

Supplement of

Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

Y. B. Lim and B. J. Turpin

Correspondence to: Y. B. Lim (ylim@envsci.rutgers.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

	Reactions	Rate constants (M ¹⁻ⁿ s ⁻¹)	Ref
1	$H_2O_2 \rightarrow 2OH$	1.1e-4×Trans ^a	T, e
2	$OH + H_2O_2 \rightarrow HO_2 + H_2O$	2.7e7	Т
3	$HO_2 + H_2O_2 \rightarrow OH + H_2O + O_2$	3.7	Т
4	$2 \text{ HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$	8.3e5	Т
5	$OH + HO_2 \rightarrow H_2O + O_2$	7.1e9	Т
6	$\mathrm{HO}_2 + \mathrm{O}_2^- + \mathrm{H}^+ \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	1e8	Т
7	$2OH \rightarrow H_2O_2$	5.5e9	Т
8	$OH + O_2^- \rightarrow OH^- + O_2$	1e10	Т
9	$O_{2g} \leftrightarrow O_2$	$K_{eq} = 1.3e-3$ $k_r = 5.3e2$	T, W
10	$CO_{2g} \leftrightarrow CO_2$	$K_{eq} = 3.4e-2$ $k_r = 5.3e2$	T, W
11	$CO_2 \leftrightarrow H^+ + HCO_3^-$	$K_{eq} = 4.3e-7$ $k_r = 5.6e4$	Т
12	$\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{H}^{+} + \mathrm{CO}_{3}^{-2}$	$K_{eq} = 4.69e-11$ $k_r = 5.0e10$	Т
13	$\mathrm{CO}_2^- + \mathrm{O}_2 \rightarrow \mathrm{O}_2^- + \mathrm{CO}_2$	2.4e9	Т
14	$HCO_3^- + OH \rightarrow CO_3^- + H_2O$	1e7	Т
15	$CO_3^- + O_2^- \rightarrow CO_3^{-2} + O_2$	6.5e8	Т
16	$CO_3^- + HCO_2^- \rightarrow HCO_3^- + CO_2^-$	1.5e5	Т
17	$CO_3^- + H_2O_2 \rightarrow HCO_3^- + HO_2$	8e5	Т
18	$GCOLAC + OH \rightarrow GCOLAC^* + H2O$	6.0e8	Т
19	$GCOLAC^* + O_2 \rightarrow GCOLACOO^*$	1e6	G, L'
20	$GCOLACOO^* \rightarrow GLYAC + HO_2$	5e1	C
21	$2\text{GCOLACOO}^* \rightarrow 2\text{GCOLACO}^* + \text{O}_2$	3e8*0.95	L', e
22	$2\text{GCOLACOO}^* \rightarrow \text{GLYAC} + \text{OXLAC} + \text{O}_2$	3e8*0.05	L', e
23	$GCOLACO^* \rightarrow HCO_2H + CO_2$	I	Gi, e
24	$GCOLACO^* \rightarrow GLYAC^*$	1e7	Gi, e
25	$GCOLAC \leftrightarrow H^+ + GCOLAC^-$	$K_{eq} = 1.48e-4$ $k_r = 2.0e10$	Т
26	$\text{GCOLAC}^{-} + \text{OH} \rightarrow \text{GCOLAC}^{*-} + \text{H}_2\text{O}$	6.0e8	Т
27	$\text{GCOLAC}^{*-} + \text{O}_2 \rightarrow \text{GCOLACOO}^{*-}$	1e6	G, L'
28	$GCOLACOO^{*-} \rightarrow GLYAC^{-} + HO_2$	5e1	С
29	2 GCOLACROO* ⁻ \rightarrow 2 GCOLACO* ⁻ + O_2	3e8×0.95	L', e
30	$2 \text{ GCOLACROO}^* \rightarrow \text{GLYAC}^- + \text{OXLAC}^+ + \text{O}_2$	3e8×0.05	L', e
31	$\text{GCOLACO}^{*-} \rightarrow \text{HCO}_2\text{H} + \text{CO}_2^{}$	Ι	Gi, e
32	$GCOLACO^* \rightarrow GLYAC^*$	1e7	Gi, e
33	$GLY + OH \rightarrow GLY^* + H_2O$	1.1e9	Т
34	$GLY^* + O_2 \rightarrow GLYOO^*$	1e6	G, L'
35	$GLYOO^* \rightarrow GLYAC + HO_2$	5e1	C
36	$2\text{GLYOO}^* \rightarrow 2^*\text{CHOHOH} + 2\text{CO}_2 + \text{O}_2 + 2\text{H}_2\text{O}$	3e8	L'
37	$*CHOHOH + O_2 \rightarrow HCO_2H + HO_2$	5e6	G, L'
38	$GLYAC + OH \rightarrow GLYAC^* + H_2O$	3.62e8	Т
39	$GLYAC^* + O_2 \rightarrow GLYACOO^*$	1e6	G, L'
40	$GLYACOO^* \rightarrow OXLAC + HO_2$	5e1	С
41	$2\text{GLYACOO}^* \rightarrow 2\text{CO}_2 + 2\text{COOH}$	3e8	L'
42	$*COOH + O_2 \rightarrow CO_2 + HO_2$	5e6	G, L'

Table S1. Reactions and rate/equilibrium constants used in the full kinetic model ofunified glyoxal/methylglyoxal + OH

43	$GLYAC \leftrightarrow H^+ + GLYAC^-$	$K_{eq} = 3.47e-4$ $K_r = 2.0e10$	Т
44	$GLYAC^{-} + OH \rightarrow GLYAC^{*-} + H_{2}O$	1.28e7	Т
45	$GLYAC^- + OH \rightarrow GLYAC^* + OH^-$	2.9e9	Т
46	$GLYAC^{*} + O_2 \rightarrow GLYACOO^{*}$	1e6	G, L'
47	$GLYACOO^* \rightarrow OXLAC^+ + HO_2$	1e2	C, L'
48	$2\text{GLYACOO}^* \rightarrow 2\text{CO}_2 + 2\text{*COOH}$	3e8	Ľ,
49	$MGLY + OH \rightarrow MGLY^* + H_2O$	7.0e8×0.92	Т
50	$MGLY + OH \rightarrow *MGLY + H_2O$	7.0e8×0.08	Т
51	$MGLY^* + O_2 \rightarrow MGLYOO^*$	1e6	G, L'
52	$MGLYOO^* \rightarrow PYRAC + HO_2$	5e1	C
53	$2MGLYOO^* \rightarrow 2CO_2 + 2CH_3CO_2H + O_2$	3e8	L'
54	*MGLY + $O_2 \rightarrow$ *OOMGLY	1e6	G, L'
55	$2*OOMGLY \rightarrow 2*OMGLY + O_2$	3e8×0.95	L', e
56	$2*OOMGLY \rightarrow HOMGLY + OMGLY + O_2$	3e8×0.05	L', e
57	$*OMGLY \rightarrow HCHO + GLY*$	Ι	Gi, e
58	$*OMGLY \rightarrow *HOMGLY$	1e7	Gi, e
59	$HOMGLY + OH \rightarrow *HOMGLY + H_2O$	4.10e7	М
60	*HOMGLY + $O_2 \rightarrow$ *OOHOMGLY	1e6	G, L'
61	*OOHOMGLY \rightarrow OMGLY + HO ₂	5e1	С
62	$OMGLY + OH \rightarrow *OMGLY + H_2O$	6.17e9	М
63	$*OMGLY + O_2 \rightarrow *OOOMGLY$	5e1	С
64	$GLY^* + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
65	$2\text{GLY}^* \rightarrow \text{C4D}$	1.3e9	G, L'
66	$GLY^* + *COOH \rightarrow C3D$	1.3e9	G, L'
67	$GLYAC^* + *COOH \rightarrow C3D$	1.3e9	G, L'
68	$GLYAC^* + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
69	$2GLYAC^* \rightarrow C4D$	1.3e9	G, L'
70	$GLYAC^* + GLY^* \rightarrow C4D$	1.3e9	G, L'
71	$GLYAC^{*-} + GLY^* \rightarrow C4D$	1.3e9	G, L'
72	$GLYAC^{*-} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
73	$2\text{GLYAC}^* \rightarrow \text{C4D}$	1.3e9	G, L'
74	$GLYAC^{*-} + *COOH \rightarrow C3D$	1.3e9	G, L'
75	$GLYAC^{*-} + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
76	$GLYCOL^{*1} + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
77	$GLYCOL^{*1} + GLY^* \rightarrow C4D$	1.3e9	G, L'
78	$GLYCOL^{*1} + *COOH \rightarrow C3D$	1.3e9	G, L'
79	$GLYCOL^{*1} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
80	$GLYCOL^{*1} + GLYAC^{*-} \rightarrow C4D$	1.3e9	G, L'
81	$GLYCOL^{*2} + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
82	$GLYCOL^{*2} + GLY^* \rightarrow C4D$	1.3e9	G, L'
83	$GLYCOL^{*2} + *COOH \rightarrow C3D$	1.3e9	G, L'
84	$GLYCOL^{*2} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
85	$\text{GCOLAC}^* + \text{*CHOHOH} \rightarrow \text{C3D}$	1.3e9	G, L'
86	$GCOLAC^* + GLY^* \rightarrow C4D$	1.3e9	G, L'
87	$GCOLAC^* + *COOH \rightarrow C3D$	1.3e9	G, L'
88	$GCOLAC^* + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
89	$GCOLAC^* + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
90	$GCOLAC^* + GLYCOL^{*1} \rightarrow C4D$	1.3e9	G, L'
91	$GCOLAC^* + GLYCOL^{*2} \rightarrow C4D$	1.3e9	G, L'

93 GCOLAC* + CHPHOH → C3D 1.3e9 G, L' 94 GCOLAC* + GLY AC* → C4D 1.3e9 G, L' 95 GCOLAC* + GLY AC* → C4D 1.3e9 G, L' 96 GCOLAC* + GLY AC* → C4D 1.3e9 G, L' 97 GCOLAC* + GLY AC* → C4D 1.3e9 G, L' 98 GCOLAC* + GLY C0L* ² → C4D 1.3e9 G, L' 100 GCOLAC* + GLY C0L* ² → C4D 1.3e9 G, L' 101 GCOLAC* + GCOLAC* → C4D 1.3e9 G, L' 103 2 MGLX* → C6D 1.3e9 G, L' 104 MGLY* + C0HOH → C4D 1.3e9 G, L' 105 MGLY* + C0HOH → C4D 1.3e9 G, L' 106 MGLY* + C0CD → C5D 1.3e9 G, L' 107 MGLY* + GLYAC* → C5D 1.3e9 G, L' 108 MGLY* + GLYAC* → C5D 1.3e9 G, L' 110 MGLY* + GLYAC* → C5D 1.3e9 G, L' 111 MGLY* + GLYAC* → C5D 1.3e9 G, L' 112 MG	92	$GCOLAC^* + GCOLAC^* \rightarrow C4D$	1.3e9	G, L'
94 GCOLAC* + GLY* → CAD 1.3e9 G, L' 95 GCOLAC* + CDYAC* → CAD 1.3e9 G, L' 96 GCOLAC* + GLYAC* → CAD 1.3e9 G, L' 97 GCOLAC* + GLYAC* → CAD 1.3e9 G, L' 98 GCOLAC* + GLYAC* → CAD 1.3e9 G, L' 100 GCOLAC* + GLYCOL* ³ → CAD 1.3e9 G, L' 101 GCOLAC* + GLYCOL* ³ → CAD 1.3e9 G, L' 102 2 GCOLAC* + GLYCOL* ³ → CAD 1.3e9 G, L' 103 QMGLY* → CAD 1.3e9 G, L' 104 MGLY* + GLYCOL 1.3e9 G, L' 105 MGLY* + GLYCOL 1.3e9 G, L' 106 MGLY* + GLYCOL 1.3e9 G, L' 107 MGLY* + GLYCOL* → CSD 1.3e9 G, L' 108 MGLY* + GLYCOL* → CSD 1.3e9 G, L' 110 MGLY* + GLYCOL* → CSD 1.3e9 G, L' 111 MGLY* + GLYCOL* → CSD 1.3e9 G, L' 112 MGLY* + HOPYRAC	93	$\text{GCOLAC}^{*-} + \text{*CHOHOH} \rightarrow \text{C3D}$	1.3e9	G, L'
95 GCOLAC* + COH → C3D 1.3e9 G, L' 96 GCOLAC* + GLYAC* → C4D 1.3e9 G, L' 97 GCOLAC* + GLYAC* → C4D 1.3e9 G, L' 99 GCOLAC* + GLYCL* → C4D 1.3e9 G, L' 100 GCOLAC* + GLYCL* → C4D 1.3e9 G, L' 101 GCOLAC* + GCOLAC* → C4D 1.3e9 G, L' 102 2 GCOLAC* → C4D 1.3e9 G, L' 103 2 MGLY* → C6D 1.3e9 G, L' 104 MGLY* → C6D 1.3e9 G, L' 105 MGLY* → C4D 1.3e9 G, L' 106 MGLY* + GLYAC* → C5D 1.3e9 G, L' 107 MGLY* + GLYAC* → C5D 1.3e9 G, L' 108 MGLY* + GLYAC* → C5D 1.3e9 G, L' 109 MGLY* + GLYAC* → C5D 1.3e9 G, L' 110 MGLY* + GLYAC* → C5D 1.3e9 G, L' 111 MGLY* + GLYAC* → C5D 1.3e9 G, L' 111 MGLY* + GLYAC* → C5D 1.	94	$\text{GCOLAC}^{*-} + \text{GLY}^* \rightarrow \text{C4D}$	1.3e9	G, L'
96 GCOLAC* + GLYAC* → C4D 1.3e9 G. L' 97 GCOLAC* + GLYAC* → C4D 1.3e9 G. L' 98 GCOLAC* + GLYAC* → C4D 1.3e9 G. L' 100 GCOLAC* + GLYAC* → C4D 1.3e9 G. L' 101 GCOLAC* + GCOLAC* → C4D 1.3e9 G. L' 102 2 GCOLAC* + GCD 1.3e9 G. L' 103 2 MGLY* → C6D 1.3e9 G. L' 104 MCLY* + CHOHOH → C4D 1.3e9 G. L' 105 MGLY* + GLYAC* → C5D 1.3e9 G. L' 106 MGLY* + GLYAC* → C5D 1.3e9 G. L' 107 MGLY* + GLYAC* → C5D 1.3e9 G. L' 108 MGLY* + GLYCL* → C5D 1.3e9 G. L' 110 MGLY* + GCOLAC* → C5D 1.3e9 G. L' 111 MGLY* + GOVAC* → C5D 1.3e9 G. L' 112 MGLY* + HOYPRAC → C6D 1.3e9 G. L' 118 MGLY* + HOPYRAC → C6D 1.3e9 G. L' 117 *HOPYRAC + *	95	$\text{GCOLAC}^{*-} + \text{*COOH} \rightarrow \text{C3D}$	1.3e9	G, L'
97 GCOLAC* + GLYAC* → C4D 1.3e9 G. L' 98 GCOLAC* + GLYAC* → C4D 1.3e9 G. L' 99 GCOLAC* + GLYCOL* ¹ → C4D 1.3e9 G. L' 100 GCOLAC* + GCUCOL* ¹ → C4D 1.3e9 G. L' 101 GCOLAC* + GCOLAC* → C4D 1.3e9 G. L' 102 2 GCOLAC* → C4D 1.3e9 G. L' 103 2MGLY* → C6D 1.3e9 G. L' 104 MGLY* + CHYA* → C5D 1.3e9 G. L' 105 MGLY* + GLYA* → C5D 1.3e9 G. L' 106 MGLY* + GLYAC* → C5D 1.3e9 G. L' 107 MGLY* + GLYAC* → C5D 1.3e9 G. L' 108 MGLY* + GLYAC* → C5D 1.3e9 G. L' 110 MGLY* + GLYAC* → C5D 1.3e9 G. L' 111 MGLY* + CHYCO* → C5D 1.3e9 G. L' 112 MGLY* + CHYCA* → C6D 1.3e9 G. L' 113 MGLY* + CHYCA* → C6D 1.3e9 G. L' 114 MGLY* + CHYCA*	96	$GCOLAC^{*-} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
98 GCOLAC* + GLYAC* → C4D 1.3e9 G, L' 99 GCOLAC* + GLYCOL* ² → C4D 1.3e9 G, L' 100 GCOLAC* + GCUCAC* → C4D 1.3e9 G, L' 101 GCOLAC* + GCOLAC* → C4D 1.3e9 G, L' 102 2.GCOLAC* → C4D 1.3e9 G, L' 103 2.MGLY* → C6D 1.3e9 G, L' 104 MGLY* + CHY* → C5D 1.3e9 G, L' 105 MGLY* + GLYAC* → C5D 1.3e9 G, L' 106 MGLY* + GLYAC* → C5D 1.3e9 G, L' 107 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 108 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 110 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 111 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 112 MGLY* + HOPYRAC → C5D 1.3e9 G, L' 113 MGLY* + HOPYRAC → C5D 1.3e9 G, L' 114 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 115 <td< td=""><td>97</td><td>$GCOLAC^{*-} + GLYAC^{*-} \rightarrow C4D$</td><td>1.3e9</td><td>G, L'</td></td<>	97	$GCOLAC^{*-} + GLYAC^{*-} \rightarrow C4D$	1.3e9	G, L'
99 GCOLAC* + GLYCOL* ² → C4D 1.3e9 G, L' 100 GCOLAC* + GLYCOL* ² → C4D 1.3e9 G, L' 101 GCOLAC* + GCOLAC* → C4D 1.3e9 G, L' 102 2 GCOLAC* → C4D 1.3e9 G, L' 103 2MGLY* → C6D 1.3e9 G, L' 104 MGLY* + CHOH → C4D 1.3e9 G, L' 105 MGLY* + CHYAC* → C5D 1.3e9 G, L' 106 MGLY* + GLYAC* → C5D 1.3e9 G, L' 107 MGLY* + GLYAC* → C5D 1.3e9 G, L' 108 MGLY* + GLYAC* → C5D 1.3e9 G, L' 110 MGLY* + GLYAC* → C5D 1.3e9 G, L' 111 MGLY* + GCOLAC* → C5D 1.3e9 G, L' 112 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 113 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 114 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 115 2*HOPYRAC → C6D 1.3e9 G, L' 116 MGLY* + HOPYRAC →	98	$GCOLAC^{*-} + GLYAC^{*-} \rightarrow C4D$	1.3e9	G, L'
100 GCOLAC* + GLYCOL* ² → C4D 1.3c9 G, L' 101 GCOLAC* → C4D 1.3c9 G, L' 102 2 GCOLAC* → C4D 1.3c9 G, L' 103 2MGLY* → C6D 1.3c9 G, L' 104 MGLY* + C0H0H → C4D 1.3c9 G, L' 105 MGLY* + C1Y AC* → C5D 1.3c9 G, L' 106 MGLY* + GLY AC* → C5D 1.3c9 G, L' 107 MGLY* + GLY AC* → C5D 1.3c9 G, L' 108 MGLY* + GLY AC* → C5D 1.3c9 G, L' 109 MGLY* + GLY COL* ² → C5D 1.3c9 G, L' 110 MGLY* + GOLAC* → C5D 1.3c9 G, L' 111 MGLY* + CH, CO* → C5D 1.3c9 G, L' 113 MGLY* + CH, CO* → C5D 1.3c9 G, L' 114 MGLY* + CH, CO* → C5D 1.3c9 G, L' 116 MGLY* + PHOPYRAC → C6D 1.3c9 G, L' 117 *HOPYRAC + *HOPYRAC → C6D 1.3c9 G, L' 118<# *HOPYRAC + *HOPYRAC → C6D </td <td>99</td> <td>$GCOLAC^{*-} + GLYCOL^{*1} \rightarrow C4D$</td> <td>1.3e9</td> <td>G, L'</td>	99	$GCOLAC^{*-} + GLYCOL^{*1} \rightarrow C4D$	1.3e9	G, L'
101 GCOLAC* → GCD 1.3e9 G, L' 102 2 GCOLAC* → C4D 1.3e9 G, L' 103 2MGLY* → C6D 1.3e9 G, L' 104 MGLY* + CHOHOH → C4D 1.3e9 G, L' 105 MGLY* + GLYAC* → C5D 1.3e9 G, L' 106 MGLY* + GLYAC* → C5D 1.3e9 G, L' 107 MGLY* + GLYAC* → C5D 1.3e9 G, L' 108 MGLY* + GLYAC* → C5D 1.3e9 G, L' 109 MGLY* + GLYAC* → C5D 1.3e9 G, L' 110 MGLY* + GLYAC* → C5D 1.3e9 G, L' 111 MGLY* + GCOLAC* → C5D 1.3e9 G, L' 113 MGLY* + CH_CO* → C5D 1.3e9 G, L' 114 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 115 2*HOPYRAC → C6D 1.3e9 G, L' 116 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 117<*HOPYRAC + *HOPYRAC → C6D	100	$GCOLAC^{*-} + GLYCOL^{*2} \rightarrow C4D$	1.3e9	G, L'
102 2 GC0LAC* → C4D 1.3e9 G, L' 103 2MGLY* → C6D 1.3e9 G, L' 104 MGLY* + *CHOHOH → C4D 1.3e9 G, L' 105 MGLY* + GLY * → CSD 1.3e9 G, L' 106 MGLY* + GLYAC* → CSD 1.3e9 G, L' 107 MGLY* + GLYAC* → CSD 1.3e9 G, L' 108 MGLY* + GLYAC* → CSD 1.3e9 G, L' 109 MGLY* + GLYAC* → CSD 1.3e9 G, L' 110 MGLY* + GCOLAC* → CSD 1.3e9 G, L' 111 MGLY* + GCOLAC* → CSD 1.3e9 G, L' 112 MGLY* + CH,CO* → CSD 1.3e9 G, L' 114 MGLY* + CH,CO* → CSD 1.3e9 G, L' 115 2*HOPYRAC → C6D 1.3e9 G, L' 116 MGLY* + *HOPYRAC → C6D 1.3e9 G, L' 117 *HOPYRAC + *HOPYRAC → C6D 1.3e9 G, L' 118 *HOPYRAC + *HOPYRAC → C6D 1.3e9 G, L' 119 CH ₂ CO* *HOPYRAC → C6D 1.3e9 G, L' 121 1.2A* COH → C4D	101	$GCOLAC^* + GCOLAC^* \rightarrow C4D$	1.3e9	G. L'
103 2MGLY* → C6D 1.3e9 G, L' 104 MGLY* + CLP* → C5D 1.3e9 G, L' 105 MGLY* + CLY → C5D 1.3e9 G, L' 106 MGLY* + CQCH → C4D 1.3e9 G, L' 107 MGLY* + GLYAC* → C5D 1.3e9 G, L' 108 MGLY* + GLYAC* → C5D 1.3e9 G, L' 109 MGLY* + GLYAC* → C5D 1.3e9 G, L' 110 MGLY* + GLYCOL* ¹ → C5D 1.3e9 G, L' 111 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 112 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 113 MGLY* + CH ₂ CO* → C5D 1.3e9 G, L' 114 MGLY* + *HOPYRAC → C6D 1.3e9 G, L' 115 2*HOPYRAC → C6D 1.3e9 G, L' 116 MGLY* + *HOPYRAC → C6D 1.3e9 G, L' 117 *HOPYRAC + *HOPYRAC → C6D 1.3e9 G, L' 118 *HOPYRAC + *HOPYRAC → C6D 1.3e9 G, L' 120 CH ₃ CO* * *HOPYRAC → C6D 1.3e9 G, L' 121 1.4* + GL	102	$2 \text{ GCOLAC}^* \rightarrow \text{C4D}$	1.3e9	G. L'
104 MGLY* + *CHOHOH → C4D 1.3e9 G. L' 105 MGLY* + GLY* → C5D 1.3e9 G. L' 106 MGLY* + GLYAC* → C5D 1.3e9 G. L' 107 MGLY* + GLYAC* → C5D 1.3e9 G. L' 108 MGLY* + GLYAC* → C5D 1.3e9 G. L' 109 MGLY* + GLYCOL* ¹ → C5D 1.3e9 G. L' 110 MGLY* + GCOLAC* → C5D 1.3e9 G. L' 111 MGLY* + GCOLAC* → C5D 1.3e9 G. L' 113 MGLY* + HOPYRAC → C6D 1.3e9 G. L' 114 MGLY* + HOPYRAC → C6D 1.3e9 G. L' 115 2*HOPYRAC → C6D 1.3e9 G. L' 117 *HOPYRAC + *HOPYRAC → C6D 1.3e9 G. L' 118 *HOPYRAC + *HOPYRAC → C6D 1.3e9 G. L' 119 CH ₁ CO* + *HOPYRAC → C6D 1.3e9 G. L' 120 CH ₂ CO* + *HOPYRAC → C6D 1.3e9 G. L' 121 2.LA* → C6D 1.3e9 G. L' 122 LA*	103	$2MGLY^* \rightarrow C6D$	1.3e9	G. L'
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	104	$MGLY^* + *CHOHOH \rightarrow C4D$	1.3e9	G. L'
106 MGLY* +*COOH → C4D 1.3e9 G, L' 107 MGLY* + GLYAC* → C5D 1.3e9 G, L' 108 MGLY* + GLYAC* → C5D 1.3e9 G, L' 109 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 110 MGLY* + GLYCOL* ² → C5D 1.3e9 G, L' 111 MGLY* + GCOLAC* → C5D 1.3e9 G, L' 112 MGLY* + GCOLAC* → C5D 1.3e9 G, L' 113 MGLY* + CH ₂ CO* → C5D 1.3e9 G, L' 114 MGLY* + CH ₂ CO* → C5D 1.3e9 G, L' 114 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 115 2*HOPYRAC → C6D 1.3e9 G, L' 116 MGLY* + HOPYRAC → C6D 1.3e9 G, L' 118 *HOPYRAC → C6D 1.3e9 G, L' 120 CH ₃ CO* + HOPYRAC → C6D 1.3e9 G, L' 121 2LA* + MGLY* → C6D 1.3e9 G, L' 122 LA* + MGLY* → C6D 1.3e9 G, L' 124 LA* + GLYAC* →	105	$MGLY^* + GLY^* \rightarrow C5D$	1.3e9	G.L'
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	106	$MGLY* + *COOH \rightarrow C4D$	1.3e9	G.L'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107	$MGLY* + GLYAC* \rightarrow C5D$	1.3e9	G L'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108	$MGLY^* + GLYAC^* \rightarrow C5D$	1.3e9	G L'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109	$\frac{MGLY + GLYCOL^{*1} \rightarrow C5D}{MGLY + GLYCOL^{*1} \rightarrow C5D}$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	$\frac{MGLY + GLYCOL + CSD}{MGLY + GLYCOL + 2 \rightarrow C5D}$	1 3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	111	$MGLY + GCOLAC* \rightarrow C5D$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112	$MGL Y + GCOLAC \rightarrow C5D$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112	$MGLY + CH_{2}COP \rightarrow C5D$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11/	$MGLV* + *HOPYPAC \rightarrow C6D$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	115	$\frac{1}{2*HOPYPAC} \rightarrow C6D$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	115	$2 \text{ HOF FRAC} \rightarrow \text{CoD}$ $MCL Y * + *HODYP AC^{-} \rightarrow \text{CoD}$	1.309	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	117	$\frac{1}{1} + \frac{1}{10} +$	1.309	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	$\frac{1}{10000000000000000000000000000000000$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	$CH CO* + *HOPVPAC \rightarrow C6D$	1.3e9	GL'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	119	$CH_{3}CO^{+} + HOPYPAC^{+} \rightarrow C6D$	1.309	O, L G L '
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120	2LA* > C6D	1.309	O, L G L '
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	121	$2LA^* \rightarrow COD$	1.309	O, L G L '
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122	$LA^* + MOL I^* \rightarrow COD$	1.309	O, L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	123	$LA^* + CIV* \rightarrow C4D$	1.309	O, L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124	$LA^* + OLI^* \rightarrow CJD$	1.309	O, L C, L,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	125	$LA^* + CUVAC^* \rightarrow C5D$	1.309	O, L C, L,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120	$LA^{*} + OLIAC^{*} \rightarrow C5D$	1.309	O, L C, L,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	127	$LA^{*} + GLIAC^{*} \rightarrow C5D$	1.309	O, L C, L,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120	$LA^{*} + OL I COL^{*} \rightarrow C5D$	1.309	U, L G L '
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	129	$LA^* + GLICOL^* \rightarrow C5D$	1.309	0, L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	121	$LA^{*} + OCOLAC^{*} \rightarrow CDD$	1.307	O, L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	131	$LA^* + GCULAC^* \rightarrow C5D$	1.369	\mathbf{G}, \mathbf{L}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	132	$LA^* + CH_3CU^* \rightarrow CSD$	1.369	\mathbf{G}, \mathbf{L}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	133	$2CH_3CO^* \rightarrow C4D$	1.369	G, L
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	154	$LA^{*} + ^{*}HOPYRAC \rightarrow C6D$	1.309	U, L'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	155	$LA^{*} + ^{*}HUPYKAU \rightarrow CbD$	1.309	U, L'
137 OXLAC \leftrightarrow H ⁺ + OXLAC ⁻ $K_{eq} = 5.67e^{-2}$ $k_r = 5.0e10$ T 138 OXLAC ⁻ + OH \rightarrow COOH + CO ₂ ⁻ + H ₂ O 2.0e7 T, L' 139 OXLAC ⁻ \leftrightarrow H ⁺ + OXLAC ⁻² $K_{eq} = 5.42e^{-5}$ $k_r = 5e10$ T 140 OXLAC ⁻² + OH \rightarrow *COOH + CO ₂ ⁻ + OH ⁻ 4.0e7 T, L'	130	$OXLAC + OH \rightarrow COOH + CO_2 + H_2O$	1.4eo	1
138 OXLAC ⁺ + OH \rightarrow COOH + CO ₂ ⁻ + H ₂ O 2.0e7 T, L' 139 OXLAC ⁻ \leftrightarrow H ⁺ + OXLAC ⁻² $K_{eq} = 5.42e-5$ $k_r = 5e10$ T 140 OXLAC ⁻² + OH \rightarrow *COOH + CO ₂ ⁻ + OH ⁻ 4.0e7 T, L'	137	$OXLAC \leftrightarrow H^+ + OXLAC^-$	$\kappa_{eq} = 5.0/e^{-2}$ $k_r = 5.0e^{10}$	Т
139 $OXLAC^- \leftrightarrow H^+ + OXLAC^{-2}$ $K_{eq} = 5.42e-5$ T 140 $OXLAC^{-2} + OH \rightarrow *COOH + CO_2^- + OH^-$ 4.0e7 T, L'	138	$OXLAC^{-} + OH \rightarrow COOH + CO_2^{-} + H_2O$	2.0e7	T, L'
140 OXLAC ⁻² + OH \rightarrow *COOH + CO ₂ + OH 4.0e7 T, L'	139	$OXLAC^{-} \leftrightarrow H^{+} + OXLAC^{-2}$	$K_{eq} = 5.42e-5$ $k_r = 5e10$	Т
	140	$OXLAC^{-2} + OH \rightarrow *COOH + CO_2^{-1} + OH^{-1}$	4.0e7	T, L'

141	$LA + OH \rightarrow LA^* + H_2O$	4.3e8	Н
142	$LA^* + O_2 \rightarrow LAOO^*$	1e6	G, L'
143	$LAROO^* \rightarrow PYRAC + HO_2$	5e1	С
144	$LA \leftrightarrow LA^- + H^+$	$K_{eq} = 1.38e-4$ $k_r = 5.0e10$	E&C
145	$LA^- + OH \rightarrow LA^{*-} + H_2O$	3e8	В
146	$LA^{*-} + O_2 \rightarrow LAOO^{*-}$	1e6	G, L'
147	$LAOO^{*-} \rightarrow PYRAC^{-} + HO_2$	5e1	С
148	$PYRAC + OH \rightarrow PYRAC^* + H_2O$	6.0e7×0.85	Т
149	$PYRAC + OH \rightarrow CH_3CO^* + CO_2 + H_2O$	6.0e7×0.15	Т
150	$CH_3CO^* + O_2 \rightarrow CH_3C(O)OO^*$	1e6	G, L'
151	$CH3C(0)OO^* \rightarrow CH_3CO_2H + HO_2$	5e1	C
152	$2CH3C(0)OO^* \rightarrow 2CH_3C(0)O^* + O_2$	3e8	L'
153	$CH_{2}C(O)O^{*} \rightarrow CO_{2} + HCHO$	1e7	Gi
154	$PYRAC^* + O_2 \rightarrow PYRACOO^*$	1e6	G, L'
144	$2PYRACOO^* \rightarrow 2PYRACO^* + O_2$	3e8×0.95	L'. e
145	$2PYRACOO^* \rightarrow HOPYRAC + OPYRAC + O_2$	3e8×0.15	L', e
146	$PYRACO^* \rightarrow HCHO + GLYAC^*$	I	Gi. e
147	$PYRACO^* \rightarrow *HOPYRAC$	1e7	Gi, e
148	HOPYRAC + OH \rightarrow *HOPYRAC + H ₂ O	3.6e8	H
149	*HOPYRAC + $O_2 \rightarrow$ *OOHOPYRAC	1e6	G.L'
150	*OOHOPYRAC \rightarrow OPYRAC + HO ₂	5e1	C
151	$OPYRAC + OH \rightarrow *OPYRAC + H_2O$	5e7	e
152	$*OPYRAC + O_2 \rightarrow *OO(O)PYRAC$	1e6	GL'
153	$*OO(O)PYRAC \rightarrow MOXLAC + HO_2$	5e1	C C
100		$K_{-} = 3.2e-3$	
154	$PYRAC \leftrightarrow PYRAC^{-} + H^{+}$	$k_{eq} = 2e10$	Т
155	$PYRAC^{-} + OH \rightarrow PYRAC^{*-} + H_2O$	6.0e7×0.95	Т
156	$PYRAC^{-} + OH \rightarrow CH3CO^{*} + CO_{2} + OH^{-}$	6.0e7×0.05	Т
157	$PYRAC^{*} + O_2 \rightarrow PYRACOO^{*}$	5e1	С
158	$2PYRACOO^{*} \rightarrow 2PYRACO^{*} + O_2$	3e8×0.95	L', e
159	$2PYRACOO^{*-} \rightarrow HOPYRAC^{-} + OPYRAC^{-} + O_2$	3e8×0.05	L', e
160	$PYRACO^{*^{-}} \rightarrow HCHO + GLYAC^{*^{-}} + O_{2}$	Ι	Gi, e
161	$PYRACO^* \rightarrow *HOPYRAC^-$	1e7	Gi, e
162	$HOPYRAC \leftrightarrow HOPYRAC^{-} + H^{+}$	$K_{eq} = 3.2e-3$ $k_r = 2e10$	e
163	$OPYRAC \leftrightarrow OPYRAC^- + H^+$	$K_{eq} = 3.2e-3$ $k_r = 2e10$	e
164	HOPYRAC ⁻ + OH \rightarrow *HOPYRAC ⁻ + H ₂ O	2.6e9	Н
165	*HOPYRAC ⁻ + $O_2 \rightarrow$ *OOHOPYRAC ⁻	1e6	G, L'
166	*OOHOPYRAC ⁻ \rightarrow OPYRAC ⁻ + HO ₂	5e1	C
167	$OPYRAC^{-} + OH \rightarrow *OPYRAC^{-} + H_2O$	5e7	М
168	*OPYRAC ⁻ + O2 \rightarrow *OO(O)PYRAC ⁻	1e6	G, L'
169	$*OO(O)PYRAC \rightarrow MOXLAC + HO_2$	5e1	С
170	$MOXLAC + OH \rightarrow \overline{GLYAC^* + CO_2 + H_2O}$	5.7e7	Gl
171	$MOXLAC^{-} + OH \rightarrow GLYAC^{*-} + CO_2 + H_2O$	7.85e7	e
172	$MOXLAC^{-2} + OH \rightarrow GLYAC^{*-} + CO_2 + OH^{-1}$	1.0e8	Н
173	$MOXLAC \leftrightarrow MOXLAC^{-} + H^{+}$	$K_{eq} = 3.16e-3$ $k_r = 5e10$	Н
174	$MOXLAC^{-} \leftrightarrow MOXLAC^{-2} + H^{+}$	$K_{eq} = 1.5e-2$	V

		$k_{r} = 5e10$	
175	$CH_3CO_2H + OH \rightarrow *CH_2CO_2H + H_2O$	1.36e7	Т
176	$CH_3CO_2H + OH \rightarrow CO_2 + HCHO + HO_2 + H_2O$	2.40e6	Т
177	$^{*}CH_{2}CO_{2}H + O_{2} \rightarrow ^{*}OOCH_{2}CO_{2}H$	1e6	G, L'
178	$2*OOCH_2CO_2H \rightarrow 2*OCH_2CO_2H + O_2$	3e8*0.95	L', e
179	$2*OOCH_2CO_2H \rightarrow GLYAC + GCOLAC + O_2$	3e8*0.05	L', e
180	$*OCH_2CO_2H \rightarrow 2CO_2 + 2HCHO$	Ι	Gi, e
181	$*OCH_2CO_2H \rightarrow GCOLAC^*$	1e7	Gi, e
182	$CH_3CO_2H \leftrightarrow CH_3CO_2^- + H^+$	$K_{eq} = 1.75e-5$ $k_r = 5.0e10$	Т
183	$CH_{2}CO_{2}^{-} + OH \rightarrow *CH_{2}CO_{2}^{-} + H_{2}O$	7.23e7	Т
184	$CH_2CO_2 + OH \rightarrow CO_2 + HCHO + HO_2 + OH^2$	1.28e7	Т
185	$*CH_2CO_2^- + O_2 \rightarrow *OOCH_2CO_2^-$	1e6	G. L'
186	$2*OOCH_2CO_2n1 \rightarrow 2*OCH_2CO_2 + O_2$	3e8×0.95	L'. e
187	$2^*OOCH_2CO_2^- \rightarrow GLYAC^- + GCOLAC^+ + O2$	3e8×0.05	L'. e
188	*OCH ₂ CO ₂ \rightarrow 2CO ₂ $+$ 2HCHO	I	Gi. e
189	$*OCH_2CO_2^- \rightarrow GCOLAC*^-$	1e7	Gi. e
190	$H_2O \leftrightarrow H^+ + OH^-$	$K_{eq} = 1.0e-14$ $k_r = 1.4e11$	T
191	$HO_2 \leftrightarrow H^+ + O_2^-$	$K_{eq} = 1.6e-5$ $k_r = 5.0e10$	Т
192	$HCO_2H + OH \rightarrow *COOH + H_2O$	1e8	Т
193	$HCO_2^- + OH \rightarrow CO_2^- + H_2O$	2.4e9	Т
194	$HCO_2H \leftrightarrow H^+ + HCO_2^-$	$K_{eq} = 1.77e-4$ $k_r = 5.0e10$	Т
195	$GLYAC + H_2O_2 \rightarrow HCO_2H + CO_2 + H_2O_2$	0.3	Т
196	$PYRAC + H_2O_2 \rightarrow CH_2CO_2H + H_2O + CO_2$	0.11	Т
197	$PYRAC^{-} + H_2O_2 \rightarrow CH_2CO_2^{-} + H_2O + CO_2$	0.11	Т
198	$MOXLAC + H_2O_2 \rightarrow OXLAC + CO_2 + H_2O$	0.5	Т
199	$MOXLAC^{-} + H_2O_2 \rightarrow OXLAC^{-} + CO_2 + H_2O_2$	0.5	Т
200	$HCO_2H + OH \rightarrow COOH + H_2O$	1e8	Т
201	$HCO_2^- + OH \rightarrow CO_2^- + H_2O$	2.4e9	Т
202	$HCO_2H \leftrightarrow H^+ + HCO_2^-$	$K_{eq} = 1.77e-4$ $k_r = 5.0e10$	Т
203	$2*$ CHOHOH \rightarrow GLY	1.3e9	G, L'
204	*CHOHOH + *COOH \rightarrow GLYAC	1.3e9	G, L'
205	$2*COOH \rightarrow OXLAC$	1.3e9	G, L'
206	$C3D \leftrightarrow MA + H2O$	$K_{eq} = 1e5$ $k_r = 1e-8$	L'
207	$MA + OH \rightarrow C3D^* + H_2O$	1.6e7	Е
208	$TA + OH \rightarrow C4D^* + H_2O$	3.1e8	М
209	$2*COOH \rightarrow OXLAC$	1.3e9	G, L'
210	$CO_2 + *COOH \rightarrow OXLAC^-$	1.3e9	G.L'
211	$2CO_2 \rightarrow OXLAC^2$	1.3e9	G, L'
212	$PYRAC \rightarrow 0.45 CH_2 CO_2^{-b}$	1e-4 ^b	C.e
213	$GCOLACOO^* + HO_2 \rightarrow GCOLACOOH + O_2$	3e6 °	e
214	$\frac{1}{\text{GCOLACOO}^{*-} + \text{HO}_2 \rightarrow \text{GCOLACOOH}^{-} + \text{O}_2}$	3e6°	e
215	*OOMGLY + HO ₂ \rightarrow HOOMGLY + O ₂	3e6 [°]	e
216	$PYRACOO^* + HO_2 \rightarrow PYRACOOH + O_2$	3e6°	e
217	$PYRACOO^* + HO_2 \rightarrow PYRACOOH^+ O_2$	3e6°	e
218	*OOCH2COOH + HO ₂ \rightarrow HOOCH2COOH + O ₂	3e6 ^c	e
· · · · · · · · · · · · · · · · · · ·			

219	$*OOCH2COO^{-} + HO_2 \rightarrow HOOCH2COO^{-} + O_2$	3e6 ^c	e
220	$GCOLACOOH + OH \rightarrow products$	6e8 ^d	e
221	$\text{GCOLACOOH}^{-} + \text{OH} \rightarrow \text{products}$	6e8 ^d	e
222	$HOOMGLY + OH \rightarrow products$	7e8 ^d	e
223	$PYRACOOH + OH \rightarrow products$	6e7 ^d	e
224	$PYRACOOH^- + OH \rightarrow products$	6e7 ^d	e
225	HOOCH2COOH + OH \rightarrow products	1.4e7 ^d	e
226	MCLV () DoMCLV ^e	$K_{eq} = 2700$	М
220		$k_r = 6$	S
227	$DeMGLY + OH \rightarrow MGLY^* + H_2O$	7e8×0.92 ^f	Т
228	$DeMGLY + OH \rightarrow *MGLY + H_2O$	$7e8 \times 0.08^{f}$	Т
229	$ROOH + DeMGLY \leftrightarrow PHA$	$K_{eq} = 6.25$ $k_r = 1.6e-4$	T'
230	$ROOH \rightarrow RO^* + OH$	$k = 1.1e-4^{h}$	е
231	$PHA + OH \rightarrow products$	7e8 ^g	Т
222	$OH_g \leftrightarrow OH$	$K_{eq} = 30^{i}$	L
232		$k_r = 3.5e5^{j}$	W
222	$HO_{2g} \leftrightarrow HO_2$	$K_{eq} = 4e3^k$	L
233		$k_r = 4.2e5^1$	W
234		$Keq = 1000^{n}$	L
234		$kr = 5.7e2^{\circ}$	W

^aTrans = Transmittance = $10^{-18.4 \times 0.80 \times [H_2O_2]}$; * = radical (e.g., glyoxal* = glyoxal radical); *ⁿ = radical type n (e.g., GLYCOLAC*¹ = glycolic acid radical type 1); O* (or *O) = alkoxy radical ; OO* (or *OO) = 0.000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.0000 + 0.0000 peroxy radical; $CnD = C_n$ dimer (e.g., $C2D = C_2$ dimer); $X_g = X$ in the gas phase (e.g., $O_{2g} = O_2$ in the gas phase); MGLY = methylglyoxal, PYRAC = pyruvic acid, GLYAC = glyoxylic acid, GLYCOL = glycolaldehyde, GLYCOLAC = glycolic acid, LA = lactic acid, MOXLAC = mesoxalic acid, OXLAC = oxalic acid; $n = n^{th}$ order; K_{eq} = the equilibrium constant (M), k_r = the reverse rate constant for corresponding K_{eq} . Thus, the forward rate constant can be calculated by $K_{eq} \times k_r$; (g) = in the gas phase; I (= the decomposition rate constant from alkoxy radicals) = $5e6 \text{ s}^{-1}$ for $\sim 10\mu\text{M}$ acetic acid/methylglyoxal, $8e6 \text{ s}^{-1}$ for $\sim 10^2 \mu\text{M}$ acetic acid/methylglyoxal, and $2e7 \text{ s}^{-1}$ for $\sim 10^3\mu\text{M}$ acetic acid/ $3.2e7 \text{ s}^{-1}$ for $\sim 10^3\mu\text{M}$ methylglyoxal; ^b PYRAC is assumed to photolyze to produce only 45% acetic acid with 5 times slower than the literature value (Carlton et al., 2006). ^c The rate constant for $ROO^* + HO_2$ is assumed to be similar to that for $HO_2 + HO_2$ (ROO* = peroxy radical). ^d The rate constant for ROOH + OH is assumed to be that of the parent organic compound + OH (e.g. GCOLAC + OH for GCOLACOOH + OH). DeMGLY = dehydrated MGLY (containing an aldehyde moiety). Therefore, MGLY is a hydrated form of methylglyoxal. ^f The rate constant for DeMGLY + OH is assumed to be the same as that for MGLY + OH. ^gThe rate constant for PHA + OH is assumed to be the same as that for MGLY + OH. ^hThe ROOH photolysis rate is assumed to be the same as the H2O2 photolysis rate. ¹Henry's law constant for OH. diffusion-controlled transfer coefficient for OH. However, these h and j values are changed to maintain ~1e-14 M of OH; otherwise, OH is ~1e-12 M. ^kHenry's law constant for OH₂. ^ldiffusion-controlled transfer coefficient for OH₂. ^mIt is assumed that [ROOH]_g = 1ppb. ⁿHenry's law constant for ROOH. ^odiffusioncontrolled transfer coefficient for ROOH (based on the estimation by Lim et al, 2005).

Reference

T = Tan et al., 2009, 2010 and 2012 G = Guzman et al., JPCA, 2006 C = Carter et al., JPC, 1979 H = Herrmann et al., AE, 2005 E = Ervens et al., PCCP, 2003 M = Monod et al., AE, 2005, 2008 L = Lim et al., EST, 2005 L' = Lim et al., ACP, 2010 W = Warneck, PCCP, 1999 E&C = Eyal and Canari, Ind. Eng. Chem. Res., 1995 B = Buxton et al., JPCRD, 1988 Gi = Gilbert et al., 1976 and 1981 V = Volgger et al., J. Chrom. A, 1997 e = Estimation S = Sareen et al., PNAS, 2013 T' = Tran and Ziemann, unpublished data, 2006

Tan, Y., Perri, M. J., Seitzinger S. P., and Turpin, B. J.: Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol, Environ. Sci. Technol., 43, 8105-8112, 2009.

Tan, Y., Carlton, A. G., Seitzinger, S. P., and Turpin, B. J.: SOA from methylglyoxal in clouds and wet aerosols: Mearsurement and prediction of key products, Environ. Sci. Technol, 43, 8105-8112, 2010.

Tan, Y., Lim, Y. B., Altieri, K. E., Seitzinger, S. P., and Turpin, B. J.: Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid, Atmos. Chem. Phys., 12, 801-813, 2012

Guzman, M. I., Colussi, A. J., and Hoffman, M. R.: Photoinduced oligomerization of aqueous pyruvic acid. J. Phys. Chem. A., 110, 3619-3626, 2006.

Carter, W. P. L., Darnall, K. R., Graham, R. A., Winer, A. M., and Pittts, Jr., J.: Reactions of C_2 and $C_4 \alpha$ –Hydroxy radicals with Oxygen, J. Phys. Chem., 83, 2305-2311, 1979.

Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gilgorovski, S., Poulain, and Monod, A.: Toward a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ., 39, 4351-4363, 2005.

Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5, 1811-1824, 2003.

Monod, A., Poulain, L., Grubert, S., Voisin, D., and Wortham, H.: Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications, Atmos. Environ., 39, 7667-7688, 2005.

Monod, A. and Doussin, J. F.: Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases, Atmos. Environ., 42, 7611-7622, 2008.

Lim, H. J., Carlton, A. G., and Turpin, B. J.: Isoprene forms secondary organic aerosol through cloud processing: model simulations, Environ. Sci. Tech., 39, 4441-4446, 2005.

Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10 10521-10539, 2010.

Warneck P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471-5483, 1999.

Eyal, A. M. and Canari, R.: pH dependence of carboxylic and mineral acid extraction by amine-based extractants: effects of pK_a , amine basicity, and diluents properties, Ind., Eng. Chem. Res., 34, 1789-1798, 1995.

Buxton, G. V., Greenstock, C., Herlmen, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513-886, 1988.

Gilbert, B. C., Holmes, R. G., Laue, H., A and Norman, R. O.: Electron spin resonance studies. Part L. Reactions of alkoxy radicals generated from alkyl hydroperoxides and titanium (III) ion in aqueous solution, J. Chem. Soc., Perkin Trans. 2, 1047-1052, 1976.

Gilbert, B. C., Marshall, D. R., Norman, R. O., Pineda, N. And Williams, P. S.: Electron spin resonance studies. Part 61. The generation and reactions of the t-butoxy radical in aqueous solution, J. Chem. Soc., Perkin Trans. 2, 1392-1400, 1981.

Volgger, D., Zemann, A. J., Bonn, G. K., and Antal, Jr., M. J.: High-speed separation of carboxylic acids by co-electroosmotic apillary electrophoresis with direct and indirect UV detection, J. Chrom. A, 758, 263-276, 1997.

Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, L06822, doi:10.1029/2005GL025374, 2006.

Sareen, N., Schwier, A. N., Lathem, T. L., Nenes, A., and McNeill, V. F.: Surfactants from the gas phase may promote cloud droplet formation, Proceed. Natl. Acad. Sci. 110, 2723-2728, 2013.

Fig. S1. The atmospheric simulated concentrations of OH (A) and HO_2 (B) in wet aerosols and cloud droplets for 24 hours (The first 12 hrs are daytime)

Fig. S2. The atmospheric simulated concentrations of DeMGLY (dehydrated methylglyoxal) in wet aerosols (A) and cloud droplets (B) for 24 hours (The first 12 hrs are daytime)

Fig. S3. The atmospheric simulated concentrations of ROOH and OH in wet aerosols (A) and cloud droplets (B) for 24 hours (The first 12 hrs are daytime)