Second revision of the manuscript:

"Deuterium excess in atmospheric water vapor of a Mediterranean coastal wetland: regional versus local signatures"

by Delattre H, Vallet-Coulomb C., and Sonzogni C.

Paper published in ACPD on 20 January 2015

(Responses from the authors in blue)

In this new version of the manuscript, the main changes are 1) an improvement of the abstract and the conclusion in order to better evidence that both regional and local signatures are recorded in our data; 2) a more detailed discussion of the two end-member mixing assumption, with a more precise description of sensitivity analysis performed to evaluate the impact of regional advection on the determination of δ_E ; and 3) a removal of equation 7, following the recommendation of referee #1.

We have improved the English writing, but let us know if a ACP copyediting remains necessary.

We have also checked all the detailed comments.

The annotated revised version of the text is provided below.

Report #1

1 General Comments

In the revised version of their paper, the authors have substantially improved the structure as well as the introduction and use of the two end-member mixing model. However, in my opinion, two important contradictory points remain to be clarified before final publication.

1. Simple isotopic mass balance to explain the diurnal amplitude of δv : I am not sure that I understand Equation 7. I am not convinced that this is a valid approach to compute the contribution of local evaporation to the "background vapour". The diurnal amplitude of δ_v is also stronly influenced by entrainment as discussed by the authors in L. 372-393 and L.478-487. What does W_E represent? What is the timescale over which this mass balance is computed? Is this a mass balance for the boundary layer? The mass balance should be introduced more carefully, otherwise it should be removed.

There is a lower proportion of locally evaporated vapour in ambient moisture under Northern conditions despite higher evaporation rates, compared to the Mediterranean situation. The mass balance (eq. 7) was provided in order to point this contradiction, due to the higher advection rate under northern conditions. Finally, we agree that it is not essential to keep this calculation, since the point can be made qualitatively. We have thus removed this paragraph, and put a greater focus on the impact of regional advection on the two-component mixing assumption (see the response to referee #2 relative to the sensitivity analysis)

2. Local vs "regional" moisture sources: With their methodological approach, the authors can only characterise the local evaporation conditions. I think the discussion about the differences in local evaporation conditions depending on the large scale meteorological situation is interesting and the focus of the paper should be kept there. There are still several instances, where the reader gets confused in terms of what the authors argue to be the driving factor(s) behind the observed isotope signals ("local or regional signature"). Particularly the abstract and the conclusions should be improved in this sense.

We have modified the abstract and the conclusion, in order to clarify these points. In our opinion, our data record both local and regional signatures. The different meteorological situations associated to air mass back trajectories control both local evaporation conditions (determining δ_E), and the isotopic composition of regional advection.

2 Specific comments

1. p.2, L.11: "Stable isotopes of water vapour", remove "the".

Done

2. p. 2, L. 17: Replace evapotranspiration by evaporation.

Done

3. p. 2, L. 17-18: "A calibration protocol..." this sentence should be removed. This technical aspect is not the main topic of the paper.

Done

4. p. 2, L. 38: Replace "local vapour" by "local evaporation" or else more clearly differentiate what is meant by "local vapour" and "ambient moisture".

We have clarified in the text, and replace "local vapour" by "locally evaporated vapour" when necessary.

p.4, L.74: Kurita et al. 2012 can be cited elsewhere (for example at L.80 or/and L. 96). Here citing the review by Kerstel and Gianfrani, 2008 would be more adequate.

Agreed, and modified.

6. p.7, L.175: Say "specific to the individual analyser" to avoid the repetition of "dependence"/ "dependent". Here more than one study should be cited to give credit to this statement. Johnson et al., 2011 and Aemisegger et al., 2012 provide an in-depth discussion of this aspect for Picarro instruments. Furthermore since many recent studies discuss this aspect please write (e.g. Tremoy et al., 2011,...).

Corrected

7. p.9, L.247 What is D?

It designated "deuterium", we have written it fully to avoid any confusion.

8. p. 10, L. 268 Say "plant transpiration".

Done.

9. p. 9, L. 244 The precipitation deuterium excess data should also be shown in Figure 3.

Done.

10. p. 9, L. 255 The daily cycle of air and surface temperature should be added in Figure 5.

Done

11. p. 10, L. 295 Is it the δv – T correlation that is meant?

We have clarified

12. p.13 L. 374 Lai and Ehleringer do not attribute the diurnal increase in d_v solely to entrainment of free atmospheric air. They use an explicit isotope mass balance to determine the importance of soil evaporation, plant transpiration and entrainment for the observed daily cycle in the water vapour isotopes.

We have modified the sentence.

13. p.13 L. 385 It should be Lai et al., 2006.

Corrected

14. p. 14, L. 396 I am not convinced that there is no evaporation from the lagoon during nighttime.

We agree, even if the surface fluxes (latent and sensible) are expected to remain minor during night-time. We have modified the sentence in this sense, and replaced « diappearance » by « reduction ».

15. p.15, L.428 I find the use of W_1 confusing here as well as in Equation 7 the use of W_E and W.

We have changed the symbol and corrected equation 3. Equation 7 has been removed.

16. p. 15, L. 447 It should be Noone et al., 2011, Noone, 2012.

Corrected

17. p. 18, L. 525-528. This is confusing. You say "Cold, dry and strong winds coming from the North bring an isotopically depleted vapour... from the South bring an isotopically enriched vapour". This is not what I understood from the main text, in which you analyse the influence of local conditions on the isotope signals.

Later on, on L. 536-538 you say that it is local evaporation that mainly drives the daily isotope signals. This is contradictory (see also my general comment 2).

Our result show that local evaporation drives the intra-daily isotopic variations, while the differences in isotopic signal observed a daily time step is mainly related to the air mass origins. We have clarified the conclusion and the abstract in this sense (see also our response to the general comment 2)

18. p. 18, L. 534 replace second "either" by "or". I don't agree with the "either… or…" statement. The relative importance of the two processes is different depending on daytime but both processes are equally relevant in shaping the typical daily cycle of water vapour isotope signals.

We have modified the sentence as follows : « A diurnal increase in d can be caused by entrainment of free atmospheric air, by surface evaporation, or by a combination of both processes»

Report #2

In this revision, Delattre et al. have improved their manuscript. Some points are still unclear, as detailed below, but once these have been clarified, I think the paper can be published in ACP. The English writing could still be improved (which can be done by the ACP copyediting, I believe).

Specific comments:

- Lines 28, 341, Figures 5-7: Here the term "24-hour average values" (or something similar) is still used for the daily cycle analysis, which is not correct (it indicates that the data have been averaged over 24 hours, which is not the case).

Corrected : we have replaced by « average daily cycles » or by « hourly average values over a daily cycle »

- L 33 and other places: The term "the PBL vanishes" is a bit strange; I think "collapses" would be better.

Corrected

- L 97-98: The abbreviations for d-excess should be harmonized.

We have replace d_v by d to designate deuterium excess in the whole text

- L 225: "Backward trajectories were started/initialized" instead of "Trajectories were parameterized to end up"

Corrected

- L 227: It is still not clear what is meant by "oceanic source".

We have provided more details and clarified the text.

- L 274-295: The most important point here is not the normalization with respect to surface temperature, but the fact that it is the RH at the location where the water evaporated from the surface, and not at the measurement location, that is most closely related to the d-excess. As RH is not conserved during air mass transport (e.g., when the air parcel descends and is heated adiabatically, this changes RH), these are not the same. This should certainly be mentioned here.

We have clarified.

- L 306-308: It is still not very clear how this classification is done. Please be a bit more specific by explicitly mentioning the geographic limits/coordinates of the different sectors and the time (backward along the trajectories) for which the classification is performed.

We now refer to the more detailed explanation, which has been added in section 3.

- L 330 "strong linear fits are evidenced" is not correct English

We have replaced by « strong linear relationships are observed »

- L 396-412: It is a bit difficult to get the point of this paragraph, as the "dew formation" is only mentioned very late (in line 409). I'd note earlier that this is most likely the process leading to the observed gradual night-time depletion.

We have rewritten the paragraph.

- Page 15: It confuses me that the equations are given in two very similar forms with the same meaning, but different notations. Moreover, the units of the symbols in equation (3) do not match. I'd suggest to remove equations (3) and (4); all the physics can be explained with equations (5) and (6).

We agree and have corrected the mistake in equation (3). However, in our opinion, it is still interesting to provide both formulations (Eq. 3 and Eq. 5), since we want to clarify the proposed mixing approach and to compare it with the classical case (Keeling plot). In the case of the addition of « pure » water vapor in a humid air mass (equation 3), the amount of dry air (n_A) remains constant. The meaning of n_E/n_A is not the same as a mixing ratio, even if the units are the same, and it is classically designated by « vapor flux » when the process is integrated through time. In the case of a mixing between two air masses characterised by different water concentrations (equation 5), the addition of mixing ratios has to be weighted by the proportions of the two air masses.

- L 444: I don't understand the meaning of "until $1/q_1$ ". The composition of the additional vapor is simply given by the intercept of the linear regression, isn't it?

Presenting the two different formulations allows us to justify why we use q_E (previously q_1) instead of the intercept for determining the composition of the local vapor flux.

- L 488-498: The description of these sensitivity analyses is too vague to be understandable. Which values have been used for the humidity and isotopic composition of the third component? What is meant by "remains compatible with a linear delta_v-1/q trend"? Doesn't this depend on the choice of the input values?

We have now provided more details on the way the sensitivity analysis was performed

- L 508-510: I don't understand the meaning of this sentence.

« The d_v decrease observed when the PBL collapses corresponds to the vertical mixing of the PBL, as previously stated, and is therefore driven by the mixing with a more regional vapor."

We have modified the sentence. In addition, we have added a second panel in Figure 7 in order to better illustrate the different phases of the daily cycles, and the associated processes.

- L 527: The global average of 10 refers to precipitation and not necessarily to water vapor. Please clarify.

In this sentence d was compared to the values observed in rainfall. Nevertheless, we have only kept the local rainfall composition (and removed the comparison with the global average), in order to simplify.

- L 534-535: "or by local evaporation" instead of "either". What is meant by "spatial significances"?

We have clarified.

- 1 Deuterium excess in atmospheric water vapo<u>u</u>r of a
- 2 Mediterranean coastal wetland: regional versus local
- 3 signatures
- 4
- 5 H. Delattre¹, C. Vallet-Coulomb¹, C. Sonzogni¹
- 6 [1]{Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Europôle méditerranéen de

- 7 l'Arbois, 13545 Aix-en-Provence, France}
- 8 Correspondence to: C. Vallet-Coulomb (<u>vallet@cerege.fr</u>)
- 9 10

10 Abstract

11	Stable isotopes of water vapour represent a powerful tool for tracing atmospheric vapour
12	origin and mixing processes. Laser spectrometry recently allowed high time resolution
13	measurements, but despite an increasing number of experimental studies, there is still a need
14	for a better understanding of the isotopic signal variability at different time scales. We present
15	results of in situ measurements of δ^{18} O and δ D during 36 consecutive days in summer 2011 in
16	atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation
17	(Camargue, Rhône River delta, France). The mean composition of atmospheric vapour (δ_v) is
18	δ^{18} O=-14.66‰ and δ D=-95.4‰, with data plotting clearly above the local meteoric water line
19	on a δ^{18} O- δ D plot, and an average deuterium excess (d) of 21.9‰. Important diurnal d
20	variations are <u>observed</u> , and an hourly time scale analysis is necessary to interpret the main
21	processes involved in its variability. After having classified the data according to air mass
22	back trajectories, we analyse the average daily cycles relating to the two main meteorological
23	situations, i.e. air masses originating from North Atlantic and Mediterranean Sea. In both
24	situations, we show that diurnal fluctuations are driven by 1) the influence of local
25	evaporation, culminating during daytime, and leading to an increase in absolute water vapour
26	concentration associated to a δ_v enrichment and <u>d</u> increase; 2) vertical air mass redistribution
27	when the PBL <u>collapses</u> in the evening, leading to a <u>d</u> decrease, and 3) dew formation during
28	the night, producing a δ_v depletion with <u>d</u> remaining stable. <u>Using</u> a two-component mixing
29	model, we calculate the average composition of the locally evaporated vapour (δ_E). We find
30	higher $\underline{d}_{(E)}$ under North Atlantic air mass conditions, which is consistent with lower humidity
31	conditions. We also suggest that δ_v measured when the PBL collapses is the most
32	representative of a regional signal. Strong, cold and dry winds coming from the North bring
33	an isotopically depleted vapour, while light, warm and wet winds coming from the South
34	bring an isotopically enriched vapour. Under Northern conditions, a strong advection rate
35	dilutes the contribution of the locally evaporated vapour (δ_E) to the ambient moisture (δ_v). The
36	higher d values measured under Northern conditions, compared to the Mediterranean
37	situation, thus results from the combination of a higher d in both local and regional vapour.
38	This depiction of typical daily cycles of water vapour isotopic composition can be used as a
39	framework for further quantitative analyses of vapour sources during specific days,

Supprime: vapor
Supprimé: vapor
Supprimé: main drivers of
Supprimé: vapor
Supprimé: transpi
Supprimé: A calibration protocol was tested and instrument stability was analysed over the period.
Supprimé: vapor
Supprimé: during the campaign
Supprimé: δ _v
Supprimé: d _v
Supprimé: At the daily time step, we show a clear separation of isotopic characteristics with respect to the air mass back trajectories, with the Northern air masses providing depleted compositions ($\delta^{18}O$ =-15.83‰, δD =-103.5‰) compared to Mediterranean air masses ($\delta^{18}O$ =-13.13‰, δD =-86.5‰). There is also a clear separation between d, corresponding to these different air masses (23.2‰) than for Mediterranean air masses (18.6‰). However, since
Supprimé: d.
Supprimé: more important than day-to-day differences
Supprimé: drivers of d _v
Supprimé: Based on twenty-four average hourly data, we propose a depiction of typical daily cycles of water vapor isotopic composition under the two main regional meteorological situations. D
Supprimé: -
Supprimé: vapor
Supprimé: d _v
Supprimé: vanishes
Supprimé: d _v
Supprimé: d _v
Supprimé: Based on
Supprimé:
Supprimé: that produces the day-time increase in d _v , and found
Supprimé: d _v
Supprimé: for the local vapor composition
Supprimé: In addition, we show that the

Supprimé: that prevails under Northern conditions

Supprimé:, which indicates that regional vapor also carries a higher d_v under No(... [1])

Supprimé: the

G

40

41 **1** Introduction

42 At the global scale, an acceleration of the hydrological cycle is expected in response to 43 climate change, with an intensification of both precipitation and evaporation. This effect has 44 been recognized for the ocean (Dai et al., 2009), but less conclusive patterns appear for 45 continental surfaces, especially because of the complex behaviour of land evapotranspiration 46 (Ohmura and Wild, 2002; Roderick and Farquhar, 2002; Brutsaert, 2006; Roderick et al., 47 2007; Fu et al., 2009; Jung et al., 2010. The response of evapotranspiration to climate change is controlled both by climatic and by hydrological parameters. Climate determines the 48 49 atmospheric evaporative demand (potential evapotranspiration), while hydrology controls 50 surface water availability, thus limiting actual evapotranspiration. In addition, continental 51 vapour is involved in land-atmosphere feedbacks such as atmospheric water recycling: high 52 evapotranspiration may contribute to regional rainfall in contexts of tropical rainforest 53 (Brubaker et al., 1993; Eltahir and Bras, 1996; van der Ent et al., 2010) or large scale 54 irrigation (Boucher et al., 2004; Tuinenburg et al., 2012), or may even reduce potential 55 evapotranspiration by lowering temperature and increasing humidities near the earth surface (Destouni et al., 2010; Tuinenburg et al., 2012). A better understanding of the atmospheric 56 57 component of the water cycle and of the potential contribution of wetlands evaporation to the 58 regional water budget is thus important to anticipate the impact of global change, in particular 59 in Mediterranean regions where more frequent droughts are expected. 60 Isotopic composition of atmospheric water vapour (subsequently called $\delta_{\rm v}$) represents a great 61 opportunity to explore land-atmosphere interactions, as the addition of moisture originating from evapotranspiration induces a modification of the isotopic content of the background 62 63 vapour (Salati et al., 1979; Gat et Matsui, 1991; Gat et al., 1994; Gat, 2000; Worden et al., 2007; Yamanaka and Shimizu, 2007; Vallet-Coulomb et al., 2008; Risi et al., 2013). In 64 65 addition, isotope tracers are now often incorporated into climate models (Sturm et al., 2005; 66 Werner et al., 2011; Risi et al., 2012, 2013) in order to improve the representation of land-67 atmosphere interactions and feedbacks. A major challenge is thus to propose robust databases, and associated methodology for data acquisition and interpretation. 68

69 Laser spectrometers recently opened the door towards the high temporal resolution analysis of

70 δ_v variations, which was not possible with the traditional cold trap method. Whereas

71 cryogenic trapping provides grab samples generally averaging a couple of hours, laser

Supprimé: vapor

Supprimé: vapor

Supprimé: vapor

72	spectrometry performs continuous high frequency (up to ~1 Hz) measurements of δ_v (Kerstel
73	and Gianfrani, 2008). This technology offers new insights into processes that affect the
74	isotopic composition of atmospheric water vapour and the number of studies based on
75	continuous ground level isotope measurements over multi-week periods is continuously
76	increasing, either using Tunable Diode Laser (TDL) (Lee et al., 2006; Wen et al., 2010;
77	Griffis et al., 2011; Welp et al., 2012; Wen et al., 2012), Off-Axis Integrated Cavity Output
78	Spectroscopy (OA-ICOS) (Sturm and Knohl, 2010; Sunmonu et al., 2012; Farlin et al., 2013;
79	Steen-Larsen et al., 2013) or Wavelength-Scanned Cavity Ring-Down Spectroscopy (WS-
80	CRDS) (Galewsky et al., 2011; Noone et al., 2011; Tremoy et al., 2012; Steen-Larsen et al.,
81	2013, 2014). Among these experiments are some low latitude studies which have focused on
82	the tracing of tropical or sub-tropical convective activity in West Africa (Tremoy et al., 2012)
83	or in South America (Galewsky et al., 2011). In mid latitudes (Noone et al., 2011; Farlin et
84	al., 2013), or high latitudes (Steen-Larsen et al., 2013), several studies have explored
85	atmospheric mixing processes at different time scales. Isotopes have also been used for
86	partitioning evapotranspiration into plant transpiration and direct evaporation, as the
87	associated fractionations are different (Yakir and Sternberg, 2000; Lai et al., 2006; Wang et
88	al., 2010; Griffis et al., 2011; Sun et al., 2014), for a better understanding of the role of
89	ecosystems in the hydrological cycle in the context of climate change (Wang et al., 2013).
90	However, the number of studies remains limited because of technical difficulties associated
91	with field-deployed long-term measurements. Except for some work based on cold trap
92	sampling (Jacob and Sonntag, 1991; Williams et al., 2004; Angert et al., 2008), there are to
93	our knowledge only three high time-resolution studies published from European sites
94	(Iannone et al., 2010; Kurita et al., 2012; Aemisegger et al., 2014) and none at all treating
95	Mediterranean areas. In addition, there is a need for dual tracer databases, in order to use the
96	deuterium excess signal ($d = \delta D-8 \times \delta^{18}O$; Dansgaard, 1964) as an additional indicator of
97	atmospheric processes. Indeed, d is often considered as a indicator of evaporation conditions,
98	but its interpretation in continental <u>vapour</u> remains complex since it is affected by the multiple
99	vapour sources, combining the initial oceanic vapour and evapotranspiration from different
100	continental water sources (Gat et Matsui 1991; Vallet-Coulomb et al., 2008; Lai and
101	Ehleringer, 2011; Welp et al., 2012; Jouzel et al., 2013; Aemisseger et al, 2014).
102	In this paper, we provide results obtained in Camargue on 36 consecutive days during

103 summer 2011, using WS-CRDS technology. The Camargue region is emblematic of

104 Mediterranean wetlands, with important water inflow requirements and strong evaporation

Supprimé: Kurita et al., 2012

Supprimé: vapor

/	Supprimé: d
	Supprimé: exc
	Supprimé: d _v
	Supprimé: vapor
	Supprimé: vapor
	Supprimé: vapor

Supprimé: two

105 losses, making them highly sensitive to climate change and human pressures on water 106 resource. Our experimental site is located in the center of Camargue, close to the main lagoon 107 (Vaccarès lagoon, 65 km²). Considering the location of the site, and the important availability 108 of open water in the surroundings, we expect a dominant contribution of evaporation upon 109 transpiration fluxes. This study will provide the opportunity to investigate how local 110 evaporation combines and interact with the other regional vapour sources. We will focus on identifying the main drivers of deuterium excess variability at different time scales, and 111 112 explore the relevance of using either relative humidity, as an indicator of evaporation 113 conditions, or specific humidity (mixing ratio) as a proxy of mixing between different vapour 114 sources. Before analysing our results, we present technical aspects of measurement calibration 115 and validation. We then analyse the day-to-day variations of δ_v and <u>d</u> in relation to climatic 116 parameters and the air mass back trajectories. Finally, average hourly variations are explored and we interpret the typical daily cycles according to the main regional meteorological 117 118 conditions in order to depict their driving factors and the influence of local processes.

119

120 2 Data acquisition

121 2.1 Protocols

122 Continuous in situ measurements of the isotopic composition of atmospheric water <u>vapour</u> 123 (δ^{18} O and δ D) were performed during summer 2011 between 20 July and 24 August, at 1.75m

height and approximately 170m from the East border of the Vaccarès lagoon (Figure 1), using

125 Wavelength-Scanned Cavity Ring-Down Spectroscopy (WS-CRDS). The instrument we use

126 is the Picarro L1102-i isotopic liquid water and water vapour analyser (Picarro Inc.,

127 Sunnyvale, California, USA), which measures the isotopic composition of atmospheric water

128 yapour every 5 to 7 seconds. Installed in an air-conditioned room, the analyser is connected to

129 an outside air intake. As water <u>vapour may be sticky on the walls of any tubing</u>, a bypass

130 configuration is used to bring the air in quickly, at a rate of 6L.min⁻¹ (with a Laboport vacuum

131 pump N86 KN.18) through PVC tubing, in order to minimise wall effects that lead to

132 fractionation in the inlet. The analyser then subsamples this air at a rate lower than 0.04L.min⁻ 133 ¹.

134	Calibration of laser measurements is performed according to liquid laboratory standards, and
135	a three -way valve allows switching between the introduction of ambient air and vapour from

136 the liquid sample vaporizer (vaporization module V1102-i adjusted to 110°C for flash

Supprimé: vapor	
·····	
supprime: vapor	
Supprimé: d _v	

Supprime. vapor	
<u> </u>	
Supprime: vapor	

Supprimé: vapor

137	vaporization to avoid fractionation). We used three laboratory standards whose isotopic
138	compositions span, a range of values including the composition expected in the atmosphere of
139	the Camargue (Table 1). 1.8µL of water standards is injected into the vaporizer using an
140	autosampler (CTC Analytics LEAP Technologies HTC PAL autosampler) with a SGE $5\mu L$
141	syringe. We used synthetic air as the dry carrier gas (water content <45ppmv) delivered at a
142	pressure of 2.5±0.5psi. The analyser takes about nine minutes to perform approximately 40
143	measurements per injection, and these results are then averaged by the software. Between
144	each injection, the syringe is cleaned with 1-methyl-2-pyrrolidinone (NMP) solvent wash.
145	Our laboratory successfully participated in the IAEA 2011 proficiency test on routine analysis
146	of δ^{18} O and δ D in liquid water (Wassenaar et al., 2012).
147	Previous studies have shown that optical spectrometric methods can induce a dependence of
148	isotopic measurements on water vapour concentration (Gupta et al., 2009; Schmidt et al.,
149	2010; Johnson et al., 2011; Tremoy et al., 2011). This does not affect liquid sample
150	measurements, since the water quantity introduced into the analyser through the vaporizer is
151	nearly constant, but important variations of <u>vapour</u> content do occur when analysing ambient
152	atmosphere, making it necessary to correct optical measurements. We have evaluated the
153	concentration dependence of our instrument for a large range of water concentrations, and for
154	different isotopic compositions using our three standards (Figure 2). In addition, for routine
155	analyses, an evaluation of the water concentration effect is performed at approximately 24-
156	hour intervals with the more depleted standard (Standard 1) whose isotopic composition is
157	close to the atmosphere of the Camargue. The autosampler is set to perform six injections of
158	0.9µL, 1.6µL and 2.0µL in the vaporization module to obtain three water vapour
159	concentrations ranging from about 8000 to 28000ppmv, comprising values expected in the
160	study area. In addition, calibration for isotopic composition is performed at least every 24
161	hours with our three standards. For each standard, the autosampler is set to perform six
162	injections of 1.8µL in the vaporization module, corresponding to a water <u>vapour</u> concentration
163	of approximately 20 000ppmv. The first two injections are disregarded to remove the memory
164	effect, and the last four injections are averaged to obtain the $\delta^{18}O$ and δD measurements of
165	each standard.
166	Gaps in time series correspond to calibration periods, but may also reflect accidental power
167	cuts or data eliminated during episodes of condensation in the tubing. This latter problem was

168 detected thanks to the use of transparent air tubing, and was easily recognizable a posteriori

169 through the abnormally smooth shape of the water <u>vapour</u> concentration curve. A heating

(Supprimé: s
(Supprimé: are introduced

f		
/	Supprimé: vapor)
,		
•		
5		_
t 🦯	Supprimé: vapor)
;		
r		
`		
,	Supprimé: i)
3		
f		
<u>r</u> /	Supprimé: vapor)
;		
L		
,		
•	Supprimé: vapor)
1 /	<u> </u>	
/		
f		

Supprimé: vapor

- 170 cable was then used to avoid any condensation such as may occur when a negative
- 171 temperature gradient exists between the sampling point and the inlet of the analyser.
- 172

173 2.2 Dependence on water vapour concentration

174 It has been shown that the dependence of WS-CRDS isotopic measurements on water <u>vapour</u>

- concentration is specific to the individual analyser (e.g. Johnson et al., 2011; Tremoy et al., 175 176 2011; Aemisegger et al., 2012). The concentration dependence of our instrument, evaluated
- 177 for a large range of concentrations (Figure 2), showed a linear response in the range of water
- 178 vapour concentration measured in the atmosphere of the Camargue (from 9000ppmv to
- 28000ppmy), with the relationship deviating slightly from the linear trend at very low and 179
- high water vapour concentrations. For δ^{18} O of standards 2 and 3 there is no concentration 180
- effect, but a small dependence did appear for the more depleted standard (-181 0.33%.10000 ppmv⁻¹; R²=0.75). For δD , we found significant regression coefficients 182 $(R^2=0.98, 0.99 \text{ and } 1.00 \text{ for standards } 1, 2 \text{ and } 3 \text{ respectively})$, and the slope of the 183 184 dependence was only slightly different between standards (between 7.8 and
- 185 8.1‰.10000ppmv⁻¹).

186 This justifies the use of only one standard (Standard 1) to perform the very time-consuming

- 187 daily calibration of the water concentration effect (160 minutes for a 3-point calibration).
- 188 Measurements are corrected for concentration dependence before applying the isotopic
- 189 calibration in order to drive back atmospheric measurements to the water vapour

190 concentration w_{reference} at which standards are measured, as follows (Schmidt et al., 2010):

- $\delta_{reference} = \delta_{observed} + m \cdot \left(w_{reference} w_{observed} \right)$ 191
- (1)
- 192 where $\delta_{reference}$ (‰) is the reference δ value at $w_{reference}$ (20000 ppmv in our case); $\delta_{observed}$ (‰) is the observed δ value at w_{observed} (ppmv) the observed concentration; m (‰.ppmv⁻¹) is the 193
- slope of the concentration dependence (Table 2). 194
- 195

196 2.3 Instrument stability

197 To evaluate the long-term stability of our instrument, statistics were calculated on raw delta 198 values measured on our three standards during the entire field measurements, (Table 1). 199 Results show that the long-term variability is very low, but a regular calibration is nevertheless performed. Variability of both calibrations (for water vapour concentration and 200

Supprimé: vapor Supprimé: vapor Supprimé: instrument-dependent

Supprimé: vapor

Supprimé: vapor

Supprimé: vapor

Supprimé: campaign Supprimé: vapor

- 201 isotopic composition) is shown in Table 2. For δ^{18} O, the calibration for concentration appears
- 202 highly variable but often flat (no concentration effect), resulting in a linearity which is not
- 203 always significant ($0.26 \le R^2 \le 1.00$). Thus, δ^{18} O was corrected only when the concentration
- 204 dependence was significant. For δD , the regression is slightly variable in the long-term, and
- 205 its linearity is always significant ($0.89 \le R^2 \le 0.99$). For daily calibration in isotopic composition
- 206 (normalisation to the VSMOW2-SLAP2 scale), we used a three-point calibration, which
- allows to check for the linearity of the calibration. Linear regressions between raw measured
- 208 values and absolute standard compositions are established as follows for δ^{18} O and δ D:
- 209 $\delta_{calibrated} = slope \cdot \delta_{measured} + intercept$
- (2)

Regressions are stable in the long-term (Table 2), and their linearity is always significant

211 ($R^2=1.00$). Accuracy and precision of our instrument, estimated by considering standard 2 as a

- sample which has been calibrated with standards 1 and 3, show good results (Table 3). These
- 213 performances are estimated on liquid measurements, and are probably lower for <u>vapour</u>
 214 measurements.
- 215

210

216 **3** Local atmospheric data

217 Hourly air temperature and relative humidity were measured at the study site. Hourly wind

- speed and daily PET (Potential Evapotranspiration calculated from the Penman-Monteith
 formula (Monteith, 1965)) were obtained from a meteorological station located 400m far from
- the site of isotopic measurements. In addition, surface temperature was also measured in themain pond of the Vaccarès lagoon system at hourly time-step.

222	Regional advection conditions were determined for each individual day by computing
223	hackward three-dimensional trajectories with the Internet-based NOAA HYSPLIT Trajectory
224	Model (http://ready.arl.noaa.gov/HYSPLIT.php), The HYSPLIT (HYbrid Single-Particle
225	Lagrangian Integrated Trajectory) model is a complete system, which allows computing
226	simple air parcel trajectories using GDAS (Global Data Assimilation System) meteorological
227	data. Trajectories were initialized at the station location every 24 hours at 12:00 UTC, at three
228	heights (50, 100 and 500 meters) above ground level. A minimum back run time of 72 hours
229	was computed, and extended, when necessary, in order to reach either the Mediterranean Sea,
230	or the Atlantic ocean (depending of the wind regime, a maximum of 144 hours was
231	computed), The air mass trajectories were consistent between the three different initial
232	altitudes and hourly data were then classified on a daily basis (i.e. from 0:00 to 23:00)

Supprimé: vapor

Supprimé: ,

-	Supprimé: B
i	Supprimé: were computed for each individual day
	Supprimé: <u>http://ready.arl.noaa.gov/HYSPL</u> IT.php
	Supprimé: , using GDAS (Global Data Assimilation System) meteorological data
	Supprimé: parameterized to end up
	Supprimé: of
	Supprimé: , with a total
	Supprimé: long enough to get back to the oceanic source (
	Supprimé:)

- 233 according the three air mass origins represented in Figure 1: Mediterranean, North Atlantic, or
- 234 Bay of Biscay.
- Planetary boundary layer heights were obtained from GDAS meteorological data (3-hour time
 step). They were extracted and interpolated to our specific station using the MeteoInfo
 software (www.meteothinker.com).
- 238 In addition, we collected and analysed three rainfall samples corresponding to four small
- rainfall events (25, 26, 27 July, 7 August 2011). These samples account for a total of 7.6mm
- of the 9.6mm of cumulated rainfall during the measurement campaign; the remaining 2mm

The mean composition of atmospheric water vapour during the campaign is δ^{18} O=-14.66‰,

 δD =-95.4‰ and d=21.9‰, with significant daily variations, from $\delta^{18}O$ =-19.22 to -9.96‰ and

 δD =-125.2 to -61.7‰, while d varies between 7.8 and 31.2‰ (Figure 3). These deuterium

excess values are higher than those of our three rainfall samples: 5.6‰, 4.5‰ and 7.0‰, (for $\delta^{18}O$ =-3.89‰, -3.7‰, and -0.66‰ respectively), and also higher than the long-term average

composition of regional precipitation in the neighbouring GNIP Station (Avignon, ~50km far

from the experimental site; d = 9.2 ‰). The composition of vapour in equilibrium with

rainfall is plotted for comparison (Figure 3). Values slightly enriched in ¹⁸O compared to

measured δ_v suggest a probable evaporation of rainfall in the atmosphere, a classical feature

for small summer rainfall events (Celle-Jeanton et al., 2001), while values slightly depleted in

<u>deuterium</u> compared to measured δ_v points to the influence of an enriched <u>vapour</u> at ground

- correspond to eight very small events between 14 and 23 August (not sampled).
- 242

244

245

246 247

248 249

250

251

252 253

254

243 4 Results and discussion

- Supprimé: vapor
 Supprimé: d_v
 Supprimé: d_v
- Supprimé: d Supprimé: -exc Supprimé: vapor

Supprimé: of	
Supprimé: D	
Supprimé: vapor	

Supprimé: d_v

Supprimé: for

Supprimé: ing

Supprimé: for

Supprimé: ing

255 level.

256 In measured atmospheric vapo<u>ur composition</u>, substantial day-to-day variations of δ_v are

observed, while <u>d</u> presents high hourly variations (Figure 3). In order to explore the relevant

time scales to interpret isotopic data in terms of synoptic and mesoscale meteorology versus

local influences, we first analyse the relations of our data to daily climatic variables and air
mass origins. Then, we focus on average diurnal variations to identify the local influences.

200 mass origins. Then, we rocus on average diurnal variations <u>to identify</u> the local influence 261

262 4.1 Correlations between isotope data and local climatic parameters

263 Quite good correlations are found between daily values of δ_v and local climatic parameters 264 (Table 4), the best fit being with the mixing ratio q, (R²=0.72 and 0.62 for δ^{18} O and δ D

265 respectively). Such a correlation could result from the case of simple Rayleigh rainout 266 processes, where condensation phases progressively remove water from the atmosphere and deplete the remaining atmospheric vapour in heavy isotopes (Dansgaard, 1964; Lee et al., 267 268 2006; Wen et al., 2010). The progressive rainout follows a temperature decrease, and should also result in a correlation between δ_v and T, and subsequently between rainfall isotope 269 270 content ($\delta_{\rm p}$) and T, which has led to the establishment of the isotopic thermometer (Dansgaard, 1964; Jouzel et al., 1997). Our data show a relation between δ_v and T (Table 4, 271 Figure 3) close to the isotopic thermometer: $\Delta \delta^{18} O / \Delta T = 0.53\%$. °C⁻¹ (Jouzel et al., 1997), but 272 the correlation is relatively poor ($R^2=0.30$), indicating more complex processes, as was 273 274 observed during a long-term German survey in which δ_v -T correlation was degraded during 275 summer because of the admixture of vapour originating from plant transpiration (Jacob and 276 Sonntag, 1991). Since the correlation between δ_v and q is much stronger than the δ_v -T 277 correlation, it indicates a mixing between air masses characterized by different yapour 278 concentrations as could result from different marine origins, and/or from the addition of 279 continental vapour into the atmosphere. 280 With respect to deuterium excess, we found that q is also the best predictor of d variations at a 281 daily time-step ($R^2=0.54$, Table 4). In addition, we observed a correlation between d and RH_a 282

 $(R^2=0.51)$, consistent with Welp et al. (2012), but the correlation becomes very low $(R^2=0.19)$ 283 when using relative humidity at surface temperature (RH_s). The significance of deuterium 284 285 excess in terms of a proxy for the conditions at the vapour sources comes from the fact that it 286 is determined by the kinetic isotopic fractionation that occurs during evaporation. The kinetic 287 fractionation mainly depends on relative humidity at the water surface, which represents the 288 vapour concentration gradient between the liquid-vapour interface and free air (Craig and 289 Gordon, 1965; Gonfiantini, 1986; Pfahl et Wernli, 2008; Uemura et al., 2008), Relative 290 humidity is not conservative during air mass transport, as temperature changes modify the 291 saturated vapour pressure, and the value measured at the meteorological station has to be 292 reported at surface temperature.

Starting from a value around <u>d</u>=0‰ in ocean water, the kinetic fractionation associated to <u>the</u>
initial seawater evaporation produces an increase in <u>d</u> in oceanic <u>vapour</u> inversely related to
humidity conditions (Merlivat and Jouzel, 1979; Armengaud et al., 1998; Pfahl et Wernli
2008; Uemura et al 2008; Jouzel et al., 2013; Steen-Larsen et al., 2013). During the air mass
trajectory over land, <u>d</u> may be further increased by the addition of <u>vapour</u> of continental origin

Supprimé: vapor

Supprimé: vapor	
Supprimé: evano	

Supprimé: vapor

Supprimé: vapor

Supprimé: d_v

Supprimé: d_v

1	Supprimé: vapor
	Supprimé: , and more precisely by its variable
Ĉ	Supprimé: component
	Supprimé: , which
	Supprimé: . However, relative humidity is only relevant for characterizing evaporation conditions if reported at surface temperature. In this case it represents the vapor concentration gradient between water and air, which controls the kinetic fractionation Mis en forme: Couleur de police : Automatique
>	Mis en forme: Couleur de police : Automatique
>	Supprimé: d _v
>	Supprimé: d _v
>	Supprimé: vapor
	Supprimé: d _v
>	Supprimé: vapor

298	(Gat and Matsui, 1991, Gat et al., 1994; Angert et al., 2008; Lai and Ehleringer, 2011; Welp
299	et al., 2012). This "secondary" vapour is also expected to carry a <u>d</u> value inversely related to
300	humidity conditions at the vapour source (Aemisseger et al., 2014). However, the lack of
301	correlation between \underline{d} and RH _s in our data, whilst the \underline{d} -q correlation is stronger, suggests, as
302	was the case for the δ_y -q correlation, that mixing processes between air masses characterized
303	by different vapour origins and concentrations have weakened the d-RHs relation,
304	Since it is hardly modified by equilibrium condensation, d can be considered as a
305	conservative tracer of vapour sources during mixing processes. Nevertheless, the conservative
306	behaviour of d during rainout is perturbed by the non-linearity in the definition of deuterium
307	excess: the delta-notation approximation induces a small shift in d when there is a large
308	decrease in δ^{18} O and δ D (Gat et al., 1996; Angert et al., 2008; Welp et al., 2012). In the
309	observed range of $\delta^{18}O$ (from -11 to -18‰), we have estimated this effect to induce a 2.5‰
310	increase in <u>d</u> , while the substantial variations in <u>d</u> observed in our daily data are significantly
311	higher (from 15 to 26‰), allowing the use of <u>d</u> as a tracer of different <u>vapour</u> pools.

312

313 4.2 Regional isotopic signatures

314 In order to examine the link between the isotopic characteristics of <u>vapour</u> and the air mass origin, we analyse the data classified according to the three main backward trajectories 315 schematically represented in Fig. 1 (see section 3). Corresponding hourly data are scattered in 316 the δ^{18} O- δ D plot distinctly above the local meteoric water line (LMWL, Figure 4), and show 317 318 isotopically depleted compositions for air masses coming from the North Atlantic, while air 319 masses coming from the Mediterranean Sea display isotopically enriched yapour (Table 5, 320 Figure 4). For air masses coming from Bay of Biscay, hourly data encompass the entire 321 isotopic range. Local climatic data associated with the three meteorological situations reflect 322 synoptic weather conditions related to air mass origins. Air masses coming from the North 323 Atlantic are associated with strong, cold and dry winds, while those from the Mediterranean 324 are associated on the contrary with light, warm and wet winds (Table 5). The Bay of Biscay is 325 an intermediate situation. It thus appears that the greater the distance over land (Figure 1), the 326 more depleted δ_v . The northern trajectory corresponds to a "Mistral" situation: a typical strong 327 north-northwest wind that affects the north of the occidental Mediterranean basin 130 days a 328 year on average. The air mass is gradually dried out by rainout processes over land and 329 accelerated in the Rhône River Valley and acquires a depleted isotopic signature. On the

Supprimé:	vapor
Supprimé:	d _v
Supprimé:	vapor
Supprimé:	d _v
Supprimé:	d _v
Supprimé:	vapor
Supprimé:	d _v
Supprimé:	and
Supprimé: correlation	, as was the case for the $\delta_{v}\mbox{-}q$
Supprimé:	d _v
Supprimé:	vapor
Supprimé:	d _v
Supprimé:	d _v

Supprimé: d _v	
Supprimé: d _v	
Supprimé: d _v	
Supprimé: vapor	

Supprimé:	vapor
Supprimé: origin	trajectories since its oceanic
Supprimé:	were
Supprimé:	, on a daily basis, following
Supprimé:	regional features
Supprimá	Vapor
Supprime.	vapoi
Supprimé	the

Suppi	imé: of air masses
Suppi	imé: ,
Suppi	imé: and strong
Suppi	imé:
Suppi	imé: ,
Suppi	imé: and light
Suppi	'imé: is
Suppi	imé: cold, dry and

- 330 contrary, an air mass travelling over the Mediterranean Sea with the slight thermal wind or
- 331 sea breeze coming from the South is moistened and acquires and maintains an enriched
- 332 isotopic signature.
- 333 With respect to <u>d</u>, North Atlantic air masses bring higher values (23.2‰) than Mediterranean 334 air masses (18.6‰), but the main feature, which appears on the δ^{18} O- δ D plot (Figure 4), is the
- distinct separation between nocturnal and diurnal hourly data, with the latter plotting higher
- above the meteoric lines. This feature is observed for each of the three air mass origins.
- 337 Within these three classes of data, strong linear relationships are observed (Figure 4), with
 slopes lower than eight, a value attributed to thermodynamic equilibrium, as it approximately
 represents the average ratio between D and ¹⁸O liquid-vapour equilibrium fractionation. Such
 low slopes have also been observed in atmospheric vapour from Hawaii (7.02 (Bailey et al.,
 2013)), Greenland (between 6.47 and 7.44 (Steen-Larsen et al., 2013)), Western Siberia
 (between 5.6 and 7.7 (Bastrikov et al., 2014)), and in North America (7.5 (Berkelhammer et
 al., 2013)). The previously described shift in d during Rayleigh-type rainout, due to the non-
- 344 linearity in the deuterium excess definition, is not sufficient <u>to explain</u> these low slopes, and
- 345 non-equilibrium processes such as evaporation are also probably involved (Gibson et al.,
- 346 347

2008).

348 4.3 Analysis of average daily cycles

349 In order to observe the diurnal variations suggested by the night-day separation, average daily 350 cycles of isotopic and climatic data are plotted for the three air mass origins (Figure 5). A 351 well-pronounced cyclicity appears for d in each meteorological condition. For the Bay of 352 Biscay origin, the average d cycle is very similar to the North Atlantic case, with larger 353 standard deviations, reflecting a more variable climatic situation. For Mediterranean 354 conditions, the d cycle is higher in amplitude than for North Atlantic conditions, and lower in 355 absolute values, especially during the night. The high standard deviations observed during the last hours of the day correspond to calibration periods for which there are fewer data, but may 356 also be due to variations in the timing of the PBL evening transition. The increase in d during 357 the morning is mainly associated with a δD increase, while $\delta^{18}O$ variations are smoother. 358 Amplitudes of daily isotopic variations are higher for Mediterranean conditions (9.7%, 359 16.2‰ and 1.3 ‰ for d, δD and $\delta^{18}O$ respectively) than for North Atlantic ones (7.0‰, 360 13.1‰ and 1.1‰ for \underline{d} , δD and $\delta^{18}O$ respectively). 361

Supprimé: d _v	
Supprimé: +	
Supprimé: +	

Supprimé: For	
Supprimé: fits	
Supprimé: evidenced	
Supprimé: vapor	
Supprimé: vapor	

Supprimé: d _v	
Supprimé: for	
Supprimé: ing	

Supprimé: d _v	
Supprimé: s	
Supprimé: d _v	
Supprimé: conditions	
Supprimé: d.	

Supprimé: 24-hour average values

Supprimé: d _v

Supprimé: d _v	
Supprimé: d _v	

362 From a climatic point of view, we observe high diurnal variations in RH_a, mainly driven by

the large amplitude of air temperature variations between night and day (Figure 5), As

364 discussed above, the significance of relative humidity conditions in terms of evaporation

365 conditions – and deuterium excess control – is only relevant at surface temperature. The

366 variations are smoother for RH_s , and it more or less follows the absolute amount of water

- 367 (Figure 5). Under Mediterranean conditions, a distinct increase of q occurs in the morning,
- 368 indicating a net addition of <u>vapour</u> in the atmosphere. Under North Atlantic conditions, the q

369 increase is lower, but still detectable.

370 The daily cyclicity of the planetary boundary layer height (PBLH) is specifically related to the 371 different atmospheric conditions. The PBLH attains around 1100m on average during the 372 afternoon under North Atlantic and Bay of Biscay conditions, with a significant standard 373 deviation. Under Mediterranean conditions, the PBLH is less variable and remains at almost 374 700m. Nocturnal values are also very low -less than 100m- in Mediterranean conditions, 375 compared to 400-500m in the other weather situations (Figure 5). Low PBLH in 376 Mediterranean conditions corresponds to weak turbulence and air stability resulting from light 377 winds, while Northerly advection transports a relatively cold air mass over a warmer surface,

- 378 leading to a weaker stratification.
- 379

380 **Daytime processes: contribution of local evaporation**

381	The diurnal increase in \underline{d} is a widely observed feature, which reflects the diurnal variation of
382	the water and air mass balances of the planetary boundary layer (Lai and Ehleringer, 2011).
383	This increase can be caused by the entrainment of free atmosphere into the boundary layer
384	(Zhang et al., 2011; Welp et al., 2012; Berkelhammer et al., 2013), but also by the addition of
385	locally evaporated vapour, The direction of vapour concentration changes associated with
386	these <u>d</u> variations can help to identify which of these two processes dominates the PBL water
387	mass budget. Entrainment brings a dryer air into the PBL, and thus causes a <u>daytime</u> decrease
388	in <u>vapour</u> concentration, while an increase in mixing ratio <u>indicates</u> the addition of an
389	evaporation flux. Note that the transpiration component of evapotranspiration is not expected
390	to carry high d, as it has the same isotopic composition as the soil water at steady state (Yakir
391	and Wang, 1996; Williams et al., 2004). In addition, the free atmospheric air is characterized
392	by a isotopically lighter vapour (He and Smith, 1999; Bailey et al., 2013; Berkelhammer, et al
393	2013), and the dominance of entrainment during <u>daytime</u> is generally associated with a δ_v

Supprimé: (not shown)

Supprimé: vapor

Supprimé:

Supprimé:	Day-time
Supprimé:	d _v
Supprimé: attributed to	In many studies, it has been
Supprimé:	Lai and Ehleringer, 2011;
Supprimé: to	. However, it could also be due
Supprimé: (2012)	, as was observed by Welp et al.
Supprimé:	vapor
Supprimé:	d _v
Mis en form	ne: Indice
Supprimé:	day-time
Supprimé:	vapor
Supprimé:	points to
Supprimé:	d _v
Supprimé:	et
Supprimé:	vapor
Supprimé:	day-time
Supprimé:	day-time
Supprimé:	

394	depletion (Lai et al. 2006: Lai and Ehleringer, 2011: Tremov et al. 2012: Bailey et al. 2013:	Supprimé: CT.
205	Derteillemmen et el 2012). Welte et el (2012) entrement de merement le stierne en d	Supprimé: ,
395	Berkeinammer, et al 2013). Welp et al. (2012), compared six measurement locations and	
396	found that both local evapotranspiration and entrainment were involved: in some of their sites,	Comparing to 1
397	the \underline{d} daily increase was associated with a $\delta^{18}O$ decrease during the early morning due to	Supprime: d _v
398	entrainment of free atmosphere into the boundary layer during convective mixing, while the	
300	subsequent slight δ^{18} increase came from evanotranspiration. Our data display a	Supprimé: daytime
	subsequent single 0.00 increase canne from evaportation out data display $\frac{1}{4}$	Supprime: s
400	simultaneous increase in q, δ^{10} O and δD (Figure 5), and thus indicates that the addition of	Supprime: Vapor
401	surface <u>vapour</u> is the dominant process governing the <u>d</u> cyclicity during the day.	Mis en forme: Indice
402		Mis en forme: Indice
		Supprimé: disappearance
403	Nocturnal processes: dew formation	Supprimé: . T
404	In each meteorological situation, d displays an abrupt decrease at around 20:00 UTC, which	Supprimé: re is thus no further
405	corresponds to the timing of supper. Afterwards, during the 20:00-6:00 LITC period, d remains	Supprime: vapor
405	corresponds to the thining of subset. After wards, during the 20.00-0.00 of the period, difermating	Supprime: we can mus interpret t
406	low, while $\delta_{\underline{y}}$ follows a gradual depletion associated with a q decrease (Figure 5). This	Supprimé: ing
407	corresponds to the effect of a progressive Rayleigh-condensation process, and indicates the	Supprimé: an
408	formation of dew induced by the nocturnal cooling of soil and/or leaves surfaces, as was	Supprimé: signal
409	observed by Berkelhammer et al. (2013).	Supprimé: day-time
410	A small nocturnal evaporation of the lagoon water could nevertheless occur since the water	Supprime: The tendencies identified at daily time step which are interpreted in terms of regional signature that is to say depleted
411	surface temperature remains high and maintains RH ₈ below saturation (Figure 5), but it is	(enriched) δ_v and higher (smaller) d_v under North Atlantic (Mediterranean) conditions, are
412	expected to remain low compared to daytime fluxes. During the night, the PBL subsidence	recovered in night-time values (Table 5, Figure 6). However, the isotopic composition
413	corresponds to the <u>reduction</u> of both the surface heat fluxes and entrainment, and the addition	is not constant and follows a gradual depletion during the 20b-6h UTC period together with a
414	of water <u>vapour</u> to the atmosphere, if any, remains low. The large-scale motion becomes	decrease in water concentration and a stable d_v
415	dominant and, without changing the total PBL mass, redistributes it horizontally (Medeiros et	condensation process, as was observed by Berkelhammer et al. (2013). The averaged
416	al., 2005). The nocturnal isotopic values thus represent, the average composition of the PBL,	composition of the planetary boundary layer is
417	onto which are superimposed <u>daytime</u> fluxes. <u>More precisely</u> , since dew formation is a local	Supprimé: h
418	process, the value measured just after the sunset (20:00, UTC), when the PBL collapses, is	Supprimé: vanishes and produces a vertical mixing of the atmosphere, and before the
419	probably the most representative composition of the average PBL, with the greater proportion	influence of dew formation
420	of regional water vapour. The high d values observed during the night (on average 15.1	Supprimé: d _v
421	10.5% under Mediterrangen conditions and 20.0 10.7% under North Atlantic conditions)	Supprimé: remains high
421	± 0.5700 under international conditions and 20.9 ± 0.7700 under North Atlantic conditions),	Supprime: and suggest that
422	thus result from the remaining imprint of local evaporation, combined with the signature of	affects the average isotopic signal
423	the regional atmosphere,	Supprimé:
424		Mis en forme: Justifié, Espace Après : 3 pt, Interligne : 1,5 ligne, Motif :

Mis en forme: Justifié, Espace Après : 3 pt, Interligne : 1,5 ligne, Motif : Transparente (Blanc), Tabulations : 7.25 cm, Left

425 **4.4 Local isotopic signatures**

426	The concomitant increase of q and <u>d</u> during <u>daytime</u> in our average <u>diurnal cycles</u> indicates
427	that the <u>d</u> cyclicity is mainly driven by <u>the addition of surface vapour fluxes</u> . As stated above,
428	the location of the experimental site close to the main lagoon, and the availability of large
429	open water areas in the surroundings point to a dominant contribution of evaporation over
430	transpiration. In order to calculate the isotopic composition of the locally evaporated vapour
431	(δ_E) , we use a two-component mixing model based on the linear correlation between 1/q and
432	δ_v , derived from the "Keeling plot" method. The <u>ability</u> of this simple model to describe our
433	data and the possible contribution of regional advection is then discussed. The original
434	Keeling approach (Keeling, 1958) was initially proposed to describe the addition of CO ₂ into
435	the atmosphere, and then further used to determine the isotopic composition of
436	evapotranspired vapour flux (Yakir and Sternberg, 2000; Yepez et al., 2003; Williams et al.,
437	2004; Wang et al., 2010; Zhang et al., 2010; Noone et al., 2011; Lee et al., 2012; Griffis et al.,
438	2013; Noone et al., 2013). Assuming a background represented by an initial air quantity with
439	a mixing ratio q_{BG} (mmol/mol). and taking n_A (mol) the corresponding dry air amount, the
440	addition of water vapour nr, (mmol) leads to the following mixing equation;
441	$q = q_{BG} + \frac{n_E}{n_A} \tag{3}$

442 where q is the mixing ratio (mmol/mol) of the resulting humid air (note that
$$n_E/n_A$$
 does not
443 represent a mixing ratio despite same units). Attributing an isotopic composition to each of
444 these vapour pools, δ_{BG} for the background vapour and δ_E for the added vapour, the
445 corresponding isotopic mass balance is:

446
$$\delta_{v} = (\delta_{BG} - \delta_{E}) \cdot \frac{q_{BG}}{q} + \delta_{E}$$

447 where δ_v is the <u>vapour</u> composition of the resulting atmosphere. In a data set <u>tracing</u> the 448 progressive addition of <u>pure vapour</u> in a closed system, and assuming an isotopically stable 449 <u>background</u>, the δ_v versus 1/q relationship displays a linear <u>trend</u>. The composition of the 450 added <u>vapour</u> δ_E is therefore deduced from the intercept (for $q \rightarrow \infty$). 451 However, when the increase in water vapour concentration results from the mixing with a 452 humid air mass, equation (3) becomes: 453 $q = xq_{BG} + (1-x)q_E$ (5)

(4)

	Supprimé: d _v
	Supprimé: day-time
e,	Supprimé: data
re 🚫	Supprimé: d _v
<u> </u>	Supprimé: local vapor
<u>er</u>	Supprimé: important
<u>n</u>	Supprimé: ,
b	Supprimé: upon
iu)	Supprimé: local vapor
lr	Supprimé: validity
al	Supprimé: will
	Supprimé: be
10	Supprimé:
of	

Supprimé: vapor

Supprimé:	isotopically stable background,
Supprimé:	n
Supprimé:	initial
Supprimé:	0
Supprimé:	
Supprimé:	and a vapor composition δ_0
Supprimé:	a
Supprimé:	vapor
Supprimé:	amount
Mis en form	e: Police :Non Italique
Supprimé:	W
Supprimé:	1
Supprimé:	with a composition δ_1 ,
Supprimé:	S
Supprimé:	atmosphere
Supprimé:	vapor
Supprimé:	vapor
Supprimé:	characterising
Supprimé:	vapor
Mis en form	e: Police :Non Italique
Supprimé:	shape
Supprimé:	, and t
Supprimé:	vapor
Supprimé:	1
Supprimé:	in an open atmosphere
Supprimé:	re
Supprimé:	vapor
Supprimé:	is added through the

454	Where x is the fraction of the initial background air, and $q_{\rm E}$ is the mixing ratio of the added air	\square
455	mass (mmol/mol). Thus, the corresponding expression for δ_{u} is:	

Supprimé: 1, and t isotopic mass		
balance	([2]

$\delta_v = (\delta_{BG} - \delta_E) \cdot \frac{xq_{BG}}{x} + \delta_E$ 456

	$q \qquad \qquad$
457	The composition of the added vapour is then deduced from the δ_v versus 1/q plot for x=0, i.e.
458	for $g=q_{E_{\bullet}}$ and the mixing ratio of the added air (q_{E}) is a prerequisite for applying this two-
459	component mixing model, For a humid air mass coming from open water evaporation, a
460	mixing ratio corresponding to saturation conditions at the liquid-vapour interface $(q_E = q_s)$
461	can be considered as representing the limit condition (Craig and Gordon, 1965; Noone et al,
462	2011: <u>Noone</u> , 2012).
463	Our discussion will focus on the two most contrasted meteorological situations, i.e.
464	Mediterranean and North Atlantic air mass origins. Strong correlations are found between
465	average values of δ_v and 1/q for the period of q increase, i.e <u>05:00-13:00</u> UTC for North
466	Atlantic situations and $05:00-10:00$ UTC for Mediterranean situations (R ² values are between /
467	0.85 and 0.96, see Figure 6). The local end-members are calculated for the average value of
468	saturation mixing ratio at the water surface temperature (q_s) , during the daily maximum air
469	water concentrations (at 13:00 UTC or 10:00 UTC). Uncertainties are determined as resulting
470	from error propagation of the linear model in the whole range of q_s standard deviation. The
471	resulting compositions of local end-members (δ_E) are: $\delta^{18}O=-12.5\%$ (-11.0% to -13.9%);
472	δD =-48‰ (- <u>30</u> ‰ to - <u>64</u> ‰) for North Atlantic conditions, $\delta^{18}O$ =-11.8‰ (-11.0‰ to -12.5‰);
473	δD=-58‰ (-46‰ to -68‰) for Mediterranean conditions (Figure 7). High deuterium excess
474	values characterize the surface vapour for North Atlantic ($d=52 \pm 29\%$) and Mediterranean
475	conditions (37 \pm 17‰), which is consistent with previous estimates from the Craig and
476	Gordon model (Craig and Gordon, 1965; Gat et al, 1994). Such high d is a characteristic of
477	vapour coming from continental evaporation and allowed to detect the contribution of
478	continental vapour to regional precipitation (Gat et Matsui, 1991; Gat et al, 1994; Vallet-
479	Coulomb et al., 2008), In our case, these high <u>d</u> values confirm that evaporation is largely
480	dominant <u>over</u> transpiration, and <u>that</u> the higher <u>d</u> under North Atlantic air mass conditions is
481	consistent with lower RH _s , compared to Mediterranean conditions (Figure 5, Table 5).
482	Going on with the two end-member mixing assumption, this δ_E composition could be used to
483	interpret the amplitude of diurnal $\delta_{v_{\rm t}}$ variations in terms of the daily addition of locally
484	evaporated vapour to the nocturnal background. The lower amplitude of diurnal variations

Supprimé: In a δ_v versus 1/q plot, t.. [3]

Supprimé: by extrapolating the linear trend until $1/q_1 \dots$

The cation of thus requires the knowledge
of the vapor content of the added airIf it
eswe can use the which s,
. Indeed, as described by the diffusion model
of Craig & Gordon (1965), evaporation results
from the diffusion of vapor between a
saturation concentration at the water-air
interface and open air. [4]
Mis en forme: Police :Italique
Supprimé: We focus o5hhh10h
h10h2.32.94454These results
show the hingvapor \dots (d _v = 52‰ ±6‰
37‰ ±5‰ for Such high values arethe
isotopic composition of open water
evaporationd The high dv of evaporated
moisture have made it possible its, or
to partition the composition of a vapor flux
• • • • • • • • • • • • • • • • • • • •
into evaporation and transpiration (Williams et

Supprimé: As a first attempt, we use ... for from a simple isotopic mass balance...: $\frac{n_E}{n_v} = \frac{\delta_v - \delta_{BG}}{\delta_E - \delta_{BG}}$. (7)

 $H_{v} = C_E = C_{BG}$ (7) Where W_E/W represents the mass (or molar) ratio of local vapor to total atmospheric moisture, $\delta_{v(min)}$ corresponds to the vapor background and $\delta_{v(max)}$ is the maximum contribution of local vapor. We find 21% of local vapor in the ambient moisture under North Atlantic conditions, consistently when weing δ^{18} O and δ D compositions and 43 to using $\delta^{18}O$ and δD compositions, and 43 to 48% under Mediterranean conditions, when using δD and $\delta^{18}O$ mass balances, respectively. Т

16

... [6]

485	observed under North Atlantic condition (Figure 7) would then indicate a lower proportion of
486	locally evaporated vapour in ambient moisture. However, this is not consistent with the
487	stronger average potential evapotranspiration rates under North Atlantic conditions, compared
488	to the Mediterranean situation: 5.8mm.day ⁻¹ versus 3.8mm.day ⁻¹ (Table 5). This apparent
489	contradiction indicates that the isotopic imprint of local evaporation is diluted by advection,
490	with a greater extend under Northern conditions than under Mediterranean conditions. This is
491	fully consistent with the high wind speed characterizing North Atlantic conditions: an average
492	value of 2.0 m.s ⁻¹ compared to 0.7 m.s ⁻¹ for Mediterranean conditions, Local vapour is thus
493	flushed by advection of dry northward air masses, and since this advected vapour may carry a
494	different isotopic signature than the nocturnal background, a simple two-component mixing
495	model is not sufficient to describe the PBL water balance.
496	We have evaluated the impact of regional advection on the determination of $\delta_{\underline{F}_{a}}$ by testing
497	different simulations of a 3-component mixing process. Starting from the initial background
498	$(\delta_{BG} = average \delta_{v}$ value at 5:00 UTC), we simulate the progressive addition of both regional
499	advected vapour (δ_R) and locally evaporated vapour (δ_E), and we compare the resulting
500	composition with observed δ_v during the q-increase period of the day. For each simulation, we
501	choose an hypothetical value of $\delta_{\underline{R}}$, and we adjust $\delta_{\underline{E}}$ in order to match the observed data on
502	the $\delta_{\underline{v}}$ versus 1/q relationship, using a simple trial-and-error procedure, successively for $\delta^{18}O$
503	and δD . We have tested a range of $\delta_{\underline{R}}$ values compatible with the shift observed during sunset,
504	on the δ^{18} O- δ D plot (Figure 7). As discussed previously, the $\delta_{\underline{v}}$ value measured at 20:00 UTC
505	is expected to carry the lowest proportion of locally evaporated vapour. We thus postulate that
506	the shift in d observed at 20:00 ("B" arrow in Figure 7) is "dragged" by the composition of a
507	more regional vapour. We have then explored a domain of $\delta_{\underline{R}}$ values limited by: 1) the 20:00
508	UTC value as an upper limit for δD; 2) the 20:00 UTC (05:00 UTC) value as a lower limit for
509	δ^{18} O under Mediterranean (North Atlantic) conditions and 3) the LMWL. For each δ_{R} value,
510	different mixing ratio were tested (q_R) , chosen to remain compatible with the midday-20:00
511	<u>UTC</u> trend observed on the $1/q-\delta_v$ plot. We found that in all cases, the δ_E values remain in the
512	range of the error bars shown in Figure 7, with slightly lower δ^{18} O and higher d.
513	The processes involved in the diurnal isotopic behaviour of atmospheric vapour can be
514	summarized in the δ^{18} O- δ D plot, which is a good mean to understand the drivers of \underline{d}
515	variations (Figure 7). The two clusters of average <u>vapour</u> data are distributed along two linear
516	trends defined by the q-increase period of the day ("A" arrow in Figure 7), which also meet

Supprimé: thus

Supprimé: , but,

Supprimé: compared to the Mediterranean situation, North Atlantic conditions correspond to

Mis en forme: Police : Non Italique

Supprimé: consistently with	
Supprimé: that prevails un	
Supprimé: der	
Supprimé: (
Supprimé:)	
Supprimé: The l	
Supprimé: vapor	
Supprimé: vapor	

Supprimé: We have performed sensitivity analysis to evaluate the impact of a third component on the use of the $\delta_{v}\text{-}1/q$ relationship for determining $\boldsymbol{\delta}_{E}\text{,}$ considering an advected air mass dryer than local atmosphere (i.e. on the right hand of observed data in Figure 6). The occurrence of regional advection remains compatible with a linear $\delta_{v^{\text{-}}}$ 1/q trend, but slightly influences the observed slope, and thus, the estimated humid endmember composition: if the advected vapor composition is more enriched than the initial background, it leads to overestimate the δ_{E} value, and vice-versa. The composition of the advected vapor is isotopically heavier than the 5:00 UTC value, since the nocturnal dew formation induces a depletion of atmospheric vapor. The use of a two-component mixing assumption would therefore lead to overestimate δ_E , and the actual average composition of local vapor is expected to plot between this δ_E estimate and daily maximum measured δ_v (Figure 7).

Supprimé: vapor

Supprimé: d_v

Supprimé: vapor

517	the calculated value of δ_E . These trends result from the addition of local <u>ly evaporated vapour</u>
518	into the ambient air, but, as discussed above, are also influenced by the input of (and flushing
519	by) regional advection. The <u>daytime vapour</u> composition then oscillates, but stays around the
520	maximum δ_v value, until the abrupt shift that occurs at 20:00 UTC, during sunset, consistently
521	for both meteorological situations ("B" arrow in Figure 7). The d decrease observed when the
522	PBL collapses, during sunset, corresponds to the weakening of surface evaporation, and to an
523	increasing proportion of a more regional atmosphere. The night-time δ_v evolves closer to the
524	meteoric water line, compared to <u>daytime</u> compositions. The progressive condensation
525	occuring between 20:00 and $\underline{0}5:00$ UTC maintains the δ_v along a regression line roughly
526	parallel to the LMWL ("C" arrow in Figure 7).
527	The stronger advection rate which prevails under North_Atlantic conditions, and which
528	smoothed the diurnal amplitude of δ_v variation, suggests that the higher d signature of water
529	vapour (Table 5) results from the combined influences of higher <u>d</u> in the locally evaporated
530	vapour and in the regional vapour, consistently with the longer continental trajectory. Amore
531	precise determination of the regional vapour isotopic composition would rely on the
532	guantification of advection fluxes and on a full PBL mass balance estimate.
533	
534	5 Conclusion
535	Our results show, that both local and regional isotopic signatures are recorded in the ground
536	level atmospheric vapour composition, and that a sub-daily analysis is necessary to decipher
537	these influences. After having classified the data according to air mass origins and
538	trajectories, we found strong diurnal variations of d, with lower amplitude variations under
539	the influence of Northern air masses than under Mediterranean influences. The higher average
540	d observed under Northern conditions (23.2‰ compared to 18.6‰ for the Mediterranean
541	situations) is mainly due to higher nocturnal values, while the daytime maxima are similar.
542	However, the drivers of these diurnal variations have to be understood to interpret the isotopic
543	signal with respect to its relevant spatiotemporal scales, and it is essential to understand and

544 <u>compare the behaviour of both δ^{18} O and δ D (referred to as δ_v) to understand d.</u>

545 <u>A diurnal increase in d can be caused by entrainment of free atmospheric air, by surface</u>
546 evaporation, or by a combination of both processes. Unlike evaporation, the contribution of
547 free atmospheric air would induce a decrease in absolute vapour concentration. Therefore, our

548 average daily cycles clearly indicate that the diurnal increase in d is essentially driven by local

/	Supprimé: vapor
/	Supprimé: of
	Supprimé: day-time
_	Supprimé: vapor
/	Supprimé: d _v
/	Supprimé: vanishes
	Supprimé: vertical mixing of the PBL
_	Supprimé: as previously stated
/	Supprimé: , and is therefore driven by the mixing with
_	Supprimé: vapor
\langle	Supprimé:
$\langle \rangle$	Supprimé: evolution of
$\langle \rangle$	Supprimé: is thus slightly shifted
	Supprimé: day-time
$\langle \rangle$	Supprimé: that
	Supprimé: s
	Supprimé: -
	Supprimé: average d _v
$\overline{)}$	Supprimé: vapor
	Supprimé: d _v
\langle	Supprimé: δ_E
$\langle \rangle$	Supprimé: . Such high d _v for North-Atlantic
$\langle \rangle$	air masses can be explained by
$\langle \rangle$	Supprimé: A more detailed mass bal [[7]
$\langle \rangle$	Supprimé: determine
$\langle \rangle$	Supprimé: composition of
	Supprimé:
/	Supprimé:
/	Supprimé: s
	Supprimé: ed
/	Supprime: daily averages of atmosph [8]
	Supprime: for
/	Supprime: ing
1	Supprime: Indeed, a day-time
//	
//	Supprime: either
//	Supprime: either
/	
/	Supprime: naving different spatial [[9]
/	
	Supprime. nave
/	Supprime. u
_	Supprime, vapor
	Supprime, and our twenty-rout not [10]
	Supprime: ov cycles are

549	evaporation. Based on the robust alignment of average <u>hourly</u> data in a δ_v versus $1/q$ plot for
550	the q-increase period of the day, we applied a two-component mixing model to estimate the
551	composition of locally evaporated vapour (δ_E). Then, since regional advection modulates the
552	amplitude of diurnal δ_v variations, we discussed the two-component mixing assumption and
553	evaluate the influence of a third component on the determination of δ_{E} . We show that it
554	remains low, because the composition of regional advection is expected to be close to the
555	nocturnal values, We found higher d for the locally evaporated vapour under North Atlantic
556	air mass conditions, which is consistent with lower humidity conditions, while the
557	corresponding δ^{18} O compositions are very similar between the two meteorological situations,
558	with a difference of about 0.7‰.
559	In contrast, there is an important difference in the $\delta^{18}O$ compositions between the two
560	meteorological situations when considering the nocturnal values. More specifically, it is
561	interesting to consider the ambient vapour composition measured at 20:00 UTC when the
562	PBL collapses, and before the progressive influence of dew formation during the night. This
563	20:00 UTC composition is the least influenced by locally evaporated vapour, and the most
564	representative of a regional signal. The difference in δ^{18} O between the two main
565	meteorological situations (upper than 3‰) reflects the influence of synoptic and mesoscale
566	weather conditions, related to air mass origin and trajectory. Strong, cold and dry winds
567	coming from the North bring an isotopically depleted vapuor. Conversely, light, warm and
568	wet winds coming from the South bring an isotopically enriched vapour. In addition, the
569	strong, advection rate that prevails under North-Atlantic conditions suggests that, in this
570	situation, the high average d of water vapour at 20:00 UTC also reflects the signature of
571	regional vapo <u>u</u> r.
572	In general, our data showed that the mixing ratio is a better predictor of deuterium excess
573	variations than relative humidity, at both daily and sub-daily time scales, since mixing

variations than relative humidity, at both daily and sub-daily time scales, <u>since_mixing</u> processes between different <u>vapour</u> sources weakened the relevance of relative humidity as an indicator of evaporation conditions. At the daily time step, <u>the mixing</u> ratio is a proxy <u>for</u> the air mass origin, since there is a huge contrast between water content of Northern and Mediterranean air masses. At the sub-daily time step, <u>a δ_{v} -q correlation</u>, and subsequently a <u>d</u>q correlation, <u>during the q-increase period of the day</u>, results from the addition of locally evaporated vapour. The general framework proposed in this study, for typical daily cycles of

Supprimé: -
Supprimé: s
Supprimé: for
Supprimé: estimating
Supprimé: evaporation
Supprimé: This two-component mixing
assumption does not account for the influence
of
(Supprimé: , which
Supprimé: . Sensitivity analysis showed that
the error associated with the use of a two-
component assumption leads to slightly
overestimate the δ_E values, especially under
North-Atlantic conditions
Supprimé: Nevertheless, w
Supprimé: d _v
Supprimé: composition
Supprimé:

Supprimé:	er
Supprimé:	er
Supprimé:	d _v
Supprimé:	vapor
Supprimé:	Overall
Supprimé:	because
Supprimé:	vapor
Supprimé:	have
Supprimé:	of

Supprimé:	the
Supprimé:	d _v
Supprimé:	observed
Supprimé:	ion
Supprimé:	We have proposed a depiction
Supprimé:	of

580	water vanour isotopic composition under different meteorological conditions, could be used in	Supprimé: vapor
580	water <u>sapour</u> isotopic composition under unterent meteorological conditions, could be used <u>in</u>	Supprimé: which
581	further quantitative analyses of vapour sources during specific days.	Supprimé: as a framework for
582		Supprimé: i
502		Supprimé: vapor
583	Acknowledgements	Supprimé: periods
584	This work was performed in the framework of Hélène Delattre's PhD. It was supported by	Supprimé:
585	CNRS-INSU (EC2CO-VISOTOP project, and contribution to the thesis grant), by "Region	
586	PACA_ (contribution to the thesis grant, and to the Picarro instrument), by the Fédération de	
587	Recherche ECCOREV (contribution to the Picarro instrument and Eau-Trace project). We	
588	thank the "Réserve Nationale de Camargue" warmly for having welcomed our experiments	Supprimé: also
589	and contributing to the sampling. We are grateful to the anonymous referees for their detailed	
590	and constructive comments, which have contributed to significantly improve this manuscript.	
591		

592 References

- 593 Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.:
- 594 Measuring variations of δ^{18} O and δ^{2} H in atmospheric water vapour using two commercial 595 laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491-
- **1**511, doi:10.5194/amt-5-1491-2012, 2012.
- 597 Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I. and Wernli, H.:
- 598 Deuterium excess as a proxy for continental moisture recycling and plant transpiration,
- 599 Atmos. Chem. Phys., 14, 4029–4054, doi:10.5194/acp-14-4029-2014, 2014.
- 600 Angert, A., Lee, J.-E. and Yakir, D.: Seasonal variations in the isotopic composition of near-
- 601 surface water vapour in the eastern Mediterranean, Tellus B, 60, 674-684,
- 602 doi:10.1111/j.1600-0889.2008.00357.x, 2008.
- Armengaud, A., Koster, R. D., Jouzel, J. and Ciais, P.: Deuterium excess in Greenland snow:
 Analysis with simple and complex models, J. Geophys. Res., 103, 8947–8953, 1998.
- 605 Bailey, A., Toohey, D. and Noone, D.: Characterizing moisture exchange between the
- Hawaiian convective boundary layer and free troposphere using stable isotopes in water, J.
 Geophys. Res. Atmos., 118, 8208–8221, doi:10.1002/jgrd.50639, 2013.
- Bastrikov, V., Steen-Larsen, H. C., Masson-Delmotte, V., Gribanov, K., Cattani, O., Jouzel, J.
 and Zakharov, V.: Continuous measurements of atmospheric water vapour isotopes in western
- 610 Siberia (Kourovka), Atmos. Meas. Tech., 7, 1763–1776, doi:10.5194/amt-7-1763-2014, 2014.
- 611 Berkelhammer, M., Hu, J., Bailey, A., Noone, D. C., Still, C. J., Barnard, H., Gochis, D.,
- 612 Hsiao, G. S., Rahn, T. and Turnipseed, A.: The nocturnal water cycle in an open-canopy
- 613 forest, J. Geophys. Res. Atmos., 118, 10,225–10,242, doi:10.1002/jgrd.50701, 2013.
- Boucher, O., Myhre, G. and Myhre, A.: Direct human influence of irrigation on atmospheric
 water vapour and climate, Clim. Dyn., 22, 597–603, doi:10.1007/s00382-004-0402-4, 2004.
- Brubaker, K. L., Entekhabi, D. and Eagleson, P. S.: Estimation of Continental Precipitation
 Recycling, J. Clim., 6, 1077–1089, 1993.
- 618 Brutsaert, W.: Indications of increasing land surface evaporation during the second half of the 619 20th century, Geophys. Res. Lett., 33, L20403, doi:10.1029/2006GL027532, 2006.
- 620 Celle, H., Daniel, M., Mudry, J. and Blavoux, B: Signal pluie et traçage par les isotopes
- 621 stables en Méditerranée occidentale. Exemple de la région avignonnaise (Sud-Est de la
- 622 France), C. R. Acad. Sci. Paris, Earth Planet. Sci., 331, 647–650, 2000.
- 623 Celle-Jeanton, H., Travi, Y. and Blavoux, B.: Isotopic typology of the precipitation in the
- Western Mediterranean region at three different time scales, Geophys. Res. Lett., 28, 1215– 1218, 2001.

- 626 Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine
- atmosphere, in Stable Isotopes in Oceanographic Studies and Paleotemperatures, edited by E.
 Tongiorgi, pp. 9–130, Spoleto, Italy., 1965.
- 101g101g1, pp. 9–150, Spoleto, Italy., 1905.
- 629 Dai, A., Qian, T., Trenberth, K. E. and Milliman, J. D.: Changes in Continental Freshwater
- 630 Discharge from 1948 to 2004, J. Clim., 22, 2773–2792, doi:10.1175/2008JCLI2592.1, 2009.
- 631 Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
- 632 Destouni, G., Asokan, S. M. and Jarsjö, J.: Inland hydro-climatic interaction: Effects of
- human water use on regional climate, Geophys. Res. Lett., 37, L184402,
- 634 doi:10.1029/2010GL044153, 2010.
- 635 Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling, Rev. Geophys., 34, 367–378, 1996.
- 636 Farlin, J., Lai, C.-T. and Yoshimura, K.: Influence of synoptic weather events on the isotopic
- 637 composition of atmospheric moisture in a coastal city of the western United States, Water
- 638 Resour. Res., 49, 3685–3696, doi:10.1002/wrcr.20305, 2013.
- Fu, G., Charles, S. P. and Yu, J.: A critical overview of pan evaporation trends over the last
 50 years, Clim. Change, 97, 193–214, doi:10.1007/s10584-009-9579-1, 2009.
- 641 Galewsky, J., Rella, C., Sharp, Z., Samuels, K. and Ward, D.: Surface measurements of upper
- tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile, Geophys.
- 643 Res. Lett., 38, L17803, doi:10.1029/2011GL048557, 2011.
- 644 Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet.
 645 Sci., 24, 225-262, 1996.
- Gat, J. R.: Atmospheric water balance the isotopic perspective, Hydrol. Process., 14,
 1357–1369, 2000.
- 648 Gat, J.R., Matsui, E.: Atmospheric water balance in the Amazon basin: an isotopic 649 evapotranspiration model. J. Geophys. Res., 96, D7, 13179-13188, 1991.
- Gat, J.R., Bowser, C.J., Kendall, C.: The contribution of evaporation from the Great Lakes to
 the continental atmsophere: estimate based on stable isotope data. Geophys. Res.Let., 21, 7,
 557-560, 1994.
- 653 Gat, J. R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulos, D. and Basturk, O.: The
- stable isotope composition of waters of the eastern Mediterranean Sea, J. Geophys. Res., 101,
 6441–6451, 1996.
- 656 Gibson, J. J., Birks, S. J., and Edwards, T. W. D. : Global prediction of δA and δ2H-δ18O
- evaporation slopes for lakes and soil water accounting for seasonality, Tellus, 16, 436-468,
 doi:10.1111/j.2153-3490.1964.tb00181.x, 2008.
- 659

Supprimé: RECIPITATION RECYCLING

- 660 Gonfiantini, R.: Environmental isotopes in lake studies, in: Handbook of Environmental
- 661 Isotope geochemistry, 2, Fritz, P. and Fontes, J. C. Editors., Elsevier, Amsterdam, 113-163, 662 1986.
- 663 Griffis, T. J.: Tracing the flow of carbon dioxide and water vapor between the biosphere and
- 664 atmosphere: A review of optical isotope techniques and their application, Agric. For.
- Meteorol., 174-175, 85-109, doi:10.1016/j.agrformet.2013.02.009, 2013. 665
- 666 Griffis, T. J., Lee, X., Baker, J. M., Billmark, K., Schultz, N., Erickson, M., Zhang, X.,
- 667 Fassbinder, J., Xiao, W. and Hu, N.: Oxygen isotope composition of evapotranspiration and its relation to C4 photosynthetic discrimination, J. Geophys. Res., 116, G01035, 668
- 669 doi:10.1029/2010JG001514, 2011.
- 670 Gupta, P., Noone, D., Galewsky, J., Sweeney, C. and Vaughn, B. H.: Demonstration of high-
- precision continuous measurements of water vapor isotopologues in laboratory and remote 671
- field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) 672 673 technology, Rapid Commun. Mass Spectrom., 23, 2534-2542, doi:10.1002/rcm.4100, 2009.
- 674 He, H. and Smith, R. B.: Stable isotope composition of water vapor in the atmospheric
- 675 boundary layer above the forests of New England, J. Geophys. Res., 104, 11,657-11,673, 1999. 676
- 677 IAEA: Reference Sheet for VSMOW2 and SLAP2 international measurement standards.
- Issued 2009-02-13, International Atomic Energy Agency, Vienna, 5 p., 678
- 679 http://curem.iaea.org/catalogue/SI/pdf/VSMOW2 SLAP2.pdf, 2009.
- 680 Iannone, R. Q., D. Romanini, O. Cattani, H. A. J. Meijer, and E. R. Th. Kerstel:, Water isotope ratio (d2H and d18O) measurements in atmospheric moisture using an optical 681 682 feedback cavity enhanced absorption laser spectrometer, J. Geophys. Res., 115, D10111, 683 doi:10.1029/2009JD012895, 2010.
- 684 Jacob, H. and Sonntag, C .: An 8-year record of the seasonal variation of 2H and 18O in 685 atmospheric water vapour and precipitation at Heidelberg, Germany, Tellus B, 43, 291-300, 686 1991.
- 687 Johnson, L. R., Sharp, Z. D., Galewsky, J., Strong, M., Van Pelt, A. D., Dong, F. and Noone,
- 688 D.: Hydrogen isotope correction for laser instrument measurement bias at low water vapor
- 689 concentration using conventional isotope analyses: application to measurements from Mauna
- 690 Loa Observatory, Hawaii., Rapid Commun. mass Spectrom., 25, 608-616,
- doi:10.1002/rcm.4894, 2011. 691
- Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S. 692
- J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., Stuiver, M. and White, J.: Validity 693
- 694 of the temperature reconstruction from water isotopes in ice cores, J. Geophys. Res., 102,
- 695 26,471-26,487, 1997.
- 696 Jouzel, J., Delaygue, G., Landais, A., Masson-Delmotte, V., Risi, C. and Vimeux, F.: Water
- 697 isotopes as tools to document oceanic sources of precipitation, Water Resour. Res., 49, 7469-
- 698 7486, doi:10.1002/2013WR013508, 2013.

- 599 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan,
- 700 G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D.,
- 701 Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson,
- 702 K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
- 703 Weber, U., Williams, C., Wood, E., Zaehle, S. and Zhang, K.: Recent decline in the global
- ⁷⁰⁴ land evapotranspiration trend due to limited moisture supply, Nature, 467, 951–954,
- 705 doi:10.1038/nature09396, 2010.
- Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in
 rural areas, Geochim. Cosmochim. Acta, 13, 322–334, 1958.
- Kerstel, E. and Gianfrani, L.: Advances in laser-based isotope ratio measurements: selected
 applications, Appl. Phys. B-Lasers O., 92, 439-449, 2008.
- 710 Kurita, N., Newman, B. D., Araguas-Araguas, L. J., Aggarwal, P.: Evaluation of continuous
- 711 water vapor δD and $\delta 180$ measurements by off-axis integrated cavity output spectroscopy,
- 712 Atmos. Meas. Tech., 5, 2069-2080, 2012.
- 713 Lai, C.-T., Ehleringer, J. R., Bond, B. J. and Paw U, K. T.: Contributions of evaporation,
- 714 isotopic non-steady state transpiration and atmospheric mixing on the $\delta 180$ of water vapour
- in Pacific Northwest coniferous forests, Plant, Cell Environ., 29, 77–94, 2006.
- Lai, C.-T. and Ehleringer, J. R.: Deuterium excess reveals diurnal sources of water vapor in
 forest air., Oecologia, 165, 213–223, doi:10.1007/s00442-010-1721-2, 2011.
- Lee, X., Smith, R. and Williams, J.: Water vapour 18O/16O isotope ratio in surface air in
 New England, USA, Tellus B, 58, 293–304, doi:10.1111/j.1600-0889.2006.00191.x, 2006.
- Lee, X., Huang, J. and Patton, E. G.: A Large-Eddy Simulation Study of Water Vapour and
 Carbon Dioxide Isotopes in the Atmospheric Boundary Layer, Boundary-Layer Meteorol.,
 145, 229–248, doi:10.1007/s10546-011-9631-3, 2012.
- Medeiros, B., Hall, A. and Stevens, B.: What Controls the Mean Depth of the PBL?, J. Clim.,
 18, 3157–3172, 2005.
- Merlivat, L. and Jouzel, J.: Global Climatic Interpretation of the Deuterium-Oxygen 18
 Relationship for Precipitation, J. Geophys. Res., 84, 5029–5033, 1979.
- Monteith, J. L.: Evaporation and environment, Symposia of the Society for Experimental
 Biology, 19, 205–224, 1965.
- 729 Noone, D., Galewsky, J., Sharp, Z. D., Worden, J., Barnes, J., Baer, D., Bailey, A., Brown, D.
- 730 P., Christensen, L., Crosson, E., Dong, F., Hurley, J. V., Johnson, L. R., Strong, M., Toohey,
- 731 D., Van Pelt, A. and Wright, J. S.: Properties of air mass mixing and humidity in the
- r32 subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa
- 733 Observatory, J. Geophys. Res., 116, D22113, doi:10.1029/2011JD015773, 2011.

Supprimé: Iannone, R. Q., D. Romanini, O. Cattani, H. A. J. Meijer, and E. R. Th. Kerstel:, Water isotope ratio (d2H and d18O) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer, J. Geophys. Res., 115, D10111, doi:10.1029/2009JD012895, 2010.

- Noone, D.: Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce
- 735 Atmospheric Moistening and Dehydration in the Tropical Midtroposphere, J. Clim., 25,
- 736 4476–4494, doi:10.1175/JCLI-D-11-00582.1, 2012.
- 737 Noone, D. C. Risi, A. Bailey, M. Berkelhammer, D.P. Brown, N. Buenning, S. Gregory, J.
- 738 Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe,
- 739 2013: Determining water sources in the boundary layer from tall tower profiles of water vapor
- and surface water isotope ratios after a snowstorm in Colorado. Atmos. Chem. Phys., 13,
- 741 1607-1623, doi:10.5194/acp-13-1607-2013, 2013.
- 742 Ohmura, A. and Wild, M.: Is the Hydrological Cycle Accelerating?, Science, 298, 1345–
 743 1346, doi:10.1126/science.1078972, 2002.
- Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes in water vapor in the
 eastern Mediterranean, J. Geophys. Res., 113, D20104, doi:10.1029/2008JD009839, 2008.
- 746 Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker,
- 747 K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D.,
- 748 Wennberg, P. O., Strong, K., Smale, D., Mahieu, E., Barthlott, S., Hase, F., García, O.,
- 749 Notholt, J., Warneke, T., Toon, G., Sayres, D., Bony, S., Lee, J., Brown, D., Uemura, R. and
- 750 Sturm, C.: Process-evaluation of tropospheric humidity simulated by general circulation
- 751 models using water vapor isotopologues: 1. Comparison between models and observations, J.
- 752 Geophys. Res., 117, D05303, doi:10.1029/2011JD016621, 2012.
- 753 Risi, C., Noone, D., Frankenberg, C. and Worden, J.: Role of continental recycling in
- 754 intraseasonal variations of continental moisture as deduced from model simulations and water
- vapor isotopic measurements, Water Resour. Res., 49, 4136–4156, doi:10.1002/wrcr.20312,
- 756 2013.
- Roderick, M. L. and Farquhar, G. D.: The Cause of Decreased Pan Evaporation over the Past
 50 Years, Science, 298, 1410–1411, doi:10.1126/science.1075390, 2002.
- Roderick, M. L., Rotstayn, L. D., Farquhar, G. D. and Hobbins, M. T.: On the attribution of
 changing pan evaporation, Geophys. Res. Lett., 34, L17403, doi:10.1029/2007GL031166,
 2007.
- Salati, E., Dall'Olio, A., Matsui, E., Gat, J.R.: Recycling of water in the Amazon Basin: An
 isotopic study, Water Resources Research, 15, 1250-1258, 1979.
- 764 Schmidt, M., Maseyk, K., Lett, C., Biron, P., Richard, P., Bariac, T. and Seibt, U.:
- $\begin{array}{ll} \mbox{Concentration effects on laser-based δ18O and δ2H measurements and implications for the calibration of vapour measurements with liquid standards, Rapid Commun. Mass Spectrom., \\ \end{array}$
- 767 24, 3553–3561, doi:10.1002/rcm.4813, 2010.
- 768 Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H.,
- 769 Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A.,
- 770 Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P.,
- 771 Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M. and White, J. W. C.: Continuous

Supprimé: (80-.).

Supprimé: (80-.)

- 772 monitoring of summer surface water vapor isotopic composition above the Greenland Ice
- 773 Sheet, Atmos. Chem. Phys., 13, 4815–4828, doi:10.5194/acp-13-4815-2013, 2013.
- 774 Steen-Larsen, H. C., Sveinbjörnsdottir, A. E., Peters, A. J., Masson-Delmotte, V., Guishard,
- 775 M. P., Hsiao, G., Jouzel, J., Noone, D., Warren, J. K. and White, J. W. C.: Climatic controls 776 on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on
- 777 500 days of in situ, continuous measurements, Atmos. Chem. Phys., 14, 7741-7756,

778 doi:10.5194/acp-14-7741-2014, 2014.

- 779 Sturm, K., Hoffmann, G., Langmann, B. and Stichler, W.: Simulation of δ18O in precipitation
- by the regional circulation model REMOiso, Hydrol. Process., 19, 3425-3444, 780
- 781 doi:10.1002/hyp.5979, 2005.
- 782 Sturm, P. and Knohl, A.: Water vapor δ 2H and δ 18O measurements using off-axis integrated 783 cavity output spectroscopy, Atmos. Meas. Tech., 3, 67-77, 2010.
- 784 Sun, S., Meng, P., Zhang, J., Wan, X., Zheng, N. and He, C.: Partitioning oak woodland
- 785 evapotranspiration in the rocky mountainous area of North China was disturbed by foreign 786 vapor, as estimated based on non-steady-state 18O isotopic composition, Agric. For.
- 787 Meteorol., 184, 36-47, doi:10.1016/j.agrformet.2013.08.006, 2014.
- 788 Sunmonu, 'Niyi, Muramoto, K., Kurita, N., Yoshimura, K. and Fujiyoshi, Y.: Characteristics
- 789 of Seasonal Variation of Near-Surface Water Vapor D/H Isotope Ratio Revealed by
- 790 Continuous in situ Measurement in Sapporo, Japan, SOLA, 8, 5-8, doi:10.2151/sola.2012-791 002, 2012.
- 792 Tremoy, G., Vimeux, F., Cattani, O., Mayaki, S., Souley, I. and Favreau, G.: Measurements
- 793 of water vapor isotope ratios with wavelength-scanned cavity ring-down spectroscopy
- 794 technology: new insights and important caveats for deuterium excess measurements in
- 795 tropical areas in comparison with isotope-ratio mass spectrometry., Rapid Commun. mass
- 796 Spectrom., 25, 3469-3480, doi:10.1002/rcm.5252, 2011.
- 797 Tremoy, G., Vimeux, F., Mayaki, S., Souley, I., Cattani, O., Risi, C., Favreau, G. and Oi, M.:
- 798 A 1-year long δ18O record of water vapor in Niamey (Niger) reveals insightful atmospheric
- 799 processes at different timescales, Geophys. Res. Lett., 39, L08805,
- 800 doi:10.1029/2012GL051298, 2012.
- 801 Tuinenburg, O. A., Hutjes, R. W. A. and Kabat, P.: The fate of evaporated water from the 802 Ganges basin, J. Geophys. Res., 117, D01107, doi:10.1029/2011JD016221, 2012.
- 803 Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., and Yoshida, N.: Evidence of
- 804 deuterium excess in water vapor as an indicator of ocean surface conditions, J. Geophys. Res., 805 113, D19114, doi:10.1029/2008JD010209, 2008.
- 806 Vallet-Coulomb, C., Gasse, F. and Sonzogni, C.: Seasonal evolution of the isotopic
- 807 composition of atmospheric water vapour above a tropical lake : Deuterium excess and 808
- implication for water recycling, Geochim. Cosmochim. Acta, 72, 4661-4674,
- 809 doi:10.1016/j.gca.2008.06.025, 2008.

Supprimé: Vallet-Coulomb, C., Gasse, F. and Sonzogni, C .: Seasonal evolution of the isotopic composition of atmospheric water vapour above a tropical lake : Deuterium excess and implication for water recycling, Geochim. Cosmochim. Acta, 72, 4661-4674, doi:10.1016/j.gca.2008.06.025, 2008

- 810 Van der Ent, R. J., Savenije, H. H. G., Schaefli, B. and Steele-Dunne, S. C.: Origin and fate of
- 811 atmospheric moisture over continents, Water Resour. Res., 46, W09525,
- 812 doi:10.1029/2010WR009127, 2010.
- 813 Wang, L., Caylor, K. K., Villegas, J. C., Barron-Gafford, G. A., Breshears, D. D. and
- 814 Huxman, T. E.: Partitioning evapotranspiration across gradients of woody plant cover:
- Assessment of a stable isotope technique, Geophys. Res. Lett., 37, L09401, 815
- doi:10.1029/2010GL043228, 2010. 816
- 817 Wang, L., Niu, S., Good, S. P., Soderberg, K., McCabe, M. F., Sherry, R. A., Luo, Y., Zhou,
- 818 X., Xia, J. and Caylor, K. K.: The effect of warming on grassland evapotranspiration
- 819 partitioning using laser-based isotope monitoring techniques, Geochim, Cosmochim, Acta,
- 820 111, 28-38, doi:10.1016/j.gca.2012.12.047, 2013.
- 821 Wassenaar, L. I., Ahmad, M., Aggarwal, P., van Duren, M., Pöltenstein, L., Araguas, L. and
- 822 Kurttas, T.: Worldwide proficiency test for routine analysis of δ 2H and δ 18O in water by
- 823 isotope-ratio mass spectrometry and laser absorption spectroscopy., Rapid Commun. mass 824 Spectrom., 26, 1641–1648, doi:10.1002/rcm.6270, 2012.
- 825 Welp, L. R., Lee, X., Griffis, T. J., Wen, X.-F., Xiao, W., Li, S., Sun, X., Hu, Z., Val Martin,
- 826 M. and Huang, J.: A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer, Global Biogeochem. Cycles, 26, GB3021, 827
- 828 doi:10.1029/2011GB004246, 2012.
- 829 Wen, X.-F., Zhang, S.-C., Sun, X.-M., Yu, G.-R. and Lee, X.: Water vapor and precipitation 830 isotope ratios in Beijing, China, J. Geophys. Res., 115, D01103, doi:10.1029/2009JD012408,
- 831 2010.
- 832 Wen, X.-F., Lee, X., Sun, X.-M., Wang, J.-L., Hu, Z.-M., Li, S.-G. and Yu, G.-R.: Dew water 833 isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China, Oecologia, 168, 549-561, doi:10.1007/s00442-011-2091-0, 2012.
- 834
- 835 Werner, M., Langebroek, P. M., Carlsen, T., Herold, M. and Lohmann, G.: Stable water
- 836 isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling 837 on a global scale, J. Geophys. Res., 116, D15109, doi:10.1029/2011JD015681, 2011.
- 838 Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-
- 839 Raki, S., Boulet, G., de Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K. and Timouk, F.: 840 Evapotranspiration components determined by stable isotope, sap flow and eddy covariance
- techniques, Agric. For. Meteorol., 125, 241–258, doi:10.1016/j.agrformet.2004.04.008, 2004. 841
- 842 Worden, J., Noone, D. and Bowman, K.: Importance of rain evaporation and continental 843 convection in the tropical water cycle, Nature, 445, 528-32, doi:10.1038/nature05508, 2007.
- 844 Yakir, D. and Wang, X.-F., Fluxes of CO₂ and water between terrestrial vegetation and the atmosphere estimated from isotope measurements, Nature, 380, 515-517, 1996. 845
- 846 Yakir, D. and Sternberg, L. da S. L .: The use of stable isotopes to study ecosystem gas exchange, Oecologia, 123, 297-311, 2000. 847
- 27

- 848 Yamanaka, T. and Shimizu, R.: Spatial distribution of deuterium in atmospheric water vapor:
- Biagnosing sources and the mixing of atmospheric moisture, Geochim. Cosmochim. Acta, 71,
 3162–3169, doi:10.1016/j.gca.2007.04.014, 2007.
- 851 Yepez, E. A., Williams, D. G., Scott, R. L. and Lin, G.: Partitioning overstory and understory
- 852 evapotranspiration in a semiarid savanna woodland from the isotopic composition of water
- 853 vapor, Agric. For. Meteorol., 119, 53–68, doi:10.1016/S0168-1923(03)00116-3, 2003.
- Zhang, S., Wen, X., Wang, J., Yu, G. and Sun, X.: The use of stable isotopes to partition
 evapotranspiration fluxes into evaporation and transpiration, Acta Ecol. Sin., 30, 201–209,
- 856 doi:10.1016/j.chnaes.2010.06.003, 2010.
- 857 Zhang, S., Sun, X., Wang, J., Yu, G. and Wen, X.: Short-term variations of vapor isotope
- ratios reveal the influence of atmospheric processes, J. Geogr. Sci., 21, 401–416,
- 859 doi:10.1007/s11442-011-0853-6, 2011.
- 860
- 861
- 862
- 863

863 Table 1. Isotopic compositions of laboratory standards ($\delta_{LS}),$ and statistics on raw

864 measurements from all calibrations (average and standard deviation of δ_{raw} from 40 data

between 20 July to 24 August 2011).

		δ_{LS}	Average and standard	d deviation of
		(‰ vs VSMOW)	δ_{raw} (%))
Standard 1	$\delta^{18}O$	-17.12	-13.89	0.19
Standard	δD	-133.3	-152.6	2.0
Standard 2	$\delta^{18}O$	-7.85	-4.85	0.11
Stanuaru 2	δD	-53.5	-71.1	1.5
Standard 2	$\delta^{18}O$	0.68	3.41	0.08
Standard 3	δD	3.7	-12.8	1.8

869 Table 2. Evaluation of the stability of the calibrations in water <u>vapour</u> concentration and

isotopic composition, with mean slope and mean intercept ± 1 standard deviation obtained for

 δ^{18} O and δ D with n calibrations performed from 20 July to 24 August 2011.

	$\delta^{18}O$	δD	
	Water <u>vapour</u> c	oncentration	Supprimé: vapor
Slope	$-0.16 10^{-4} \pm 0.13 10^{-4}$	$6.08 10^{-4} \pm 0.99 10^{-4}$	
Intercept	-13.68 ± 0.25	-165.4 ± 2.0	
R^{2} (n=23)	$0.26 \le R^2 \le 1.00$	$0.89 \le R^2 \le 0.99$	
	Isotopic cor	nposition	
Slope	1.03 ± 0.01	0.98 ± 0.01	
Intercept	-2.83 ± 0.07	16.3 ± 1.7	
R^2 (n=40)	1.00	1.00	

- Table 3. Results of Standard 2 measurements (δ_{std2-m}) normalized to the VSMOW2-SLAP2
- scale by using Standards 1 and 3 as working standards, following the IAEA Reference Sheet
- 876 (IAEA, 2009). Statistics are performed from the set of 40 calibrations. Standard deviation
- 877 provides the reproducibility, and the root mean square deviation from the known value

31

- 878 (RMSE) provides the accuracy of liquid measurements.
- 879

	δ ¹⁸ Ο	δD	d
	(% VSMOW)	(% VSMOW)	(‰)
Average of $\delta_{std2\text{-}m}$	-7.82	-53.4	9.16
Standard deviation	0.117	0.89	1.29
RMSE	0.121	0.89	1.30

880

881

882 Table 4. Determination coefficients (R²) and slopes (S) of linear correlations between daily

883 means of water <u>vapour</u> composition (δ^{18} O, δ D, <u>d</u>) and air temperature (T_a), mixing ratio (q),

Supprimé: vapor Supprimé: d_v

relative humidity at air temperature (RH_a) and relative humidity at water surface temperature

885 (RH_s).

886

	δ ¹⁸ O (‰)		δD (‰)		d (‰)	
	R^2	S	R^2	S	R^2	S
T _a (°C)	0.30	+0.54	0.27	+3.48	0.20	-0.88
q (mmol.mol ⁻¹)	0.72	+0.38	0.62	+2.39	0.54	-0.66
RH _a (%)	0.64	+0.13	0.55	+0.80	0.51	-0.23
RH _s (%)	0.33	+0.13	0.31	+0.83	0.19	-0.19

887

888 Table 5. Number of days (n) associated with the different origins of air masses (Figure 1).

889 Corresponding mean values of δ^{18} O, δ D, deuterium excess (d), air temperature (T), mixing

890 ratio (q), relative humidity (RH), wind speed (V) and potential evapotranspiration (PET)

891 measured in the experimental site.

892

	North Atlantic	Mediterranean	Bay of Biscay	_
	[310°-360°]	[110°-220°]	[220°-310°]	
<u>n</u> ,	10	13	13	– Supprime: N
δ ¹⁸ Ο (‰)	-15.83	-13.13	-14.90	
δD (‰)	-103.5	-86.5	-96.3	
<u>d</u> (‰)	23.2	18.6	22.9	Supprimé: d _v
T _a (°C)	21.6	23.3	22.3	
q (mmol.mol ⁻¹)	15.0	21.8	18.0	
RH (%)	59.5	78.5	68.1	
V (m.s ⁻¹)	2.0	0.7	1.6	
PET (mm.day ⁻¹)	5.8	3.8	4.9	

893

894

33

Supprimé: d_v

894	
895	Figure 1. Location of the experimental site (star) in Camargue (Rhône River Delta), 170m
896	from the Vaccarès lagoon and 12km from the Mediterranean Sea. Coloured arrows represent
897	the three main origins and trajectories of air masses affecting the study site, (1) North
898	Atlantic, (2) Mediterranean and (3) Bay of Biscay.
899	
900	Figure 2. Raw δ^{18} O and δ D of our three laboratory liquid standards measured at various water
901	vapour concentrations. Error bars are smaller than the symbols. Linear regressions within the
902	concentration range encountered in Camargue during the field experiment and associated
903	slopes and determination coefficients are shown.
904	
905	Figure 3. Hourly <u>time series</u> of air temperature (T), mixing ratio (q), δ^{18} O, δ D, deuterium
906	excess (d) from 20 July to 24 August 2011 at the experimental site according to air mass
907	origin (see Figure 1). Grey dots are δ_v and d values calculated from the isotopic equilibrium
908	with precipitation.
909	
909 910	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u>
909 910 911	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted.
909 910 911 912	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origin <u>s</u> . For reference, the GMWL and LMWL are also plotted.
 909 910 911 912 913 	 Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles</u> of δ¹⁸O, δD, deuterium excess (d), relative humidity <u>at surface</u>
 909 910 911 912 913 914 	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origin <u>s</u> . For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ^{18}O, δD, deuterium excess (d), relative humidity <u>at surface</u> (RH_s) and air (RH_a, grey symbols) temperature, <u>surface (T_s) and air (T_a, grey symbols)</u></u>
 909 910 911 912 913 914 915 	 Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ¹⁸O</u>, δD, deuterium excess (d), relative humidity <u>at surface</u> (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20
 909 910 911 912 913 914 915 916 	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ^{18}O, δD, deuterium excess (d), relative humidity at surface (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to <u>the three</u> air mass origins. Grey shading indicates</u>
 909 910 911 912 913 914 915 916 917 	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ^{18}O, δD, deuterium excess (d), relative humidity <u>at surface</u> (RH_s) and <u>air (RH_a, grey symbols) temperature</u>, <u>surface (T_s) and air (T_a, grey symbols)</u> temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to <u>the three air mass origins</u>. Grey shading indicates standard deviation of each average <u>value</u>.</u>
 909 910 911 912 913 914 915 916 917 918 	Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origin <u>s</u> . For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ^{18}O, δD, deuterium excess (d), relative humidity at surface (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to the three air mass origin<u>s</u>. Grey shading indicates standard deviation of each average <u>value</u>.</u>
 909 910 911 912 913 914 915 916 917 918 919 	 Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ¹⁸O</u>, δD, deuterium excess (d), relative humidity at surface (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to the three air mass origins. Grey shading indicates standard deviation of each average <u>value</u>. Figure 6. Relationships between <u>hourly</u> average values of δ_v and 1/q over a daily cycle
 909 910 911 912 913 914 915 916 917 918 919 920 	 Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ¹⁸O</u>, δD, deuterium excess (d), relative humidity <u>at surface</u> (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to the three air mass origins. Grey shading indicates standard deviation of each average value. Figure 6. Relationships between <u>hourly</u> average values of δ_v and 1/q over a daily cycle according to the two main air mass origins, and corresponding linear regressions for the
 909 910 911 912 913 914 915 916 917 918 919 920 921 	 Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>yapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles</u> of δ¹⁸O, δD, deuterium excess (d), relative humidity at surface (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to the three air mass origins. Grey shading indicates standard deviation of each average <u>value</u>. Figure 6. Relationships between <u>hourly</u> average values of δ_v and 1/q over a daily cycle according to the two main air mass origins, and corresponding linear regressions for the period of q increase (see text). Squares indicate the isotopic composition of the local <u>end</u>-
 909 910 911 912 913 914 915 916 917 918 919 920 921 922 	 Figure 4. Hourly <u>daytime</u> and night-time isotopic composition of atmospheric water <u>vapour</u> according to air mass origins. For reference, the GMWL and LMWL are also plotted. Figure 5. <u>Average daily cycles of δ¹⁸O, δD, deuterium excess (d), relative humidity at surface</u> (RH_s) and air (RH_a, grey symbols) temperature, surface (T_s) and air (T_a, grey symbols) temperature, mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24 August 2011 according to the three air mass origins. Grey shading indicates standard deviation of each average <u>value</u>. Figure 6. Relationships between <u>hourly</u> average values of δ_v and 1/q over a daily cycle according to the two main air mass origins, and corresponding linear regressions for the period of q increase (see text). Squares indicate the isotopic composition of the local <u>end-member (δ_F) calculated for a mixing ratio corresponding to saturation at the water surface</u>

924

Supprimé: vapor

 Supprimé: mean values

 Supprimé: dv

 Supprimé: in

(Supprimé: day-time
-(Supprimé: vapor
(Supprimé: in

Supprimé:	24-hour	average	values
-----------	---------	---------	--------

Supprimé: 24-	
Supprimé: vapor	
Mis en forme: Indice	

925	Figure 7. <u>Hourly</u> average values of $\frac{\delta D}{\delta D}$ versus $\delta^{18}O$ over a daily cycle, according to the two	

926 main air mass origins, corresponding linear regressions for the period of q increase (see text),

927 and calculated local end-member (δ_E) . For reference, the LMWL is also plotted.

1	Supprimé: 24-h
1	Supprimé: δ_v
1	Supprimé: vapor
-	Supprimé: (

928