitrogen wet deposition: Evidence from the](#)
1304 [North-South Transect of Eastern China, *Environ. Pollut.*, 204, 1–8, doi:](#)
1305 [10.1016/j.envpol.2015.03.016, 2015.](#)

1306 Zhang, F. S., Wang, J. Q., Zhang, W. F., Cui, Z. L., Ma, W. Q., Chen, X. P., and Jiang,
1307 R. F.: Nutrient use efficiency of major cereal crops in China and measures for
1308 improvement. *Acta. Pedologia Sinica*, 45, 915–924, 2008a (in Chinese [with English](#)
1309 [abstract](#)).

1310

1311 Zhang, G. Z., Pan, Y. P., Tian, S. L., Cheng, M. T., Xie, Y. Z., Wang, H., and Wang, Y.
1312 S.: Limitations of passive sampling technique of rainfall chemistry and wet
1313 deposition flux characterization. *Res. Environ. Sci.*, 28, 684–690, doi:10.
1314 13198/j.issn.1001-6929.2015.05.03, 2015.

1315 [Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.: Nitrogen](#)
1316 [inputs and isotopes in precipitation in the North China Plain, *Atmos. Environ.*, 42,](#)
1317 [1436–1448, doi:10.1016/j.atmosenv.2007.11.002, 2008b.](#)

1318 Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N., and Zhang, F. S.:
1319 Agricultural ammonia emissions inventory and spatial distribution in the North
1320 China Plain, *Environ. Pollut.*, 158, 490–501, doi:10.1016/j.envpol.2009.08.033,
1321 2010.

1322 [Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lü, S. H., Zheng, L. X., Bai, Z. C., Cui,](#)
1323 [G. Y., and Zhang, F. S.: Atmospheric organic nitrogen deposition in China, *Atmos.*](#)
1324 [Environ., 46, 195–204, doi:10.1016/j.atmosenv.2011.09.080, 2012a.](#)

已下移 [1]: Zhang, Y., Liu, X. J.,
Fangmeier, A., Goulding, K. T. W.,
and Zhang, F. S.: Nitrogen inputs and
isotopes in precipitation in the North
China Plain, *Atmos. Environ.*, 42,
1436–1448,
doi:10.1016/j.atmosenv.2007.11.002,
2008b. ■

已移动(插入) [1]

已移动(插入) [2]

删除的内容:b

1334 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
1335 van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen Deposition to the United
1336 States: Distribution, Sources, and Processes, *Atmos. Chem. Phys.*, 12, 4539-4554,
1337 doi:10.5194/acp-12-4539-2012, [2012b](#).

删除的内容: 2012a

1338 [Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry](#)
1339 [deposition scheme for an atmospheric aerosol module, *Atmos. Environ.*, 35 \(3\),](#)
1340 [549-560, doi:10.1016/s1352-2310\(00\)00326-5, 2001.](#)

1341 Zhao, Y. H., Zhang, L., Pan, Y. P., Wang, Y. S., Paulot, F., and Henze, D. K.:
1342 Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and
1343 source attribution, *Atmos. Chem. Phys. Discuss.*, 15, 13657-13703,
1344 doi:10.5194/acpd-15-13657-2015, 2015.

1345 Zhu, J. X., He, N. P., Wang, Q. F., Yan, G. F., Wen, D., Yu, G. R., and Jia, Y. L.: The
1346 composition, spatial patterns, and influencing factors of atmospheric wet nitrogen
1347 deposition in Chinese terrestrial ecosystems. *Sci. Total Environ.*, 511, 777-785,
1348 doi:org/10.1016/j.scitotenv.2014.12.038, 2015.

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

已上移 [2]: Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lü, S. H., Zheng, L. X., Bai, Z. C., Cui, G. Y., and Zhang, F. S.: Atmospheric organic nitrogen deposition in China. *Atmos. Environ.*, 46, 195-204, doi:10.1016/j.atmosenv.2011.09.080, 2012b. ■

1373

1374 **Figure captions**

1375 **Fig. 1.** Geographical distribution of the forty-three monitoring sites in China.

1376 **Fig. 2.** Annual mean concentrations of N_r compounds in air (a) and volume-weighted
1377 concentrations of inorganic nitrogen species in precipitation (b) at all monitoring sites.

1378 **Fig. 3.** Annual mean concentrations of (a) NH_3 ; (b) NO_2 ; (c) HNO_3 ; (d) pNH_4^+ ; (e)
1379 pNO_3^- ; and (f) Total N_r ; sum of all measured N_r in air and volume-weighted
1380 concentrations of NH_4^+ (g); NO_3^- (h) and Total inorganic N (TIN); sum of NH_4^+ and
1381 NO_3^- (i) in precipitation at different land use types in the six regions.

删除的内容: Atmospheric concentrations (a) and dry deposition fluxes (b) of N_r species at different land use types in the six regions of China. Error bars are standard errors of means. "N" in brackets denotes the number of sampling sites at each land use type.

1382 **Fig. 4.** Annual mean concentrations and deposition fluxes of N_r compounds at
1383 different land use types across China: concentrations in air (a); volume-weighted
1384 concentrations in precipitation (b); dry N deposition fluxes (c); wet/bulk N deposition
1385 fluxes (d). The number of sites with the same land use type can be found in Table S1
1386 in the Supplement. Error bars are standard errors of means.

删除的内容: Annual deposition flux of various N_r species at the forty-three selected sites in China: (a) dry deposition flux; (b) wet deposition flux. Blank dots denote ratios of reduced N to oxidized N in dry deposition (a) and/or NH_4^+ -N to NO_3^- -N in wet deposition (b) at all sampling sites.

1387 **Fig. 5.** Annual deposition flux of various N_r species at the forty-three selected sites in
1388 China: (a) dry deposition flux; (b) wet/bulk deposition flux; (c) total deposition flux.
1389 Yellow dots denote ratios of reduced N to oxidized N in dry deposition (a), NH_4^+ -N
1390 to NO_3^- -N in wet/bulk deposition (b) and/or reduced N to oxidized N in total
1391 deposition (c) at all sampling sites.

删除的内容: Contribution of different pathways (dry-deposited N=gaseous N_r ; particulate N_r , wet-deposited N_r =precipitation N_r) to the estimated total N deposition in the six regions: (a) NC: north China; (b) NE: northeast China; (c) NW: northwest China; (d) SE: southeast China; (e) SW: southwest China; (f) TP: Tibetan Plateau.

1392 **Fig. 6.** Dry N deposition fluxes of (a) NH_3 ; (b) NO_2 ; (c) HNO_3 ; (d) pNH_4^+ ; (e) pNO_3^- ;
1393 and (f) Total N_r ; sum of all measured N_r in dry and wet/bulk N deposition fluxes of
1394 NH_4^+ (g); NO_3^- (h) and Total inorganic N (TIN); sum of NH_4^+ and NO_3^- (i) at
1395 different land use types in six regions. The number of sites with the same land use
1396 type can be found in Table S1 in the Supplement. Error bars are standard errors of
1397 means.

删除的内容: Correlations between annual wet NH_4^+ -N deposition and annual volume-weighted concentration of NH_4^+ -N (a) and annual precipitation (b); between annual wet NO_3^- -N deposition and annual volume-weighted concentration of NO_3^- -N (c) and annual precipitation (d).

1398 **Fig. 7.** Contribution of different pathways (dry-deposited N=gaseous N_r ; particulate N_r ,
1399 wet/bulk-deposited N=precipitation N) to the estimated total N deposition in the six
1400 regions: (a) NC: north China; (b) NE: northeast China; (c) NW: northwest China; (d)
1401 SE: southeast China; (e) SW: southwest China; (f) TP: Tibetan Plateau.

删除的内容: Spatial variation of atmospheric N deposition flux with emission distribution in China: (a) NH_3 emission vs. NH_4^+ deposition; (b) NO_x emission vs. NO_3^- deposition; (c) relationship of NH_4^+ deposition vs. NH_3 emission; (d) relationship of NO_3^- deposition vs. NO_x emission.

1402 **Fig. 8.** Correlations between annual wet/bulk NH_4^+ -N deposition and annual
1403 volume-weighted concentration of NH_4^+ -N (a) and annual precipitation (b); between

1446 annual wet/bulk NO_3^- -N deposition and annual volume-weighted concentration of
1447 NO_3^- -N (c) and annual precipitation (d).

1448 **Fig. 9.** Spatial variation of atmospheric N deposition flux with emission distribution
1449 in China: (a) NH_3 emission vs. NH_x deposition; (b) NO_x emission vs. NO_y deposition;
1450 (c) relationship of NH_x deposition vs. NH_3 emission; (d) relationship of NO_y
1451 deposition vs. NO_x emission.

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478 Figure 1

1479

1480 **Figure 2**

带格式的：字体：(默认) Times New Roman, (中文) +中文正文, 小四

Figure 3

带格式的：字体：(默认) Times New Roman, (中文) +中文正文, 小四

删除的内容：

NC

Figure 4

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

带格式的：字体：(默认) Times New Roman, (中文) +中文正文, 小四, 加粗

删除的内容:

Figure 5

删除的内容:

Figure 6

1562

Figure 7

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

删除的内容: 5

带格式的: 字体: (默认) Times New Roman, (中文) +中文正文, 小四

删除的内容:

带格式的: 字体: (默认) +西文正文, (中文) +中文正文

Figure 8

删除的内容: 6

带格式的: 字体: (默认) Times New Roman, (中文) +中文正文, 小四, 加粗

删除的内容:

带格式的: 字体: (默认) +西文正文, (中文) +中文正文

Figure 9

删除的内容: 7

带格式的: 字体: (默认) Times New Roman, (中文) +中文正文, 小四

(a)

 NH_3 deposition ($\text{kg N ha}^{-1} \text{yr}^{-1}$)

删除的内容:

带格式的: 字体: (默认) +西文正文, (中文) +中文正文

删除的内容: Table 1. Concentrations of various N_x species and the estimated N deposition fluxes in the six regions of China. Data in parentheses are standard errors. ■ Region

...

1625

1626

1627

Table 1. Comparison of dry, wet (wet/bulk), and total deposition fluxes of N_r compounds between NNDMN in China and 3 networks in other countries.

删除的内容: 2

Network	Japan EANET network ^a			CASTNET ^b			EMEP ^c			NADMM ^d			
Number of sites or grids	10sites			130sites			2447girds (0.5° × 0.5°)			33sites			
Observation period	Apr. 2003-Mar. 2008			Apr. 2006-Dec. 2013			Jan. 2003-Dec. 2007			Aug. 2006-Sep. 2014			
N deposition (kg N ha ⁻¹ yr ⁻¹)	Dry	Wet	Total	Dry	Wet	Total	Dry	Wet	Total	Dry	Wet/bulk	Total	
	Average	3.9	6.6	10.6	3.1	1.3	4.4	3.9	4.8	8.7	18.7	18.2	36.9
	Median	4.1	5.9	11.2	3.0	0.7	4.1	3.7	4.7	8.5	18.7	21.3	36.5
	Max	7.0	15.8	18.2	9.7	10.3	19.6	15.8	16.9	28.0	43.1	32.4	70.9
	Min	1.0	2.1	3.0	0.03	0.1	0.3	0.1	0.6	0.7	1.1	1.5	2.9

1628 ^aThe Japan EANET data are sourced from Endo et al. (2011). Gaseous NO₂ was not included in estimates of dry N deposition.

1629 ^b The CASTNET data are available online (<http://www.epa.gov/castnet/>). Gaseous NH₃ was not included in estimates of dry N deposition.

1630 ^cThe EMEP data are sourced from Endo et al. (2011), in which the dry and wet deposition amounts at each grid covering 27 EMEP countries
1631 were estimated by the unified EMEP models (Simpson et al., 2003).

1632 ^dOnly including the rural and background sites in NNDMN.

1633

1634

1 **Sect. S1. Social-economical and geo-climatic conditions for six regions of China**

2 In this study, we divided the research area into six typical regions: North China (NC),
3 Northeast (NE), Northwest (NW), Southeast China (SE), Southwest China (SW) and
4 Tibetan Plateau (TP). These regions reflect different social-economical and
5 geo-climatic conditions across China (Liu et al., 2013). Basically, NC, SE and SW
6 represent relatively developed regions, NE and NW represent less developed regions
7 while TP represents the least developed region in China.

8 Statistical data of the gross domestic product (GDP) for the six regions are sourced
9 from the China Statistic Yearbook for the year 2013
10 (<http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.htm>).

11 North China, an intensively managed agricultural region and economically developed
12 area, comprises of Beijing, Tianjin, Hebei, Henan, Shandong, Shanxi and Shaanxi
13 provinces, which is characterized by temperate monsoon climate. The region occupies
14 10% of the total area of China, and contributes 28% of the total national China GDP.
15 Northeast China includes Liaoning, Jilin and Heilongjiang provinces and the northeast
16 area of Inner Mongolia, and is characterized by a temperate monsoon climate. The
17 region accounts for 6% of the China's total area, and contributes 9% of the total
18 national GDP. Northwest China consists of the northwest region of Inner Mongolia,
19 Xinjiang, Ningxia and Gansu provinces, characterizing by a temperate continental
20 climate. The region occupies 35% of the total area of China, but only contributes 5%
21 of China's GDP. Southeast China covers Shanghai, Jiangsu, Zhejiang, Anhui, Hubei,
22 Hunan, Jiangxi, Fujian, Guangdong, Hong Kong, Macau, Taiwan and Hainan
23 provinces: 13% of China's total area. The region contributes 46% of China's GDP and
24 is characterized by a subtropical monsoon climate. Southwest China consists of
25 Sichuan, Chongqing, Guizhou, Yunnan and Guangxi provinces, and is characterized
26 subtropical and plateau monsoon climates. The region accounts for 14% of China's
27 total area and contributes 12% of China's GDP. The Tibetan Plateau is a remote area
28 of China that consists of Tibet and Qinghai provinces. The region is characterized by
29 an alpine mountain climate. The region occupies 20% of the total area of China but
30 only contributes 0.5% of China's GDP.

删除的内容:SC

31

32

33

34

36 **Section S2. Other information of the sampling sites**

37 **S2.1. Sampling sites in north China (NC)**

38 Thirteen sampling sites, including 3 urban sites (NC1, NC2 and NC3), 8 rural sites
39 (NC4, NC5, NC6, NC7, NC8, NC9, NC10, NC11) and 2background sites (NC12 and
40 NC13), are located in north China.

41 NC1, located at the west campus of China Agricultural University (CAU, 40.02°N,
42 116.28°E), is near the fifth ring road in Beijing city. NC2, located at the campus of
43 Beijing Normal University (39.96°N, 116.37°E), is near the third ring road in Beijing
44 city. NC3 is located in the centre of Zhengzhou city, the capital of Henan province and
45 Henan Academy of Agricultural Sciences (34.75°N, 113.63°E). These three urban sites
46 (i.e. NC1, NC2, and NC3) are surrounded by complicated external environments, such
47 as densely occupied residences, industry, small-scale urban agriculture, and roads.
48 NC4 is located at Dongbeiwang village (40.04°N, 116.29°E), Xibeiwang town,
49 Haidian District, about 20 km the northwest of Beijing city. This site could be polluted
50 by ammonia from agricultural fields and domestic animal farms and emissions from
51 motor vehicles on an adjacent road (c. 0.2 km). NC5 is located at Shangzhuang
52 Agricultural Experimental Station (40.11°N, 116.20°E) of CAU, in Shangzhuang town,
53 about 33 km northwest of Beijing city. This site is surrounded by small villages and
54 croplands. NC6 is located at the west campus of Hebei Agricultural University
55 (38.85°N, 115.48°E) in Baoding city, Hebei province, about 8 km southwest of the
56 downtown area. This site is surrounded by small villages and croplands, and is close
57 to a main road (c. 0.5 km). NC7 is located at CAU's Quzhou experimental station
58 (36.78°N, 114.94°E) in Quzhou town, Hebei province. NC7 is a typical rural
59 agriculture dominated site with a recently constructed industrial district. This site is
60 surrounded by croplands and small villages. A north-south main road is located 0.5
61 km west of the sampling site. NC8 is located at Yangqu dry farming water-saving
62 demonstration base (38.05°N, 112.89°E), Shanxi Academy of Agricultural Sciences, in
63 Hecun village, about 30 km northeast of Taiyuan city, Shanxi province. Hecun is a
64 typical rural village with dryland farming. The sampling site is mainly polluted by
65 ammonia from agricultural fields. NC9 is located at Zhumadian Agricultural
66 Experiment Station (33.02°N, 114.05°E), Zhumadian Academy of Agricultural
67 Sciences in Yicheng district of Zhumadian city, Henan province. This site is
68 surrounded by croplands, small villages and small-scale livestock farming. NC10 is
69 located at Wuquan Agricultural Experimental Base (34.31°N, 108.01°E), Northwest

删除的内容: S1

删除的内容: y

72 Agriculture & Forestry University in Yangling city, Shaanxi province. This site is about
73 8 km northwest of the downtown area, surrounding by croplands and small villages.
74 NC11 is located at Yucheng Experimental Station (36.94°N, 116.63°E), Chinese
75 Academy of Sciences, about 8 km southwest of Yucheng city, Shandong province.
76 This site is surrounded by small villages and croplands. At all the above farmland sites,
77 with the exception of NC8, the dominant cropping system is a winter wheat-summer
78 maize rotation (two crops a year). Farmers usually apply nitrogen (N) fertilizers
79 (mainly as urea and ammonium bicarbonate) in March-April, June-August and
80 October to achieve high yields of maize and wheat. Typical application rates of N
81 fertilizer are 500-600 kg N ha⁻¹ yr⁻¹ at most sites except NC9, where the rate is
82 100-150 kg N ha⁻¹ yr⁻¹. At NC8 site, the dominant cropping system is spring maize
83 (one crop a year). In addition there is small-scale vegetable production (e.g. brussels
84 sprouts, beans and zucchini) throughout the year. Usually, N-fertilizers (compound
85 fertilizer, urea and ammonium bicarbonate) are applied in March-May, with annual
86 application rates of 150-300 kg N ha⁻¹.
87 NC12 is located at Lingshandao (LSD) island (35.77°N, 120.18°E, 514 m a.s.l.) in the
88 Yellow Sea. LSD is the biggest island in north China, about 10 km southeast of
89 Jiaonan city, Shandong province. NC13 is located at Changdao island (37.93°N,
90 120.75°E, 203 m a.s.l.), which is at the join of the Bohai Sea and the Yellow Sea,
91 about 7 km north of Penglai city, Shandong province. There are almost no agricultural
92 and/or industrial activities near these two coastal sampling sites.

93 *S2.2. Sampling sites in northeast China (NE)*

删除的内容: S1

94 Five sampling sites, including 1 urban site (NE1), 2 rural sites (NE2 and NE3), and 2
95 background sites (NE4, and NE5) are located in northeast China.
96 NE1 is located at Dalian Jiaotong University (38.92 °N, 121.58°E) which lies in the
97 Shahekou district of Dalian city, Liaoning province. Dalian is a sea town (near the
98 Bohai Sea) and is famous for business development. The sampling site is polluted by
99 emissions from industry and transportation. NE2 is located at an experimental station
100 of the Soil and Fertilizer Institute (43.53 °N, 124.83°E), Jilin Academy of Agricultural
101 Sciences, in Gongzhuling city, Jilin province. Arable land accounts for 81% of the
102 total land area in Gongzhuling city, and the other 19% is used for residential,
103 commercial buildings and roads. This site is surrounded by farmland and residences.
104 NE3 is located in Sikeshu town (43.36 °N, 124.17°E), Lishu county. This site is about
105 21 km northwest of Siping city, Jilin province. At NE2 and NE3, the sampling sites

107 are both surrounded by agricultural fields with a spring maize (single harvest per year)
108 cropping system. Compound fertilizers are the major N source for the crops, and these
109 are usually applied once in April-May, with an annual application rate of 400 kg
110 $\text{ha}^{-1} \text{yr}^{-1}$ at NE1 and 250 kg $\text{ha}^{-1} \text{yr}^{-1}$ at NE2. NE5 is located in a forested area in
111 Wuying district (48.11 °N, 129.25 °E) of Yichun city, Heilongjiang province, about 50
112 km northeast of downtown. Forest coverage reaches 93% in Wuying district. NE6
113 (50.78°N, 121.52°E) is located in a forested region of Genhe city, Inner Mongolia,
114 where forest cover reaches 92%. Genhe is at the north border of the Greater Hinggan
115 Mountains, and its climate is cold temperate humid monsoon together with the
116 characteristics of continental monsoon, which is similar to that of northeast China, i.e.
117 temperate humid and semi-humid continental monsoon. Given this, NE5 is placed in
118 northeast China in the present study. The forests in Wuyin and Genhe are both natural
119 ecosystems and there are no agricultural and industrial activities near the sampling
120 sites.

121 *S2.3. Sampling sites in northwest China (NW)*

删除的内容: S1

122 Five sampling sites, including 2 urban sites (NW1 and NW2), 1 rural sites (NW3) and
123 2 background sites (NW4 and NW5), are located in northwest China.

124 NW1 is located at Xinjiang Institute of Ecology and Geography (43.87°N, 87.57°E),
125 Chinese Academy of Science, in the urban region of Urumqi city, Xinjiang province.
126 This site may be polluted by emissions from motor vehicles and home heating in
127 winter. NW2 is located at Xinjiang Academy of Agricultural Sciences, about 11 km
128 away from NW1. This site has similar pollution sources as NW1.

129 NW3 is located in Yongchang town (38.07°N, 102.60 °E), Wuwei city, Gansu province.
130 The sampling site is surrounded by agricultural fields, small scale livestock housing
131 and small villages. Maize is the major crop grown. Usually cropland receives
132 chemical N fertilizers (urea, ammonium bicarbonate and compound fertilizers) in
133 April, June and July, with an annual application rate of 350 kg N $\text{ha}^{-1} \text{yr}^{-1}$. NW5 is
134 located at the meteorological observation site belonging to the Chinese Academy of
135 Sciences, which is situated in temperate grassland in Duolun county (42.20°N,
136 116.49°E), Inner Mongolia. NW6 is located at Bayinbuluke Grassland Ecosystem
137 Research Station (42.88 °N, 83.71°E), Chinese Academy of Sciences, in the southern
138 Tian Shan Mountains (3000-4500 m a.s.l.) of central Asia. Those two grassland sites
139 (i.e. NW4 and NW5) are very unlikely to be subjected to influences from
140 anthropogenic activities.

删除的内容: SI

142 | *S2.4. Sampling sites in southeast China (SE)*

143 Eleven sampling sites, including 2 urban sites (SE1 and SE2), 6 rural sites (SE3, SE4,
144 SE5, SE6, SE7 and SE8), and 3 background sites (SE9, SE10 and SE11), are located
145 in southeast China.

146 SE1 is located in the southern urban area of Nanjing city (31.84°N, 118.85°E). The
147 sampling site is surrounded by complicated external environments, such as housing,
148 industry, small-scale urban agriculture, and is close to a highway (c. 0.5 km). SE2 is
149 located at Baiyun Experimental Station (23.20°N, 113.31°E), Guangdong Academy of
150 Agricultural Sciences, in Guangzhou city, Guangdong province. This site is
151 surrounded by densely occupied housing and traffic roads. SE3 is located at Wuxue
152 Modern Agricultural Demonstration Base (30.01°N, 115.79°E) in Huaqiao town,
153 about 28 km northeast of Wuxue city, Hubei province. The sampling site is
154 surrounded by residential land and paddy fields, where the cropping system is double
155 rice harvests per year. Compound fertilizer and urea are the major N nutrient sources
156 for rice, and these are usually applied in May-July, at a rate of about 180 kg ha⁻¹ yr⁻¹.
157 SE4 is located in Santangjie town (28.61°N, 111.97°E), which is a remote rural site in
158 Taojiang county, Hunan province. The sampling site is surrounded by mountains and
159 paddy fields. The paddy fields are cultivated with a double rice rotation system, which
160 receives compound fertilizer and urea twice per year (in May, June or July) at about
161 150 kg N ha⁻¹ yr⁻¹. SE5 is located at Anhui Tobacco Institute (32.88°N, 117.56°E),
162 Anhui Academy of Agricultural Sciences in Fengyang county, Anhui province. The
163 sampling site is surrounded by croplands and residences. In the croplands, the major
164 annual cropping system is a winter wheat-summer maize rotation (two crops per year).
165 Compound fertilizer and urea are the major N nutrient sources for the croplands, and
166 these are usually applied in April, June and October, at a rate of 380-500 kg N ha⁻¹ yr⁻¹.
167 SE6 is located in Leizhou peninsula, Zhanjiang city (21.26°N, 110.33°E), Guangdong
168 province. This area grows tropical fruit and farmers use urea at a rate of 400 kg N ha⁻¹
169 yr⁻¹ for fruit production. SE7 is located on a mountain in the remote rural region of
170 Fuzhou city (26.17°N, 119.36°E), Fujian province. This site is surrounded by some
171 agricultural land growing tobacco and paddy rice. Usually, about 200 kg N ha⁻¹ yr⁻¹
172 compound fertilizers are used as the major nitrogen source for the crops, applied in
173 January-March, and July and August. SE8 is located in Chunhu town (29.61°N
174 121.53°E), Fenghua city, Zhejiang province. The sampling site is surrounded by a
175 residential area, a very small amount of agricultural land and mountains. SE9, located

177 in Huinong village (28.52°N, 113.41°E), Hunan province, is a rural background site.
178 In a 2-km radius around the sampling site, there is forest and a reservoir, which
179 contribute little to anthropogenic NH₃ and NO_x emissions. SE10, a rural background
180 site is located in Feiyue village (28.56°N, 113.34°E), Hunan province. There were no
181 typical emission sources around the site in a 2 km radius except forest and a
182 residential area. SE11 is located at the centre of a 3 km² forest in Xishan village
183 (28.61°N, 113.31°E), Hunan province. The forest has an average elevation of 250 m
184 and is composed of masson pine, fir and shrubs. For convenience of access (e.g., the
185 accessibility to road and the availability of main power), N deposition monitoring was
186 conducted in the valley between two small hills in the forest. The valley is 100 m
187 wide and 2000 m long in the main wind direction. The sampling site was selected in
188 the centre of the valley, without human activity and anthropogenic emission sources
189 of NH₃ and NO_x. The nearest N_r emission sources are more than 2 km away from the
190 monitoring site, and consist of some small paddy fields distributed at the edge of the
191 forest, accounting for no more than 5% of the total forest area.

§2.5. Sampling sites in southwest China (SW)

删除的内容: S1

删除的内容: 2

192 Seven sampling sites, including 1 urban site (SW1), ~~5~~ rural sites (SW2, SW3, SW4,
193 SW5 and SW6) and 1 background site (SW7), are located in southwest China.
194 SW1 is located in a residential area (30.55°N, 103.84°E) which lies in the Wenjiang
195 district of Chengdu city, Sichuan province. The sampling site is surrounded densely
196 occupied housing, roads and small-scale urban agriculture. SW2 is located at
197 Xiangshui village (30.13°N, 104.63°E), Ziyang city, Sichuan province. This site is
198 surrounded by paddy fields with a single rice cropping system (single harvest per year)
199 and mountains. N fertilizers (urea and compound fertilizer) are applied mainly in June
200 and July, at a rate of 270 kg N ha⁻¹ yr⁻¹. SW3 is located at the Purple Soil Ecological
201 Experiment Station (31.28°N, 105.47°E), Chinese Academy of Sciences, in Yanting
202 county, Sichuan province. Agriculture is the dominant source of N at this site. In the
203 agricultural fields, rice-wheat and maize-oilseed rape (canola) are the major double
204 cropping systems for the paddy and upland fields in conventional farming practice,
205 respectively. Ammonium bicarbonate is the major N nutrient sources for the croplands,
206 usually applied at about 300 kg N ha⁻¹ yr⁻¹ for summer and winter crops together.
207 SW4 is located in Huangzhuang village (29.06°N, 106.18°E) in Jiangjin district of
208 Chongqing, a city characterized by heavy industry production. The sampling site is
209 surrounded by paddy fields and dry farmland with sorghum or oilseed rape. Farmers

213 apply N fertilizers mainly in April-July, October and November. Paddy fields at this
214 site usually receive compound fertilizers including $180 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, whereas the
215 dryland areas planted with sorghum usually receive ammonium phosphate and
216 ammonium bicarbonate (altogether adding about $200 \text{ kg N ha}^{-1} \text{ yr}^{-1}$), and the drylands
217 used for oilseed rape production usually receive compound fertilizers at 135 kg N ha^{-1}
218 yr^{-1} . SW5 is located in the suburbs of Kunming, a city characterized by flower and
219 vegetable production, and about 500 m away from the Dian Lake (24.97°N , 102.67°E).
220 This site is surrounded by agricultural fields and small villages, and is near a road (c.
221 0.2 km) with few vehicles. Leek is the most important cash crop in the region, and N
222 fertilizer (urea) is usually applied every two months, at a rate of $300\text{-}400 \text{ kg N ha}^{-1}$
223 yr^{-1} . SW6, located at the campus of Yunnan Agricultural University (25.13°N ,
224 102.75°E), is in the northern rural area of Kunming city. This site is surrounded by
225 housing, commercial buildings and roads without large agricultural sources. SW7 is a
226 typical rural background site located in Kunyang town (24.67°N , 102.61°E), and is
227 surrounded by small agricultural land (c. 62 ha), phosphate fertilizer plants and
228 mountains.

229 **S2.6. Sampling sites in the Tibetan plateau (TP)**

删除的内容: S1

230 Two sampling sites, including 1 urban site (TP1) and 1background site (TP2), are
231 located in the Tibetan plateau.
232 TP1, located at a meteorological station belonging to Xining Weather Bureau, is in the
233 northern suburbs of Xining city, Qinghai province. Surrounding this site are schools,
234 housing and commercial buildings. TP2 is located at an ecological experimental
235 station belonging to the Agricultural and Animal Husbandry College of Tibet
236 University, which lies in the wide valley area of the middle and lower reaches of the
237 Niyang River in Linzhi county, Tibet province. TP2 (Linzhi site) is relatively
238 undisturbed remote site, surrounded by grassland free from human activity.

239

240 **Sect. S3. Information on measuring methods, sample replications and collection**

241 *S3.1. Description of the DELTA system and the ALPHA and Gradko passive samplers*
242 The DELTA system comprises a denuder filter sampling train, a low-volume pump
243 (D210, TCP Micropumps Ltd., UK) and a high sensitivity dry gas meter (SK25,
244 Kimmon Manufacturing Co., Ltd., Japan). Briefly, the sampling train consists of two
245 potassium carbonate plus glycerol (1 % (m/v) K_2CO_3 + 1 % (m/v) glycerol in
246 methanol) coated denuders in series for the simultaneous collection of HNO_3 ,

248 followed by two citric acid (5% (m/v) citric acid in methanol) coated denuders for
249 NH_3 and finally by a filter-pack assembly with a first K_2CO_3 /glycerol impregnated
250 filter to capture particle phase anions (NO_3^- , SO_4^{2-} , Cl^-) and cations (NH_4^+ , Na^+ , Mg^{2+} ,
251 Ca^{2+}), and a second filter coated with citric acid to collect any volatilized particulate
252 NH_4^+ . The empirically determined effective size cut-off for particle sampling is of the
253 order of 4.5 μm (E. Nemitz, personal communication). The air was drawn through the
254 sampling train at a rate of 0.2-0.4 L min^{-1} and directly into the first denuder with no
255 inlet line to avoid sampling losses. The total sampled air volume of the DELTA
256 system was recorded by the gas meter which was checked every month for data
257 reading, performance and maintenance.

258 The ALPHA passive sampler, described in detail by [Puchalski et al. \(2011\)](#) is made up
259 of a 26 mm long, 27 mm outer diameter polyethylene tube with one open end. The
260 open end contains a 5 μm PTFE membrane allowing gaseous NH_3 to diffuse through,
261 which is then absorbed onto a citric acid-coated collection filter located at the other
262 end of the diffusion path. The Gradko passive sampler consists of a 71.0 mm long \times
263 11.0 mm internal diameter acrylic tube with coloured and white thermoplastic rubber
264 caps. NO_2 is absorbed into a 20% triethanolamine/deionised-water solution coated
265 onto two stainless steel wire meshes within the coloured cap. Both types of passive
266 samplers at each site were installed at 2 m height above the ground and deployed as
267 three replicates for monthly sampling. For the ALPHA passive sampler, the NH_3
268 concentration was calculated by considering a temperature dependent diffusion
269 coefficient ([Puchalski et al., 2011; Xu et al., 2014](#)), while a constant gas diffusion
270 coefficient based on an assumption of 25 $^{\circ}\text{C}$ was used for the calculation of NO_2
271 concentration, in accordance with the Gradko introduction manual and previous
272 studies ([Luo et al., 2013; Shen et al., 2013](#)).

273 The DELTA sampling trains and all the passive samplers were prepared and measured
274 in the laboratory at China Agricultural University (CAU), Beijing. The prepared
275 samplers were sealed in individual airtight storage bags and shipped in cool boxes,
276 sent out to the monitoring sites for monthly field exposure, then sent back in the same
277 bags and boxes to the laboratory for extraction and analysis. All the samplers were
278 exposed to ambient air for one month at each site and thus provided monthly mean
279 ambient N_r concentrations. Laboratory and field (travel) blanks were prepared and
280 transported together with the field-exposed samples. Three laboratory blanks were
281 prepared for each batch of field exposed samples and represent extracts from samples

282 prepared in the laboratory. Three field blanks were prepared for each batch of field
283 exposed samples and represent extracts from unexposed samplers that were
284 transported to and from the monitoring sites with the field exposed samplers.

285 *S3.2. Description of particulate sampler*

286 For pNH_4^+ and pNO_3^- sampling, particulate samplers equipped with solar panels were
287 used to collect 7-10 days of PM_{10} samples per month. The average of these 7-10
288 samples is assumed to represent the monthly average concentration. The sampler was
289 placed about 2 m above the ground and ran for 24h to obtain a particulate matter
290 sample on 47 mm quartz filters (Whatman, Maidstone, UK). Each filter was
291 equilibrated for 24-h in a room at 40 % relative humidity and 25 °C and then weighed
292 on an electronic balance (Satorius, GÖTTINGEN, Germany, precision: 10 μg) before
293 and after sampling. After collection, the loaded quartz filters were sealed in aluminum
294 foil and stored in on-site refrigerators at about 3 °C until analysis in the coordinating
295 laboratories of local universities or institutes. Field blank measurements were made
296 each month at the corresponding sites.

297

298 **References**

299 Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L., Vitousek, P. M.,
300 Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.:
301 Enhanced nitrogen deposition over China, *Nature*, 494, 459-462,
302 doi:10.1038/nature11917, 2013.

303 Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang,
304 L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An
305 evaluation of atmospheric N_r pollution and deposition in North China after the
306 Beijing Olympics, *Atmos. Environ.*, 74, 209–216,
307 doi:10.1016/j.atmosenv.2013.03.054, 2013.

308 Puchalski, M. A., Sather, M. E., Walker, J. T., Lehmann, C. M. B., Gay, D. A., Mathew,
309 J., and Robarge, W. P.: Passive ammonia monitoring in the United States:
310 Comparing three different sampling devices, *J. Environ. Monit.*, 13, 3156–3167,
311 doi: 10.1039/c1em10553a, 2011.

312 Shen, J. L., Li, Y., Liu, X. J., Luo, X. S., Tang, A. H., Zhang, Y. Z., and Wu, J. S.:
313 Atmospheric dry and wet nitrogen deposition on three contrasting land use types of
314 an agricultural catchment in subtropical central China, *Atmos. Environ.*, 67, 415–
315 424, doi:10.1016/j.atmosenv.2012.10.068, 2013.

316 Xu, W., Zheng, K., Liu, X.J., Meng, L.M., Huaitalla, R.M., Shen, J.L., Hartang, E.,
317 Gallmann, E., Roelcke, M., and Zhang, F.S.: Atmospheric NH₃ dynamics at a
318 typical pig farm in China and their implications. *Atmos. Pollut. Res.*, 5, 455–463,
319 doi:10.5094/APR.2014.053, 2014.

320

321 **Sect. S4. Validation of ALPHA passive sampler**

322 The ALPHA passive samplers were used to monitor atmospheric concentrations of
323 NH₃ at seven sites (NC2, NE4, NE5, SW5, SW7, TP1 and TP2) of the network at
324 which the DELTA systems could not be used due to absence of an external power
325 supply. To ensure that differences across sites are due to the pollution climate rather
326 than an artifact caused by methodological choices, we performed simultaneous and
327 continuous 1-month measurements of NH₃ concentrations by using ALPHA passive
328 samplers and the active DELTA denuders at three urban (NC1, NC3 and NE1) and
329 three rural (NC8, SE3 and SE7) sites from Nov. 2013 to Oct. 2014.

330 Monthly mean concentrations of NH₃ provided by ALPHA passive samplers and the
331 DELTA denuders were reasonably comparable at all site (**Fig S1a-f**), with overall
332 averaged values of 6.7 ± 5.0 (standard deviation) and $7.0 \pm 5.1 \mu\text{g N m}^{-3}$, respectively.
333 In addition, the correlation between the two methodologies was highly significant
334 ($R^2=0.919$, $p<0.001$). Thus any differences in the data can be ascribed to the pollution
335 climate.

336

337 **Sect. S5. Introduction to the calculation of V_d for all N_r species as well as the
338 estimation of dry deposition**

339 The model calculation of dry deposition of N_r species follows a standard big-leaf
340 resistance-in-series model as described by Wesely (1989) for gases and Zhang et al.
341 (2001) for aerosol. V_d is calculated as the function $V_d=(R_a+R_b+R_c)^{-1}$ determined by
342 local meteorological condition and surface type as described in [Zhang et al. \(2012\)](#).
343 Here R_a is the aerodynamic resistance to turbulent transfer from the lowest model
344 layer (70 m above the surface) to the roughness height, R_b is the boundary layer
345 resistance to molecular diffusion, and R_c is the canopy or surface uptake resistance. In
346 the present study we have run the model calculation of dry deposition velocities for
347 the whole of 2012 and archived the hourly values for both gases and aerosols over the
348 model domain. Then, the monthly V_d at each site was averaged based on the hourly
349 dataset for further estimation of dry deposition flux of each N_r species during the

刪除的內容: Parameterization of dry deposition of gases and aerosols follows a standard big-leaf resistance-in-series model ([Wesely, 1989](#)).

删除的内容:S2

删除的内容:S3

355 observation, which was statistically summarized according to land use type and is
356 presented in **Table S3**. Annual mean dry deposition velocities of N_r species for six
357 land use types in this study, averaged from monthly mean values, were fit well into
358 range of annual values calculated and used for similar land use types in other studies
359 (**Table S4** of Supplement).

360

361 **References**

362 Wesely, M. L.: Parameterization of surface resistance to gaseous dry deposition in
363 regional-scale numerical models. *Atmos. Environ.*, 23, 1293-1304, 1989.

364 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
365 van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen Deposition to the United
366 States: Distribution, Sources, and Processes, *Atmos. Chem. Phys.*, 12, 4539-4554,
367 doi:10.5194/acp-12-4539-2012, 2012.

368 [Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry](#)
369 [deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35 \(3\),](#)
370 [549-560, doi:10.1016/s1352-2310\(00\)00326-5, 2001.](#)

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

391 **Figure captions**

392 **Fig. S1.** Comparison between simultaneous measurements of NH_3 concentrations by
393 ALPHA passive samplers and the DELTA systems at six sampling sites in the network
394 (a. NC1, b. NC3, c. NE1, d. NC8, e. SE3, f. SE7, g. ALPHA_r vs. DELTA_r across all sites). Site names for codes can be found in Table S1.

395
396 **Fig. S2.** Monthly mean atmospheric concentrations of N_r species (a. NH_3 , b. NO_2 , c.
397 HNO_3 , d. pNH_4^+ and e. pNO_3^-) at the forty-three monitoring sites in China. The
398 boundary of the box indicates the 25th and 75th percentile. The black lines and red
399 squares within the box mark the median and the mean, respectively. Whiskers above
400 and below the box indicate the maximum and minimum values. Site names for codes
401 can be found in Table S1.

402 **Fig. S3.** Monthly volume-weighted N_r concentrations in precipitation at the
403 forty-three monitoring sites in China (a. NH_4^+-N , b. NO_3^--N). The black lines within
404 the box denote the median. The blue circles denote the volume-weighted mean
405 concentrations of N_r species in rainwater, calculating from the water amount and
406 deposition fluxes of all precipitation events at each site during the sampling period.
407 Whiskers above and below the box indicates the maximum and minimum values. Site
408 names for codes can be found in Table S1.

409 **Fig. S4.** Relationships between monthly precipitation and volume-weighted
410 concentrations of NH_4^{\pm} and NO_3^{\pm} in precipitation at the sampling sites in the six
411 regions. NC, NE, NW, SE, SW, and TP are the region codes and denote North China,
412 Northeast China, Northwest China, Southeast China, Southwest China, and the
413 Tibetan Plateau, respectively.

414 **Fig. S5.** Annual mean precipitation amounts at the forty-three sites in China. Site
415 names for codes can be found in Table S1.

416 **Fig. S6.** Relationship between total annual dry N deposition fluxes and total annual
417 atmospheric N_r concentrations across all forty-three sites. The plots with same color
418 denote the same land use type.

419
420
421
422
423
424

删除的内容: **Fig. S3.** Annual mean concentrations of atmospheric N_r species above the different land use types. Error bars are standard errors of means. Values without the same letters are significantly different at $p < 0.05$. The number of sites with the same land use type can be found in Table S1.

删除的内容: S4

已移动(插入) [1]

删除的内容: 7

删除的内容: ■

删除的内容: **Fig. S5.** Annual total dry and wet deposition rates of N_r at the forty-three monitoring sites in China. Site names for codes can be found in Table S1. ■

删除的内容: S6

已上移 [1]: **Fig. S7.** Relationships between monthly precipitation and volume-weighted concentrations of NH_4^+ and NO_3^- in precipitation at the sampling sites in the six regions. NC, NE, NW, SE, SW, and TP are the region codes and denote North China, Northeast China, Northwest China, Southeast China, Southwest China, and the Tibetan Plateau, respectively.

删除的内容: 8

删除的内容: Site names for codes can be found in Table S1

455 **Fig. S1**

456

457

458

459

460 Fig. S2

刪除的內容: ■

461

462

463

464

466 | Fig. S3

467

468

469

470

471

472

472

27

1

475

470

477

478

479

480

481

482

483

484

删除的内容: Fig. S3 ■

带格式的：字体：Times New Roman, 小四

删除的内容:S4

505

506

删除的内容:

Fig. S5

Fig. S4

带格式的: 字体: Times New Roman, 小四

Fig. S5

带格式的：字体：Times New Roman, 小四

538 Fig. S6

删除的内容:

带格式的: 字体: Times New Roman, 小四

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

Table S1. Descriptions of the forty-tree sampling sites in the Nationwide Nitrogen Deposition Monitoring Network (NNDMN)^a

Site Code	Site Name	Region	Coordinate	Meteorological parameters ^b				Population density (persons km ⁻²)	Land use type
				Wind speed (m s ⁻¹)	Rainfall (mm)	Temp. (°C)	RH (%)		
NC1	China Agric. University	NC	116.28 °E, 40.02 °N	2.5	556	12.4	56	7616	Urban
NC2	Beijing Normal University	NC	116.37 °E, 39.96 °N	2.5	556	12.4	56	7616	Urban
NC3	Zhengzhou	NC	113.63 °E, 34.75 °N	2.5	641	14.6	65	17069	Urban
NC4	Dongbeiwang	NC	116.29 °E, 40.04 °N	2.5	556	12.4	56	587	Rural
NC5	Shangzhuang	NC	116.20 °E, 40.11 °N	2.5	556	12.4	56	327	Rural
NC6	Baoding	NC	115.48 °E, 38.85 °N	2.0	519	12.9	61	3029	Rural
NC7	Quzhou	NC	114.94 °E, 36.78 °N	1.8	517	13.9	61	606	Rural
NC8	Yangqu	NC	112.89 °E, 38.05 °N	2.1	443	10.1	59	58	Rural
NC9	Zhumadian	NC	114.05 °E, 33.02 °N	2.3	958	15.0	72	815	Rural
NC10	Yangling	NC	108.01 °E, 34.31 °N	1.6	599	13.3	71	1763	Rural
NC11	Yucheng	NC	116.63 °E, 36.94 °N	2.5	567	13.1	64	495	Rural
NC12	Lingshandao	NC	120.18 °E, 35.77 °N	4.9	712	12.7	71	482	Background
NC13	Changdao	NC	120.75 °E, 37.93 °N	5.5	562	12.2	68	786	Background
NE1	Dalian	NE	121.58 °E, 38.92 °N	4.6	623	10.8	65	14280	Urban
NE2	Gongzhuling	NE	124.83 °E, 43.53 °N	3.8	573	5.7	63	271	Rural
NE3	Lishu	NE	124.17 °E, 43.36 °N	2.8	611	6.7	64	221	Rural
NE4	Wuyin	NE	129.25 °E, 48.11 °N	2.1	628	1.1	69	33	Background
NE5	Genhe	NE	121.52 °E, 50.78 °N	2.2	518	-6.2	67	5	Background
NW1	Shengdisuo	NW	87.57 °E, 43.87 °N	2.5	265	7.2	57	5122	Urban

删除的内容:
Fig. S7

带格式的: 字体: Times New Roman, 小四

带格式的: 字体: Times New Roman, 小四

NW2	Tufaisuo	NW	87.58 °E, 43.82 °N	2.5	265	7.2	57	236	Urban
NW3	Wuwei	NW	102.60 °E, 38.07 °N	1.8	170	8.2	52	58	Rural
NW4	Duolun	NW	116.49 °E, 42.20 °N	3.4	374	2.4	60	5	Background
NW5	Bayinbuluke	NW	83.71 °E, 42.88 °N	2.7	272	-4.3	70	26	Background
SE1	Nanjing	SE	118.85 °E, 31.84 °N	2.5	1062	15.7	75	729	Urban
SE2	Baiyun	SE	113.27 °E, 23.16 °N	1.8	1748	22.1	77	322	Urban
SE3	Wuxue	SE	115.79 °E, 30.01 °N	2.0	1418	17.3	77	469	Rural
SE4	Taojiang	SE	111.97 °E, 28.61 °N	1.8	1332	17.1	78	372	Rural
SE5	Fengyang	SE	117.56 °E, 32.88 °N	2.6	935	15.4	73	331	Rural
SE6	Zhanjiang	SE	110.33 °E, 21.26 °N	2.9	1678	23.2	82	639	Rural
SE7	Fuzhou	SE	119.36 °E, 26.17 °N	2.6	1374	20	75	97	Rural
SE8	Fenghua	SE	121.53 °E, 29.61 °N	2.4	1408	16.8	79	413	Rural
SE9	Feiyue	SE	113.34 °E, 28.56 °N	1.3	1502	16.9	81	228	Background
SE10	Huinong	SE	113.41 °E, 28.52 °N	1.3	1502	16.9	81	313	Background
SE11	Xishan	SE	113.31 °E, 28.61 °N	1.3	1502	16.9	81	313	Background
SW1	Wenjiang	SW	103.84 °E, 30.55 °N	1.4	939	18.6	80	1650	Urban
SW2	Ziyang	SW	104.63 °E, 30.13 °N	1.1	945	17.3	80	555	Rural
SW3	Yanting	SW	105.47 °E, 31.28 °N	1.2	879	16.4	77	253	Rural
SW4	Jiangjin	SW	106.18 °E, 29.06 °N	1.3	855	16.4	77	383	Rural
SW5	Dianchi	SW	102.67 °E, 24.97 °N	2.1	991	15.1	72	858	Rural
SW6	Yunnan Agric. University	SW	102.75 °E, 25.13 °N	2.1	991	15.1	72	2384	Rural
SW7	Kunyang	SW	102.61 °E, 24.67 °N	2.3	903	16.3	75	204	Background
TP1	Xining	TP	101.79 °E, 36.62 °N	1.5	387	6	56	2167	Urban
TP2	Linzhi	TP	94.36 °E, 29.65 °N	1.7	673	8.9	63	5	Background

567 ^aSee Sect. S2 in the online supplement for the details of all the sampling sites in the network.

568 ^bThere were no mean annual meteorological data for the forty-three monitoring sites; the surface climate parameters presented (1961-2012) were
569 obtained from the nearest meteorological observation stations available on the China Meteorological Data Sharing Services website
570 (<http://cdc.gov.cn/>).

571 ^c The population density was estimated by dividing population by area of the town/district/county where the monitoring site is located.
572 Population data were sourced from the sixth census of China in 2010 and can be accessed online (<http://www.stats.gov.cn>).

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592 **Table S2.** Monitoring periods for atmospheric N deposition and types of underlying surface at the forty-three sites in China.

Site Code	Site Name	Monitoring period		Underlying surface
		Dry deposition	Wet deposition	
NC1	China Agric. University	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC2	Beijing Normal University	Oct. 2013-Sep. 2014	Jan. 2012-Sep. 2014	Roof
NC3	Zhengzhou	May. 2010-Sep. 2014	Jan. 2010-Dec. 2011	Vegetations
NC4	Dongbeiwang	Aug. 2006-Sep. 2008	Aug. 2006-Sep. 2008	Vegetations
NC5	Shangzhuang	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC6	Baoding	Jan. 2011-Dec. 2011	Jan. 2011-Dec. 2011	Vegetations
NC7	Quzhou	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC8	Yangqu	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC9	Zhumadian	Apr. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
NC10	Yangling	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC11	Yucheng	Sep. 2012-Sep. 2014	Jan. 2013-Sep. 2014	Vegetations
NC12	Lingshandao	Feb. 2011-Sep. 2014	Feb. 2011-Sep. 2014	Vegetations
NC13	Changdao	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
NE1	Dalian	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
NE2	Gongzhuling	Jul. 2010-Sep. 2014	Jul. 2010-Sep. 2014	Vegetations
NE3	Lishu	Jul. 2010-Sep. 2014	Jul. 2010-Sep. 2014	Vegetations
NE4	Wuyin	Oct. 2010-Sep. 2011	Oct. 2010-Sep. 2011	Vegetations
NE5	Genhe	Oct. 2010-Sep. 2011	Oct. 2010-Sep. 2011	Vegetations

NW1	Shengdisuo	Sep. 2009-Dec. 2011	Sep. 2009-Aug. 2010	Vegetations
NW2	Tufaisuo	Sep. 2009-Dec. 2011	Sep. 2009-Aug. 2010	Vegetations
NW3	Wuwei	Oct. 2010-Sep. 2014	Oct. 2010-Sep. 2014	Vegetations
NW4	Duolun	Jul. 2013-Sep. 2014	Jan. 2010-Sep. 2014	Grass
NW5	Bayinbuluke	May. 2010-Aug. 2011	Nov. 2010-Jun. 2012	Grass
SE1	Nanjing	Sep. 2010-Feb. 2012	Sep. 2010-Feb. 2012	Vegetations
SE2	Baiyun	May. 2010-Sep. 2014	May. 2010-Sep. 2014	Roof
SE3	Wuxue	Aug. 2011-Sep. 2014	Aug. 2011-Sep. 2014	Roof
SE4	Taojiang	Oct. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Roof
SE5	Fengyang	Feb. 2013-Sep. 2014	Oct. 2013-Sep. 2014	Vegetations
SE6	Zhanjiang	Aug. 2010-Sep. 2014	Jan. 2013-Sep. 2014	Vegetations
SE7	Fuzhou	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
SE8	Fenghua	Aug. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
SE9	Feiyue	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
SE10	Huinong	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
SE11	Xishan	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
SW1	Wenjiang	Oct. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
SW2	Ziyang	Jul. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
SW3	Yanting	May. 2011-Oct. 2013	May. 2011-Dec. 2012	Vegetations
SW4	Jiangjin	Jan. 2013-Sep. 2014	Jan. 2013-Sep. 2014	Vegetations
SW5	Dianchi	Apr. 2009-Mar. 2010	Apr. 2009-Mar. 2010	Vegetations
SW6	Yunnan Agric. University	Apr. 2009-Mar. 2010	Apr. 2010-Mar. 2010	Vegetations
SW7	Kunyang	Apr. 2009-Mar. 2010	Apr. 2009-Mar. 2010	Vegetations

TP1	Xining	Dec. 2013-Nov. 2014	Dec. 2013-Nov. 2014	Vegetations
TP2	Linzhi	Jan. 2009-Dec. 2009	Jan. 2009-Dec. 2009	Vegetations

593

594

595

596

597

598

599

600 **Table S3.** Statistics of monthly mean dry deposition velocities of N_r species for the
 601 three land use types, basing on the modeled hourly values at the forty-three sites from
 602 January 2010 to May 2013^a.

删除的内容: six

删除的内容: for the whole 2012

删除的内容: Land use type

<u>Land use</u> <u>type</u>	<u>Monthly mean deposition velocities (cm s⁻¹)</u>				
	<u>NH_3</u>	<u>NO_2</u>	<u>HNO_3</u>	<u>pNH_4^+</u>	<u>pNO_3^-</u>
<u>Urban</u>	<u>N</u>	<u>410</u>	<u>410</u>	<u>410</u>	<u>410</u>
	<u>Min</u>	<u>0.30</u>	<u>0.01</u>	<u>0.12</u>	<u>0.06</u>
	<u>Max</u>	<u>1.63</u>	<u>0.44</u>	<u>5.78</u>	<u>0.35</u>
	<u>Mean</u>	<u>0.45</u>	<u>0.12</u>	<u>1.22</u>	<u>0.17</u>
	<u>Median</u>	<u>0.34</u>	<u>0.10</u>	<u>1.15</u>	<u>0.17</u>
	<u>SD</u>	<u>0.29</u>	<u>0.10</u>	<u>1.00</u>	<u>0.07</u>
<u>Rural</u>	<u>N</u>	<u>902</u>	<u>902</u>	<u>902</u>	<u>902</u>
	<u>Min</u>	<u>0.09</u>	<u>0.01</u>	<u>0.05</u>	<u>0.07</u>
	<u>Max</u>	<u>1.10</u>	<u>0.46</u>	<u>5.78</u>	<u>0.37</u>
	<u>Mean</u>	<u>0.40</u>	<u>0.17</u>	<u>1.49</u>	<u>0.18</u>
	<u>Median</u>	<u>0.35</u>	<u>0.16</u>	<u>1.49</u>	<u>0.18</u>
	<u>SD</u>	<u>0.16</u>	<u>0.12</u>	<u>1.10</u>	<u>0.06</u>
<u>Background</u>	<u>N</u>	<u>451</u>	<u>451</u>	<u>451</u>	<u>451</u>
	<u>Min</u>	<u>0.20</u>	<u>0.01</u>	<u>0.06</u>	<u>0.05</u>
	<u>Max</u>	<u>1.48</u>	<u>0.57</u>	<u>8.88</u>	<u>0.31</u>
	<u>Mean</u>	<u>0.47</u>	<u>0.17</u>	<u>1.78</u>	<u>0.16</u>
	<u>Median</u>	<u>0.43</u>	<u>0.13</u>	<u>1.48</u>	<u>0.16</u>
	<u>SD</u>	<u>0.22</u>	<u>0.15</u>	<u>1.66</u>	<u>0.06</u>

603 ^a The forty-three sites consist of 10 urban, 22 rural and 11 background sites. Among
 604 the forty-three monitoring sites, 20 farmland, 5 coastal, 6 forest and 2 grassland sites
 605 were included in the rural and background sites.

606

607

608

609

610

611

612

613

614

615

616

Table S4. Comparison of annual deposition velocities of nitrogen compounds on different land use types in this study with literature.

Land use type	Country	Deposition velocity (cm s ⁻¹)					References
		NH ₃	NO ₂	HNO ₃	pNH ₄ ⁺	pNO ₃ ⁻	
Farmland	China	0.40 (0.06)	0.18 (0.08)	1.52 (0.72)	0.19 (0.03)	0.19 (0.03)	This study
		0.26	0.12	0.81	0.16	0.16	Zhu et al. (2010)
		0.74	0.59	2	0.24	0.24	Shen et al. (2009)
		0.13	0.23	—	—	—	Yang et al. (2010)
		0.18	0.10	0.76	—	0.25	Zhang et al. (2004)
	West Africa	0.71	0.05	—	—	—	Pan et al. (2012)
		0.23-0.42	0.20-0.35	0.63-0.73	—	—	Delon et al. (2012)
	Britain	—	0.16	2.06	0.10	0.26	Marner and Harrison. (2004)
	Europe	0.35-0.75	0.05-0.20	0.8-1.0	0.11-0.20	0.10-0.25	Flechard et al. (2011)
		0.45 (0.27)	0.12 (0.06)	1.25 (0.57)	0.17 (0.04)	0.17 (0.04)	This study
Urban	China	0.78	0.06	—	—	—	Pan et al. (2012)
		0.28	0.07	1.77	0.44	0.44	Li et al. (2013)
		0.50	0.60	1.1	0.24	0.24	Luo et al. (2013)
	Greece	0.81	0.26	2.4	0.1	0.2	Anatolaki et al. (2007)
	Britain	—	0.08	7.27	1.02	1.78	Marner and Harrison. (2004)
	China	0.65 (0.26)	0.16 (0.11)	1.56 (0.54)	0.13 (0.03)	0.13 (0.03)	This study
		—	—	—	0.6	1.15	Zhang et al. (2007)
		0.63	0.00534	0.63	—	—	Zhang et al. (2010)
		0.55	0.01	0.84	0.27	0.27	Zhang et al. (2004)
		—	—	—	0.019	0.088	Qi et al. (2013)

删除的内容: 39
 删除的内容: 17
 删除的内容: 07
 删除的内容: 03
 删除的内容: 44
 删除的内容: 18
 删除的内容: 02
 删除的内容: 18
 删除的内容: 02
 删除的内容: 41
 删除的内容: 18
 删除的内容: 0.88
 删除的内容: 31
 删除的内容: 54
 删除的内容: 17
 删除的内容: 15
 删除的内容: 10
 删除的内容: 08
 删除的内容: 29
 删除的内容: 12
 删除的内容: 12

644

645

Table S4 (continued)

Land use type	Country	Deposition velocity (cm s ⁻¹)					References
		NH ₃	NO ₂	HNO ₃	pNH ₄ ⁺	pNO ₃ ⁻	
Forest	China	0.41 (0.05)	0.19 (0.05)	2.23 (1.28)	0.16 (0.01)	0.16 (0.01)	This study
		0.1	0.05	—	—	—	Pan et al. (2012)
		0.20	0.09-0.11	2.43-2.46	0.27-0.33	0.27-0.33	Zhang et al. (2004)
	Belgium	1.1-2.9	0.25	—	—	—	Staelen et al. (2012)
	Switzerland	2.2-3.0	0.3-0.4	1.5	0.2-0.4	0.2-0.4	Schmitt et al. (2005)
	Britain	—	0.26	7.27	1.02	1.78	Marner and Harrison. (2004)
	Europe	0.75-2.4	0.06-0.28	2.3-4.4	0.2-2.0	0.2-2.5	Flechard et al. (2011)
Grassland	China	0.378 (0.002)	0.15 (0.01)	1.09 (0.26)	0.194 (0.002)	0.194 (0.002)	This study
		0.23	0.13	1.16	0.28	0.28	Zhang et al. (2004)
		1.1	0.25	—	—	—	Staelen et al. (2012)
	Britain	—	0.16	1.39	0.06	0.15	Marner and Harrison. (2004)
	Europe	0.45-1.1	0.05-0.25	1.1-1.2	0.12-0.14	0.11-0.19	Flechard et al. (2011)
All land uses	The United States	0.65	0.36	2.70	0.15	0.15	Zhang et al. (2012)

646 Values in the parentheses are standard deviations of annual mean deposition velocities at sampling sites with the same land use type.

647 **References**

648 Anatolaki, Ch. and Tsitouridou, R.: Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece, *Atmos. Res.*, 85, 413–428,
649 doi:10.1016/j.atmosres.2007.02.010, 2007.

650 Delon, C., Galy-Lacaux, C., Adon, M., Liousse, C., Serca, D., Diop, B., and Akpo, A.: Nitrogen compounds emission and deposition in West

665 African ecosystems: comparison between wet and dry savanna, *Biogeosciences.*, 9, 385–402, doi:10.5194/bg-9-385-2012, 2012.

666 Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A.T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and
667 Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope
668 network, *Atmos. Chem. Phys.*, 11, 2703–2728, doi:10.5194/acp-11-2703-2011, 2011.

669 Li, K. H., Liu, X. J., Song, W., Chang, Y. H., Hu, Y. K., and Tian, C. Y.: Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment
670 of Central Asia, *PLoS ONE*, 8, e67018, doi: 10.1371/journal.pone.0067018, 2013.

671 Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang, L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S.,
672 and Liu, X. J.: An evaluation of atmospheric N_r pollution and deposition in North China after the Beijing Olympics, *Atmos. Environ.*, 74,
673 209–216, doi:10.1016/j.atmosenv.2013.03.054, 2013.

674 Marner, B. B. and Harrison, R. M.: A spatially refined monitoring based study of atmospheric nitrogen deposition, *Atmos. Environ.*, 38,
675 5045–5056, doi:10.1016/j.atmosenv.2004.06.016, 2004.

676 Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China, *Atmos. Chem.*
677 *Phys.*, 12, 6515–6535, doi:10.5194/acp-12-6515-2012, 2012.

678 Qi, J. H., Shi, J. H., and Gao, H. W.: Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in
679 coastal region of the Yellow Sea, China, *Atmos. Environ.*, 81, 600–608, doi:10.1016/j.atmosenv.2013.08.022, 2013.

680 Schmitt, M., Thöni, L., Waldner, P., and Thimonier, A.: Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots:
681 comparison of the throughfall and the inferential method, *Atmos. Environ.*, 39, 1079–1091, doi:10.1016/j.atmosenv.2004.09.075, 2005.

682 Shen, J. L., Tang, A. H., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.: High concentrations and dry deposition of reactive
683 nitrogen species at two sites in the North China Plain, *Environ. Pollut.*, 157, 3106–3113, doi:10.1016/j.envpol.2009.05.016, 2009.

684 Staelens, J., Wuys, K., Adriaenssens, S., Avermaet, P. V., Buysse, H., den Bril, B. V., Roeken, E., Ottoy, J. P., Verheyen, K., Thas, O., and

685 Deschepper, E.: Trends in atmospheric nitrogen and sulphur deposition in northern Belgium, *Atmos. Environ.*, 49, 186–196, doi:
686 10.1016/j.atmosenv.2011.11.065, 2012.

687 Yang, R., Hayashi, K., Zhu, B., Li, F., and Yan, X.: Atmospheric NH₃ and NO₂ concentration and nitrogen deposition in an agricultural
688 catchment of Eastern China, *Sci. Total. Environ.*, 408, 4624–4632, doi:10.1016/j.scitotenv.2010.06.006, 2010.

689 Zhang, L., Jacob, D. J., Knipping, E.M., Kumar, N., Munger, J. W., Carouge, C. C., van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen
690 deposition to the United States: distribution, sources, and processes, *Atmos. Chem. Phys.*, 12, 4539–4554, doi:10.5194/acp-12-4539-2012,
691 2012.

692 Zhang, G., Zhang, J., and Liu, S. M.: Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring
693 sites over Yellow Sea and East China Sea, *J. Atmos. Chem.*, 57, 41–57, doi:10.1007/s10874-007-9060-3, 2007.

694 Zhang, Y., Wang, T. J., Hu, Z. Y., and Xu, C. K.: Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants
695 over different landuse types, *Climatic Environ. Res.*, 9, 591–604, 2004 (in Chinese with English abstract).

696 Zhang, Y., Yu, Q., Ma, W. C., and Chen, L. M.: Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to
697 marine biogeochemistry, *J. Geophys. Res.*, 115, 1-10, doi:10.1029/2009JD012814, 2010.

698

699

700

701

702

703

704

705

706

707

708

709

Table S5. Emission inventory of NH₃ and NO_x for thirty-three provinces as well as the six regions of China in 2010 (kt)

Region	Site	Area ($\times 10^3 \text{km}^2$)	NH ₃ (kt)	NO _x (kt)
North China	Beijing	16.4	61.5	389.2
	Tianjin	11.9	48.4	731.3
	Hebei	188.8	904.1	1685.2
	Shandong	187.1	1027.2	1941.8
	Shanxi	156.7	322.5	779.7
	Henan	167.0	1165.4	1140.0
	Shaanxi	205.8	281.5	452.1
	Total	933.8	3810.5	7120.2
Northeast China	Liaoning	148.0	340.4	1021.6
	Jilin	190.2	329.4	474.5
	Heilongjiang	437.0	465.9	716.5
	Total	612.1	1135.8	2212.6

Northwest China	Xinjiang	1660	374.2	308.9
	Inner Mongolia	1183	380.2	660.0
	Ningxia	66.4	73.9	177.0
	Gansu	453.7	199.0	374.4
	Total	3363.1	1027.2	1520.3
Southeast China	Shanghai	6.3	55.0	1091.2
	Jiangsu	102.6	806.3	1557.0
	Zhejiang	101.8	346.6	1199.8
	Anhui	140.3	631.9	768.1
	Hubei	185.9	668.2	783.5
	Hunan	211.8	742.6	566.2
	Jiangxi	166.9	461.3	439.7
	Fujian	124.0	288.9	439.4
	Guangdong	179.8	618.1	1382.1
	Hong Kong & Macau	1.1	6.7	251.2
	Taiwan	36.2	120.0	431.9
	Hainan	35.4	92.0	89.7
	Total	1254.8	4838.8	8962.7

Southwest China	Sichuan	485.0	925.4	650.1
	Chongqing	82.4	254.3	296.4
	Guizhou	176.2	465.5	312.9
	Yunan	390.0	700.0	453.1
	Guangxi	236.7	547.8	399.5
	Total	1370.3	2893.1	2112.0
Tibetan plateau	Tibet	1200.0	172.2	85.2
	Qinghai	722.3	121.6	85.0
	Total	1922.3	293.8	170.2

710 The emission data of NO_x and NH₃ for the year 2010 are from the **GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies)**

711 Model (available online: <http://www.iiasa.ac.at/>)

712

713

714

715

716

717