Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

1College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
3State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
4Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
5Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 4410125, China
6College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
7Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
8Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
9College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650224, China
10Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
11Nature Resource and Environment College, Northwest A&F University, Yangling 712100, China
12Institute of Agricultural Environment and Resource, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
13College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210009, China
14College of Resources and Environment, Southwest University, Chongqing 400716, China
15College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
16South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
17Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
18College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian
Abstract: Global reactive nitrogen (Nr) deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet/bulk Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH₃, NO₂ and HNO₃, and inorganic nitrogen (NH₄⁺ and NO₃⁻) in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites) in China. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr deposition in China.
concentrations and dry and wet/bulk N\textsubscript{r} deposition. On a national basis, the annual
average concentrations (1.3-47.0 µg N m-3) and dry plus wet/bulk deposition fluxes
(2.9-83.3 kg N ha-1 yr-1) of inorganic N\textsubscript{r} species ranked by land use as urban > rural >
background sites, reflecting the impact of anthropogenic N\textsubscript{r} emission. Average dry
and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and
19.3 ± 9.2 kg N ha-1 yr-1 across China, with reduced N deposition dominating both dry
and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally
important to wet/bulk N deposition at the national scale. Therefore both deposition
forms should be included when considering the impacts of N deposition on
environment and ecosystem health.

Keywords: air pollution; reactive nitrogen; dry deposition; wet deposition; ecosystem; China

1. **Introduction**

Humans continue to accelerate the global nitrogen (N) cycle at a record pace as rates
of anthropogenic reactive nitrogen (N\textsubscript{r}) fixation have increased 20-fold over the last
century (Galloway et al., 2008). New N\textsubscript{r} from anthropogenic fixation is formed
primarily through cultivation of N-fixing legumes, the Haber-Bosch process and
combustion of fossil-fuel (Galloway et al., 2013). As more N\textsubscript{r} have been created,
emissions of N\textsubscript{r} (NO\textsubscript{x}=NO+NO\textsubscript{2}, and NH\textsubscript{3}) to the atmosphere have increased from
approximately 34 Tg N yr-1 in 1860 to 109 Tg N yr-1 in 2010 (Fowler et al., 2013;
Galloway et al., 2004); most of this emitted N\textsubscript{r} is deposited back to land and water
bodies. As an essential nutrient, N supplied by atmospheric deposition is useful for all
life forms in the biosphere and may stimulate primary production in an ecosystem if it
does not exceed the ecosystem-dependent critical load (Liu et al., 2010, 2011).
However, long-term high levels of atmospheric N\textsubscript{r} and its deposition can reduce
biological diversity (Clark et al., 2008), degrade human health (Richter et al., 2005),
alter soil and water chemistry (Vitousek et al., 1997) and influence the greenhouse gas
balance (Matson et al., 2002).

Nitrogen deposition occurs via dry and wet processes. Neglecting dry deposition can
lead to substantial underestimation of total flux as dry deposition can contribute up to
2/3 of total N deposition (Flechard et al., 2011; Vet et al., 2014). For quantification of
atmospheric deposition at the national scale, long-term monitoring networks such as
CAPMoN (Canada), IDAF (Africa), CASTNET/NADP (the United States), EMEP
(Europe) and EANET (East Asia) have been established; such networks are essential
for quantification of both wet and dry deposition and revealing long-term trends and spatial patterns under major environmental and climate change (Skeffington and Hill, 2012). Wet deposition, by means of rain or snow, is relatively easily measured in existing networks. In contrast, dry deposition of gases and particulate matter is much more difficult to measure, and strongly influenced by factors such as surface roughness, surface wetness, and climate and environmental factors (Erisman et al., 2005). Direct methods (e.g., eddy correlation, chambers) and indirect methods (e.g., inferential, gradient analysis) can determine dry deposition fluxes (Seinfeld and Pandis, 2006). The inferential method is widely used in many monitoring networks (e.g. CASTNET and EANET), where dry deposition rates are derived from measured ambient concentrations of N\textsubscript{r} species and computed deposition velocities (Endo et al., 2011; Holland et al., 2005; Pan et al., 2012). Additionally, atmospheric modeling has been used as an operational tool to upscale results from sites to regions where no measurements are available (Flechard et al., 2011; Zhao et al., 2015).

According to long-term trends observed by the above monitoring networks, N deposition has decreased over the last two decades in Europe (EEA, 2011). Measurements of wet deposition in the US show a strong decrease in NO\textsubscript{3}-N deposition over most of the country (Du et al., 2014), but NH\textsubscript{4}-N deposition increased in agricultural regions. China, as one of the most rapidly developing countries in East Asia, has witnessed serious atmospheric N\textsubscript{r} pollution since the late 1970s (Hu et al., 2010; Liu et al., 2011). Accurate quantification of N deposition is key to assessing its ecological impacts on terrestrial ecosystems (Liu et al., 2011). Previous modeling studies (e.g., Dentener et al., 2006; Galloway et al., 2008; Vet et al., 2014) suggested that central-east China was a global hotspot for N deposition. More recently, based on meta-analyses of historic literature, both Liu et al. (2013) and Jia et al. (2014) reported a significant increase in N wet/bulk deposition in China since the 1980s or 1990s. However, most measurements in China only reported wet/bulk deposition (e.g., Chen et al., 2007; Zhang et al., 2012a; Huang et al., 2013; Zhu et al., 2015) and/or dry deposition (Luo et al., 2013; Shen et al., 2009; Pan et al., 2012) at a local or regional scale. Although national N deposition has been investigated by Lü and Tian (2007, 2014), the deposition fluxes were largely underestimated due to the inclusion only of gaseous NO\textsubscript{2} in dry deposition and not NH\textsubscript{3}, HNO\textsubscript{3} and particulate ammonium and nitrate etc. Therefore, the magnitude and spatial patterns of in situ measured N wet/bulk and dry deposition across China are still not clear.
Against such a background, we have established a Nationwide Nitrogen Deposition Monitoring Network (NNDMN) in China in 2010, measuring both wet/bulk and dry deposition. The NNDMN consists of forty-three \textit{in-situ} monitoring sites, covering urban, rural (cropland) and background (coastal, forest and grassland) areas across China. The focus of the network is to conduct high-quality measurements of atmospheric N_r in gases, particles and precipitation. These data provide a unique and valuable quantitative description of N_r deposition in China, but have never been published as a whole. The objectives of this study were therefore to: (1) obtain the first quantitative information on atmospheric N_r concentrations and pollution status across China; and (2) analyze overall fluxes and spatial variations of N wet/bulk and dry deposition in relation to anthropogenic N emissions in different regions.

\section*{2. Materials and Methods}

\subsection*{2.1 Sampling sites}

The distribution of the forty-three monitoring sites in the NNDMN is shown in Fig. 1. Although sampling periods varied between sites, most of our monitoring started from 2010 to 2014 (see Supporting Materials for details). The NNDMN comprise 10 urban sites, 22 rural sites and 11 background sites (Table S1 of the online Supplement). To better analyze atmospheric N deposition results among the sites, we divided the forty-three sites into six regions: north China (NC, 13 sites), northeast China (NE, 5 sites); northwest China (NW, 6 sites), southeast China (SE, 11 sites), southwest China (SW, 6 sites), and Tibetan Plateau (TP, 2 sites), representing China's various social-economical and geo-climatic regions (for details, see Sect. A1 of the online Supplement). The sites in the six regions are described using region codes (i.e., NC, NE, NW, SE, SW, TP) plus site numbers such as NC1, NC2, NC3, ..., NE1, NE2, etc. The longitudes and latitudes of all 43-sites ranged from 83.71 to 129.25 °E, and from 21.26 to 50.78 °N, respectively. Annual mean rainfall ranged from 170 to 1748 mm and the annual mean air temperature ranged from -6.2 to 23.2 °C. Site names, land use types and population densities are summarized in Table S1 of the Supplement. More detailed information on the monitoring sites, such as specific locations, surrounding environment and possible emission sources are provided in Sect. A2 of the Supplement.

\subsection*{2.2 Collection of gaseous and particulate N_r samples}

In this study ambient N_r concentrations of gaseous NH_3, NO_2 and HNO_3, and particulate NH_4^+ (pNH_4^+) and NO_3^- (pNO_3^-) were measured monthly at the 43 sites
using continuous active and passive samplers. DELTA active sampling systems
(DEnuder for Long-Term Atmospheric sampling, described in detail in Flechard et al.
(2011) and Sutton et al. (2001)), were used to collect NH$_3$, HNO$_3$, pNH$_4^+$ and pNO$_3^-$;
NO$_2$ samples were collected using Gradko diffusion tubes (Gradko International
Limited, UK) at all sampling sites. The air intakes of the DELTA system and the NO$_2$
tubes were set at a height of 2 m above the ground (at least 0.5 m higher than the
canopy height) at most sites. At a few sites, the DELTA systems could not be used due
to power constraints. Therefore, NH$_3$ samples were collected using ALPHA passive
samplers (Adapted Low-cost High Absorption, designed by the Center for Ecology
and Hydrology, Edinburgh, UK), while the pNH$_4^+$ and pNO$_3^-$ in PM$_{10}$ were collected
using particulate samplers (TSH-16 or TH-150III, Wuhan Tianhong Corp., Wuhan,
China). However, HNO$_3$ measurements were not performed due to lack of
corresponding passive samplers. Briefly, all the measurements of N$_r$ concentration
were based on monthly sampling (one sample per month for each N$_r$ species) except
at the very few sites without DELTA systems, where pNH$_4^+$ and pNO$_3^-$ samples were
calculated from daily sampling transformed to monthly averaged data. Detailed
information on measuring methods, sample replication and collection are given in
Sect. A3 of the Supplement with sampling periods listed in Table S2 of the
Supplement. Comparisons between the ALPHA samplers and the DELTA systems at
six network sites for gaseous NH$_3$ measurements indicated that the two methods
provided comparable NH$_3$ concentrations (values between the two methods were not
significantly different) (cf. Sect. A4 in the Supplement and Fig. S1 therein).

2.3 Collection of precipitation

At all monitoring sites precipitation (here we define it as wet/bulk deposition which
contains wet and part dry deposition) samples were collected using precipitation
gauges (SDM6, Tianjin Weather Equipment Inc., China) located beside the DELTA
systems (c. 2 m). The collector, consisting of a stainless steel funnel and glass bottle
(vol. 2000-2500 ml), collects precipitation (rainwater, snow) without a power supply.
Precipitation amount was measured using a graduated cylinder (scale range: 0-10 mm;
division: 0.1 mm) coupled with the gauge. After each daily (8:00 am-8:00 am next
day) event, the collected samples were thoroughly mixed and then immediately stored
in clean polyethylene bottles (50 mL). All collected samples (including melted snow)
samples were frozen at $-18 \, ^\circ C$ at each site until delivery to the laboratory at China
Agricultural University (CAU) for analysis of inorganic N (NH$_4^+$ and NO$_3^-$). The
gauges were cleaned with high-purity water after each collection and once every week
in order to avoid cross contamination.

2.4 Analytical procedures

In CAU’s analytical laboratory, the exposed sampling trains of the DELTA systems
and passive samples were stored at 4 °C and analyzed at one-month intervals. The
HNO₃ denuders and alkaline-coated filters were extracted with 10 mL 0.05 % H₂O₂
in aqueous solution. The NH₃ denuders and acid-coated filters, and ALPHA samplers
were extracted with 10 mL high-purity water. The loaded PM₁₀ filters were extracted
with 50 mL high-purity water by ultrasonication for 30-60 min and then filtered
through a syringe filter (0.45 μm, Tengda Inc., Tianjin, China). Ammonium (NH₄⁺)
and nitrate (NO₃⁻) in the extracted and filtered solutions were measured with an AA3
continuous-flow analyzer (Bran+Luebbe GmbH, Norderstedt, Germany). The
detection limits were 0.01 mg N L⁻¹ for NH₄⁺ and NO₃⁻. It should be noted that
NO₃⁻ was converted to NO₂⁻ during the chemical analysis. So, NO₂⁻ here was included
in the analysis, and NO₃⁻ equals to the sum of NO₂⁻ and NO₃⁻. The disks from the
Gradko samplers were extracted with a solution containing sulphanilamide, H₃PO₄
and N-1-Naphthylethylene-diamine, and the NO₂⁻ content in the extract determined
using a colorimetric method by absorption at a wavelength of 542 nm. The detection
limit for NO₂⁻ was 0.01 mg N L⁻¹. Three laboratory and three field blank samples
were extracted and analyzed using the same methods as the exposed samples. After
correcting for the corresponding blanks, the results were used for the calculation of
ambient concentrations of gaseous and particulate Nᵅ. Each collected precipitation
sample was filtered with a 0.45 μm syringe filter, and 15 mL filtrates frozen and
stored in polypropylene bottles until chemical analysis within one month. The NH₄⁺
and NO₃⁻ concentrations of the filtrates were determined using an AA3
continuous-flow analyzer as described above.

2.5 Deposition flux estimation

The inferential technique, which combines the measured concentration and a modeled
dry deposition velocity (V_d), was used to estimate the dry deposition fluxes of Nᵅ
species (Schwede et al., 2011; Pan et al., 2012). The concentrations of gases (HNO₃,
NO₂ and NH₃) and aerosols (NH₄⁺ and NO₃⁻) were measured as described in Section
2.2. The monthly average V_d over China was calculated by the GEOS-Chem chemical
transport model (CTM) (Bey et al., 2001; http://geos-chem.org). The GEOS-Chem
CTM is driven by GEOS-5 (Goddard Earth Observing System) assimilated
meteorological data from the NASA Global Modeling and Assimilation Office (GMAO) with a horizontal resolution of 1/2° latitude × 2/3° longitude and 6-h temporal resolution (3-h for surface variables and mixing depths). We used a nested-grid version of GEOS-Chem for Asia that has the native 1/2°×2/3° resolution over East Asia (70°E-150°E, 11°S-55°N) (Chen et al., 2009). The nested model has been applied to examine atmospheric nitrogen deposition to the northwestern Pacific (Zhao et al., 2015), and a similar nested model for North America has been used to analyze nitrogen deposition over the United States (Zhang et al., 2012b; Ellis et al., 2013). The model calculation of dry deposition of N\textsubscript{i} species follows a standard big-leaf resistance-in-series model as described by Wesely (1989) for gases and Zhang et al. (2001) for aerosol. For a detailed description of the V_d calculation as well as the estimation of N dry deposition, the reader is referred to the Supplement (Sect. A5), with monthly and annual dry deposition velocities of N\textsubscript{i} for different land use types presented in Tables S3 and S4 therein. The model uses the land map of the Global Land Cover Characteristics Data Base Version 2.0 (http://edc2.usgs.gov/glcc/globdoc2_0.php), which defines the land types (e.g., urban, forest, etc.) at the native 1 km × 1 km resolution and is then binned to the model resolution as fraction of the grid cell covered by each land type. The model 1/2° resolution may coarsely represent the local land characteristics at the monitoring sites. Future work using a single-point dry deposition model as for CASTNET (Clarke et al., 1997) would further improve the dry deposition flux estimates, but that requires concurrent in-situ measurements of meteorological variables which are not available at present.

Wet/bulk N deposition flux was calculated as the product of the precipitation amount and the concentration of N\textsubscript{i} species in precipitation, using the following equations (1) and (2):

$$C_w = \frac{\sum_{i=1}^{n} (C_i P_i)}{\sum_{i=1}^{n} P_i}$$ (1)

where C_w is the volume-weighted mean (VWM) concentration (mg N L-1) calculated from the n precipitation samples within a month or a year, and the individual sample concentration C_i is weighted by the rainfall amount P_i for each sample.

$$D_w = P_t C_w / 100$$ (2)

where D_w is the wet/bulk deposition flux (kg N ha-1), P_t is the total amount of all precipitation events (mm), and 100 is a unit conversion factor.
2.6 Statistics

A one-way analysis of variance (ANOVA) and nonparametric t-tests were conducted to examine the differences in the investigated variables between sites (urban, rural and background) and between the six regions. Linear regression analysis was used to analyze the relationships among annual wet N deposition flux, annual precipitation amount and annual VWM concentration of inorganic N in precipitation. All analyses were performed using SPSS 11.5 (SPSS Inc., Chicago, IL, USA). Statistically significant differences were set at P values < 0.05.

3. Results

3.1 Concentrations of N₄ species in air

Monthly mean concentrations of NH₃, NO₂, HNO₃, pNH₄⁺ and pNO₃⁻ were 0.08-34.8, 0.13-33.4, 0.02-4.90, 0.02-55.0 and 0.02-32.1 μg N m⁻³, respectively (Fig. S2a-e, Supplement). The annual mean concentrations of gaseous and particulate N₄ were calculated for each site from the monthly N₄ concentrations (Fig. 2a), and further were averaged for land use types in the six regions (Fig. 3a-e) and the whole nation (Fig. 4a) according to geographical location and the classification of each site. Annual mean NH₃ concentrations ranged from 0.3 to 13.1 μg N m⁻³, with an overall average value of 6.1 μg N m⁻³. In NC, SE and SW, the NH₃ concentrations at the urban sites (average for the three regions, 9.5 ± 2.1 µg N m⁻³) were about 1/3 higher than at the rural sites (6.2 ± 2.3 µg N m⁻³) and were almost twice of those at the background sites (4.8 ± 1.4 µg N m⁻³), whereas in NE and NW NH₃ concentrations were lower at the urban sites (average two regions, 5.5 ± 3.2 µg N m⁻³) than at the rural sites (8.8 ± 0.3 µg N m⁻³) but 4.6-times greater than at the background sites (1.2 ± 0.5 µg N m⁻³). Comparing land use types by region, annual NH₃ concentrations at the rural sites in northern regions (NC, NE and NW) were approximately equal, which on average were 1.8-times greater than the average of southern rural sites. In contrast, annual NH₃ concentrations at urban and background sites ranked in the order: SW > NC > NW > SE > TP > NE, and SW > NC > SE > NW > TP > NE, respectively (Fig. 3a). Annual mean NO₂ concentrations showed similar spatial variations (0.4 to 16.2 μg N m⁻³) to those of NH₃, and overall averaged 6.8 μg N m⁻³. In the six regions, the NO₂ concentrations at urban sites were 1.4-4.5 times higher than those at rural sites, and were even 2.0-16.6 times higher than the background sites (except for SW). By comparison among regions, annual mean NO₂ concentrations at rural sites in NC were about 2.6-times higher than in NE and NW, and overall averaged NO₂ concentrations...
in northern rural China (NC, NE and NW, 5.7 ± 3.5 μg N m⁻³) were comparable to those at southern rural sites (average of SE and SW, 5.1 ± 0.1 μg N m⁻³). As for urban and background sites, the annual mean NO₂ concentrations followed the order: NC > NW > SE > SW > NE > TP, and SW > NC > SE > NE > NW > TP, respectively (Fig. 3b). Annual mean HNO₃ concentrations were relatively low everywhere (from 0.1 to 2.9 μg N m⁻³, averaging 1.3 μg N m⁻³). In all regions except NE and TP, the HNO₃ concentrations were highest at the urban sites (averages: 1.7-2.4 μg N m⁻³), followed by the rural sites (0.8-1.6 μg N m⁻³), and were lowest at the background sites (0.2-1.1 μg N m⁻³). The HNO₃ concentrations were comparable for the same land use types across northern and southern monitoring sites, on average, 1.8 vs. 1.8, 1.2 vs. 1.0, and 0.6 vs. 0.8 μg N m⁻³ at the urban, rural and background sites, respectively (Fig. 3c).

The annual mean concentrations of pNH₄⁺ and pNO₃⁻ were in the ranges of 0.2-18.0 μg N m⁻³ (average 5.7 μg N m⁻³) and 0.2-7.7 μg N m⁻³ (average 2.7 μg N m⁻³), respectively. Annual pNH₄⁺ concentrations show a decreasing trend of urban > rural > background in all regions (except NE), where relatively higher concentrations were observed at the rural sites than the urban sites, and in SE, where no clear difference were observed among three land use types (Fig. 3d). In contrast, annual pNO₃⁻ concentrations showed a declining trend of urban > rural > background in all regions (Fig. 3e). Overall, annual mean concentrations of both pNH₄⁺ and pNO₃⁻ at all land use types were both slightly higher in northern China (NC, NE and NW) than in southern China (SE, SW and TP).

In total, annual mean concentrations of gaseous and particulate Nr in air were 1.3-47.0 μg N m⁻³ among all sampling sites. The total annual concentrations of measured Nr generally decreased in the order of urban > rural > background in all regions except NE (Fig. 3f).

3.2 Concentrations of Nr species in precipitation

The monthly VWM concentrations of inorganic Nr species at the forty-three sampling sites during the study period ranged from 0.01 to 27.1 mg N L⁻¹ for NH₄⁺-N and from 0.02 to 27.9 mg N L⁻¹ for NO₃⁻-N (Fig. S3, Supplement). The annual VWM concentrations of NH₄⁺-N and NO₃⁻-N across all sites were in the ranges of 0.2-4.3 and 0.1-2.5 mg N L⁻¹, respectively, with averages of 1.6 and 1.3 mg N L⁻¹ (Fig. 2b).

The urban-rural-background distributions of annual VWM concentrations of NH₄⁺-N and NO₃⁻-N were, respectively, fairly coincided with corresponding reduced (i.e. NH₃ and pNH₄⁺) and oxidized Nr (i.e. HNO₃ and pNO₃⁻) in all regions except NH₄⁺-N in
SE and NO$_3^-$-N in NW (Figs. 3g and h). Conversely, the regional variations in annual
VWM concentrations of NH$_4^+$-N and NO$_3^-$-N for the three land use types were not
consistent with corresponding reduced and oxidized N$_r$, respectively. On a national
basis, the VWM concentrations of NH$_4^+$-N and NO$_3^-$-N were both decreased in the
order urban \geq rural $>$ background (Fig. 4b). The annual total inorganic N (TIN)
concentrations in precipitation across all sites were 0.4-6.0 mg N L$^{-1}$, decreasing from
urban to background sites in all regions (except NE) as well as on a national basis
(Figs. 3i and 4b).

3.3 Dry deposition of N$_r$ species
The annual dry deposition fluxes of NH$_3$, NO$_2$, HNO$_3$, pNH$_4^+$ and pNO$_3^-$ were in the
ranges of 0.5-16.0, 0.2-9.8, 0.2-16.6, 0.1-11.7 and 0.1-4.5 kg N ha$^{-1}$ yr$^{-1}$, and averaged
8.2, 3.2, 5.4, 3.2 and 1.5 kg N ha$^{-1}$ yr$^{-1}$, respectively (Fig. 5a). The total dry N
deposition across all sites ranged from 1.1 to 52.2 kg N ha$^{-1}$ yr$^{-1}$ (averaged 20.6 \pm 11.2
kg N ha$^{-1}$ yr$^{-1}$). Gaseous N species were the primary contributors to total
dry-deposited N, ranging from 60% to 96%, despite of the missing HNO$_3$ data at a few sites. In general, NH$_3$ was predominant N$_r$ species in total dry N deposition and
accounted for 24-72%, compared with 1-43% from NO$_2$ and 9-37% from HNO$_3$.
Comparing land use types in each region, spatial pattern of individual fluxes is fairly
consistent with that of their respective concentrations except that of NH$_3$ for NC, that
of NO$_2$ for SW, those of NO$_2$ and pNH$_4^+$ for NW and those of almost all measured N$_r$
species for NE (Figs. 3a-e and 6a-e). Furthermore, a consistent picture is also seen
for the total flux (sum of fluxes of five N$_r$ species) at each land use type (Figs. 5f and
6f). Among the six regions, regional variations of individual fluxes at each land use
type generally differed from those of their respective concentrations. Similarly, the
inconsistent behavior appeared for the total fluxes at urban and rural sites but not at
background site. On a national basis, there was no significant difference ($p$$>$0.05) in
the total dry N deposition fluxes between urban (26.9 kg N ha$^{-1}$ yr$^{-1}$) and rural (23.0
kg N ha$^{-1}$ yr$^{-1}$) sites, both of which were significantly higher than background site
(10.1 kg N ha$^{-1}$ yr$^{-1}$). Also, a similar pattern was found for the dry deposition flux of
each N$_r$ species among different land use types (Fig. 4c).

3.4 Wet/bulk deposition of N$_r$ species
Annual wet/bulk N deposition fluxes at the forty-three sites ranged from 1.0 to 19.1
kg N ha$^{-1}$ yr$^{-1}$ for NH$_4^+$-N and from 0.5 to 20.1 kg N ha$^{-1}$ yr$^{-1}$ for NO$_3^-$-N (Fig. 5b).
The annual wet/bulk deposition fluxes of NH$_4$$^+$-N were, on average, 1.3 times those of NO$_3$$^-$-N. The total annual wet/bulk N (NH$_4$$^+$-N+ NO$_3$$^-$-N) deposition fluxes across all the sites were 1.5-32.5 kg N ha$^{-1}$ yr$^{-1}$ (average 19.3 kg N ha$^{-1}$ yr$^{-1}$), with a large spatial variation. Region variation of annual wet N deposition followed the order of NC > SE > SW > NE > NW > TP for NH$_4$$^+$-N, and SE > NC > SW > NE > TP > NW for NO$_3$$^-$-N, both of which differed from their orders of annual VWM concentration, reflecting differences in annual precipitation amount. Annual total wet/bulk N deposition fluxes averaged 24.6, 13.6, 7.4, 24.4, 17.6 and 7.6 kg N ha$^{-1}$ yr$^{-1}$, respectively, in NC, NE, NW, SE, SW and TP (Fig. 5b). At national scale, annual wet/bulk deposition fluxes of total inorganic N and/or each N$_r$ species at urban and rural sites were comparable but significantly higher ($p<0.05$) than those at background sites (Fig. 4d).

3.5 Total annual dry and wet deposition of N$_r$ species

The total (dry plus wet/bulk) annual N deposition at the 43 sites ranged from 2.9 to 83.3 kg N ha$^{-1}$ yr$^{-1}$ (average 39.9 kg N ha$^{-1}$ yr$^{-1}$) for the period, with 23-83% dry-deposited (Fig. 5c). Separated by land use types, total annual mean N deposition fluxes were 49.7, 44.3 and 26.0 kg N ha$^{-1}$ at the urban, rural and background sites, respectively, reflecting different anthropogenic impacts. In our network, the NH$_x$ (i.e. wet/bulk NH$_4$$^+$-N deposition plus dry deposition of NH$_3$ and particulate NH$_4$$^+$)/NO$_y$ (wet/bulk NO$_3$$^-$-N deposition plus dry deposition of NO$_2$, HNO$_3$ and particulate NO$_3^-$) ratio at urban sites (from 0.8 to 1.8, averaging 1.2) was not significantly different ($p>0.05$) from rural (from 0.5 to 2.7, averaging 1.3) and background (from 1.0 to 2.5, averaging 1.6) sites. On a regional basis, the relative importance of dry vs. wet/bulk N deposition to the total deposition were different in the six regions, 57% vs. 43% in NC, 54% vs. 46% in NE, 61% vs. 39% in NW, 42% vs. 58% in SE, 55% vs. 45% in SW, and 50% vs. 50% in TP (Fig. 7).

4. Discussion

4.1 Concentration of N$_r$ species in air and precipitation

China is facing serious atmospheric N$_r$ pollution induced by anthropogenic N$_r$ emissions (Liu et al., 2011, 2013). The present study shows that monthly N$_r$ concentrations of species, through comparisons among regions, have a distinct spatial variability with values significantly higher (all $p<0.05$) in NC and significantly lower (all $p<0.05$) in TP. Annual mean NH$_3$ and NO$_2$ concentrations at most sampling sites are in good agreement with the emission inventory and satellite observations by Gu et
al. (2012), who reported NH₃ hotspots in the North China Plain and South Central China such as Jiangsu and Guangdong provinces, while NOₓ hotspots were mainly in more developed regions such as the Jing-Jin-Ji (Beijing-Tianjin-Hebei), the Yangtze River Delta and the Pearl River Delta. Our results confirm that NC, which consumes large quantities of fertilizers (for food production) and fossil fuel (for energy supply) (Zhang et al., 2010) experiences the most serious Nr pollution in China; TP is the least polluted region due to much less human activity. When considering different land use types, the average total annual Nr concentrations ranked urban > rural > background, with significant differences (all $p<0.05$) among them, despite site-to-site variability within regions. This reflects the dominant role of human activity on atmospheric Nr.

For individual Nr species, higher mean concentrations were observed at the urban sites than at rural and background sites (Fig. 4a). Higher NH₃ concentration in urban areas may be associated with NH₃ emissions from biological sources, such as human, sewage disposal systems and refuse containers (Reche et al., 2002). In addition, NH₃ can be produced by over-reduction of NO in automobile catalytic converters (Behera et al., 2013), increasing ambient NH₃ concentrations in urban areas with high traffic densities. Between 2006 and 2013, the number of civil vehicles increased from 2.39 to 5.17 million in Beijing and from 0.46 to 1.72 million in Zhengzhou (CSY, 2007-2014), which is likely to have resulted in elevated NH₃ emissions. Higher NO₂ concentrations are expected in urban areas due to NOₓ emissions from the combustion of fossil fuels (Li and Lin, 2000), and also lead to higher HNO₃ concentrations in urban areas via NO₂ oxidation.

The higher pNH₄⁺ and pNO₃⁻ concentrations observed at urban sites mainly resulted from the high concentrations at the northern urban sites (NC1~3, NW1 and NW2) (Fig. 2a and Fig. S2d, e in Supplement). This is probably due to the fact that cities in northern China, such as Beijing and Zhengzhou in NC and Urumqi in NW, are being surrounded by intensive agricultural production. Rapid developments along with urbanization in suburban areas shorten the transport distance between NH₃ emitted from agriculture and SO₂ and NOₓ emitted from fossil fuel combustion (Gu et al., 2014). This allows the pollutants to react more readily and form aerosols (e.g. PM₂.₅), leading to high concentrations of pNH₄⁺ and pNO₃⁻ near or within cities. This explanation is supported by the recent MEPC (2013) report that the annual average PM₂.₅ concentrations in the cities of Beijing, Zhengzhou and Urumqi were more than twice the Chinese annual mean PM₂.₅ standard value of 35 μg m⁻³, whereas cities such
as Guangzhou and Xining with little surrounding agricultural production had lower PM$_{2.5}$ concentrations. In China’s 12th Five Year Plan (2011–2015), nationwide controls on NO$_x$ emissions will be implemented along with controls on SO$_2$ and primary particle emissions (Wang et al., 2014). In order to better improve the regional air quality for metropolitan areas; our results suggest that strict control measures on both NH$_3$ and NO$_x$ would be beneficial in NC, at least in the suburban areas. Rural sites in this study also had relatively high concentrations of all measured N$_r$ species in air, altogether ranking in the order of NC > NE > NW > SE > SW (Fig. 3f). The higher concentrations in northern China are mainly due to the combined effect of high NH$_3$ emissions from N fertilized farmland (Zhang et al., 2008a) and urban air pollution (e.g. NO$_2$, HNO$_3$, pNH$_4^+$ and pNO$_3^-$) transported from population centers to the surrounding rural areas (Luo et al., 2013). The lower air concentrations of N$_r$ species at background sites can be ascribed to the lack of both substantial agricultural and industrial emissions. Additionally, higher wind speeds occurred at some background areas (e.g. NC12, NC13 and NW4) (Table S1, Supplement), favoring the dispersion of atmospheric pollutants.

We found that regional variations in N$_r$ concentrations in precipitation were not fully in accordance with ambient N$_r$ concentrations (see Sect. 3.2) when assessed by land use types. It is commonly accepted that N concentrations in precipitation are affected by the amount of precipitation (Yu et al., 2011). Negative correlations between precipitation amount and monthly volume-weighted concentrations of NH$_4^+$-N and NO$_3^-$-N were obtained by fitting exponential models in all six regions (Fig. S4, Supplement), indicating a dilution effect of rainwater on inorganic N concentration. The relationships were not significant ($p>0.05$) in NW and TP, which is probably caused by low precipitation amounts at or near the sampling sites (Fig. S5, Supplement). Nevertheless, dilution could explain some of the regional differences in precipitation N concentrations.

4.2 Dry and wet/bulk deposition of N$_r$ species

A significant ($p<0.001$) positive correlation was observed between annual dry N deposition and total annual concentrations of atmospheric N$_r$ species across all sites (Fig. S6, Supplement). Therefore, higher concentrations of N$_r$ species at urban sites led to higher dry deposition rates compared with rural and background sites, mainly attributable to elevated N$_r$ emissions from urban sources (e.g., non-agricultural NH$_3$ emissions from landfills, wastewater treatments and NO$_x$ emissions from traffic...
vehicles and power plants) and rapid development of intensive agricultural production
in suburban areas surrounding cities; regardless of differences in dry deposition
velocities of various \(N_r \) species in different land use types. At the national scale, dry \(N \)
deposition rates contributed almost half 23-83\%, averaging 52\%) of the total
inorganic \(N \) deposition, indicating the importance of dry deposition monitoring for
comprehensive \(N \) deposition quantification.

In this study, regional variations of annual wet/bulk \(N \) deposition fluxes of \(\text{NH}_4^+ \)-\(N \),
\(\text{NO}_3^- \)-\(N \) and their sum showed different spatial patterns to those of corresponding
annual VWM concentrations of them in precipitation (see Sect. 3.4). These findings,
together with no significant differences (\(p>0.05 \)) in total annual wet/bulk \(N \) deposition
between NC and SE, reflect, not surprisingly, that regional wet/bulk \(N \) deposition is
dependent not only on \(N_r \) concentrations in precipitation but also on annual rainfall
amounts. As shown in Fig. 8, annual wet/bulk deposition fluxes of \(\text{NH}_4^+ \)-\(N \) and
\(\text{NO}_3^- \)-\(N \) both showed significantly positive correlations with the corresponding annual
VWM concentrations of inorganic \(N \) and annual precipitation amount, especially for
\(\text{NH}_4^+ \)-\(N \), that more significant was found for precipitation amount than concentration.
The measured wet/bulk \(N \) deposition rates (average 19.3 kg \(N \) ha\(^{-1} \) yr\(^{-1} \)) were almost
twice the earlier average wet deposition value of 9.9 kg \(N \) ha\(^{-1} \) yr\(^{-1} \) for period of
1990-2003 in China (Lü and Tian, 2007). Our results show similar regional patterns
and comparable magnitudes to those measured in the 2000s in China as reported by
Jia et al. (2014) (~14 kg \(N \) ha\(^{-1} \) yr\(^{-1} \), wet deposition) and Liu et al. (2013) (~21 kg \(N
\)
ha\(^{-1} \) yr\(^{-1} \), bulk deposition).

The \(\text{NH}_4^+ /\text{NO}_3^- \) ratio in wet/bulk deposition can be used to indicate the relative
contribution of \(N_r \) from agricultural and industrial activities to \(N \) deposition (Pan et al.,
2012; Zhan et al., 2015; Zhu et al., 2015) because the major anthropogenic source of
\(\text{NH}_4^+ \)-\(N \) in precipitation is \(\text{NH}_3 \) volatilized from animal excrement and the application
of nitrogenous fertilizers in agriculture, while anthropogenic sources of \(\text{NO}_3^- \)-\(N \) in
precipitation originate from \(\text{NO}_x \) emitted from fossil fuel combustion in transportation,
power plant and factories (Cui et al., 2014). In this study the overall annual average
ratio of \(\text{NH}_4^+ /\text{NO}_3^- \) in wet/bulk deposition was 1.3 ± 0.5 (standard deviation),
with an increasing (but not significant) trend for urban (1.2 ± 0.6), rural (1.3 ± 0.4),
and background (1.5 ± 0.4) sites (Fig. 5b). Our measured ratio was slightly lower than
average values of 1.6 in Europe (Holland et al., 2005) and 1.5 in the United States (Du
et al., 2014), and similar to an average value (1.2) reported elsewhere for 2013 in
China (Zhu et al., 2015). Based on these findings, we conclude that NH$_4^+$-N from agricultural sources still dominates wet/bulk N deposition but the contribution has decreased drastically between the 1980s and the 2000s (Liu et al., 2013). Reduced N also contributed more than oxidized N to the total N deposition, and the ratio of reduced to oxidized N deposition overall averaged 1.6 ± 0.7 in dry deposition and 1.4 ± 0.4 in the total deposition (Fig. 5a, c).

The overall mean annual deposition fluxes (wet/bulk plus dry) of NH$_x$ and NO$_y$ for the period 2010-2014 was graded into five levels and plotted on maps showing the spatial distribution of NH$_3$ and NO$_x$ emissions (Fig. 9a, b). The anthropogenic emission data of NH$_3$ and NO$_x$ for the year 2010 in China were obtained from the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model (http://www.iiasa.ac.at/), and emission details for the 33 provinces of China are summarized in Table S5 of the Supplement. The spatial patterns of estimated NH$_x$ and NO$_y$ deposition compare reasonably well with the regional patterns of NH$_3$ and NO$_x$ emissions, respectively, even though the emission data were estimated at the province scale. With emission data, N deposition can be used to distinguish regional differences in reactive N$_r$ pollution. Across six regions, significantly positive correlations were found between NH$_3$ emissions and NH$_x$ deposition fluxes (R^2=0.888, $p<0.01$) (Fig. 9c), and between NO$_x$ emissions and NO$_y$ deposition fluxes (R^2=0.805, $p<0.05$) (Fig. 9d), implying that the N deposition fluxes to the six regions are strongly dependent on the spatial pattern of anthropogenic N$_r$ emissions among the regions. The slopes of the relationships of NH$_x$ vs NH$_3$, and NO$_y$ vs NO$_x$ were 0.51 and 0.48, which could be roughly interpreted that NH$_x$ and NO$_y$ deposition fluxes represent about 51% NH$_3$ and 48% NO$_x$ emissions, respectively.

For all Chinese regions except NC we cannot compare our data with other studies because observations for different pollution climate sites in other regions are lacking. For NC, the overall average total N deposition was 56.2 ± 14.8 kg N ha$^{-1}$ yr$^{-1}$, 13-32% lower than the previously estimated values in Northern China (Pan et al., 2012; Luo et al., 2013). This difference may reflect differences in the numbers of sampling sites, land use type and assumed dry deposition velocities. As expected, our estimated deposition was substantially higher than the results of Lü and Tian (2007), who suggested that the total N deposition ranged from 13 to 20 kg N ha$^{-1}$ yr$^{-1}$ in NC. This is attributed to their omission of many major species (e.g., gaseous NH$_3$, HNO$_3$ and particulate N$_r$) from their data.
Compared to dry and wet N deposition fluxes estimated by CASTNET in the United States, EMEP in Europe, and EANET sites in Japan, the average values of dry and wet/bulk deposition in China are much higher (Table 1). In addition, on the basis of 2001 ensemble-mean modeling results from 21 global chemical transport models (Vet et al., 2014), three regions of the globe where total deposition is very high: western Europe (with levels from 20.0 to 28.1 kg N ha\(^{-1}\) yr\(^{-1}\)); South Asia (Pakistan, India and Bangladesh) from 20.0 to 30.6 kg N ha\(^{-1}\) yr\(^{-1}\) and East Asia from 20 to 38.6 kg N ha\(^{-1}\) yr\(^{-1}\) in eastern China (the global maximum). Extensive areas of high deposition from 10 to 20 kg N ha\(^{-1}\) yr\(^{-1}\) appear in the eastern U.S. and southeastern Canada as well as most of central Europe. Small areas with total deposition of N from 10 to 20 kg N ha\(^{-1}\) yr\(^{-1}\) are present, and very large areas of the continents have deposition from 2 to 10 kg N ha\(^{-1}\) yr\(^{-1}\). In contrast, the present study shows much higher total deposition flux (39.9 kg N ha\(^{-1}\) yr\(^{-1}\)) at a national scale. In China, the consumption rates of chemical fertilizer and fossil fuel have increased 2.0- and 3.2-fold, respectively, between the 1980s and the 2000s (Liu et al., 2013). As a result, the estimated total emission of NH\(_3\) reached 9.8 Tg in 2006, contributing approximately 15% and 35% to the global and Asian NH\(_3\) emissions (Huang et al., 2012), and NO\(_x\) emissions from fossil fuel combustion increased from 1.1 Tg N in 1980 to about 6.0 Tg N in 2010 (Liu et al., 2013). The increasing NO\(_x\) and NH\(_3\) emissions in China led to higher atmospheric N deposition than those observed in other regions.

According to Endo et al. (2011), the low dry deposition fluxes in CASTNET, EMEP and Japan’s EANET network are due at least partly to low concentrations of N\(_\text{r}\) compounds and/or the omission of dry deposition fluxes of major N\(_\text{r}\) species (e.g., NO\(_2\) and NH\(_3\)) from the data. Meanwhile, the low wet deposition fluxes at these networks are likely to be a result of the combined effects of low amounts of precipitation and, especially, low atmospheric N\(_\text{r}\) concentrations. In addition, emissions of nitrogen compounds in other parts of the world are declining. In the U.S., for example, NO\(_x\) emissions from the power sector and mobile sources were reduced by half from 1990 to 2010 (Xing et al., 2013), which explained the declined N deposition fluxes during period of 1990-2009 observed at 34 paired dry and wet monitoring sites in the eastern US (Sickles II et al., 2015). In Europe, the total NO\(_x\) and NH\(_3\) emissions decreased by 31% and 29% from 1990 to 2009 (Torseth et al., 2012). N deposition has decreased or stabilized in the United States and Europe since the late 1980s or early 1990s with the implementation of stricter legislation to reduce
emissions (Goulding et al., 1998; Holland et al., 2005). However, wet deposition of ammonia, which is not regulated, has increased in recent years in the U.S. (Du et al., 2014).

4.3 Implications of monitoring N_r concentration and deposition on regional N deposition simulation

Our results show that atmospheric concentrations and deposition of N_r in China were high in the 2000s, although the government has made considerable efforts to control environmental pollution by improving air quality in mega cities during and after the 2008 Beijing Summer Olympic Games (Wang et al., 2010; Chan and Yao, 2008).

Ideally, the spatial distribution of monitoring sites should reflect the gradients in the concentrations and deposition fluxes of atmospheric N_r species. Given the fact that the arithmetic averages used in this study cannot give a completely accurate evaluation of N_r levels for the regions of China due to the limited numbers of monitoring sites and ecosystem types, it is important to develop and improve the quantitative methods for determining N deposition across China.

Numerical models are very useful tools to quantify atmospheric N deposition (including both spatial and temporal variations), but a challenge to the modeling approaches is that observations to validate the simulated concentrations and deposition fluxes are often lacking. In our study 43 monitoring sites were selected in a range of ecosystem types to provide more representative regional information on atmospheric N deposition in China. Although those measurements cannot define all aspects of N deposition across different regions, they add substantially to existing knowledge concerning the spatial patterns and magnitudes of atmospheric N deposition. The present measurements will be useful for better constraining emission inventories and evaluating simulations from atmospheric chemistry models. In future studies we will use models (e.g., FRAME, Dore et al., 2012) integrated with measurements from our monitoring network to fully address the spatial-temporal variations of atmospheric N deposition and its impacts on natural and semi-natural ecosystems at the regional/national level.

4.4 Uncertainty analysis of the N dry and wet deposition fluxes

The dry deposition fluxes were estimated by combining measured concentrations with modeled V_d. As summarized in Table S4, our estimates of dry deposition velocities for different N_r species are generally consistent with the estimates in previous studies (e.g., Flechard et al., 2011; Pan et al., 2012). Some uncertainties may still exist in the
inputs for dry deposition modeling. For example, underlying surface parameters (e.g., surface roughness length and land type) strongly affect dry deposition through their effect on both deposition velocity and the absorbability of the ground surface to each of the gaseous and particulate Nᵅ species (Loubet et al., 2008). In addition, there is uncertainty in the deposition fluxes for both pNH₄⁺ and pNO₃⁻ in our network, resulting from the difference between the cut-off sizes of particles in the samplers and that defined in the modeled Vₐ which were calculated for atmospheric PM₂.₅ in GEOS-Chem model. For example, the cut-off sizes of the samples can collect also coarse NO₃⁻ particles (e.g. calcium nitrate) but should have little effect on NH₄⁺ particles (mainly in the fine scale <1μm) (Tang et al., 2009), resulting in an underestimation of pNO₃⁻ deposition. Furthermore, NH₃ fluxes over vegetated land are bi-directional and the net direction of this flux is often uncertain. A so-called canopy compensation point was used in previous studies (Sutton et al., 1998) to determine the direction of the NH₃ flux. Since the principle of bi-directional NH₃ exchange was not considered in this study, NH₃ deposition may be overestimated at rural sites with relatively high canopy compensation points (e.g. up to 5 μg N m⁻³) due to fertilized croplands or vegetation (Sutton et al., 1993). On the other hand, the total dry deposition flux in this study may be underestimated due to omission of the dry-deposited organic N species in our network and missing HNO₃ data at very few sites as noted earlier (see Sect. 2.2). The organic N species have been found as important contributors to the N dry deposition. For example, PAN accounted for 20% of the daytime, summertime NOₓ (NO + NO₂ + HNO₃ + NO₃⁻ + PAN) dry deposition at a coniferous forest site (Turnipseed et al., 2006). However, the contribution of PAN and other known atmospheric organic nitrates to total Nᵅ inputs must be minor on the annual time scale, as reported by Flechard et al. (2012). In previous work, dry deposition flux was inferred from atmospheric Nᵅ concentrations and a literature-based annual mean deposition velocity (Shen et al., 2009), or reported by Luo et al. (2013) who did not consider the different dry deposition velocities of various Nᵅ species among different land use types. Clearly, in this study we have greatly improved the estimation of dry deposition, but further work is still required to increase the reliability and accuracy of N dry deposition values.

Since wet/bulk deposition was measured directly, the reported fluxes are considered more accurate than dry deposition fluxes but still some uncertainties exist. On one hand, the estimated fluxes obtained from the open precipitation samplers contain
contributions from wet plus unquantifiable dry deposition (including both gases and particles) and therefore likely overestimate actual wet deposition (Cape et al., 2009). For example, our previous research showed that annual unquantifiable dry deposition (the difference between bulk and wet deposition, approx. 6 kg N ha\(^{-1}\) on average) accounted for 20% of bulk N deposition based on observations at three rural sites on the North China Plain (Zhang et al., 2008b). This contribution increased to 39% in urban areas based on a recent measurement (Zhang et al., 2015). On the other hand, dissolved organic N compounds, which have been observed to contribute to be around 25-30% of the total dissolved nitrogen in wet deposition around the world (Jickells et al., 2013) and approximately 28% of the total atmosphere bulk N deposition in China (Zhang et al., 2012b), were not considered in the present study. Their exclusion here would contribute to an underestimation of the total wet N deposition. Although the NNDMN is the only long-term national deposition network to monitor both N wet/bulk and dry deposition in China till now, large areas of the country or islands lack of sampling points may be missing hotspots or pristine sites of N deposition. The implementation of an adequate monitoring program is also difficult at present in some regions (e.g., northwest China and Tibetan Plateau). To address this issue, more new monitoring sites, covering regions with both extremely low and high \(N_r\) emissions, should be set up in the NNDMN in future work.

Conclusions

Our study represents the first effort to investigate inorganic dry and wet/bulk N deposition simultaneously, based on a nationwide monitoring network in China. We consider this unique dataset important not only for informing policy-makers about the abatement of pollutant emissions and ecosystem protection but also to validate model estimations of N deposition at the regional/national scale in China. The major results and conclusions are as follows.

1. Distinct spatial variability in annual mean concentrations of \(N_r\) species in air and precipitation was observed, with different regional variations based on land use type across the six regions. On a national basis, the order of total concentrations of \(N_r\) species, as well as each species, was urban > rural > background.

2. Large spatial variations were observed for both dry and wet/bulk N deposition. The spatial patterns of dry and wet/bulk deposition both followed urban > rural >
background at the national scale. Dry N deposition correlated well with total concentrations of \(N_r \) in the air, but differences were found between patterns of wet/bulk N deposition and the \(N_r \) concentration in precipitation. This reflects the combining effect of both \(N_r \) concentrations and precipitation amounts on regional wet/bulk N deposition.

3. Spatial distribution of total annual N deposition fluxes across all sites compared well with the spatial pattern of nitrogen emissions at the regional level. When considering land use type, the total N deposition was highest at urban sites, followed by rural sites and background sites, mainly attributable to \(N_r \) emissions from urban sources and rapid development of intensive agricultural production in suburban areas.

4. Dry deposition fluxes of \(N_r \) species on average contributed 52% of the total N deposition (39.9 kg N ha\(^{-1}\) yr\(^{-1}\)) across all sites, indicating the importance of dry deposition monitoring for a complete N deposition assessment at the national scale.

5. Annual average ratios of reduced N/oxidized N in dry and wet/bulk deposition were respectively 1.6 and 1.3, and 1.4 for the total deposition. It shows that reduced N, mainly from agricultural sources, still dominates dry, wet/bulk, and total N deposition in China.

Acknowledgments

This study was supported by the Chinese National Basic Research Program (2014CB954202), the China Funds for Distinguished Young Scholars of NSFC (40425007), and the National Natural Science Foundation of China (31121062, 41321064 and 41405144). The authors thank all technicians at monitoring sites in NNDMN.

References

Loubet, B., Asman, W. A. H., Theobald, M. R., Hertel, O., Tang, S. Y., Robin, P.

deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35 (3),

Zhao, Y. H., Zhang, L., Pan, Y. P., Wang, Y. S., Paulot, F., and Henze, D. K.:
Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and
source attribution, Atmos. Chem. Phys. Discuss., 15, 13657-13703,

composition, spatial patterns, and influencing factors of atmospheric wet nitrogen
deposition in Chinese terrestrial ecosystems. Sci. Total Environ., 511, 777-785,
Figure captions

Fig. 1. Geographical distribution of the forty-three monitoring sites in China.

Fig. 2. Annual mean concentrations of \(N_r \) compounds in air (a) and volume-weighted concentrations of inorganic nitrogen species in precipitation (b) at all monitoring sites.

Fig. 3. Annual mean concentrations of (a) \(\text{NH}_3 \); (b) \(\text{NO}_2 \); (c) \(\text{HNO}_3 \); (d) \(\text{pNH}_4^+ \); (e) \(\text{pNO}_3^- \); and (f) Total \(N_r \): sum of all measured \(N_r \) in air and volume-weighted concentrations of \(\text{NH}_4^+ \) (g); \(\text{NO}_3^- \) (h) and Total inorganic N (TIN): sum of \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) (i) in precipitation at different land use types in six regions.

Fig. 4. Annual mean concentrations and deposition fluxes of \(N_r \) compounds at different land use types across China: concentrations in air (a); volume-weighted concentrations in precipitation (b); dry N deposition fluxes (c); wet/bulk N deposition fluxes (d). The number of sites with the same land use type can be found in Table S1 in the Supplement. Error bars are standard errors of means.

Fig. 5. Annual deposition flux of various \(N_r \) species at the forty-three selected sites in China: (a) dry deposition flux; (b) wet/bulk deposition flux; (c) total deposition flux. Yellow dots denote ratios of reduced N to oxidized N in dry deposition (a), \(\text{NH}_4^+-\text{N} \) to \(\text{NO}_3^-\text{N} \) in wet/bulk deposition (b) and/or reduced N to oxidized N in total deposition (c) at all sampling sites.

Fig. 6. Dry N deposition fluxes of (a) \(\text{NH}_3 \); (b) \(\text{NO}_2 \); (c) \(\text{HNO}_3 \); (d) \(\text{pNH}_4^+ \); (e) \(\text{pNO}_3^- \); and (f) Total \(N_r \): sum of all measured \(N_r \) in dry and wet/bulk N deposition fluxes of \(\text{NH}_4^+ \) (g); \(\text{NO}_3^- \) (h) and Total inorganic N (TIN): sum of \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) (i) at different land use types in the six regions. The number of sites with the same land use type can be found in Table S1 in the Supplement. Error bars are standard errors of means.

Fig. 7. Contribution of different pathways (dry-deposited N=gaseous N+ particulate N, wet/bulk-deposited N=precipitation N) to the estimated total N deposition in the six regions: (a) NC: north China; (b) NE: northeast China; (c) NW: northwest China; (d) SE: southeast China; (e) SW: southwest China; (f) TP: Tibetan Plateau.
Fig. 8. Correlations between annual wet/bulk NH$_4^+$-N deposition and annual volume-weighted concentration of NH$_4^+$-N (a) and annual precipitation (b); between annual wet/bulk NO$_3^-$-N deposition and annual volume-weighted concentration of NO$_3^-$-N (c) and annual precipitation (d).

Fig. 9. Spatial variation of atmospheric N deposition flux with emission distribution in China: (a) NH$_3$ emission vs. NH$_x$ deposition; (b) NO$_x$ emission vs. NO$_y$ deposition; (c) relationship of NH$_x$ deposition vs. NH$_3$ emission; (d) relationship of NO$_y$ deposition vs. NO$_x$ emission.
Figure 1

[Map of East Asia showing regions and land use types.

Regions:
- North China
- North East
- North West
- South East
- South West
- Tibetan Plateau

Land use types:
- Background Sites
- Rural Sites
- Urban Sites]
Figure 2

(a) Atmospheric concentration of N species (µg N m⁻³)

(b) Volume-weighted concentration (mg N L⁻¹)

North China
Northeast China
Northwest China
Southeast China
Southwest China
TP
Figure 4

(a) Atmospheric concentration (µg N m\(^{-3}\))
(b) Volume-weighted concentration (mg N L\(^{-1}\))
(c) Dry deposition (kg N ha\(^{-1}\) yr\(^{-1}\))
(d) Wet/bulk deposition (kg N ha\(^{-1}\) yr\(^{-1}\))

Legend:
- Urban
- Rural
- Background

NH\(_3\), NO\(_2\), HNO\(_3\), pNH\(_4\), pNO\(_3\), Total N, NH\(_4\)\(^+\), NO\(_3\)\(^-\), TIN

(a) (b) (c) (d)

(a) (b) (c) (d)
Figure 5

(a) Dry deposition of N species (kg N ha$^{-1}$ yr$^{-1}$) and ratio of reduced to oxidized N.

(b) Wet/bulk deposition of N species (kg N ha$^{-1}$ yr$^{-1}$) and ratio of NH$_4$-N/NO$_3$-N.

(c) Total N deposition (kg N ha$^{-1}$ yr$^{-1}$) and ratio of reduced to oxidized N.

Legend:
- **NH$_4$**
- **NO$_3$**
- **HNO$_3$**
- **pNH$_4^+$**
- **pNO$_3^-$**

Regions:
- **North China**
- **Northeast China**
- **Northwest China**
- **Southeast China**
- **Southwest China**
- **TP**
Figure 7
Figure 8

- (a) Wet/bulk NO$_3^-$-N deposition (kg N ha$^{-1}$ yr$^{-1}$) vs. Annual VWM NH$_4^+$-N concentration (mg N L$^{-1}$)
 - $y = 9.305x^{0.309}$, $R^2 = 0.176$
 - n = 43, $p < 0.05$

- (b) Wet/bulk NH$_4^+$-N deposition (kg N ha$^{-1}$ yr$^{-1}$) vs. Annual precipitation (mm)
 - $y = 0.754x^{0.401}$, $R^2 = 0.245$
 - n = 43, $p < 0.01$

- (c) Wet/bulk NO$_3^-$-N deposition (kg N ha$^{-1}$ yr$^{-1}$) vs. Annual VWM NO$_3^-$-N concentration (mg N L$^{-1}$)
 - $y = 8.132x^{0.526}$, $R^2 = 0.316$
 - n = 43, $p < 0.001$

- (d) Wet/bulk NO$_3^-$-N deposition (kg N ha$^{-1}$ yr$^{-1}$) vs. Annual precipitation (mm)
 - $y = 0.336x^{0.502}$, $R^2 = 0.321$
 - n = 43, $p < 0.001$
Figure 9

(a) NH₃ deposition (kg N ha⁻¹ yr⁻¹) and NH₃ emission (kg N ha⁻¹ yr⁻¹) map.

(b) NOₓ deposition (kg N ha⁻¹ yr⁻¹) and NOₓ emission (kg N ha⁻¹ yr⁻¹) map.

(c) Scatter plot of NH₃ deposition vs. NH₃ emission with linear regression line:

\[y = 0.512x + 10.05 \]

\[R^2 = 0.888, p < 0.01 \]

(d) Scatter plot of NOₓ deposition vs. NOₓ emission with linear regression line:

\[y = 0.483x + 7.398 \]

\[R^2 = 0.805, p < 0.05 \]
<table>
<thead>
<tr>
<th>Network</th>
<th>Japan EANET network<sup>a</sup></th>
<th>CASTNET<sup>b</sup></th>
<th>EMEP<sup>c</sup></th>
<th>NADMM<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sites or grids</td>
<td>10 sites</td>
<td>130 sites</td>
<td>2447 girds (0.5° × 0.5°)</td>
<td>33 sites</td>
</tr>
<tr>
<td>N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>)</td>
<td>Dry</td>
<td>Wet</td>
<td>Total</td>
<td>Dry</td>
</tr>
<tr>
<td>Average</td>
<td>3.9</td>
<td>6.6</td>
<td>10.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Median</td>
<td>4.1</td>
<td>5.9</td>
<td>11.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Max</td>
<td>7.0</td>
<td>15.8</td>
<td>18.2</td>
<td>9.7</td>
</tr>
<tr>
<td>Min</td>
<td>1.0</td>
<td>2.1</td>
<td>3.0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

^aThe Japan EANET data are sourced from Endo et al. (2011). Gaseous NO₂ was not included in estimates of dry N deposition.

^bThe CASNET data are available online (<http://www.epa.gov/castnet/>). Gaseous NH₃ was not included in estimates of dry N deposition.

^cThe EMEP data are sourced from Endo et al. (2011), in which the dry and wet deposition amounts at each grid covering 27 EMEP countries were estimated by the unified EMEP models (Simpson et al., 2003).

^dOnly including the rural and background sites in NNDMN.