1	Quantifying atmospheric nitrogen deposition through a nationwide monitoring
2	network across China
3	W. Xu ¹ , X. S. Luo ^{1,2} , Y. P. Pan ³ , L. Zhang ⁴ , A. H. Tang ¹ , J. L. Shen ⁵ , Y. Zhang ⁶ , K. H. Li ⁷ , Q. H.
4	Wu ¹ , D. W. Yang ¹ , Y. Y. Zhang ¹ , J. Xue ¹ , W. Q. Li ⁸ , Q. Q. Li ^{1,9} , L. Tang ⁹ , S. H. Lu ¹⁰ , T. Liang ¹¹ , Y.
5	A. Tong ¹¹ , P. Liu ¹² , Q. Zhang ¹² , Z. Q. Xiong ¹³ , X. J. Shi ¹⁴ , L. H. Wu ¹⁵ , W. Q. Shi ¹⁶ , K. Tian ¹⁷ , X. H.
6	Zhong ¹⁷ , K. Shi ¹⁸ , Q. Y. Tang ¹⁹ , L. J. Zhang ²⁰ , J. L. Huang ²¹ , C. E. He ²² , F. H. Kuang ²³ , B. Zhu ²³ ,
7	H. Liu ²⁴ , X. Jin ²⁵ , Y. J. Xin ²⁵ , X. K Shi ²⁶ , E. Z. Du ²⁷ , A. J. Dore ²⁸ , S. Tang ²⁸ , J. L. Jr. Collett ²⁹ , K.
8	Goulding ³⁰ , Y. X. Sun ³¹ , J. Ren ³² , F. S. Zhang ¹ , X. J. Liu ^{1,*}
9	¹ College of Resources and Environmental Sciences, China Agricultural University, Beijing
10	100193, China
11	² Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of
12	Agricultural Sciences, Zhengzhou 450002, China
13	³ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
14	(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
15	⁴ Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic
16	Sciences, School of Physics, Peking University, Beijing 100871, China
17	⁵ Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 4410125, China
18	⁶ College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
19	⁷ Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011,
20	China
21	⁸ Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
22	⁹ College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming
23	650224, China
24	¹⁰ Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
25	¹¹ Nature Resource and Environment College, Northwest A&F University, Yangling
26	712100, China
27	¹² Institute of Agricultural Environment and Resource, Shanxi Academy of Agricultural Sciences,
28	Taiyuan 030031, China
29	¹³ College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing
30	210009, China
31	¹⁴ College of Resources and Environment, Southwest University, Chongqing 400716, China
32	¹⁵ College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029,
33	China
34	¹⁶ South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science,
35	Zhanjiang 524091, China
36	¹⁷ Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640,
37	China
38	¹⁸ College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian

- 39 116028, China
- 40 ¹⁹College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- 41 ²⁰College of Resources and Environment, Agricultural University of Hebei, Baoding 071001,
- 42 China
- 43 ²¹College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- 44 ²²Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Bei
- 45 jing 100101, China
- ²³Institute of Mountain, Hazards and Environment, Chinese Academy of Sciences, Chengdu
 610041, China
- 48 ²⁴Research Institute of Soil & Fertilizer and Agricultural Water Conservation, Xinjiang Academy
- 49 of Agricultural Sciences, Urumqi 830091, China
- ²⁵The Bureau of Qinghai Meteorology, Xining 810001, China
- ²⁶Agriculture, Forestry and Water Department of Changdao County, Changdao 265800, China
- 52 ²⁷State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of
- 53 Resources Science & Technology, Beijing Normal University, Beijing 100875, China
- ²⁸Centre for Ecology & Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
- ²⁹Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
- ³⁰The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden
- 57 AL5 2JQ, UK
- ³¹Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- ³²Institute of Soil and Fertilizer, Jilin Academy of Agricultural Sciences, Changchun 130124,
- 60 China
- 61 Corresponding author: liu310@cau.edu.cn (X. J. Liu).
- 62

Abstract: Global reactive nitrogen (N_r) deposition to terrestrial ecosystems has 63 increased dramatically since the industrial revolution. This is especially true in recent 64 decades in China due to continuous economic growth. However, there are no 65 comprehensive reports of both measured dry and wet/bulk Nr deposition across China. 66 We therefore conducted a multiple-year study during the period mainly from 2010 to 67 2014 to monitor atmospheric concentrations of five major N_r species of gaseous NH_3 , 68 NO_2 and HNO_3 , and inorganic nitrogen (NH_4^+ and NO_3^-) in both particles and 69 precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network 70 (NNDMN, covering 43 sites) in China. Wet/bulk deposition fluxes of Nr species were 71 collected by precipitation gauge method and measured by continuous flow analyzer; 72 dry deposition fluxes were estimated using airborne concentration measurements and 73 inferential models. Our observations reveal large spatial variations of atmospheric N_r 74

75 concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3-47.0 µg N m⁻³) and dry plus wet/bulk deposition fluxes 76 $(2.9-83.3 \text{ kg N ha}^{-1} \text{ yr}^{-1})$ of inorganic N_r species ranked by land use as urban > rural > 77 background sites, reflecting the impact of anthropogenic N_r emission. Average dry 78 79 and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean \pm standard deviation) and 19.3 ± 9.2 kg N ha⁻¹ yr⁻¹ across China, with reduced N deposition dominating both dry 80 and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally 81 important to wet/bulk N deposition at the national scale. Therefore both deposition 82 83 forms should be included when considering the impacts of N deposition on environment and ecosystem health. 84

Keywords: air pollution; reactive nitrogen; dry deposition; wet deposition; ecosystem;
China

87 **1. Introduction**

Humans continue to accelerate the global nitrogen (N) cycle at a record pace as rates 88 of anthropogenic reactive nitrogen (N_r) fixation have increased 20-fold over the last 89 century (Galloway et al., 2008). New Nr from anthropogenic fixation is formed 90 primarily through cultivation of N-fixing legumes, the Haber-Bosch process and 91 combustion of fossil-fuel (Galloway et al., 2013). As more Nr have been created, 92 emissions of N_r (NO_x=NO+NO₂, and NH₃) to the atmosphere have increased from 93 approximately 34 Tg N yr⁻¹ in 1860 to 109 Tg N yr⁻¹ in 2010 (Fowler et al., 2013; 94 Galloway et al., 2004); most of this emitted Nr is deposited back to land and water 95 96 bodies. As an essential nutrient, N supplied by atmospheric deposition is useful for all life forms in the biosphere and may stimulate primary production in an ecosystem if it 97 98 does not exceed the ecosystem-dependent critical load (Liu et al., 2010, 2011). However, long-term high levels of atmospheric N_r and its deposition can reduce 99 biological diversity (Clark et al., 2008), degrade human health (Richter et al., 2005), 100 alter soil and water chemistry (Vitousek et al., 1997) and influence the greenhouse gas 101 balance (Matson et al., 2002). 102

Nitrogen deposition occurs via dry and wet processes. Neglecting dry deposition can
lead to substantial underestimation of total flux as dry deposition can contribute up to
2/3 of total N deposition (Flechard et al., 2011; Vet et al., 2014). For quantification of
atmospheric deposition at the national scale, long-term monitoring networks such as
CAPMON (Canada), IDAF (Africa), CASTNET/NADP (the United States), EMEP
(Europe) and EANET (East Asia) have been established; such networks are essential

109 for quantification of both wet and dry deposition and revealing long-term trends and spatial patterns under major environmental and climate change (Skeffington and Hill, 110 2012). Wet deposition, by means of rain or snow, is relatively easily measured in 111 existing networks. In contrast, dry deposition of gases and particulate matter is much 112 more difficult to measure, and strongly influenced by factors such as surface 113 roughness, surface wetness, and climate and environmental factors (Erisman et al., 114 2005). Direct methods (e.g., eddy correlation, chambers) and indirect methods (e.g., 115 inferential, gradient analysis) can determine dry deposition fluxes (Seinfeld and 116 117 Pandis, 2006). The inferential method is widely used in many monitoring networks (e.g. CASTNET and EANET), where dry deposition rates are derived from measured 118 ambient concentrations of N_r species and computed deposition velocities (Endo et al., 119 2011; Holland et al., 2005; Pan et al., 2012). Additionally, atmospheric modeling has 120 been used as an operational tool to upscale results from sites to regions where no 121 measurements are available (Flechard et al., 2011; Zhao et al., 2015). 122

According to long-term trends observed by the above monitoring networks, N 123 deposition has decreased over the last two decades in Europe (EEA, 2011). 124 Measurements of wet deposition in the US show a strong decrease in NO₃-N 125 126 deposition over most of the country (Du et al., 2014), but NH₄-N deposition increased in agricultural regions. China, as one of the most rapidly developing countries in East 127 128 Asia, has witnessed serious atmospheric N_r pollution since the late 1970s (Hu et al., 2010; Liu et al., 2011). Accurate quantification of N deposition is key to assessing its 129 130 ecological impacts on terrestrial ecosystems (Liu et al., 2011). Previous modeling studies (e.g., Dentener et al., 2006; Galloway et al., 2008; Vet et al., 2014) suggested 131 that central-east China was a global hotspot for N deposition. More recently, based on 132 meta-analyses of historic literature, both Liu et al. (2013) and Jia et al. (2014) 133 reported a significant increase in N wet/bulk deposition in China since the 1980s or 134 1990s. However, most measurements in China only reported wet/bulk deposition (e.g., 135 Chen et al., 2007; Zhang et al., 2012a; Huang et al., 2013; Zhu et al., 2015) and/or dry 136 deposition (Luo et al., 2013; Shen et al., 2009; Pan et al., 2012) at a local or regional 137 scale. Although national N deposition has been investigated by Lü and Tian (2007, 138 2014), the deposition fluxes were largely underestimated due to the inclusion only of 139 gaseous NO₂ in dry deposition and not NH₃, HNO₃ and particulate ammonium and 140 nitrate etc. Therefore, the magnitude and spatial patterns of in situ measured N wet 141 /bulk and dry deposition across China are still not clear. 142

Against such a background, we have established a Nationwide Nitrogen Deposition 143 Monitoring Network (NNDMN) in China in 2010, measuring both wet/bulk and dry 144 deposition. The NNDMN consists of forty-three in-situ monitoring sites, covering 145 urban, rural (cropland) and background (coastal, forest and grassland) areas across 146 China. The focus of the network is to conduct high-quality measurements of 147 atmospheric N_r in gases, particles and precipitation. These data provide a unique and 148 valuable quantitative description of Nr deposition in China, but have never been 149 published as a whole. The objectives of this study were therefore to: (1) obtain the 150 151 first quantitative information on atmospheric N_r concentrations and pollution status across China; and (2) analyze overall fluxes and spatial variations of N wet/bulk and 152 dry deposition in relation to anthropogenic N_r emissions in different regions. 153

154 **2. Materials and Methods**

155 2.1 Sampling sites

The distribution of the forty-three monitoring sites in the NNDMN is shown in Fig. 1. 156 Although sampling periods varied between sites, most of our monitoring started from 157 2010 to 2014 (see Supporting Materials for details). The NNDMN comprise 10 urban 158 sites, 22 rural sites and 11 background sites (Table S1 of the online Supplement). To 159 160 better analyze atmospheric N deposition results among the sites, we divided the forty-three sites into six regions: north China (NC, 13 sites), northeast China (NE, 5 161 162 sites); northwest China (NW, 6 sites), southeast China (SE, 11 sites), southwest China (SW, 6 sites), and Tibetan Plateau (TP, 2 sites), representing China's various 163 164 social-economical and geo-climatic regions (for details, see Sect. A1 of the online Supplement). The sites in the six regions are described using region codes (i.e., NC, 165 NE, NW, SE, SW, TP) plus site numbers such as NC1, NC2, NC3, ..., NE1, NE2, etc. 166 The longitudes and latitudes of all 43-sites ranged from 83.71 to 129.25 °E, and from 167 21.26 to 50.78 °N, respectively. Annual mean rainfall ranged from 170 to 1748 mm 168 and the annual mean air temperature ranged from -6.2 to 23.2 °C. Site names, land use 169 types and population densities are summarized in Table S1 of the Supplement. More 170 detailed information on the monitoring sites, such as specific locations, surrounding 171 environment and possible emission sources are provided in Sect. A2 of the 172 Supplement. 173

174 2.2 Collection of gaseous and particulate N_r samples

175 In this study ambient N_r concentrations of gaseous NH_3 , NO_2 and HNO_3 , and 176 particulate NH_4^+ (p NH_4^+) and NO_3^- (p NO_3^-) were measured monthly at the 43 sites 177 using continuous active and passive samplers. DELTA active sampling systems (DEnuder for Long-Term Atmospheric sampling, described in detail in Flechard et al. 178 (2011) and Sutton et al. (2001)), were used to collect NH_3 , HNO_3 , pNH_4^+ and pNO_3^- ; 179 NO₂ samples were collected using Gradko diffusion tubes (Gradko International 180 Limited, UK) at all sampling sites. The air intakes of the DELTA system and the NO₂ 181 tubes were set at a height of 2 m above the ground (at least 0.5 m higher than the 182 canopy height) at most sites. At a few sites, the DELTA systems could not be used due 183 to power constraints. Therefore, NH₃ samples were collected using ALPHA passive 184 samplers (Adapted Low-cost High Absorption, designed by the Center for Ecology 185 and Hydrology, Edinburgh, UK), while the pNH_4^+ and pNO_3^- in PM_{10} were collected 186 using particulate samplers (TSH-16 or TH-150III, Wuhan Tianhong Corp., Wuhan, 187 China). However, HNO₃ measurements were not performed due to lack of 188 corresponding passive samplers. Briefly, all the measurements of N_r concentration 189 were based on monthly sampling (one sample per month for each Nr species) except 190 at the very few sites without DELTA systems, where pNH_4^+ and pNO_3^- samples were 191 calculated from daily sampling transformed to monthly averaged data. Detailed 192 information on measuring methods, sample replication and collection are given in 193 194 Sect. A3 of the Supplement with sampling periods listed in Table S2 of the Supplement. Comparisons between the ALPHA samplers and the DELTA systems at 195 196 six network sites for gaseous NH₃ measurements indicated that the two methods provided comparable NH₃ concentrations (values between the two methods were not 197 198 significantly different) (cf. Sect. A4 in the Supplement and Fig. S1 therein).

199 2.3 Collection of precipitation

200 At all monitoring sites precipitation (here we define it as wet/bulk deposition which 201 contains wet and part dry deposition) samples were collected using precipitation 202 gauges (SDM6, Tianjin Weather Equipment Inc., China) located beside the DELTA systems (c. 2 m). The collector, consisting of a stainless steel funnel and glass bottle 203 (vol. 2000-2500 ml), collects precipitation (rainwater, snow) without a power supply. 204 Precipitation amount was measured using a graduated cylinder (scale range: 0-10 mm; 205 division: 0.1 mm) coupled with the gauge. After each daily (8:00 am-8:00 am next 206 day) event, the collected samples were thoroughly mixed and then immediately stored 207 in clean polyethylene bottles (50 mL). All collected samples (including melted snow) 208 samples were frozen at -18 °C at each site until delivery to the laboratory at China 209 Agricultural University (CAU) for analysis of inorganic N (NH_4^+ and NO_3^-). The 210

211 gauges were cleaned with high-purity water after each collection and once every week

in order to avoid cross contamination.

213 2.4 Analytical procedures

In CAU's analytical laboratory, the exposed sampling trains of the DELTA systems 214 and passive samples were stored at 4 °C and analyzed at one-month intervals. The 215 HNO₃ denuders and alkaline-coated filters were extracted with 10 mL 0.05 % H₂O₂ 216 217 in aqueous solution. The NH₃ denuders and acid-coated filters, and ALPHA samplers were extracted with 10 mL high-purity water. The loaded PM₁₀ filters were extracted 218 with 50 mL high-purity water by ultrasonication for 30-60 min and then filtered 219 through a syringe filter (0.45 μ m, Tengda Inc., Tianjin, China). Ammonium (NH₄⁺) 220 and nitrate (NO_3) in the extracted and filtered solutions were measured with an AA3 221 continuous-flow analyzer (Bran+Luebbe GmbH, Norderstedt, Germany). The 222 detection limits were 0.01 mg N L^{-1} for NH₄⁺ and NO₃⁻. It should be noted that 223 NO₃⁻ was converted to NO₂⁻ during the chemical analysis. So, NO₂⁻ here was included 224 in the analysis, and NO_3^- equals to the sum of NO_2^- and NO_3^- . The disks from the 225 Gradko samplers were extracted with a solution containing sulphanilamide, H₃PO₄ 226 and N-1-Naphthylethylene-diamine, and the NO₂⁻ content in the extract determined 227 using a colorimetric method by absorption at a wavelength of 542 nm. The detection 228 limit for NO₂⁻ was 0.01 mg N L⁻¹. Three laboratory and three field blank samples 229 were extracted and analyzed using the same methods as the exposed samples. After 230 correcting for the corresponding blanks, the results were used for the calculation of 231 232 ambient concentrations of gaseous and particulate Nr. Each collected precipitation sample was filtered with a 0.45 µm syringe filter, and 15 mL filtrates frozen and 233 stored in polypropylene bottles until chemical analysis within one month. The NH_4^+ 234 and NO₃⁻ concentrations of the filtrates were determined using an AA3 235 236 continuous-flow analyzer as described above.

237 2.5 Deposition flux estimation

The inferential technique, which combines the measured concentration and a modeled dry deposition velocity (V_d), was used to estimate the dry deposition fluxes of N_r species (Schwede et al., 2011; Pan et al., 2012). The concentrations of gases (HNO₃, NO₂ and NH₃) and aerosols (NH₄⁺ and NO₃⁻) were measured as described in Section 2.2. The monthly average V_d over China was calculated by the GEOS-Chem chemical transport model (CTM) (Bey et al., 2001; http://geos-chem.org). The GEOS-Chem CTM is driven by GEOS-5 (Goddard Earth Observing System) assimilated 245 meteorological data from the NASA Global Modeling and Assimilation Office (GMAO) with a horizontal resolution of $1/2^{\circ}$ latitude $\times 2/3^{\circ}$ longitude and 6-h 246 temporal resolution (3-h for surface variables and mixing depths). We used a 247 nested-grid version of GEOS-Chem for Asia that has the native $1/2^{\circ} \times 2/3^{\circ}$ resolution 248 over East Asia (70°E-150°E, 11°S-55°N) (Chen et al., 2009). The nested model has 249 been applied to examine atmospheric nitrogen deposition to the northwestern Pacific 250 251 (Zhao et al., 2015), and a similar nested model for North America has been used to analyze nitrogen deposition over the United States (Zhang et al., 2012b; Ellis et al., 252 2013). The model calculation of dry deposition of N_r species follows a standard 253 big-leaf resistance-in-series model as described by Wesely (1989) for gases and Zhang 254 et al. (2001) for aerosol. For a detailed description of the V_d calculation as well as the 255 estimation of N dry deposition, the reader is referred to the Supplement (Sect. A5), 256 with monthly and annual dry deposition velocities of N_r for different land use types 257 presented in Tables S3 and S4 therein. The model uses the land map of the Global 258 2.0 259 Land Cover Characteristics Data Base Version (http://edc2.usgs.gov/glcc/globdoc2_0.php), which defines the land types (e.g., urban, 260 261 forest, etc.) at the native $1 \text{ km} \times 1 \text{ km}$ resolution and is then binned to the model 262 resolution as fraction of the grid cell covered by each land type. The model $1/2^{\circ}$ resolution may coarsely represent the local land characteristics at the monitoring sites. 263 264 Future work using a single-point dry deposition model as for CASTNET (Clarke et al., 1997) would further improve the dry deposition flux estimates, but that requires 265 266 concurrent *in-situ* measurements of meteorological variables which are not available 267 at present.

Wet/bulk N deposition flux was calculated as the product of the precipitation amount and the concentration of N_r species in precipitation, using the following equations (1) and (2):

271
$$C_w = \sum_{i=1}^n (C_i P_i) / \sum_{i=1}^n P_i$$
 (1)

where C_w is the volume-weighted mean (VWM) concentration (mg N L⁻¹) calculated from the *n* precipitation samples within a month or a year, and the individual sample concentration C_i is weighted by the rainfall amount P_i for each sample.

- 275 $D_w = P_t C_w / 100$ (2)
- where D_w is the wet/bulk deposition flux (kg N ha⁻¹), P_t is the total amount of all precipitation events (mm), and 100 is a unit conversion factor.

278 2.6 *Statistics*

A one-way analysis of variance (ANOVA) and nonparametric t-tests were conducted to examine the differences in the investigated variables between sites (urban, rural and background) and between the six regions. Linear regression analysis was used to analyze the relationships among annual wet N deposition flux, annual precipitation amount and annual VWM concentration of inorganic N in precipitation. All analyses were performed using SPSS 11.5 (SPSS Inc., Chicago, IL, USA). Statistically significant differences were set at *P* values < 0.05.

286 **3. Results**

287 3.1 Concentrations of N_r species in air

Monthly mean concentrations of NH₃, NO₂, HNO₃, pNH_4^+ and pNO_3^- were 288 0.08-34.8, 0.13-33.4, 0.02-4.90, 0.02-55.0 and 0.02-32.1 µg N m⁻³, respectively (Fig. 289 **S2a-e**, Supplement). The annual mean concentrations of gaseous and particulate N_r 290 were calculated for each site from the monthly N_r concentrations (Fig. 2a), and 291 further were averaged for land use types in the six regions (Fig. 3a-e) and the whole 292 nation (Fig. 4a) according to geographical location and the classification of each site. 293 Annual mean NH₃ concentrations ranged from 0.3 to 13.1 μ g N m⁻³, with an overall 294 average value of 6.1 µg N m⁻³. In NC, SE and SW, the NH₃ concentrations at the 295 urban sites (average for the three regions, $9.5 \pm 2.1 \ \mu g \ N \ m^{-3}$) were about 1/3 higher 296 than at the rural sites (6.2 \pm 2.3 μ g N m⁻³) and were almost twice of those at the 297 background sites (4.8 \pm 1.4 µg N m⁻³), whereas in NE and NW NH₃ concentrations 298 were lower at the urban sites (average two regions, $5.5 \pm 3.2 \ \mu g \ N \ m^{-3}$) than at the 299 rural sites $(8.8 \pm 0.3 \ \mu g \ N \ m^{-3})$ but 4.6-times greater than at the background sites (1.2 300 \pm 0.5 µg N m⁻³). Comparing land use types by region, annual NH₃ concentrations at 301 the rural sites in northern regions (NC, NE and NW) were approximately equal, which 302 303 on average were 1.8-times greater than the average of southern rural sites. In contrast, annual NH₃ concentrations at urban and background sites ranked in the order: SW > 304 NC > NW > SE > TP > NE, and SW > NC > SE > NW > TP > NE, respectively (Fig. 305 **3a**). Annual mean NO_2 concentrations showed similar spatial variations (0.4 to 16.2) 306 μ g N m⁻³) to those of NH₃, and overall averaged 6.8 μ g N m⁻³. In the six regions, the 307 NO₂ concentrations at urban sites were 1.4-4.5 times higher than those at rural sites, 308 and were even 2.0-16.6 times higher than the background sites (except for SW). By 309 comparison among regions, annual mean NO₂ concentrations at rural sites in NC were 310 about 2.6-times higher than in NE and NW, and overall averaged NO₂ concentrations 311

in northern rural China (NC, NE and NW, $5.7 \pm 3.5 \ \mu g \ N \ m^{-3}$) were comparable to 312 those at southern rural sites (average of SE and SW, $5.1 \pm 0.1 \ \mu g \ N \ m^{-3}$). As for urban 313 and background sites, the annual mean NO_2 concentrations followed the order: NC >314 NW > SE > SW > NE > TP, and SW > NC > SE > NE > NW > TP, respectively (Fig. 315 **3b**). Annual mean HNO₃ concentrations were relatively low everywhere (from 0.1 to 316 2.9 μ g N m⁻³, averaging 1.3 μ g N m⁻³). In all regions except NE and TP, the HNO₃ 317 concentrations were highest at the urban sites (averages: 1.7-2.4 µg N m⁻³), followed 318 by the rural sites (0.8-1.6 μ g N m⁻³), and were lowest at the background sites (0.2-1.1 319 μ g N m⁻³). The HNO₃ concentrations were comparable for the same land use types 320 across northern and southern monitoring sites, on average, 1.8 vs. 1.8, 1.2 vs. 1.0, and 321 0.6 vs. 0.8 μ g N m⁻³ at the urban, rural and background sites, respectively (**Fig. 3c**). 322 The annual mean concentrations of pNH_4^+ and pNO_3^- were in the ranges of 0.2-18.0 323 μ g N m⁻³ (average 5.7 μ g N m⁻³) and 0.2-7.7 μ g N m⁻³ (average 2.7 μ g N m⁻³), 324 respectively. Annual pNH_4^+ concentrations show a decreasing trend of urban > rural > 325 background in all regions (except NE), where relatively higher concentrations were 326 observed at the rural sites than the urban sites, and in SE, where no clear difference 327 were observed among three land use types (Fig. 3d). In contrast, annual 328 pNO₃⁻ concentrations showed a declining trend of urban > rural > background in all 329 regions (Fig. 3e). Overall, annual mean concentrations of both pNH_4^+ and pNO_3^- at 330 all land use types were both slightly higher in northern China (NC, NE and NW) than 331 in southern China (SE, SW and TP). 332

In total, annual mean concentrations of gaseous and particulate N_r in air were 1.3-47.0 $\mu g \ N \ m^{-3}$ among all sampling sites. The total annual concentrations of measured N_r generally decreased in the order of urban > rural > background in all regions except NE (**Fig. 3f**).

337 3.2 Concentrations of N_r species in precipitation

The monthly VWM concentrations of inorganic N_r species at the forty-three sampling 338 sites during the study period ranged from 0.01 to 27.1 mg N L^{-1} for NH₄⁺-N and from 339 0.02 to 27.9 mg N L^{-1} for NO₃⁻-N (Fig. S3, Supplement). The annual VWM 340 concentrations of NH_4^+ -N and NO_3^- -N across all sites were in the ranges of 0.2-4.3 341 and 0.1-2.5 mg N L^{-1} , respectively, with averages of 1.6 and 1.3 mg N L^{-1} (Fig. 2b). 342 The urban-rural-background distributions of annual VWM concentrations of NH₄⁺-N 343 and NO₃⁻N were, respectively, fairly coincided with corresponding reduced (i.e. NH₃ 344 and pNH_4^+) and oxidized N_r (i.e. HNO₃ and pNO_3^-) in all regions except NH_4^+ -N in 345

346 SE and NO₃⁻-N in NW (Figs. 3g and h). Conversely, the regional variations in annual VWM concentrations of NH_4^+ -N and NO_3^- -N for the three land use types were not 347 consistent with corresponding reduced and oxidized Nr, respectively. On a national 348 basis, the VWM concentrations of NH₄⁺-N and NO₃⁻-N were both decreased in the 349 order urban \geq rural > background (Fig. 4b). The annual total inorganic N (TIN) 350 concentrations in precipitation across all sites were 0.4-6.0 mg N L⁻¹, decreasing from 351 urban to background sites in all regions (except NE) as well as on a national basis 352 353 (Figs. 3i and 4b)..

354 3.3 Dry deposition of N_r species

The annual dry deposition fluxes of NH₃, NO₂, HNO₃, pNH₄⁺ and pNO₃⁻ were in the 355 ranges of 0.5-16.0, 0.2-9.8, 0.2-16.6, 0.1-11.7 and 0.1-4.5 kg N ha⁻¹ yr⁻¹, and averaged 356 8.2, 3.2, 5.4, 3.2 and 1.5 kg N ha⁻¹ yr⁻¹, respectively (Fig. 5a). The total dry N 357 deposition across all sites ranged from 1.1 to 52.2 kg N ha⁻¹ yr⁻¹ (averaged 20.6 \pm 11.2 358 kg N ha⁻¹ yr⁻¹). Gaseous N species were the primary contributors to total 359 dry-deposited N, ranging from 60% to 96%, despite of the missing HNO₃ data at a 360 few sites. In general, NH₃ was predominant N_r species in total dry N deposition and 361 accounted for 24-72%, compared with 1-43% from NO2 and 9-37% from HNO3. 362 Comparing land use types in each region, spatial pattern of individual fluxes is fairly 363 consistent with that of their respective concentrations except that of NH₃ for NC, that 364 of NO₂ for SW, those of NO₂ and pNH_4^+ for NW and those of almost all measured N_r 365 species for NE (Figs. 3a-e and 6a-e). Furthermore, a consistent picture is also seen 366 for the total flux (sum of fluxes of five N_r species) at each land use type (Figs. 5f and 367 6f). Among the six regions, regional variations of individual fluxes at each land use 368 type generally differed from those of their respective concentrations. Similarly, the 369 inconsistent behavior appeared for the total fluxes at urban and rural sites but not at 370 background site. On a national basis, there was no significant difference (p>0.05) in 371 the total dry N deposition fluxes between urban (26.9 kg N ha⁻¹ yr⁻¹) and rural (23.0 372 kg N ha⁻¹ yr⁻¹) sites, both of which were significantly higher than background site 373 (10.1 kg N ha⁻¹ yr⁻¹). Also, a similar pattern was found for the dry deposition flux of 374 each N_r species among different land use types (Fig. 4c). 375

376 3.4 Wet/bulk deposition of N_r species

Annual wet/bulk N deposition fluxes at the forty-three sites ranged from 1.0 to 19.1

378 kg N ha⁻¹ yr⁻¹ for NH_4^+ -N and from 0.5 to 20.1 kg N ha⁻¹ yr⁻¹ for NO_3^- -N (**Fig. 5b**).

The annual wet/bulk deposition fluxes of NH₄⁺-N were, on average, 1.3 times those 379 of NO₃⁻-N. The total annual wet/bulk N (NH₄⁺-N+ NO₃⁻-N) deposition fluxes across 380 all the sites were 1.5-32.5 kg N ha⁻¹ yr⁻¹ (average 19.3 kg N ha⁻¹ yr⁻¹), with a large 381 spatial variation. Region variation of annual wet N deposition followed the order of 382 NC > SE > SW > NE > NW > TP for NH_4^+ -N, and SE > NC > SW > NE > TP > NW383 for NO_3 -N, both of which differed from their orders of annual VWM concentration, 384 reflecting differences in annual precipitation amount. Annual total wet/bulk N 385 deposition fluxes averaged 24.6, 13.6, 7.4, 24.4, 17.6 and 7.6 kg N ha⁻¹ yr⁻¹, 386 respectively, in NC, NE, NW, SE, SW and TP (Fig. 5b). At national scale, annual 387 wet/bulk deposition fluxes of total inorganic N and/or each Nr species at urban and 388 rural sites were comparable but significantly higher (p < 0.05) than those at 389 background sites (Fig. 4d). 390

391 3.5 Total annual dry and wet deposition of N_r species

The total (dry plus wet/bulk) annual N deposition at the 43 sites ranged from 2.9 to 392 83.3 kg N ha⁻¹ yr⁻¹ (average 39.9 kg N ha⁻¹ yr⁻¹) for the period, with 23-83% 393 dry-deposited (Fig. 5c). Separated by land use types, total annual mean N deposition 394 fluxes were 49.7, 44.3 and 26.0 kg N ha⁻¹ at the urban, rural and background sites, 395 respectively, reflecting different anthropogenic impacts. In our network, the NH_x (i.e. 396 wet/bulk NH_4^+ -N deposition plus dry deposition of NH_3 and particulate NH_4^+)/NO_v 397 (wet/bulk NO₃⁻N deposition plus dry deposition of NO₂, HNO₃ and particulate NO₃⁻) 398 ratio at urban sites (from 0.8 to 1.8, averaging 1.2) was not significantly different 399 400 (p>0.05) from rural (from 0.5 to 2.7, averaging 1.3) and background (from 1.0 to 2.5, averaging 1.6) sites. On a regional basis, the relative importance of dry vs. wet/bulk N 401 deposition to the total deposition were different in the six regions, 57% vs. 43% in NC, 402 54% vs. 46% in NE, 61% vs. 39% in NW, 42% vs. 58% in SE, 55% vs. 45% in SW, 403 404 and 50% vs. 50% in TP (Fig. 7).

405 **4. Discussion**

406 4.1 Concentration of N_r species in air and precipitation

407 China is facing serious atmospheric N_r pollution induced by anthropogenic N_r 408 emissions (Liu et al., 2011, 2013). The present study shows that monthly N_r 409 concentrations of species, through comparisons among regions, have a distinct spatial 410 variability with values significantly higher (all *p*<0.05) in NC and significantly lower 411 (all *p*<0.05) in TP. Annual mean NH₃ and NO₂ concentrations at most sampling sites 412 are in good agreement with the emission inventory and satellite observations by Gu et

al. (2012), who reported NH₃ hotspots in the North China Plain and South Central 413 China such as Jiangsu and Guangdong provinces, while NO_x hotspots were mainly in 414 more developed regions such as the Jing-Jin-Ji (Beijing-Tianjin-Hebei), the Yangtze 415 River Delta and the Pearl River Delta. Our results confirm that NC, which consumes 416 large quantities of fertilizers (for food production) and fossil fuel (for energy supply) 417 (Zhang et al., 2010) experiences the most serious N_r pollution in China; TP is the least 418 polluted region due to much less human activity. When considering different land use 419 types, the average total annual N_r concentrations ranked urban > rural > background, 420 421 with significant differences (all p < 0.05) among them, despite site-to-site variability within regions. This reflects the dominant role of human activity on atmospheric N_r. 422 For individual N_r species, higher mean concentrations were observed at the urban 423 sites than at rural and background sites (Fig. 4a). Higher NH₃ concentration in urban 424 areas may be associated with NH_3 emissions from biological sources, such as human, 425 sewage disposal systems and refuse containers (Reche et al., 2002). In addition, NH₃ 426 can be produced by over-reduction of NO in automobile catalytic converters (Behera 427 et al., 2013), increasing ambient NH₃ concentrations in urban areas with high traffic 428 429 densities. Between 2006 and 2013, the number of civil vehicles increased from 2.39 to 430 5.17 million in Beijing and from 0.46 to 1.72 million in Zhengzhou (CSY, 2007-2014),

- 431 which is likely to have resulted in elevated NH_3 emissions. Higher NO_2 432 concentrations are expected in urban areas due to NO_x emissions from the combustion 433 of fossil fuels (Li and Lin, 2000), and also lead to higher HNO_3 concentrations in 434 urban areas via NO_2 oxidation.
- The higher pNH_4^+ and pNO_3^- concentrations observed at urban sites mainly resulted 435 from the high concentrations at the northern urban sites (NC1~3, NW1 and NW2) 436 (Fig. 2a and Fig. S2d, e in Supplement). This is probably due to the fact that cities in 437 438 northern China, such as Beijing and Zhengzhou in NC and Urumqi in NW, are being surrounded by intensive agricultural production. Rapid developments along with 439 urbanization in suburban areas shorten the transport distance between NH₃ emitted 440 from agriculture and SO₂ and NO_x emitted from fossil fuel combustion (Gu et al., 441 2014). This allows the pollutants to react more readily and form aerosols (e.g. $PM_{2.5}$), 442 leading to high concentrations of pNH_4^+ and pNO_3^- near or within cities. This 443 explanation is supported by the recent MEPC (2013) report that the annual average 444 PM_{2.5} concentrations in the cities of Beijing, Zhengzhou and Urumqi were more than 445 twice the Chinese annual mean $PM_{2.5}$ standard value of 35 µg m⁻³, whereas cities such 446

447 as Guangzhou and Xining with little surrounding agricultural production had lower 448 $PM_{2.5}$ concentrations. In China's 12^{th} Five Year Plan (2011–2015), nationwide 449 controls on NO_x emissions will be implemented along with controls on SO₂ and 450 primary particle emissions (Wang et al., 2014). In order to better improve the regional 451 air quality for metropolitan areas; our results suggest that strict control measures on 452 both NH₃ and NO_x would be beneficial in NC, at least in the suburban areas.

453 Rural sites in this study also had relatively high concentrations of all measured Nr species in air, altogether ranking in the order of NC > NE > NW > SE > SW (Fig. 3f)... 454 The higher concentrations in northern China are mainly due to the combined effect of 455 high NH₃ emissions from N fertilized farmland (Zhang et al., 2008a) and urban air 456 pollution (e.g. NO_2 , HNO_3 , pNH_4^+ and pNO_3^-) transported from population centers to 457 the surrounding rural areas (Luo et al., 2013). The lower air concentrations of N_r 458 species at background sites can be ascribed to the lack of both substantial agricultural 459 and industrial emissions. Additionally, higher wind speeds occurred at some 460 background areas (e.g. NC12, NC13 and NW4) (Table S1, Supplement), favoring the 461 dispersion of atmospheric pollutants. 462

We found that regional variations in Nr concentrations in precipitation were not fully 463 464 in accordance with ambient N_r concentrations (see Sect. 3.2) when assessed by land use types. It is commonly accepted that N concentrations in precipitation are affected 465 466 by the amount of precipitation (Yu et al., 2011). Negative correlations between precipitation amount and monthly volume-weighted concentrations of NH₄⁺-N and 467 468 NO_3 -N were obtained by fitting exponential models in all six regions (**Fig. S4**, Supplement), indicating a dilution effect of rainwater on inorganic N concentration. 469 470 The relationships were not significant (p>0.05) in NW and TP, which is probably caused by low precipitation amounts at or near the sampling sites (Fig. S5, 471 472 Supplement). Nevertheless, dilution could explain some of the regional differences in precipitation N concentrations. 473

474 4.2 Dry and wet/bulk deposition of N_r species

A significant (p<0.001) positive correlation was observed between annual dry N deposition and total annual concentrations of atmospheric N_r species across all sites (**Fig. S6**, Supplement). Therefore, higher concentrations of N_r species at urban sites led to higher dry deposition rates compared with rural and background sites, mainly attributable to elevated N_r emissions from urban sources (e.g., non-agricultural NH₃ emissions from landfills, wastewater treatments and NO_x emissions from traffic vehicles and power plants) and rapid development of intensive agricultural production in suburban areas surrounding cities; regardless of differences in dry deposition velocities of various N_r species in different land use types. At the national scale, dry N deposition rates contributed almost half 23-83%, averaging 52%) of the total inorganic N deposition, indicating the importance of dry deposition monitoring for comprehensive N deposition quantification.

487 In this study, regional variations of annual wet/bulk N deposition fluxes of NH₄⁺-N, NO₃-N and their sum showed different spatial patterns to those of corresponding 488 annual VWM concentrations of them in precipitation (see Sect. 3.4). These findings, 489 together with no significant differences (p>0.05) in total annual wet/bulk N deposition 490 between NC and SE, reflect, not surprisingly, that regional wet/bulk N deposition is 491 dependent not only on Nr concentrations in precipitation but also on annual rainfall 492 amounts. As shown in Fig. 8, annual wet/bulk deposition fluxes of NH4⁺-N and 493 NO₃⁻N both showed significantly positive correlations with the corresponding annual 494 VWM concentrations of inorganic N and annual precipitation amount, especially for 495 NH_4^+ -N, that more significant was found for precipitation amount than concentration. 496 The measured wet/bulk N deposition rates (average 19.3 kg N ha⁻¹ yr⁻¹) were almost 497 twice the earlier average wet deposition value of 9.9 kg N ha⁻¹ yr⁻¹ for period of 498 1990-2003 in China (Lü and Tian, 2007). Our results show similar regional patterns 499 500 and comparable magnitudes to those measured in the 2000s in China as reported by Jia et al. (2014) (~14 kg N ha⁻¹ yr⁻¹, wet deposition) and Liu et al. (2013) (~21 kg N 501 $ha^{-1} yr^{-1}$, bulk deposition). 502

The NH_4^+ -N/NO₃⁻-N ratio in wet/bulk deposition can be used to indicate the relative 503 contribution of Nr from agricultural and industrial activities to N deposition (Pan et al., 504 2012; Zhan et al., 2015; Zhu et al., 2015) because the major anthropogenic source of 505 NH₄⁺-N in precipitation is NH₃ volatilized from animal excrement and the application 506 of nitrogenous fertilizers in agriculture, while anthropogenic sources of NO₃-N in 507 precipitation originate from NO_x emitted from fossil fuel combustion in transportation, 508 power plant and factories (Cui et al., 2014). In this study the overall annual average 509 ratio of NH_4^+ -N/NO₃⁻-N in wet/bulk deposition was 1.3 ± 0.5 (standard deviation), 510 with an increasing (but not significant) trend for urban (1.2 \pm 0.6), rural (1.3 \pm 0.4), 511 and background (1.5 ± 0.4) sites (Fig. 5b). Our measured ratio was slightly lower than 512 average values of 1.6 in Europe (Holland et al., 2005) and 1.5 in the United States (Du 513 et al., 2014), and similar to an average value (1.2) reported elsewhere for 2013 in 514

515 China (Zhu et al., 2015). Based on these findings, we conclude that NH_4^+ -N from 516 agricultural sources still dominates wet/bulk N deposition but the contribution has 517 decreased drastically between the 1980s and the 2000s (Liu et al., 2013). Reduced N 518 also contributed more than oxidized N to the total N deposition, and the ratio of 519 reduced to oxidized N deposition overall averaged 1.6 ± 0.7 in dry deposition and 1.4520 ± 0.4 in the total deposition (**Fig. 5a, c**).

521 The overall mean annual deposition fluxes (wet/bulk plus dry) of NH_x and NO_y for the period 2010-2014 was graded into five levels and plotted on maps showing the 522 spatial distribution of NH_3 and NO_x emissions (Fig. 9a, b). The anthropogenic 523 emission data of NH₃ and NO_x for the year 2010 in China were obtained from 524 the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model 525 (http://www.iiasa.ac.at/), and emission details for the 33 provinces of China are 526 summarized in **Table S5** of the Supplement. The spatial patterns of estimated NH_x 527 and NO_v deposition compare reasonably well with the regional patterns of NH₃ and 528 NO_x emissions, respectively, even though the emission data were estimated at the 529 province scale. With emission data, N deposition can be used to distinguish regional 530 differences in reactive Nr pollution. Across six regions, significantly positive 531 correlations were found between NH3 emissions and NHx deposition fluxes 532 $(R^2=0.888, p<0.01)$ (Fig. 9c), and between NO_x emissions and NO_y deposition fluxes 533 $(R^2=0.805, p<0.05)$ (Fig. 9d), implying that the N deposition fluxes to the six regions 534 are strongly dependent on the spatial pattern of anthropogenic N_r emissions among 535 the regions. The slopes of the relationships of NH_x vs NH_3 , and NO_y vs NO_x were 536 0.51 and 0.48, which could be roughly interpreted that NH_x and NO_y deposition 537 538 fluxes represent about 51% NH₃ and 48% NO_x emissions, respectively.

539 For all Chinese regions except NC we cannot compare our data with other studies because observations for different pollution climate sites in other regions are lacking. 540 For NC, the overall average total N deposition was 56.2 ± 14.8 kg N ha⁻¹ yr⁻¹, 13-32% 541 lower than the previously estimated values in Northern China (Pan et al., 2012; Luo et 542 al., 2013). This difference may reflect differences in the numbers of sampling sites, 543 land use type and assumed dry deposition velocities. As expected, our estimated 544 deposition was substantially higher than the results of Lü and Tian (2007), who 545 suggested that the total N deposition ranged from 13 to 20 kg N ha⁻¹ yr⁻¹ in NC. This 546 is attributed to their omission of many major species (e.g., gaseous NH₃, HNO₃ and 547 particulate N_r) from their data. 548

549 Compared to dry and wet N deposition fluxes estimated by CASTNET in the United States, EMEP in Europe, and EANET sites in Japan, the average values of dry and 550 wet/bulk deposition in China are much higher (Table 1). In addition, on the basis of 551 2001 ensemble-mean modeling results from 21 global chemical transport models (Vet 552 et al., 2014), three regions of the globe where total deposition is very high: western 553 Europe (with levels from 20.0 to 28.1 kg N ha⁻¹ yr⁻¹); South Asia (Pakistan, India and 554 Bangladesh) from 20.0 to 30.6 kg N ha⁻¹ yr⁻¹ and East Asia from 20 to 38.6 kg N 555 ha⁻¹ yr⁻¹ in eastern China (the global maximum). Extensive areas of high deposition 556 from 10 to 20 kg N ha⁻¹ yr⁻¹ appear in the eastern U.S. and southeastern Canada as 557 well as most of central Europe. Small areas with total deposition of N from 10 to 20 558 kg N ha⁻¹ yr⁻¹ are present, and very large areas of the continents have deposition from 559 2 to 10 kg N ha⁻¹ yr⁻¹. In contrast, the present study shows much higher total 560 deposition flux (39.9 kg N ha⁻¹ yr⁻¹) at a national scale. In China, the consumption 561 rates of chemical fertilizer and fossil fuel have increased 2.0- and 3.2-fold, 562 respectively, between the 1980s and the 2000s (Liu et al., 2013). As a result, the 563 estimated total emission of NH₃ reached 9.8 Tg in 2006, contributing approximately 564 15% and 35% to the global and Asian NH₃ emissions (Huang et al., 2012), and NO_x 565 566 emissions from fossil fuel combustion increased from 1.1 Tg N in 1980 to about 6.0 Tg N in 2010 (Liu et al., 2013). The increasing NO_x and NH_3 emissions in China led 567 568 to higher atmospheric N deposition than those observed in other regions.

According to Endo et al. (2011), the low dry deposition fluxes in CASTNET, EMEP 569 570 and Japan's EANET network are due at least partly to low concentrations of N_r compounds and/or the omission of dry deposition fluxes of major N_r species (e.g., 571 NO₂ and NH₃) from the data. Meanwhile, the low wet deposition fluxes at these 572 networks are likely to be a result of the combined effects of low amounts of 573 574 precipitation and, especially, low atmospheric N_r concentrations. In addition, emissions of nitrogen compounds in other parts of the world are declining. In the U.S., 575 for example, NO_x emissions from the power sector and mobile sources were reduced 576 by half from 1990 to 2010 (Xing et al., 2013), which explained the declined N 577 deposition fluxes during period of 1990-2009 observed at 34 paired dry and wet 578 monitoring sites in the eastern US (Sickles II et al., 2015).. In Europe, the total NO_x 579 and NH₃ emissions decreased by 31% and 29% from 1990 to 2009 (Torseth et al., 580 2012). N deposition has decreased or stabilized in the United States and Europe since 581 the late 1980s or early 1990s with the implementation of stricter legislation to reduce 582

emissions (Goulding et al., 1998; Holland et al., 2005). However, wet deposition of
ammonia, which is not regulated, has increased in recent years in the U.S. (Du et al.,
2014).

586 4.3 Implications of monitoring N_r concentration and deposition on regional N 587 deposition simulation

Our results show that atmospheric concentrations and deposition of N_r in China were 588 589 high in the 2000s, although the government has made considerable efforts to control environmental pollution by improving air quality in mega cities during and after the 590 591 2008 Beijing Summer Olympic Games (Wang et al., 2010; Chan and Yao, 2008). Ideally, the spatial distribution of monitoring sites should reflect the gradients in the 592 concentrations and deposition fluxes of atmospheric N_r species. Given the fact that the 593 arithmetic averages used in this study cannot give a completely accurate evaluation of 594 N_r levels for the regions of China due to the limited numbers of monitoring sites and 595 ecosystem types, it is important to develop and improve the quantitative methods for 596 determining N deposition across China. 597

Numerical models are very useful tools to quantify atmospheric N deposition 598 (including both spatial and temporal variations), but a challenge to the modeling 599 approaches is that observations to validate the simulated concentrations and 600 deposition fluxes are often lacking. In our study 43 monitoring sites were selected in a 601 602 range of ecosystem types to provide more representative regional information on atmospheric N deposition in China. Although those measurements cannot define all 603 604 aspects of N deposition across different regions, they add substantially to existing knowledge concerning the spatial patterns and magnitudes of atmospheric N 605 606 deposition. The present measurements will be useful for better constraining emission inventories and evaluating simulations from atmospheric chemistry models. In future 607 608 studies we will use models (e.g., FRAME, Dore et al., 2012) integrated with measurements from our monitoring network to fully address the spatial-temporal 609 variations of atmospheric N deposition and its impacts on natural and semi-natural 610 ecosystems at the regional/national level. 611

612 4.4 Uncertainty analysis of the N dry and wet deposition fluxes

The dry deposition fluxes were estimated by combining measured concentrations with modeled V_d . As summarized in **Table S4**, our estimates of dry deposition velocities for different N_r species are generally consistent with the estimates in previous studies (e.g., Flechard et al., 2011; Pan et al., 2012). Some uncertainties may still exist in the 617 inputs for dry deposition modeling. For example, underlying surface parameters (e.g., surface roughness length and land type) strongly affect dry deposition through their 618 effect on both deposition velocity and the absorbability of the ground surface to each 619 of the gaseous and particulate N_r species (Loubet et al., 2008). In addition, there is 620 uncertainty in the deposition fluxes for both pNH_4^+ and pNO_3^- in our network, 621 resulting from the difference between the cut-off sizes of particles in the samplers and 622 that defined in the modeled V_d which were calculated for atmospheric PM_{2.5} in 623 GEOS-Chem model. For example, the cut-off sizes of the samples can collect also 624 coarse NO_3^- particles (e.g. calcium nitrate) but should have little effect on NH_4^+ 625 particles (mainly in the fine scale <1µm) (Tang et al., 2009), resulting in an 626 underestimation of pNO_3^- deposition. Furthermore, NH_3 fluxes over vegetated land 627 are bi-directional and the net direction of this flux is often uncertain. A so-called 628 canopy compensation point was used in previous studies (Sutton et al., 1998) to 629 determine the direction of the NH₃ flux. Since the principle of bi-directional NH₃ 630 exchange was not considered in this study, NH₃ deposition may be overestimated at 631 rural sites with relatively high canopy compensation points (e.g. up to 5 μ g N m⁻³) due 632 to fertilized croplands or vegetation (Sutton et al., 1993). On the other hand, the total 633 634 dry deposition flux in this study may be underestimated due to omission of the dry-deposited organic N species in our network and missing HNO₃ data at very few 635 636 sites as noted earlier (see Sect. 2.2). The organic N species have been found as important contributors to the N dry deposition. For example, PAN accounted for 20% 637 of the daytime, summertime NO_v (NO + NO₂ + HNO₃ + NO₃⁻ + PAN) dry deposition 638 at a coniferous forest site (Turnipseed et al., 2006). However, the contribution of PAN 639 and other known atmospheric organic nitrates to total N_r inputs must be minor on the 640 annual time scale, as reported by Flechard et al. (2012). In previous work, dry 641 642 deposition flux was inferred from atmospheric N_r concentrations and a literature-based annual mean deposition velocity (Shen et al., 2009), or reported by 643 Luo et al. (2013) who did not consider the different dry deposition velocities of 644 various N_r species among different land use types. Clearly, in this study we have 645 greatly improved the estimation of dry deposition, but further work is still required to 646 increase the reliability and accuracy of N dry deposition values. 647

648 Since wet/bulk deposition was measured directly, the reported fluxes are considered 649 more accurate than dry deposition fluxes but still some uncertainties exist. On one 650 hand, the estimated fluxes obtained from the open precipitation samplers contain

contributions from wet plus unquantifiable dry deposition (including both gases and 651 particles) and therefore likely overestimate actual wet deposition (Cape et al., 2009). 652 For example, our previous research showed that annual unquantifiable dry deposition 653 (the difference between bulk and wet deposition, approx. 6 kg N ha⁻¹ on average) 654 accounted for 20% of bulk N deposition based on observations at three rural sites on 655 656 the North China Plain (Zhang et al., 2008b). This contribution increased to 39% in urban areas based on a recent measurement (Zhang et al., 2015). On the other hand, 657 dissolved organic N compounds, which have been observed to contribute to be around 658 659 25-30% of the total dissolved nitrogen in wet deposition around the world (Jickells et al., 2013) and approximately 28% of the total atmosphere bulk N deposition in China 660 (Zhang et al., 2012b), were not considered in the present study. Their exclusion here 661 would contribute to an underestimation of the total wet N deposition. 662

Although the NNDMN is the only long-term national deposition network to monitor both N wet/bulk and dry deposition in China till now, large areas of the country or islands lack of sampling points may be missing hotspots or pristine sites of N deposition. The implementation of an adequate monitoring program is also difficult at present in some regions (e.g., northwest China and Tibetan Plateau). To address this issue, more new monitoring sites, covering regions with both extremely low and high Nr emissions, should be set up in the NNDMN in future work.

670 Conclusions

Our study represents the first effort to investigate inorganic dry and wet/bulk N deposition simultaneously, based on a nationwide monitoring network in China. We consider this unique dataset important not only for informing policy-makers about the abatement of pollutant emissions and ecosystem protection but also to validate model estimations of N deposition at the regional/national scale in China. The major results and conclusions are as follows.

6771. Distinct spatial variability in annual mean concentrations of N_r species in air and678precipitation was observed, with different regional variations based on land use679type across the six regions. On a national basis, the order of total concentrations of680 N_r species, as well as each species, was urban > rural > background.

681 2. Large spatial variations were observed for both dry and wet/bulk N deposition. The
682 spatial patterns of dry and wet/bulk deposition both followed urban > rural >

background at the national scale. Dry N deposition correlated well with total concentrations of N_r in the air, but differences were found between patterns of wet/bulk N deposition and the N_r concentration in precipitation. This reflects the combining effect of both N_r concentrations and precipitation amounts on regional wet/bulk N deposition.

3. Spatial distribution of total annual N deposition fluxes across all sites compared
well with the spatial pattern of nitrogen emissions at the regional level. When
considering land use type, the total N deposition was highest at urban sites,
followed by rural sites and background sites, mainly attributable to N_r emissions
from urban sources and rapid development of intensive agricultural production in
suburban areas.

- 4. Dry deposition fluxes of N_r species on average contributed 52% of the total N deposition (39.9 kg N ha⁻¹ yr⁻¹) across all sites, indicating the importance of dry deposition monitoring for a complete N deposition assessment at the national scale.
- 5. Annual average ratios of reduced N/oxidized N in dry and wet/bulk deposition
 were respectively 1.6 and 1.3, and 1.4 for the total deposition. It shows that
 reduced N, mainly from agricultural sources, still dominates dry, wet/bulk, and
 total N deposition in China.
- 702

703 Acknowledgments

This study was supported by the Chinese National Basic Research Program (2014CB954202), the China Funds for Distinguished Young Scholars of NSFC (40425007), and the National Natural Science Foundation of China (31121062, 41321064 and 41405144). The authors thank all technicians at monitoring sites in NNDMN.

709

710 **References**

- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q.,
- Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric

- chemistry with assimilated meteorology: Model description and evaluation, J.
 Geophys. Res., 106(D19), 23,073 –23,096, 2001.
- Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the 715 atmosphere: a review on emission sources, atmospheric chemistry and deposition 716 terrestrial bodies. Environ. Sci. Pollut. Res.. 20, 8092-8131, 717 on doi:10.1007/s11356-013-2051-9, 2013. 718
- 719 Cape, J.N., Van Dijk, N., and Tang, Y.S.: Measurement of dry deposition to bulk
- collectors using a novel flushing sampler. J. Environ. Monit., 11, 353-358,doi: 10.1039/B813812E, 2009.
- 722 Chan, C.K. and Yao, X.H.: Air pollution in mega cities in China, Atmos. Environ., 42,
- 723 1–42, doi: 10.1016/j.atmosenv.2007.09.003, 2008.
- Chen, D., Wang, Y. X., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.:
 Regional CO pollution in China simulated by high-resolution nested-grid
 GEOS-Chem model, Atmos. Chem. Phys., 11, 3825-3839, 2009.
- Chen, X. Y. and Mulder, J.: Atmospheric deposition of nitrogen at five subtropical
 forested sites in South China, Sci. Total Environ., 378, 317–330, doi:
 10.1016/j.scitotenv.2007.02.028, 2007.
- Clark, C. M. and Tilman, D.: Loss of plant species after chronic low-level nitrogen
 deposition to prairie grasslands, Nature, 451, 712–715, doi:10.1038/nature06503,
 2008.
- Clarke, J. F., Edgerton, E. S., and Martin, B. E.: Dry deposition calculations for the
 Clean Air Status and Trends Network, Atmos. Environ., 31, 3667-3678, 1997.
- 735 CSY (China Statistical Yearbook), 2007-2014. Available at: http://www.stats.gov.cn.
- 736 Cui, J., Zhou, J., Peng, Y., He, Y. Q., Yang, H., Mao, J. D., Zhang, M. L., Wang, Y. H.,
- and Wang, S. W.: Atmospheric wet deposition of nitrogen and sulfur in the
- agroecosystem in developing and developed areas of Southeastern China, Atmos.
- Environ., 89, 102–108, doi:10.1016/j.atmosenv.2014.02.007, 2014.
- 740 Dentener, F., Drevet, J., Lamarque, J. F., Bey, L., Eickhout, B., Fiore, A.
- 741 M. Hauglustaine, D., Horowitz, L. W., Krol, M., and Kulshrestha, U. C.:
- 742 Nitrogen and sulfur deposition on regional and global scales: a multimodel

evaluation, Global Biogeochemical Cy., 20, GB4003, doi: 10.1029/2005GB002672,
2006.

- Dore, A.J., Kryza, M., Hall, J. Hallsworth, S., Keller, V., Vieno, M. and Sutton, M.A.:
 The influence of model grid resolution on estimation of national scale nitrogen
 deposition and exceedance of critical loads, Biogeosciences, 9, 1597-1609, 2012.
- 748 Du, E. Z., Vries, W. D., Galloway, J. N., Hu, X. Y., and Fang, J. Y.: Changes in wet
- nitrogen deposition in the United States between 1985 and 2012, Environ. Res.
- 750 Lett., 9, 095004, doi:10.1088/1748-9326/9/9/095004, 2014.
- 751 EEA: Air Quality in Europe-2011 Report. Technical Report 12/2011. EEA,
 752 Kopenhagen, 2011.
- Ellis, R. A., Jacob, D. J., Sulprizio, M. P., Zhang, L., Holmes, C. D., Schichtel, B. A.,
- Blett, T., Porter, E., Pardo, L. H., and Lynch, J. A.: Present and future nitrogen
 deposition to national parks in the United States: critical load exceedances, Atmos.
 Chem. Phys., 13, 9083-9095, doi:10.5194/acp-13-9083-2013, 2013.
- Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., and Sawada, K.:
 Regional characteristics of dry deposition of sulfur and nitrogen compounds at
 EANET sites in Japan from 2003 to 2008, Atmos. Environ., 45,
 1259–1267,doi:10.1016/j.atmosenv.2010.12.003, 2010.
- Erisman, J. W., Vermeulen, A., Hensen, A., Flechard, C., Dammgen, U., Fowler, D.,
 Sutton, M., Grunhage, L., and Tuovinen, J.P.: Monitoring and modelling of
 biosphere/atmosphere exchange of gases and aerosols in Europe, Environ. Pollut.,
- 764 133, 403–413, doi:10.1016/j.envpol.2004.07.004, 2005.
- Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., 765 Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry 766 deposition of reactive nitrogen to European ecosystems: a comparison of inferential 767 models across the NitroEurope network, Atmos. Chem. Phys., 11, 768 2703-2728, doi:10.5194/acp-11-2703-2011, 2011. 769
- Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J.,
- Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F.,
- Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., and Voss, M.: The

- global nitrogen cycle in the twenty-first century, Phil. Trans. R. Soc. B, 368,
 20130164, doi:10.1098/rstb.2013.0164, 2013.
- Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
- Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl,
- D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorosmarty, C. J.:
- Nitrogen cycles: past, present, and future, Biogeochem., 70, 153–226, 2004.
- Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
- Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the
 Nitrogen Cycle: Recent trends, questions, and potential solutions, Science, 320,
 889–892, 2008.
- Galloway, J. N., Leach, A. M., Bleeker, A., and Erisman, J. W.: A chronology of
 human understanding of the nitrogen cycle, Phil. Trans. R. Soc. B, 368, 20130120,
 doi:10.1098/rstb.2013.0120, 2013.
- Goulding, K. W. T., Bailey, N. J., Bradbury, N. J., Hargreaves, P., Howe, M., Murphy,
 D. V., Poulton, P. R., and Willison, T. W.: Nitrogen deposition and its contribution
- to nitrogen cycling and associated soil processes, New Phytol., 139, 49–58, 1998.
- 789 Gu, B. J., Ge, Y., Ren, Y., Xu, B., Luo, W. D., Jiang, H., Gu, B. H., and Chang, J.:
- Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs,
- Environ. Sci. Technol., 46, 9240–9247, doi:10.1021/es301446g, 2012.
- Gu, B. J., Sutton, M. A., Chang, S. X., Ge, Y., and Jie, C.: Agricultural ammonia
 emissions contribute to China's urban air pollution, Front. Ecol. Environ., 12,
 265–266, doi:10.1890/14.WB.007, 2014.
- Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J. F.: Nitrogen deposition
 onto the United States and Western Europe: synthesis of observations and models,
- 797 Ecol. Appl., 15, 38–57, 2005.
- Hu, H., Yang, Q., Lu, X., Wang, W., Wang, S., and Fan, M.: Air pollution and control
 in different areas of China. Crit. Rev. Environ. Sci. Technol., 40, 452–518,
 doi:10.1080/10643380802451946, 2010.
- 801 Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and
- Zhang, H. S.: A high-resolution ammonia emission inventory in China, Global

- Biogeochem. Cy., 26, GB1030, doi:10.1029/2011GB004161, 2012.
- Huang, Y. L., Lu, X. X., and Chen, K.: Wet atmospheric deposition of nitrogen: 20
 years measurement in Shenzhen City, China, Environ. Monit. Assess., 185, 113–
 122, doi: 10.1007/s10661-012-2537-9, 2013.
- ⁸⁰⁷ Jia, Y. L., Yu, G. R., He, N. P., Zhan, X. Y., Fang, H. J., Sheng, W. P., Zuo, Y., Zhang,
- D. Y., and Wang, Q. F.: Spatial and decadal variations in inorganic nitrogen wet
 deposition in China induced by human activity. Sci. Rep., 4, 3763, doi:
 10.1038/srep03763, 2014.
- Jickells, T., Baker, A. R., Cape, J. N., Cornell, S.E., and Nemitz, E.: The cycling of
 organic nitrogen through the atmosphere. Philos. Trans. R. Soc. B 368, 20130115,
 doi:org/10.1098/rstb.2013.0115, 2013.
- Li, Y. E. and Lin, E. D.: Emissions of N₂O, NH₃ and NO_x from fuel combustion,
 industrial processes and the agricultural sectors in China. Nutr. Cycl. Agroecosys.,
 57, 99–106, 2000.
- Liu, X. J., Song, L., He, C. E., and Zhang, F. S.: Nitrogen deposition as an important
 nutrient from the environment and its impact on ecosystems in China, J. Arid Land,
 2, 137–143, 2010.
- 820 Liu, X. J., Duan, L., Mo, J. M., Du, E., Shen, J. L., Lu, X. K., Zhang, Y., Zhou, X. B.,
- He, C. E., and Zhang, F. S.: Nitrogen deposition and its ecological impact in China:
- An overview, Environ. Pollut., 159, 2251–2264, doi:10.1016/j.envpol.2010.08.002,
 2011.
- Liu, X. J., Zhang, Y., Han, W. X., Tang, A., Shen, J. L., Cui, Z. L., Vitousek, P.,
 Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.:
 Enhanced nitrogen deposition over China, Nature, 494, 459–462,
 doi:10.1038/nature11917, 2013.
- Liu, X. J., Xu, W., Pan, Y. P., and Du, E. Z.: Liu et al. suspect that Zhu et al. (2015)
 may have underestimated dissolved organic nitrogen (N) but overestimated total
 particulate N in wet deposition in China, Sci. Total Environ., 520, 300–301,
 doi.org/10.1016/j.scitotenv.2015.03.004, 2015.
- Loubet, B., Asman, W. A. H., Theobald, M. R., Hertel, O., Tang, S. Y., Robin, P.,

- Hassouna, M., Dämmgen, U., Genermont, S., Cellier, P., and Sutton, M. A.: 833 Ammonia deposition near hot spots: processes, models and monitoring methods. In: 834 Sutton MA, Reis S, Baker SMH, editors. Atmospheric ammonia: detecting 835 emission changes and environmental impacts. Netherlands: Springer; 836 205-251.,2008. 837
- Lü, C. Q. and Tian, H. Q.: Spatial and temporal patterns of nitrogen deposition in
 China: Synthesis of observational data, J. Geophys. Res., 112, D22S05,
 doi:10.1029/2006JD007990, 2007.
- Lü, C. Q. and Tian, H. Q.: Half-century nitrogen deposition increase across China: A
 gridded time-series data set for regional environmental assessments. Atmos.
 Environ., 97, 68-74, 2014.
- 844 Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang,
- L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics, Atmos. Environ., 74, 209–216, doi:10.1016/j.atmosenv.2013.03.054, 2013.
- Maston, P., Lohse, K. A., and Hall, S. J.: The globalization of nitrogen deposition:
 Consequences for terrestrial ecosystems, Ambio, 31, 113–119, 2002.
- 851 MEPC (Ministry of Environmental Protection of the People's Republic of China):
- 852 China's environment and data center. www.zhb.gov.cn/. Viewed 23 April 2014,
 853 2014
- Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of
 atmospheric nitrogen at ten sites in Northern China. Atmos. Chem. Phys., 12,
 6515-6535, doi:10.5194/acp-12-6515-2012, 2012.
- 857 Reche, C., Viana, M., Pandolfi, M., Alastuey, A., Moreno, T., Amato, F., Ripoll, A.,
- and Querol, X.: Urban NH₃ levels and sources in a Mediterranean environment.
- Atmos. Environ., 57:153–164, doi:10.1016/j.atmosenv.2012.04.021, 2012.
- 860 Richter, D. D., Burrows, J. P., N Nüß, H., Granier, C., and Niemeier, U.: Increase in
- tropospheric nitrogen dioxide over China observed from space, Nature 437,
 129–132, 2005.

- Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution
 to Climate Change, John Wiley and Sons, 2nd Edition, 1203 pp., 2006.
- Schwede, D., Zhang, L., Vet, R., and Lear, G.: An intercomparison of the deposition
 models used in the CASTNET and CAPMoN networks, Atmos. Environ., 45,
 1337–1346, doi:10.1016/j.atmosenv.2010.11.050, 2011.
- 868 Shen, J. L., Tang, A. H., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F.
- 869 S.: High concentrations and dry deposition of reactive nitrogen species at two sites
- in the North China Plain, Environ. Pollut., 157, 3106–3113,
 doi:10.1016/j.envpol.2009.05.016, 2009.
- Simpson, D., Fagerli, H., Jonson, J.E., Tsyro, S., Wind, P., and Tuovinen, J. P.:
 Trans-boundary Acidification and Eutrophication and Ground Level Ozone in
 Europe: Unified EMEP Model Description, EMEP Status Report 1/2003 Part I,
 EMEP/MSC-W Report, The Norwegian Meteorological Institute, Oslo, Norway,
 2003.
- Skeffington, R. A. and Hill, T. J.: The effects of a changing pollution climate on
 throughfall deposition and cycling in a forested area in southern England, Sci. Total
 Environ., 434, 28–38, doi:10.1016/j.scitotenv.2011.12.038, 2012.
- Sickles, J. E. and Shadwick, D. S.: Air quality and atmospheric deposition in the
 eastern US: 20 years of change, Atmos. Chem. Phys., 15, 173–197, doi:
 10.5194/acp-15-173-2015, 2015.
- Sutton, M.A., Pitcairn, C.E.R., and Fowler, D.: The exchange of ammonia between
 the atmosphere and plant communities. Adv. Ecol. Res., 24, 301-393,
 doi:10.1016/S0065-2504(08)60045-8, 1993.
- Sutton, M. A., Burkhardt, J. K., Guerin, D., Nemitz, E., and Fowler, D.: Development
 of resistance models to describe measurements of bi-directional ammonia
 surface-atmosphere exchange, Atmos. Environ., 32, 473–480,
 doi:10.1016/S1352-2310(97)00164-7,1998.
- Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A new diffusion denuder
 system for long-term, regional monitoring of atmospheric ammonia and ammonium,
 Water Air Soil Poll. Focus, 1, 145–156, 2001.

- Tang, Y. S., Simmons, I., van Dijk, N., Di Marco, C., Nemitz, E., Dammgen, 893 U., Gilke, K., Djuricic, V., Vidic, S., Gliha, Z.: European scale application of 894 atmospheric reactive nitrogen measurements in a low-cost approach to infer dry 895 deposition fluxes. Ecosyst. Environ., 133. 183-195. doi: 896 Agr. 10.1016/j.agee.2009.04.027, 2009. 897
- 898 Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G.,
- Myhre, C. L., Solberg, S., Yttri, K. E.: Introduction to the European Monitoring and
 Evaluation Programme (EMEP) and observed atmospheric composition change
 during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, doi:
 10.5194/acp-12-5447-2012, 2012.
- 903 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler,
- D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of the global
 nitrogen cycle: Sources and consequences, Ecol. Appl., 7, 737–750, 1997.
- Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C-U., Aas, W., Baker, A., and 14 authors:
 A global assessment of precipitation chemistry and deposition of sulfur, nitrogen,
 sea salt, base cations, organic acids, acidity and pH, and phosphorus, Atmos.
 Environ., 93, 3–100, doi:10.1016/j.atmosenv.2013.10.060, 2014.
- 910 Wang, S. X., Xing, J., Zhao, B., Jang, C., and Hao, J. M.: Effectiveness of national air
- pollution control policies on the air quality in metropolitan areas of China, J.
- 912 Environ. Sci., 26, 13–22, doi: 10.1016/S1001-0742(13)60381-2, 2014.
- 913 Wang, T., Nie, W., Gao, J., Xue, L. K., Gao, X. M., Wang, X. F., Qiu, J., Poon, C. N.,
- 914 Meinardi, S., Blake, D., Wang, S. L., Ding, A. J., Chai, F. H., Zhang, Q. Z., and
- 915 Wang, W. X.: Air quality during the 2008 Beijing Olympics: secondary pollutants
- 916 and regional impact, Atmos. Chem. Phys., 16, 7603-7615,
- 917 doi:10.5194/acp-10-7603-2010, 2010.
- Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in
 regional-scale numerical-models, Atmos. Environ., 23, 1293-1304, 1989.
- 920 Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., Wei, C.:
- Historical gaseous and primary aerosol emissions in the United States from 1990 to
- 2010, Atmos. Chem. Phys., 13, 7531–7549, doi: 10.5194/acp-13-7531-2013, 2013.

- Yu, W. T., Jiang, C. M., Ma, Q., Xu, Y. G., Zou, H., and Zhang, S. C.: Observation of
 the nitrogen deposition in the lower Liaohe River Plain, Northeast China and
 assessing its ecological risk, Atmos. Res., 101, 460–468,
 doi:10.1016/j.atmosres.2011.04.011, 2011.
- Zhan, X., Yu, G., He, N., Jia, B., Zhou, M., Wang, C., Zhang, J., Zhao, G., Wang, S.,
 Liu, Y., and Yan, J.: Inorganic nitrogen wet deposition: Evidence from the
 North-South Transect of Eastern China, Environ. Pollut., 204, 1–8, doi:
 10.1016/j.envpol.2015.03.016, 2015.
- Zhang, F. S., Wang, J. Q., Zhang, W. F., Cui, Z. L., Ma, W. Q., Chen, X. P., and Jiang,
 R. F.: Nutrient use efficiency of major cereal crops in China and measures for
 improvement. Acta. Pedologia Sinica, 45, 915–924, 2008a (in Chinese with English
 abstract).
- Zhang, G. Z., Pan, Y. P., Tian, S. L., Cheng, M. T., Xie, Y. Z., Wang, H., and Wang, Y.
 S.: Limitations of passive sampling technique of rainfall chemistry and wet
 deposition flux characterization. Res. Environ. Sci., 28, 684-690, doi:10.
 13198/j.issn.1001-6929.2015.05.03, 2015.
- Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.: Nitrogen
 inputs and isotopes in precipitation in the North China Plain, Atmos. Environ., 42,
- 941 1436–1448, doi:10.1016/j.atmosenv.2007.11.002, 2008b.
- Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N., and Zhang, F. S.:
 Agricultural ammonia emissions inventory and spatial distribution in the North
 China Plain, Environ. Pollut., 158, 490–501, doi:10.1016/j.envpol.2009.08.033,
 2010.
- 946 Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lü, S. H., Zheng, L. X., Bai, Z. C., Cui,
- 947 G.Y., and Zhang, F. S.: Atmospheric organic nitrogen deposition in China. Atmos.
- 948 Environ., 46, 195–204, doi:10.1016/j.atmosenv.2011.09.080, 2012a.
- 249 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
- van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen Deposition to the United
- 951 States: Distribution, Sources, and Processes, Atmos. Chem. Phys., 12, 4539-4554,
- 952 doi:10.5194/acp-12-4539-2012, 2012b.

- Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry
 deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35 (3),
 549-560, doi:10.1016/s1352-2310(00)00326-5, 2001.
- 956 Zhao, Y. H., Zhang, L., Pan, Y. P., Wang, Y. S., Paulot, F., and Henze, D. K.:
- 957 Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and
- source attribution, Atmos. Chem. Phys. Discuss., 15, 13657-13703,
 doi:10.5194/acpd-15-13657-2015, 2015.
- 955 doi.10.5174/acpu-15-15057-2015, 2015.
- Zhu, J. X., He, N. P., Wang, Q. F., Yan, G. F., Wen, D., Yu, G. R., and Jia, Y. L.: The
 composition, spatial patterns, and influencing factors of atmospheric wet nitrogen
- deposition in Chinese terrestrial ecosystems. Sci. Total Environ., 511, 777-785,
- 963 doi:org/10.1016/j.scitotenv.2014.12.038, 2015.

981

982 Figure captions

- **Fig. 1**. Geographical distribution of the forty-three monitoring sites in China.
- **Fig. 2**. Annual mean concentrations of N_r compounds in air (a) and volume-weighted
- 985 concentrations of inorganic nitrogen species in precipitation (b) at all monitoring sites.
- **Fig. 3**. Annual mean concentrations of (a) NH_3 ; (b) NO_2 ; (c) HNO_3 ; (d) pNH_4^+ ; (e) p NO_3^- ; and (f) Total N_r : sum of all measured N_r in air and volume-weighted concentrations of NH_4^+ (g); NO_3^- (h) and Total inorganic N (TIN): sum of NH_4^+ and NO_3^- (i) in precipitation at different land use types in six regions.
- **Fig. 4.** Annual mean concentrations and deposition fluxes of N_r compounds at different land use types across China: concentrations in air (a); volume-weighted concentrations in precipitation (b); dry N deposition fluxes (c); wet/bulk N deposition fluxes (d). The number of sites with the same land use type can be found in Table S1 in the Supplement. Error bars are standard errors of means.
- **Fig. 5.** Annual deposition flux of various N_r species at the forty-three selected sites in China: (a) dry deposition flux; (b) wet/bulk deposition flux; (c) total deposition flux. Yellow dots denote ratios of reduced N to oxidized N in dry deposition (a), NH_4^+ -N to NO_3^- -N in wet/bulk deposition (b) and/or reduced N to oxidized N in total deposition (c) at all sampling sites.
- **Fig. 6.** Dry N deposition fluxes of (a) NH_3 ; (b) NO_2 ; (c) HNO_3 ; (d) pNH_4^+ ; (e) pNO_3^- ; and (f) Total N_r : sum of all measured N_r in dry and wet/bulk N deposition fluxes of NH_4^+ (g); NO_3^- (h) and Total inorganic N (TIN): sum of NH_4^+ and NO_3^- (i) at different land use types in the six regions. The number of sites with the same land use type can be found in Table S1 in the Supplement. Error bars are standard errors of means.
- Fig. 7. Contribution of different pathways (dry-deposited N=gaseous N+ particulate N, wet/bulk-deposited N=precipitation N) to the estimated total N deposition in the six regions: (a) NC: north China; (b) NE: northeast China; (c) NW: northwest China; (d) SE: southeast China; (e) SW: southwest China; (f) TP: Tibetan Plateau.

Fig. 8. Correlations between annual wet/bulk NH_4^+ -N deposition and annual volume-weighted concentration of NH_4^+ -N (a) and annual precipitation (b); between annual wet/bulk NO_3^- -N deposition and annual volume-weighted concentration of NO_3^- -N (c) and annual precipitation (d).

- 1014 Fig. 9. Spatial variation of atmospheric N deposition flux with emission distribution
- in China: (a) NH_3 emission vs. NH_x deposition; (b) NO_x emission vs. NO_y deposition;
- 1016 (c) relationship of NH_x deposition vs. NH_3 emission; (d) relationship of NO_y
- 1017 deposition vs. NO_x emission.

1018			
1019			
1020			
1021			
1022			
1023			
1024			
1025			
1026			
1027			
1028			
1029			
1030			
1031			
1032			
1033			
1034			
1035			
1036			
1037			
1038			
1039			

1040	
1041	
1042	

1106 Figure 6

1125 Figure 7

Table 1. Comparison of dry, wet (wet/bulk), and total deposition fluxes of N_r compounds between NNDMN in China and 3 networks in other

1168 countries.

Network		Japan EANET network ^a		CASTNET ^b		EMEP ^c			NADMM ^d				
Number of sites or grids		10 sites		130 sites		2447 girds $(0.5^{\circ} \times 0.5^{\circ})$		33 sites					
Observation period		Apr. 2003-Mar. 2008		Apr. 2006-Dec. 2013		Jan. 2003-Dec. 2007		Aug. 2006-Sep. 2014					
N deposition (kg N ha ⁻¹ yr ⁻¹)		Dry	Wet	Total	Dry	Wet	Total	Dry	Wet	Total	Dry	Wet/bul	k Total
	Average	3.9	6.6	10.6	3.1	1.3	4.4	3.9	4.8	8.7	18.7	18.2	36.9
	Median	4.1	5.9	11.2	3.0	0.7	4.1	3.7	4.7	8.5	18.7	21.3	36.5
	Max	7.0	15.8	18.2	9.7	10.3	19.6	15.8	16.9	28.0	43.1	32.4	70.9
	Min	1.0	2.1	3.0	0.03	0.1	0.3	0.1	0.6	0.7	1.1	1.5	2.9

1169

^aThe Japan EANET data are sourced from Endo et al. (2011). Gaseous NO₂ was not included in estimates of dry N deposition.

^b The CASNET data are available online (<u>http://www.epa.gov/castnet/</u>). Gaseous NH₃ was not included in estimates of dry N deposition.

¹¹⁷² ^cThe EMEP data are sourced from Endo et al. (2011), in which the dry and wet deposition amounts at each grid covering 27 EMEP countries

1173 were estimated by the unified EMEP models (Simpson et al., 2003).

^d Only including the rural and background sites in NNDMN.

1175