

1 **Deuterium excess in atmospheric water vapor of a**
2 **Mediterranean coastal wetland: regional versus local**
3 **signatures**

4
5 **H. Delattre¹, C. Vallet-Coulomb¹, C. Sonzogni¹**

6 [1]{Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Europôle méditerranéen de
7 l'Arbois, 13545 Aix-en-Provence, France}

8 Correspondence to: C. Vallet-Coulomb (vallet@cerege.fr)

9
10

10 **Abstract**

11 Stable isotopes of the water vapor represent a powerful tool for tracing atmospheric vapor
12 origin and mixing processes. Laser spectrometry recently allowed high time resolution
13 measurements, but despite an increasing number of experimental studies, there is still a need
14 for a better understanding of the main drivers of isotopic signal variability at different time
15 scales. We present results of in situ measurements of $\delta^{18}\text{O}$ and δD during 36 consecutive days
16 in summer 2011 in atmospheric vapor of a Mediterranean coastal wetland exposed to high
17 evapotranspiration (Camargue, Rhône River delta, France). A calibration protocol was tested
18 and instrument stability was analysed over the period. The mean composition of atmospheric
19 vapor during the campaign is $\delta^{18}\text{O}=-14.66\text{\textperthousand}$ and $\delta\text{D}=-95.4\text{\textperthousand}$, with δ_v data plotting clearly
20 above the local meteoric water line, and an average deuterium excess (d_v) of $21.9\text{\textperthousand}$. At the
21 daily time step, we show a clear separation of isotopic characteristics with respect to the air
22 mass back trajectories, with the Northern air masses providing depleted compositions ($\delta^{18}\text{O}=-$
23 $15.83\text{\textperthousand}$, $\delta\text{D}=-103.5\text{\textperthousand}$) compared to Mediterranean air masses ($\delta^{18}\text{O}=-13.13\text{\textperthousand}$, $\delta\text{D}=-86.5\text{\textperthousand}$).
24 There is also a clear separation between d_v corresponding to these different air mass origins,
25 with higher d_v found for Northern air masses ($23.2\text{\textperthousand}$) than for Mediterranean air masses
26 ($18.6\text{\textperthousand}$). However, since diurnal d_v variations are more important than day-to-day
27 differences, an hourly time scale analysis is necessary to interpret the main drivers of d_v
28 variability. Based on twenty-four average hourly data, we propose a depiction of typical daily
29 cycles of water vapor isotopic composition under the two main regional meteorological
30 situations. Diurnal fluctuations are driven by 1) the influence of local evaporation,
31 culminating during day-time, and leading to an increase in absolute water vapor concentration
32 associated to a δ_v enrichment and d_v increase; 2) vertical air mass redistribution when the PBL
33 vanishes in the evening, leading to a d_v decrease, and 3) dew formation during the night,
34 producing a δ_v depletion with d_v remaining stable. Based on a two-component mixing model,
35 we calculate the average composition of the local vapor that produces the day-time increase in
36 d_v , and found higher d_v for the local vapor composition under North Atlantic air mass
37 conditions, consistent with lower humidity conditions. In addition, we show that the stronger
38 advection rate that prevails under Northern conditions dilutes the contribution of local vapor
39 to the ambient moisture, which indicates that regional vapor also carries a higher d_v under
40 Northern conditions. This isotopic mass balance approach is proposed as a framework for
41 deciphering regional and local influences.

43 **1 Introduction**

44 At the global scale, an acceleration of the hydrological cycle is expected in response to
45 climate change, with an intensification of both precipitation and evaporation. This effect has
46 been recognized for the ocean (Dai et al., 2009), but less conclusive patterns appear for
47 continental surfaces, especially because of the complex behaviour of land evapotranspiration
48 (Ohmura and Wild, 2002; Roderick and Farquhar, 2002; Brutsaert, 2006; Roderick et al.,
49 2007; Fu et al., 2009; Jung et al., 2010). The response of evapotranspiration to climate change
50 is controlled both by climatic and by hydrological parameters. Climate determines the
51 atmospheric evaporative demand (potential evapotranspiration), while hydrology controls
52 surface water availability, thus limiting actual evapotranspiration. In addition, continental
53 vapor is involved in land-atmosphere feedbacks such as atmospheric water recycling: high
54 evapotranspiration may contribute to regional rainfall in contexts of tropical rainforest
55 (Brubaker et al., 1993; Eltahir and Bras, 1996; van der Ent et al., 2010) or large scale
56 irrigation (Boucher et al., 2004; Tuinenburg et al., 2012), or may even reduce potential
57 evapotranspiration by lowering temperature and increasing humidities near the earth surface
58 (Destouni et al., 2010; Tuinenburg et al., 2012). A better understanding of the atmospheric
59 component of the water cycle and of the potential contribution of wetlands evaporation to the
60 regional water budget is thus important to anticipate the impact of global change, in particular
61 in Mediterranean regions where more frequent droughts are expected.

62 Isotopic composition of atmospheric water vapor (subsequently called δ_v) represents a great
63 opportunity to explore land-atmosphere interactions, as the addition of moisture originating
64 from evapotranspiration induces a modification of the isotopic content of the background
65 vapor (Salati et al., 1979; Gat et Matsui, 1991; Gat et al., 1994; Gat, 2000; Worden et al.,
66 2007; Yamanaka and Shimizu, 2007; Vallet-Coulobt et al., 2008; Risi et al., 2013). In
67 addition, isotope tracers are now often incorporated into climate models (Sturm et al., 2005;
68 Werner et al., 2011; Risi et al., 2012, 2013) in order to improve the representation of land-
69 atmosphere interactions and feedbacks. A major challenge is thus to propose robust databases,
70 and associated methodology for data acquisition and interpretation.

71 Laser spectrometers recently opened the door towards the high temporal resolution analysis of
72 δ_v variations, which was not possible with the traditional cold trap method. Whereas
73 cryogenic trapping provides grab samples generally averaging a couple of hours, laser

74 spectrometry performs continuous high frequency (up to \sim 1 Hz) measurements of δ_v (Kurita
75 et al., 2012). This technology offers new insights into processes that affect the isotopic
76 composition of atmospheric water vapor and the number of studies based on continuous
77 ground level isotope measurements over multi-week periods is continuously increasing, either
78 using Tunable Diode Laser (TDL) (Lee et al., 2006; Wen et al., 2010; Griffis et al., 2011;
79 Welp et al., 2012; Wen et al., 2012), Off-Axis Integrated Cavity Output Spectroscopy (OA-
80 ICOS) (Sturm and Knohl, 2010; Sunmonu et al., 2012; Farlin et al., 2013; Steen-Larsen et al.,
81 2013) or Wavelength-Scanned Cavity Ring-Down Spectroscopy (WS-CRDS) (Galewsky et
82 al., 2011; Noone et al., 2011; Tremoy et al., 2012; Steen-Larsen et al., 2013, 2014). Among
83 these experiments are some low latitude studies which have focused on the tracing of tropical
84 or sub-tropical convective activity in West Africa (Tremoy et al., 2012) or in South America
85 (Galewsky et al., 2011). In mid latitudes (Noone et al., 2011; Farlin et al., 2013), or high
86 latitudes (Steen-Larsen et al., 2013), several studies have explored atmospheric mixing
87 processes at different time scales. Isotopes have also been used for partitioning
88 evapotranspiration into plant transpiration and direct evaporation, as the associated
89 fractionations are different (Yakir and Sternberg, 2000; Lai et al., 2006; Wang et al., 2010;
90 Griffis et al., 2011; Sun et al., 2014), for a better understanding of the role of ecosystems in
91 the hydrological cycle in the context of climate change (Wang et al., 2013).

92 However, the number of studies remains limited because of technical difficulties associated
93 with field-deployed long-term measurements. Except for some work based on cold trap
94 sampling (Jacob and Sonntag, 1991; Williams et al., 2004; Angert et al., 2008), there are to
95 our knowledge only two high time-resolution studies published from European sites (Iannone
96 et al., 2010; Aemisegger et al., 2014) and none at all treating Mediterranean areas. In addition,
97 there is a need for dual tracer databases, in order to use the deuterium excess signal ($d_{exc} =$
98 $\delta D - 8 \times \delta^{18}O$; Dansgaard, 1964) as an additional indicator of atmospheric processes. Indeed, d_v
99 is often considered as a indicator of evaporation conditions, but its interpretation in
100 continental vapor remains complex since it is affected by the multiple vapor sources,
101 combining the initial oceanic vapor and evapotranspiration from different continental water
102 sources (Gat et Matsui 1991; Vallet-Coulomb et al., 2008; Lai and Ehleringer, 2011; Welp et
103 al., 2012; Jouzel et al., 2013; Aemisegger et al, 2014).

104 In this paper, we provide results obtained in Camargue on 36 consecutive days during
105 summer 2011, using WS-CRDS technology. The Camargue region is emblematic of
106 Mediterranean wetlands, with important water inflow requirements and strong evaporation

107 losses, making them highly sensitive to climate change and human pressures on water
108 resource. Our experimental site is located in the center of Camargue, close to the main lagoon
109 (Vaccarès lagoon, 65 km²). Considering the location of the site, and the important availability
110 of open water in the surroundings, we expect a dominant contribution of evaporation upon
111 transpiration fluxes. This study will provide the opportunity to investigate how local
112 evaporation combines and interact with the other regional vapor sources. We will focus on
113 identifying the main drivers of deuterium excess variability at different time scales, and
114 explore the relevance of using either relative humidity, as an indicator of evaporation
115 conditions, or specific humidity (mixing ratio) as a proxy of mixing between different vapor
116 sources. Before analysing our results, we present technical aspects of measurement calibration
117 and validation. We then analyse the day-to-day variations of δ_v and d_v in relation to climatic
118 parameters and the air mass back trajectories. Finally, average hourly variations are explored
119 and we interpret the typical daily cycles according to the main regional meteorological
120 conditions in order to depict their driving factors and the influence of local processes.

121

122 **2 Data acquisition**

123 **2.1 Protocols**

124 Continuous in situ measurements of the isotopic composition of atmospheric water vapor
125 ($\delta^{18}\text{O}$ and δD) were performed during summer 2011 between 20 July and 24 August, at 1.75m
126 height and approximately 170m from the East border of the Vaccarès lagoon (Figure 1), using
127 Wavelength-Scanned Cavity Ring-Down Spectroscopy (WS-CRDS). The instrument we use
128 is the Picarro L1102-i isotopic liquid water and water vapor analyser (Picarro Inc., Sunnyvale,
129 California, USA), which measures the isotopic composition of atmospheric water vapor every
130 5 to 7 seconds. Installed in an air-conditioned room, the analyser is connected to an outside air
131 intake. As water vapor may be sticky on the walls of any tubing, a bypass configuration is
132 used to bring the air in quickly, at a rate of 6L.min⁻¹ (with a Laboport vacuum pump N86
133 KN.18) through PVC tubing, in order to minimise wall effects that lead to fractionation in the
134 inlet. The analyser then subsamples this air at a rate lower than 0.04L.min⁻¹.

135 Calibration of laser measurements is performed according to liquid laboratory standards, and
136 a three -way valve allows switching between the introduction of ambient air and vapor from
137 the liquid sample vaporizer (vaporization module V1102-i adjusted to 110°C for flash
138 vaporization to avoid fractionation). We used three laboratory standards whose isotopic spans

139 a range of values including the composition expected in the atmosphere of the Camargue
140 (Table 1). 1.8 μ L of water standards are introduced is injected into the vaporizer using an
141 autosampler (CTC Analytics LEAP Technologies HTC PAL autosampler) with a SGE 5 μ L
142 syringe. We used synthetic air as the dry carrier gas (water content <45ppmv) delivered at a
143 pressure of 2.5±0.5psi. The analyser takes about nine minutes to perform approximately 40
144 measurements per injection, and these results are then averaged by the software. Between
145 each injection, the syringe is cleaned with 1-methyl-2-pyrrolidinone (NMP) solvent wash.
146 Our laboratory successfully participated in the IAEA 2011 proficiency test on routine analysis
147 of $\delta^{18}\text{O}$ and δD in liquid water (Wassenaar et al., 2012).

148 Previous studies have shown that optical spectrometric methods can induce a dependence of
149 isotopic measurements on water vapor concentration (Gupta et al., 2009; Schmidt et al., 2010;
150 Johnson et al., 2011; Tremoy et al., 2011). This does not affect liquid sample measurements,
151 since the water quantity introduced into the analyser through the vaporizer is nearly constant,
152 but important variations of vapor content do occur when analysing ambient atmosphere,
153 making it necessary to correct optical measurements. We have evaluated the concentration
154 dependence of our instrument for a large range of water concentrations, and for different
155 isotopic compositions using our three standards (Figure 2). In addition, for routine analysis,
156 an evaluation of the water concentration effect is performed at approximately 24-hour
157 intervals with the more depleted standard (Standard 1) whose isotopic composition is close to
158 the atmosphere of the Camargue. The autosampler is set to perform six injections of 0.9 μ L,
159 1.6 μ L and 2.0 μ L in the vaporization module to obtain three water vapor concentrations
160 ranging from about 8000 to 28000ppmv, comprising values expected in the study area. In
161 addition, calibration for isotopic composition is performed at least every 24 hours with our
162 three standards. For each standard, the autosampler is set to perform six injections of 1.8 μ L in
163 the vaporization module, corresponding to a water vapor concentration of approximately 20
164 000ppmv. The first two injections are disregarded to remove the memory effect, and the last
165 four injections are averaged to obtain the $\delta^{18}\text{O}$ and δD measurements of each standard.

166 Gaps in time series correspond to calibration periods, but may also reflect accidental power
167 cuts or data eliminated during episodes of condensation in the tubing. This latter problem was
168 detected thanks to the use of transparent air tubing, and was easily recognizable a posteriori
169 through the abnormally smooth shape of the water vapor concentration curve. A heating cable
170 was then used to avoid any condensation such as may occur when a negative temperature
171 gradient exists between the sampling point and the inlet of the analyser.

172

173 **2.2 Dependence on water vapor concentration**

174 It has been shown that the dependence of WS-CRDS isotopic measurements on water vapor
 175 concentration is instrument-dependent (Tremoy et al., 2011). The concentration dependence
 176 of our instrument, evaluated for a large range of concentrations (Figure 2), showed a linear
 177 response in the range of water vapor concentration measured in the atmosphere of the
 178 Camargue (from 9000ppmv to 28000ppmv), with the relationship deviating slightly from the
 179 linear trend at very low and high water vapor concentrations. For $\delta^{18}\text{O}$ of standards 2 and 3
 180 there is no concentration effect, but a small dependence did appear for the more depleted
 181 standard ($-0.33\text{\textperthousand}.10000\text{ppmv}^{-1}$; $R^2=0.75$). For δD , we found significant regression
 182 coefficients ($R^2=0.98$, 0.99 and 1.00 for standards 1, 2 and 3 respectively), and the slope of
 183 the dependence was only slightly different between standards (between 7.8 and
 184 $8.1\text{\textperthousand}.10000\text{ppmv}^{-1}$).

185 This justifies the use of only one standard (Standard 1) to perform the very time-consuming
 186 daily calibration of the water concentration effect (160 minutes for a 3-point calibration).
 187 Measurements are corrected for concentration dependence before applying the isotopic
 188 calibration in order to drive back atmospheric measurements to the water vapor concentration
 189 $w_{\text{reference}}$ at which standards are measured, as follows (Schmidt et al., 2010):

$$190 \delta_{\text{reference}} = \delta_{\text{observed}} + m \cdot (w_{\text{reference}} - w_{\text{observed}}) \quad (1)$$

191 where $\delta_{\text{reference}}$ (\textperthousand) is the reference δ value at $w_{\text{reference}}$ (20000 ppmv in our case); δ_{observed} (\textperthousand)
 192 is the observed δ value at w_{observed} (ppmv) the observed concentration; m ($\text{\textperthousand}.ppmv^{-1}$) is the
 193 slope of the concentration dependence (Table 2).

194

195 **2.3 Instrument stability**

196 To evaluate the long-term stability of our instrument, statistics were calculated on raw delta
 197 values measured on our three standards during the entire measurement campaign (Table 1).
 198 Results show that the long-term variability is very low, but a regular calibration is
 199 nevertheless performed. Variability of both calibrations (for water vapor concentration and
 200 isotopic composition) is shown in Table 2. For $\delta^{18}\text{O}$, the calibration for concentration appears
 201 highly variable but often flat (no concentration effect), resulting in a linearity which is not
 202 always significant ($0.26 \leq R^2 \leq 1.00$). Thus, $\delta^{18}\text{O}$ was corrected only when the concentration

203 dependence was significant. For δD , the regression is slightly variable in the long-term, and
204 its linearity is always significant ($0.89 \leq R^2 \leq 0.99$). For daily calibration in isotopic composition
205 (normalisation to the VSMOW2-SLAP2 scale), we used a three-point calibration, which
206 allows to check for the linearity of the calibration. Linear regressions between raw measured
207 values and absolute standard compositions are established as follows for $\delta^{18}\text{O}$ and δD :

208
$$\delta_{\text{calibrated}} = \text{slope} \cdot \delta_{\text{measured}} + \text{intercept} \quad (2)$$

209 Regressions are stable in the long-term (Table 2), and their linearity is always significant
210 ($R^2=1.00$). Accuracy and precision of our instrument, estimated by considering standard 2 as a
211 sample which has been calibrated with standards 1 and 3, show good results (Table 3). These
212 performances are estimated on liquid measurements, and are probably lower for vapor
213 measurements.

214

215 **3 Local atmospheric data**

216 Hourly air temperature and relative humidity were measured at the study site. Hourly wind
217 speed and daily PET (Potential Evapotranspiration calculated from the Penman-Monteith
218 formula, Monteith, 1965) were obtained from a meteorological station located 400m far from
219 the site of isotopic measurements. In addition, surface temperature was also measured in the
220 main pond of the Vaccarès lagoon system at hourly time-step. Backward three-dimensional
221 trajectories were computed for each individual day with the Internet-based NOAA HYSPLIT
222 Trajectory Model (<http://ready.arl.noaa.gov/HYSPLIT.php>), using GDAS (Global Data
223 Assimilation System) meteorological data. The HYSPLIT (HYbrid Single-Particle
224 Lagrangian Integrated Trajectory) model is a complete system which allows computing
225 simple air parcel trajectories. Trajectories were parameterized to end up at the station location
226 at 1200 UTC, at three heights of 50, 100 and 500 meters above ground level, with a total back
227 run time long enough to get back to the oceanic source (maximum of 144 hours). Planetary
228 boundary layer heights were obtained from GDAS meteorological data (3-hour time step).
229 They were extracted and interpolated to our specific station using the MeteoInfo software
230 (www.meteothinker.com).

231 In addition, we collected and analysed three rainfall samples corresponding to four small
232 rainfall events (25, 26, 27 July, 7 August 2011). These samples account for a total of 7.6mm
233 of the 9.6mm of cumulated rainfall during the measurement campaign; the remaining 2mm
234 correspond to eight very small events between 14 and 23 August (not sampled).

235

236 **4 Results and discussion**

237 The mean composition of atmospheric water vapor during the campaign is $\delta^{18}\text{O}=-14.66\text{\textperthousand}$,
238 $\delta\text{D}=-95.4\text{\textperthousand}$ and $d_v=21.9\text{\textperthousand}$, with significant daily variations, from $\delta^{18}\text{O}=-19.22$ to $-9.96\text{\textperthousand}$
239 and $\delta\text{D}=-125.2$ to $-61.7\text{\textperthousand}$, while d_v varies between 7.8 and $31.2\text{\textperthousand}$ (Figure 3). These
240 deuterium excess values are higher than those of our three rainfall samples: $5.6\text{\textperthousand}$, $4.5\text{\textperthousand}$ and
241 $7.0\text{\textperthousand}$, (for $\delta^{18}\text{O}=-3.89\text{\textperthousand}$, $-3.7\text{\textperthousand}$, and $-0.66\text{\textperthousand}$ respectively), and also higher than the long-
242 term average composition of regional precipitation in the neighbouring GNIP Station
243 (Avignon, $\approx 50\text{ km}$ far from the experimental site; $d\text{-exc} = 9.2\text{\textperthousand}$). The composition of vapor
244 in equilibrium with rainfall is plotted for comparison (Figure 3). Values slightly enriched in
245 ^{18}O compared to measured δ_v suggest a probable evaporation of rainfall in the atmosphere, a
246 classical feature of small summer rainfall events (Celle-Jeanton et al., 2001), while values
247 slightly depleted in D compared to measured δ_v points to the influence of an enriched vapor at
248 ground level.

249 In measured atmospheric vapor, substantial day-to-day variations of δ_v are observed, while d_v
250 presents high hourly variations (Figure 3). In order to explore the relevant time scales for
251 interpreting isotopic data in terms of synoptic and mesoscale meteorology versus local
252 influences, we first analyse the relations of our data to daily climatic variables and air mass
253 origins. Then, we focus on average diurnal variations for identifying the local influences.

254

255 **4.1 Correlations between isotope data and local climatic parameters**

256 Quite good correlations are found between daily values of δ_v and local climatic parameters
257 (Table 4), the best fit being with the mixing ratio q , ($R^2=0.72$ and 0.62 for $\delta^{18}\text{O}$ and δD
258 respectively). Such a correlation could result from the case of simple Rayleigh rainout
259 processes, where condensation phases progressively remove water from the atmosphere and
260 deplete the remaining atmospheric vapor in heavy isotopes (Dansgaard, 1964; Lee et al.,
261 2006; Wen et al., 2010). The progressive rainout follows a temperature decrease, and should
262 also result in a correlation between δ_v and T , and subsequently between rainfall isotope
263 content (δ_p) and T , which has led to the establishment of the isotopic thermometer
264 (Dansgaard, 1964; Jouzel et al., 1997). Our data show a relation between δ_v and T (Table 4,
265 Figure 3) close to the isotopic thermometer: $\Delta\delta^{18}\text{O}/\Delta T=0.53\text{\textperthousand} \cdot ^\circ\text{C}^{-1}$ (Jouzel et al., 1997), but
266 the correlation is relatively poor ($R^2=0.30$), indicating more complex processes, as was

267 observed during a long-term German survey in which δ_v -T correlation was degraded during
268 summer because of the admixture of vapor originating from plant evapotranspiration (Jacob
269 and Sonntag, 1991). Since the correlation between δ_v and q is much stronger than the δ_v -T
270 correlation, it indicates a mixing between air masses characterized by different vapor
271 concentrations as could result from different marine origins, and/or from the addition of
272 continental vapor into the atmosphere.

273
274 With respect to deuterium excess, we found that q is also the best predictor of d_v variations at
275 a daily time-step ($R^2=0.54$, Table 4). In addition, we observed a correlation between d_v and
276 RH_a ($R^2=0.51$), consistent with Welp et al. (2012), but the correlation becomes very low
277 ($R^2=0.19$) when using relative humidity at surface temperature (RH_s). The significance of
278 deuterium excess in terms of a proxy for the conditions at the vapor sources comes from the
279 fact that it is determined by the isotopic fractionation that occurs during evaporation, and
280 more precisely by its variable kinetic component, which mainly depends on relative humidity
281 (Craig and Gordon, 1965; Gonfiantini, 1986; Pfahl et Wernli, 2008; Uemura et al., 2008).
282 However, relative humidity is only relevant for characterizing evaporation conditions if
283 reported at surface temperature. In this case it represents the vapor concentration gradient
284 between water and air, which controls the kinetic fractionation. Starting from a value around
285 $d_v=0\text{‰}$ in ocean water, the kinetic fractionation associated to initial seawater evaporation
286 produces an increase in d_v in oceanic vapor inversely related to humidity conditions (Merlivat
287 and Jouzel, 1979; Armengaud et al., 1998; Pfahl et Wernli 2008; Uemura et al 2008; Jouzel et
288 al., 2013; Steen-Larsen et al., 2013). During the air mass trajectory over land, d_v may be
289 further increased by the addition of vapor of continental origin (Gat and Matsui, 1991, Gat et
290 al., 1994; Angert et al., 2008; Lai and Ehleringer, 2011; Welp et al., 2012). This “secondary”
291 vapor is also expected to carry a d_v inversely related to humidity conditions at the vapor
292 source (Aemisseger et al., 2014). However, the lack of correlation between d_v and RH_s in our
293 data, whilst the d_v - q correlation is stronger, suggests that mixing processes between air
294 masses characterized by different vapor origins and concentrations have weakened the d_v and
295 RH_s relation, as was the case for the δ_v - q correlation.

296 Since it is hardly modified by equilibrium condensation, d_v can be considered as a
297 conservative tracer of vapor sources during mixing processes. Nevertheless, the conservative
298 behaviour of d_v during rainout is perturbed by the non-linearity in the definition of deuterium
299 excess: the delta-notation approximation induces a small shift in d_v when there is a large

300 decrease in $\delta^{18}\text{O}$ and δD (Gat et al., 1996; Angert et al., 2008; Welp et al., 2012). In the
301 observed range of $\delta^{18}\text{O}$ (from -11 to -18‰), we have estimated this effect to induce a 2.5‰
302 increase in d_v , while the substantial variations in d_v observed in our daily data are significantly
303 higher (from 15 to 26‰), allowing the use of d_v as a tracer of different vapor pools.

304

305 **4.2 Regional isotopic signatures**

306 In order to examine the link between the isotopic characteristics of vapor and the air mass
307 trajectories since its oceanic origin, data were classified, on a daily basis, following the three
308 main regional features schematically represented in Fig. 1. Corresponding hourly data are
309 scattered in the $\delta^{18}\text{O}$ - δD plot distinctly above the local meteoric water line (LMWL, Figure
310 4), and show isotopically depleted compositions for air masses coming from the North
311 Atlantic, while air masses coming from the Mediterranean Sea display isotopically enriched
312 vapor (Table 5, Figure 4). For air masses coming from the Bay of Biscay, hourly data
313 encompass the entire isotopic range. Local climatic data associated with the three
314 meteorological situations reflect synoptic weather conditions related to origin of air masses.
315 Air masses coming from the North Atlantic are associated with cold, dry and strong winds,
316 while those from the Mediterranean are associated on the contrary with warm, wet and light
317 winds (Table 5). The Bay of Biscay is an intermediate situation. It thus appears that the
318 greater the distance over land (Figure 1), the more depleted is δ_v . The northern trajectory
319 corresponds to a “Mistral” situation: a typical cold, dry and strong north-northwest wind that
320 affects the north of the occidental Mediterranean basin 130 days a year on average. The air
321 mass is gradually dried out by rainout processes over land and accelerated in the Rhône River
322 Valley and acquires a depleted isotopic signature. On the contrary, an air mass travelling over
323 the Mediterranean Sea with the slight thermal wind or sea breeze coming from the South is
324 moistened and acquires and maintains an enriched isotopic signature.

325 With respect to d_v , North Atlantic air masses bring higher values (+23.2‰) than
326 Mediterranean air masses (+18.6‰), but the main feature which appears on the $\delta^{18}\text{O}$ - δD plot
327 (Figure 4) is the distinct separation between nocturnal and diurnal hourly data, with the latter
328 plotting higher above the meteoric lines. This feature is observed for each of the three air
329 mass origins.

330 For the three classes of data, strong linear fits are evidenced (Figure 4), with slopes lower than
331 eight, a value attributed to thermodynamic equilibrium, as it approximately represents the

332 average ratio between D and ^{18}O liquid-vapor equilibrium fractionation. Such low slopes have
333 also been observed in atmospheric vapor from Hawaii (7.02 (Bailey et al., 2013)), Greenland
334 (between 6.47 and 7.44 (Steen-Larsen et al., 2013)), Western Siberia (between 5.6 and 7.7
335 (Bastrikov et al., 2014)), and in North America (7.5 (Berkelhammer et al., 2013)). The
336 previously described shift in d_v during Rayleigh-type rainout, due to the non-linearity in the
337 deuterium excess definition, is not sufficient for explaining these low slopes, and non-
338 equilibrium processes such as evaporation are also probably involved (Gibson et al., 2008).

339

340 **4.3 Analysis of average daily cycles**

341 In order to observe the diurnal variations suggested by the night-day separation, 24-hour
342 average values of isotopic and climatic data are plotted for the three air mass origins (Figure
343 5). A well-pronounced cyclicity appears for d_v in each meteorological condition. For Bay of
344 Biscay origins, the average d_v cycle is very similar to the North Atlantic conditions, with
345 larger standard deviations, reflecting a more variable climatic situation. For Mediterranean
346 conditions, the d_v cycle is higher in amplitude than for North Atlantic conditions, and lower in
347 absolute values, especially during the night. The high standard deviations observed during the
348 last hours of the day correspond to calibration periods for which there are fewer data, but may
349 also be due to variations in the timing of the PBL evening transition. The increase in d_v during
350 the morning is mainly associated with a δD increase, while $\delta^{18}\text{O}$ variations are smoother.
351 Amplitudes of daily isotopic variations are higher for Mediterranean conditions (9.7‰,
352 16.2‰ and 1.3 ‰ for d_v , δD and $\delta^{18}\text{O}$ respectively) than for North Atlantic ones (7.0‰,
353 13.1‰ and 1.1‰ for d_v , δD and $\delta^{18}\text{O}$ respectively).

354 From a climatic point of view, we observe high diurnal variations in RH_a , mainly driven by
355 the large amplitude of air temperature variations between night and day (not shown). As
356 discussed above, the significance of relative humidity conditions in terms of evaporation
357 conditions – and deuterium excess control – is only relevant at surface temperature. The
358 variations are smoother for RH_s , and it more or less follows the absolute amount of water
359 (Figure 5). Under Mediterranean conditions, a distinct increase of q occurs in the morning,
360 indicating a net addition of vapor in the atmosphere. Under North Atlantic conditions, the q
361 increase is lower, but still detectable.

362 The daily cyclicity of the planetary boundary layer height (PBLH) is specifically related to the
363 different atmospheric conditions. The PBLH attains around 1100m on average during the

364 afternoon under North Atlantic and Bay of Biscay conditions, with a significant standard
365 deviation. Under Mediterranean conditions, the PBLH is less variable and remains at almost
366 700m. Nocturnal values are also very low -less than 100m- in Mediterranean conditions,
367 compared to 400-500m in the other weather situations. Low PBLH in Mediterranean
368 conditions corresponds to weak turbulence and air stability resulting from light winds., while
369 Northerly advection transports a relatively cold air mass over a warmer surface, leading to a
370 weaker stratification.

371 **Day-time processes: contribution of local evaporation**

372 The diurnal increase in d_v is a widely observed feature, which reflects the diurnal variation of
373 the water and air mass balances of the planetary boundary layer. In many studies, it has been
374 attributed to entrainment of free atmosphere into the boundary layer (Lai and Ehleringer,
375 2011; Zhang et al., 2011; Welp et al., 2012; Berkelhammer et al., 2013). However, it could
376 also be due to the addition of locally evaporated vapor, as was observed by Welp et al. (2012).
377 The direction of vapor concentration changes associated with these d_v variations can help to
378 identify which of these two processes dominates the PBL water mass budget. Entrainment
379 brings a dryer air into the PBL, and thus causes a day-time decrease in vapor concentration,
380 while an increase in mixing ratio points to the addition of an evaporation flux. Note that the
381 transpiration component of evapotranspiration is not expected to carry high d_v , as it has the
382 same isotopic composition as the soil water at steady state (Yakir et Wang, 1996; Williams et
383 al., 2004). In addition, the free atmospheric air is characterized by a isotopically lighter vapor
384 (He and Smith, 1999; Bailey et al., 2013; Berkelhammer, et al 2013), and the dominance of
385 day-time entrainment during day-time is generally associated with a δ_v depletion (Lai C.-T. et
386 al., 2006; Lai and Ehleringer, 2011; Tremoy et al., 2012; Bailey et al., 2013; Berkelhammer,
387 et al 2013). Welp et al. (2012), compared six measurement locations and found that both local
388 evapotranspiration and entrainment were involved: in some of their sites, the d_v daily increase
389 was associated with a $\delta^{18}\text{O}$ decrease during the early morning due to entrainment of free
390 atmosphere into the boundary layer during convective mixing, while the subsequent slight
391 $\delta^{18}\text{O}$ increase came from evapotranspiration. Our data display daytime increases in q , $\delta^{18}\text{O}$
392 and δD (Figure 5), and thus indicates that the addition of surface vapor is the dominant
393 process governing the d_v cyclicity during the day.

394

395 **Nocturnal processes: dew formation**

396 During the night, the PBL subsidence corresponds to the disappearance of both the surface
397 heat fluxes and entrainment. There is thus no further addition of water vapor to the
398 atmosphere. The large-scale motion becomes dominant and, without changing the total PBL
399 mass, redistributes it horizontally (Medeiros et al., 2005). We can thus interpret the nocturnal
400 isotopic values as representing an average signal, onto which are superimposed day-time
401 fluxes. The tendencies identified at daily time step which are interpreted in terms of regional
402 signature, that is to say, depleted (enriched) δ_v and higher (smaller) d_v under North Atlantic
403 (Mediterranean) conditions, are recovered in night-time values (Table 5, Figure 6). However,
404 the isotopic composition is not constant and follows a gradual depletion during the 20h-6h
405 UTC period, together with a decrease in water concentration and a stable d_v value, which
406 indicates a progressive Rayleigh-condensation process, as was observed by Berkelhammer et
407 al. (2013). The averaged composition of the planetary boundary layer is thus represented by
408 the value measured just after the sunset (20h UTC), when the PBL vanishes and produces a
409 vertical mixing of the atmosphere, and before the influence of dew formation. The d_v values
410 remains high during the night (on average $15,1 \pm 0,5\text{\textperthousand}$ under Mediterranean conditions and
411 $20,9 \pm 0,7\text{\textperthousand}$ under North Atlantic conditions), and suggest that the influence of local vapor
412 still affects the average isotopic signal.

413

414 **4.4 Local isotopic signatures**

415 The concomitant increase of q and d_v during day-time in our average data indicates that the d_v
416 cyclicity is mainly driven by local vapor fluxes. As stated above, the location of the
417 experimental site close to the main lagoon, and the important availability of open water in the
418 surroundings, point to a dominant contribution of evaporation upon transpiration. In order to
419 calculate the local vapor isotopic composition (δ_E), we use a two-component mixing model
420 based on the linear correlation between $1/q$ and δ_v , derived from the “Keeling plot” method.
421 The validity of this simple model and the possible contribution of regional advection will then
422 be discussed.

423 The original Keeling approach (Keeling, 1958) was initially proposed to describe the addition
424 of CO_2 into the atmosphere, and then further used to determine the isotopic composition of
425 evapotranspired vapor flux (Yakir and Sternberg, 2000; Yepez et al., 2003; Williams et al.,
426 2004; Wang et al., 2010; Zhang et al., 2010; Noone et al., 2011; Lee et al., 2012; Griffis et al.,
427 2013; Noone et al., 2013). Assuming an isotopically stable background, with an initial mixing

428 ratio q_0 (mmol/mol) and a vapor composition δ_0 , the addition of a water vapor amount W_1
429 (mmol) with a composition δ_1 , leads to the following mixing equations:

430
$$q = q_0 + W_1 \quad (3)$$

431 where q is the mixing ratio (mmol/mol) of the resulting atmosphere. Attributing an isotopic
432 composition to each of these vapor pools, the corresponding isotopic mass balance is:

433
$$\delta_v = (\delta_0 - \delta_1) \cdot \frac{q_0}{q} + \delta_1 \quad (4)$$

434 where δ_v is the vapor composition of the resulting atmosphere. In a data set characterising the
435 progressive addition of vapor in a closed system, the δ_v *versus* $1/q$ relation displays a linear
436 shape, and the composition of the added vapor δ_1 is deduced from the intercept (for $q \rightarrow \infty$).

437 However, in an open atmosphere where water vapor is added through the mixing with a
438 humid air mass, equation (3) becomes:

439
$$q = xq_0 + (1 - x)q_1 \quad (5)$$

440 Where x is the fraction of the initial background air, q_1 is the mixing ratio of the added air
441 mass (mmol/mol), and the corresponding isotopic mass balance is:

442
$$\delta_v = (\delta_0 - \delta_1) \cdot \frac{xq_0}{q} + \delta_1 \quad (6)$$

443 In a δ_v *versus* $1/q$ plot, the composition of the added vapor is then deduced for $x=0$, i.e. by
444 extrapolating the linear trend until $1/q_1$.

445 The application of this two-component mixing model thus requires the knowledge of the
446 vapor content of the added air. If it comes from open water evaporation, we can use the
447 mixing ratio which corresponds to saturation conditions (Noone, 2011, 2012). Indeed, as
448 described by the diffusion model of Craig & Gordon (1965), evaporation results from the
449 diffusion of vapor between a saturation concentration at the water-air interface and open air.

450 We focus our discussion on the two most contrasted meteorological situations, i.e.
451 Mediterranean and North Atlantic air mass origins. Strong correlations are found between
452 average values of δ_v and $1/q$ for the period of q increase, i.e 5h-13h UTC for North Atlantic
453 situations and 5h-10h for Mediterranean situations (R^2 values are between 0.85 and 0.96, see
454 Figure 6). The local end-members are calculated for the average value of saturation mixing
455 ratio at the water surface temperature (q_s), during the daily maximum air water concentrations
456 (at 13h UTC or 10h UTC). Uncertainties are determined as resulting from error propagation

457 of the linear model in the whole range of q_s standard deviation. The resulting compositions of
 458 local end-members (δ_E) are: $\delta^{18}\text{O} = -12.5\text{\textperthousand}$ (-12.3\text{\textperthousand} to -12.9\text{\textperthousand}); $\delta\text{D} = -48\text{\textperthousand}$ (-44\text{\textperthousand} to -54\text{\textperthousand})
 459 for North Atlantic conditions, $\delta^{18}\text{O} = -11.8\text{\textperthousand}$ (-11.0\text{\textperthousand} to -12.5\text{\textperthousand}); $\delta\text{D} = -58\text{\textperthousand}$ (-46\text{\textperthousand} to -68\text{\textperthousand})
 460 for Mediterranean conditions (Figure 7). These results show the high deuterium excess values
 461 characterizing the surface vapor ($d_v = 52\text{\textperthousand} \pm 6\text{\textperthousand}$ for North Atlantic and $37\text{\textperthousand} \pm 5\text{\textperthousand}$ for
 462 Mediterranean conditions). Such high values are consistent with the isotopic composition of
 463 open water evaporation estimated from the Craig and Gordon model (Craig and Gordon,
 464 1965; Gat et al, 1994). The high d_v of evaporated moisture have made it possible to detect its
 465 contribution to regional precipitation (Gat et Matsui, 1991, Gat et al, 1994) or to partition the
 466 composition of a vapor flux into evaporation and transpiration (Williams et al., 2004). In our
 467 case, these high d_v values confirm that evaporation is largely dominant upon transpiration,
 468 and the higher d_v under North Atlantic air mass conditions is consistent with lower RH_s ,
 469 compared to Mediterranean conditions (Figure 5, Table 5).

470 As a first attempt, we use this δ_E composition for interpreting the diurnal amplitude of δ_v from
 471 a simple isotopic mass balance:

$$472 \quad \frac{W_E}{W} = \frac{\delta_{v(\text{max})} - \delta_{v(\text{min})}}{\delta_E - \delta_{v(\text{min})}} \quad (7)$$

473 Where W_E/W represents the mass (or molar) ratio of local vapor to total atmospheric
 474 moisture, $\delta_{v(\text{min})}$ corresponds to the vapor background and $\delta_{v(\text{max})}$ is the maximum contribution
 475 of local vapor. We find 21% of local vapor in the ambient moisture under North Atlantic
 476 conditions, consistently when using $\delta^{18}\text{O}$ and δD compositions, and 43 to 48% under
 477 Mediterranean conditions, when using δD and $\delta^{18}\text{O}$ mass balances, respectively.

478 The lower amplitude of diurnal variations observed under North Atlantic condition would
 479 thus indicate a lower proportion of local vapor, but, compared to the Mediterranean situation,
 480 North Atlantic conditions correspond to stronger average potential evapotranspiration rates:
 481 $5.8\text{mm} \cdot \text{day}^{-1}$ *versus* $3.8\text{mm} \cdot \text{day}^{-1}$ (Table 5). This apparent contradiction indicates that the
 482 isotopic imprint of local evaporation is diluted by advection, consistently with the high wind
 483 speed that prevails under North Atlantic conditions (2.0 m.s^{-1} compared to 0.7 m.s^{-1} for
 484 Mediterranean conditions). The local vapor is thus flushed by advection of dry northward air
 485 masses, and since this advected vapor may carry a different isotopic signature than the
 486 nocturnal background, a simple two-component model is not sufficient to describe the PBL
 487 water balance.

488 We have performed sensitivity analysis to evaluate the impact of a third component on the use
489 of the δ_v - $1/q$ relationship for determining δ_E , considering an advected air mass dryer than
490 local atmosphere (i.e. on the right hand of observed data in Figure 6). The occurrence of
491 regional advection remains compatible with a linear δ_v - $1/q$ trend, but slightly influences the
492 observed slope, and thus, the estimated humid end-member composition: if the advected
493 vapor composition is more enriched than the initial background, it leads to overestimate the δ_E
494 value, and vice-versa. The composition of the advected vapor is isotopically heavier than the
495 5:00 UTC value, since the nocturnal dew formation induces a depletion of atmospheric vapor.
496 The use of a two-component mixing assumption would therefore lead to overestimate δ_E , and
497 the actual average composition of local vapor is expected to plot between this δ_E estimate and
498 daily maximum measured δ_v (Figure 7).

499 Nevertheless, this simple mass balance approach can be used as a framework for deciphering
500 the complex regional and local influences affecting δ_v and d_v . In addition, the processes
501 involved in the diurnal isotopic behaviour of atmospheric vapor can be summarized in the
502 $\delta^{18}\text{O}$ - δD plot, which is a good mean to understand the drivers of d_v variations (Figure 7). The
503 two clusters of average vapor data are distributed along two linear trends defined by the q -
504 increase period of the day, which also meet the calculated value of δ_E . These trends result
505 from the addition of local vapor into the ambient air, but, as discussed above, are also
506 influenced by the input (and flushing) of regional advection. The day-time vapor composition
507 then oscillates, but stays around the maximum δ_v value, until the abrupt shift that occurs at
508 20:00 UTC, during sunset, consistently for both meteorological situations. The d_v decrease
509 observed when the PBL vanishes corresponds to the vertical mixing of the PBL, as previously
510 stated, and is therefore driven by the mixing with a more regional vapor. The night-time
511 evolution of δ_v is thus slightly shifted closer to the meteoric water line, compared to day-time
512 compositions. The progressive condensation that occurs between 20:00 and 5:00 UTC
513 maintains the δ_v along a regression line roughly parallel to the LMWL.

514 The stronger advection rate which prevails under North-Atlantic conditions and which
515 smoothed the diurnal amplitude of variation, suggests that the higher average d_v signature of
516 water vapor (Table 5) results from the combined influences of higher d_v in δ_E and in the
517 regional vapor. Such high d_v for North-Atlantic air masses can be explained by the longer
518 continental trajectory. A more detailed mass balance including a quantification of advection

519 fluxes would allow a more precise determination of the local evaporation composition, and
520 would also help to determine the composition of regional vapor.

521

522 **5 Conclusions**

523 Our results showed that daily averages of atmospheric vapor compositions are mainly
524 controlled by synoptic and mesoscale weather conditions, related to air mass origin and
525 trajectory. Cold, dry and strong winds coming from the North bring an isotopically depleted
526 vapor. Inversely, warm, wet and light winds coming from the South bring an isotopically
527 enriched vapor. In all situations, d_v is higher than the global average of 10, and higher than
528 deuterium excess measured in rainfall, both when considering the small rainfall events during
529 the campaign, or the long-term average composition of regional precipitation. Higher d_v is
530 found for Northern air masses (23.2‰) than for Mediterranean air masses (18.6‰), but the
531 amplitude of day-night differences is more important than day-to-day variations, and the
532 drivers of these diurnal variations have to be understood for interpreting the isotopic signal
533 with respect to its relevant spatiotemporal scales. Indeed, a day-time increase in d_v can be
534 caused either by entrainment of free atmospheric air, either by local evaporation, both
535 processes having different spatial significances.

536 Unlike evaporation, the contribution of free atmospheric air would have induced a decrease in
537 absolute vapor concentration, and our twenty-four hour average data clearly indicate that the
538 diurnal δ_v cycles are essentially driven by local evaporation. Based on the robust alignment of
539 average data in a δ_v - $1/q$ plot for the q -increase periods of the day, we applied a two-
540 component mixing model for estimating the composition of local evaporation (δ_E). This two-
541 component mixing assumption does not account for the influence of regional advection,
542 which modulates the amplitude of diurnal δ_v variations. Sensitivity analysis showed that the
543 error associated with the use of a two-component assumption leads to slightly overestimate
544 the δ_E values, especially under North-Atlantic conditions. Nevertheless, we found higher d_v
545 for the local vapor composition under North Atlantic air mass conditions consistent with
546 lower humidity conditions. In addition, the stronger advection rate that prevails under North-
547 Atlantic conditions suggests that, in this situation, the higher average d_v of water vapor also
548 reflects the signature of regional vapor.

549 Overall, our data showed that mixing ratio is a better predictor of deuterium excess variations
550 than relative humidity, at both daily and sub-daily time scales, because mixing processes

551 between different vapor sources have weakened the relevance of relative humidity as an
552 indicator of evaporation conditions. At the daily time step, mixing ratio is a proxy of the air
553 mass origin, since there is a huge contrast between water content of Northern and
554 Mediterranean air masses. At the sub-daily time step, the d_v - q correlation observed during the
555 q -increase period of the day results from the addition of local evaporation. We have proposed
556 a depiction of typical daily cycles of water vapor isotopic composition under different
557 meteorological conditions, which could be used as a framework for further quantitative
558 analysis of vapor sources during specific periods.

559

560

561 **Acknowledgements**

562 This work was performed in the framework of Hélène Delattre's PhD. It was supported by
563 CNRS-INSU (EC2CO-VISOTOP project, and contribution to the thesis grant), by Region
564 PACA (contribution to the thesis grant, and to the Picarro instrument), by the Fédération de
565 Recherche ECCOREV (contribution to the Picarro instrument and Eau-Trace project). We
566 also thank the Réserve Nationale de Camargue warmly for having welcomed our experiments
567 and contributing to the sampling.

568

569

569 **References**

570 Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I. and Wernli, H.:
571 Deuterium excess as a proxy for continental moisture recycling and plant transpiration,
572 *Atmos. Chem. Phys.*, 14, 4029–4054, doi:10.5194/acp-14-4029-2014, 2014.

573 Angert, A., Lee, J.-E. and Yakir, D.: Seasonal variations in the isotopic composition of near-
574 surface water vapour in the eastern Mediterranean, *Tellus B*, 60, 674–684,
575 doi:10.1111/j.1600-0889.2008.00357.x, 2008.

576 Armengaud, A., Koster, R. D., Jouzel, J. and Ciais, P.: Deuterium excess in Greenland snow:
577 Analysis with simple and complex models, *J. Geophys. Res.*, 103, 8947–8953, 1998.

578 Bailey, A., Toohey, D. and Noone, D.: Characterizing moisture exchange between the
579 Hawaiian convective boundary layer and free troposphere using stable isotopes in water, *J.*
580 *Geophys. Res. Atmos.*, 118, 8208–8221, doi:10.1002/jgrd.50639, 2013.

581 Bastrikov, V., Steen-Larsen, H. C., Masson-Delmotte, V., Gribanov, K., Cattani, O., Jouzel, J.
582 and Zakharov, V.: Continuous measurements of atmospheric water vapour isotopes in western
583 Siberia (Kourovka), *Atmos. Meas. Tech.*, 7, 1763–1776, doi:10.5194/amt-7-1763-2014, 2014.

584 Berkelhammer, M., Hu, J., Bailey, A., Noone, D. C., Still, C. J., Barnard, H., Gochis, D.,
585 Hsiao, G. S., Rahn, T. and Turnipseed, A.: The nocturnal water cycle in an open-canopy
586 forest, *J. Geophys. Res. Atmos.*, 118, 10,225–10,242, doi:10.1002/jgrd.50701, 2013.

587 Boucher, O., Myhre, G. and Myhre, A.: Direct human influence of irrigation on atmospheric
588 water vapour and climate, *Clim. Dyn.*, 22, 597–603, doi:10.1007/s00382-004-0402-4, 2004.

589 Brubaker, K. L., Entekhabi, D. and Eagleson, P. S.: Estimation of Continental Precipitation
590 Recycling, *J. Clim.*, 6, 1077–1089, 1993.

591 Brutsaert, W.: Indications of increasing land surface evaporation during the second half of the
592 20th century, *Geophys. Res. Lett.*, 33, L20403, doi:10.1029/2006GL027532, 2006.

593 Celle, H., Daniel, M., Mudry, J. and Blavoux, B.: Signal pluie et traçage par les isotopes
594 stables en Méditerranée occidentale. Exemple de la région avignonnaise (Sud-Est de la
595 France), *C. R. Acad. Sci. Paris, Earth Planet. Sci.*, 331, 647–650, 2000.

596 Celle-Jeanton, H., Travi, Y. and Blavoux, B.: Isotopic typology of the precipitation in the
597 Western Mediterranean region at three different time scales, *Geophys. Res. Lett.*, 28, 1215–
598 1218, 2001.

599 Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine
600 atmosphere, in *Stable Isotopes in Oceanographic Studies and Paleotemperatures*, edited by E.
601 Tongiorgi, pp. 9–130, Spoleto, Italy., 1965.

602 Dai, A., Qian, T., Trenberth, K. E. and Milliman, J. D.: Changes in Continental Freshwater
603 Discharge from 1948 to 2004, *J. Clim.*, 22, 2773–2792, doi:10.1175/2008JCLI2592.1, 2009.

604 Dansgaard, W.: Stable isotopes in precipitation, *Tellus*, 16, 436–468, 1964.

605 Destouni, G., Asokan, S. M. and Jarsjö, J.: Inland hydro-climatic interaction: Effects of
606 human water use on regional climate, *Geophys. Res. Lett.*, 37, L184402,
607 doi:10.1029/2010GL044153, 2010.

608 Eltahir, E. A. B. and Bras, R. L.: PRECIPITATION RECYCLING, *Rev. Geophys.*, 34, 367–
609 378, 1996.

610 Farlin, J., Lai, C.-T. and Yoshimura, K.: Influence of synoptic weather events on the isotopic
611 composition of atmospheric moisture in a coastal city of the western United States, *Water
612 Resour. Res.*, 49, 3685–3696, doi:10.1002/wrcr.20305, 2013.

613 Fu, G., Charles, S. P. and Yu, J.: A critical overview of pan evaporation trends over the last
614 50 years, *Clim. Change*, 97, 193–214, doi:10.1007/s10584-009-9579-1, 2009.

615 Galewsky, J., Rella, C., Sharp, Z., Samuels, K. and Ward, D.: Surface measurements of upper
616 tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile, *Geophys.
617 Res. Lett.*, 38, L17803, doi:10.1029/2011GL048557, 2011.

618 Gat, J. R.: Atmospheric water balance — the isotopic perspective, *Hydrol. Process.*, 14,
619 1357–1369, 2000.

620 Gat, J.R., Matsui, E.: Atmospheric water balance in the Amazon basin: an isotopic
621 evapotranspiration model. *J. Geophys. Res.*, 96, D7, 13179-13188, 1991.

622 Gat, J.R., Bowser, C.J., Kendall, C.: The contribution of evaporation from the Great Lakes to
623 the continental atmosphere: estimate based on stable isotope data. *Geophys. Res.Let.*, 21, 7,
624 557-560, 1994.

625 Gat, J. R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulos, D. and Basturk, O.: The
626 stable isotope composition of waters of the eastern Mediterranean Sea, *J. Geophys. Res.*, 101,
627 6441–6451, 1996.

628 Gibson, J. J., Birks, S. J., and Edwards, T. W. D. : Global prediction of δA and $\delta 2H-\delta 18O$
629 evaporation slopes for lakes and soil water accounting for seasonality, *Tellus*, 16, 436-468,
630 doi:10.1111/j.2153- 3490.1964.tb00181.x, 2008.

631 Gonfiantini, R.: Environmental isotopes in lake studies, in: *Handbook of Environmental
632 Isotope geochemistry*, 2, Fritz, P. and Fontes, J. C. Editors., Elsevier, Amsterdam, 113-163,
633 1986.

635 Griffis, T. J.: Tracing the flow of carbon dioxide and water vapor between the biosphere and
636 atmosphere: A review of optical isotope techniques and their application, *Agric. For.
637 Meteorol.*, 174-175, 85–109, doi:10.1016/j.agrformet.2013.02.009, 2013.

638 Griffis, T. J., Lee, X., Baker, J. M., Billmark, K., Schultz, N., Erickson, M., Zhang, X.,
639 Fassbinder, J., Xiao, W. and Hu, N.: Oxygen isotope composition of evapotranspiration and

640 its relation to C4 photosynthetic discrimination, *J. Geophys. Res.*, 116, G01035,
641 doi:10.1029/2010JG001514, 2011.

642 Gupta, P., Noone, D., Galewsky, J., Sweeney, C. and Vaughn, B. H.: Demonstration of high-
643 precision continuous measurements of water vapor isotopologues in laboratory and remote
644 field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS)
645 technology, *Rapid Commun. Mass Spectrom.*, 23, 2534–2542, doi:10.1002/rcm.4100, 2009.

646 He, H. and Smith, R. B.: Stable isotope composition of water vapor in the atmospheric
647 boundary layer above the forests of New England, *J. Geophys. Res.*, 104, 11,657–11,673,
648 1999.

649 IAEA: Reference Sheet for VSMOW2 and SLAP2 international measurement standards.
650 Issued 2009-02-13, International Atomic Energy Agency, Vienna , 5 p.,
651 http://curem.iaea.org/catalogue/SI/pdf/VSMOW2_SLAP2.pdf, 2009.

652 Jacob, H. and Sonntag, C.: An 8-year record of the seasonal variation of 2H and 18O in
653 atmospheric water vapour and precipitation at Heidelberg, Germany, *Tellus B*, 43, 291–300,
654 1991.

655 Johnson, L. R., Sharp, Z. D., Galewsky, J., Strong, M., Van Pelt, A. D., Dong, F. and Noone,
656 D.: Hydrogen isotope correction for laser instrument measurement bias at low water vapor
657 concentration using conventional isotope analyses: application to measurements from Mauna
658 Loa Observatory, Hawaii., *Rapid Commun. mass Spectrom.*, 25, 608–616,
659 doi:10.1002/rcm.4894, 2011.

660 Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S.
661 J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., Stuiver, M. and White, J.: Validity
662 of the temperature reconstruction from water isotopes in ice cores, *J. Geophys. Res.*, 102,
663 26,471–26,487, 1997.

664 Jouzel, J., Delaygue, G., Landais, A., Masson-Delmotte, V., Risi, C. and Vimeux, F.: Water
665 isotopes as tools to document oceanic sources of precipitation, *Water Resour. Res.*, 49, 7469–
666 7486, doi:10.1002/2013WR013508, 2013.

667 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan,
668 G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D.,
669 Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson,
670 K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
671 Weber, U., Williams, C., Wood, E., Zaehle, S. and Zhang, K.: Recent decline in the global
672 land evapotranspiration trend due to limited moisture supply, *Nature*, 467, 951–954,
673 doi:10.1038/nature09396, 2010.

674 Iannone, R. Q., D. Romanini, O. Cattani, H. A. J. Meijer, and E. R. Th. Kerstel:, Water
675 isotope ratio (d2H and d18O) measurements in atmospheric moisture using an optical
676 feedback cavity enhanced absorption laser spectrometer, *J. Geophys. Res.*, 115, D10111,
677 doi:10.1029/2009JD012895, 2010.

678 Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in
679 rural areas, *Geochim. Cosmochim. Acta*, 13, 322–334, 1958.

680 Kurita, N., Newman, B. D., Araguas-Araguas, L. J. , Aggarwal, P.: Evaluation of continuous
681 water vapor δ D and δ 18O measurements by off-axis integrated cavity output spectroscopy,
682 *Atmos. Meas. Tech.*, 5, 2069-2080, 2012.

683 Lai, C.-T., Ehleringer, J. R., Bond, B. J. and Paw U, K. T.: Contributions of evaporation,
684 isotopic non-steady state transpiration and atmospheric mixing on the δ 18O of water vapour
685 in Pacific Northwest coniferous forests, *Plant, Cell Environ.*, 29, 77–94, 2006.

686 Lai, C.-T. and Ehleringer, J. R.: Deuterium excess reveals diurnal sources of water vapor in
687 forest air., *Oecologia*, 165, 213–223, doi:10.1007/s00442-010-1721-2, 2011.

688 Lee, X., Smith, R. and Williams, J.: Water vapour 18O/16O isotope ratio in surface air in
689 New England, USA, *Tellus B*, 58, 293–304, doi:10.1111/j.1600-0889.2006.00191.x, 2006.

690 Lee, X., Huang, J. and Patton, E. G.: A Large-Eddy Simulation Study of Water Vapour and
691 Carbon Dioxide Isotopes in the Atmospheric Boundary Layer, *Boundary-Layer Meteorol.*,
692 145, 229–248, doi:10.1007/s10546-011-9631-3, 2012.

693 Medeiros, B., Hall, A. and Stevens, B.: What Controls the Mean Depth of the PBL?, *J. Clim.*,
694 18, 3157–3172, 2005.

695 Merlivat, L. and Jouzel, J.: Global Climatic Interpretation of the Deuterium-Oxygen 18
696 Relationship for Precipitation, *J. Geophys. Res.*, 84, 5029–5033, 1979.

697 Monteith, J. L.: Evaporation and environment, *Symposia of the Society for Experimental*
698 *Biology*, 19, 205–224, 1965.

699 Noone, D., Galewsky, J., Sharp, Z. D., Worden, J., Barnes, J., Baer, D., Bailey, A., Brown, D.
700 P., Christensen, L., Crosson, E., Dong, F., Hurley, J. V., Johnson, L. R., Strong, M., Toohey,
701 D., Van Pelt, A. and Wright, J. S.: Properties of air mass mixing and humidity in the
702 subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa
703 Observatory, *J. Geophys. Res.*, 116, D22113, doi:10.1029/2011JD015773, 2011.

704 Noone, D.: Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce
705 Atmospheric Moistening and Dehydration in the Tropical Midtroposphere, *J. Clim.*, 25,
706 4476–4494, doi:10.1175/JCLI-D-11-00582.1, 2012.

707 Noone, D. C. Risi, A. Bailey, M. Berkhammer, D.P. Brown, N. Buenning, S. Gregory, J.
708 Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe,
709 2013: Determining water sources in the boundary layer from tall tower profiles of water vapor
710 and surface water isotope ratios after a snowstorm in Colorado. *Atmos. Chem. Phys.*, 13,
711 1607-1623, doi:10.5194/acp-13-1607-2013, 2013.

712 Ohmura, A. and Wild, M.: Is the Hydrological Cycle Accelerating?, *Science* (80- .), 298,
713 1345–1346, doi:10.1126/science.1078972, 2002.

714 Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes in water vapor in the
715 eastern Mediterranean, *J. Geophys. Res.*, 113, D20104, doi:10.1029/2008JD009839, 2008.

716 Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker,
717 K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D.,
718 Wennberg, P. O., Strong, K., Smale, D., Mahieu, E., Barthlott, S., Hase, F., García, O.,
719 Notholt, J., Warneke, T., Toon, G., Sayres, D., Bony, S., Lee, J., Brown, D., Uemura, R. and
720 Sturm, C.: Process-evaluation of tropospheric humidity simulated by general circulation
721 models using water vapor isotopologues: 1. Comparison between models and observations, *J.*
722 *Geophys. Res.*, 117, D05303, doi:10.1029/2011JD016621, 2012.

723 Risi, C., Noone, D., Frankenberg, C. and Worden, J.: Role of continental recycling in
724 intraseasonal variations of continental moisture as deduced from model simulations and water
725 vapor isotopic measurements, *Water Resour. Res.*, 49, 4136–4156, doi:10.1002/wrcr.20312,
726 2013.

727 Roderick, M. L. and Farquhar, G. D.: The Cause of Decreased Pan Evaporation over the Past
728 50 Years, *Science* (80-.), 298, 1410–1411, doi:10.1126/science.1075390, 2002.

729 Roderick, M. L., Rotstayn, L. D., Farquhar, G. D. and Hobbins, M. T.: On the attribution of
730 changing pan evaporation, *Geophys. Res. Lett.*, 34, L17403, doi:10.1029/2007GL031166,
731 2007.

732 Salati, E., Dall'Olio, A., Matsui, E., Gat, J.R.: Recycling of water in the Amazon Basin: An
733 isotopic study, *Water Resources Research*, 15, 1250-1258, 1979.

734 Schmidt, M., Maseyk, K., Lett, C., Biron, P., Richard, P., Bariac, T. and Seibt, U.:
735 Concentration effects on laser-based $\delta^{18}\text{O}$ and $\delta^2\text{H}$ measurements and implications for the
736 calibration of vapour measurements with liquid standards, *Rapid Commun. Mass Spectrom.*,
737 24, 3553–3561, doi:10.1002/rcm.4813, 2010.

738 Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H.,
739 Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A.,
740 Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P.,
741 Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M. and White, J. W. C.: Continuous
742 monitoring of summer surface water vapor isotopic composition above the Greenland Ice
743 Sheet, *Atmos. Chem. Phys.*, 13, 4815–4828, doi:10.5194/acp-13-4815-2013, 2013.

744 Steen-Larsen, H. C., Sveinbjörnsdóttir, A. E., Peters, A. J., Masson-Delmotte, V., Guishard,
745 M. P., Hsiao, G., Jouzel, J., Noone, D., Warren, J. K. and White, J. W. C.: Climatic controls
746 on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on
747 500 days of in situ, continuous measurements, *Atmos. Chem. Phys.*, 14, 7741–7756,
748 doi:10.5194/acp-14-7741-2014, 2014.

749 Sturm, K., Hoffmann, G., Langmann, B. and Stichler, W.: Simulation of $\delta^{18}\text{O}$ in precipitation
750 by the regional circulation model REMOiso, *Hydrol. Process.*, 19, 3425–3444,
751 doi:10.1002/hyp.5979, 2005.

752 Sturm, P. and Knohl, A.: Water vapor δ 2H and δ 18O measurements using off-axis integrated
753 cavity output spectroscopy, *Atmos. Meas. Tech.*, 3, 67–77, 2010.

754 Sun, S., Meng, P., Zhang, J., Wan, X., Zheng, N. and He, C.: Partitioning oak woodland
755 evapotranspiration in the rocky mountainous area of North China was disturbed by foreign
756 vapor, as estimated based on non-steady-state 18O isotopic composition, *Agric. For.*
757 *Meteorol.*, 184, 36–47, doi:10.1016/j.agrformet.2013.08.006, 2014.

758 Sunmonu, 'Niyi, Muramoto, K., Kurita, N., Yoshimura, K. and Fujiyoshi, Y.: Characteristics
759 of Seasonal Variation of Near-Surface Water Vapor D/H Isotope Ratio Revealed by
760 Continuous in situ Measurement in Sapporo, Japan, *SOLA*, 8, 5–8, doi:10.2151/sola.2012-
761 002, 2012.

762 Tremoy, G., Vimeux, F., Cattani, O., Mayaki, S., Souley, I. and Favreau, G.: Measurements
763 of water vapor isotope ratios with wavelength-scanned cavity ring-down spectroscopy
764 technology: new insights and important caveats for deuterium excess measurements in
765 tropical areas in comparison with isotope-ratio mass spectrometry., *Rapid Commun. mass*
766 *Spectrom.*, 25, 3469–3480, doi:10.1002/rcm.5252, 2011.

767 Tremoy, G., Vimeux, F., Mayaki, S., Souley, I., Cattani, O., Risi, C., Favreau, G. and Oi, M.:
768 A 1-year long δ 18O record of water vapor in Niamey (Niger) reveals insightful atmospheric
769 processes at different timescales, *Geophys. Res. Lett.*, 39, L08805,
770 doi:10.1029/2012GL051298, 2012.

771 Tuinenburg, O. A., Hutjes, R. W. A. and Kabat, P.: The fate of evaporated water from the
772 Ganges basin, *J. Geophys. Res.*, 117, D01107, doi:10.1029/2011JD016221, 2012.

773 Vallet-Coulomb, C., Gasse, F. and Sonzogni, C.: Seasonal evolution of the isotopic
774 composition of atmospheric water vapour above a tropical lake : Deuterium excess and
775 implication for water recycling, *Geochim. Cosmochim. Acta*, 72, 4661–4674,
776 doi:10.1016/j.gca.2008.06.025, 2008.

777 Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., and Yoshida, N.: Evidence of
778 deuterium excess in water vapor as an indicator of ocean surface conditions, *J. Geophys. Res.*,
779 113, D19114, doi:10.1029/2008JD010209, 2008.

780 Van der Ent, R. J., Savenije, H. H. G., Schaeefli, B. and Steele-Dunne, S. C.: Origin and fate of
781 atmospheric moisture over continents, *Water Resour. Res.*, 46, W09525,
782 doi:10.1029/2010WR009127, 2010.

783 Wang, L., Caylor, K. K., Villegas, J. C., Barron-Gafford, G. A., Breshears, D. D. and
784 Huxman, T. E.: Partitioning evapotranspiration across gradients of woody plant cover:
785 Assessment of a stable isotope technique, *Geophys. Res. Lett.*, 37, L09401,
786 doi:10.1029/2010GL043228, 2010.

787 Wang, L., Niu, S., Good, S. P., Soderberg, K., McCabe, M. F., Sherry, R. A., Luo, Y., Zhou,
788 X., Xia, J. and Caylor, K. K.: The effect of warming on grassland evapotranspiration
789 partitioning using laser-based isotope monitoring techniques, *Geochim. Cosmochim. Acta*,
790 111, 28–38, doi:10.1016/j.gca.2012.12.047, 2013.

791 Wassenaar, L. I., Ahmad, M., Aggarwal, P., van Duren, M., Pöltenstein, L., Araguas, L. and
792 Kurttas, T.: Worldwide proficiency test for routine analysis of $\delta^{2\text{H}}$ and $\delta^{18\text{O}}$ in water by
793 isotope-ratio mass spectrometry and laser absorption spectroscopy., *Rapid Commun. mass*
794 *Spectrom.*, 26, 1641–1648, doi:10.1002/rcm.6270, 2012.

795 Welp, L. R., Lee, X., Griffis, T. J., Wen, X.-F., Xiao, W., Li, S., Sun, X., Hu, Z., Val Martin,
796 M. and Huang, J.: A meta-analysis of water vapor deuterium-excess in the midlatitude
797 atmospheric surface layer, *Global Biogeochem. Cycles*, 26, GB3021,
798 doi:10.1029/2011GB004246, 2012.

799 Wen, X.-F., Zhang, S.-C., Sun, X.-M., Yu, G.-R. and Lee, X.: Water vapor and precipitation
800 isotope ratios in Beijing, China, *J. Geophys. Res.*, 115, D01103, doi:10.1029/2009JD012408,
801 2010.

802 Wen, X.-F., Lee, X., Sun, X.-M., Wang, J.-L., Hu, Z.-M., Li, S.-G. and Yu, G.-R.: Dew water
803 isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a
804 grassland in China, *Oecologia*, 168, 549–561, doi:10.1007/s00442-011-2091-0, 2012.

805 Werner, M., Langebroek, P. M., Carlsen, T., Herold, M. and Lohmann, G.: Stable water
806 isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling
807 on a global scale, *J. Geophys. Res.*, 116, D15109, doi:10.1029/2011JD015681, 2011.

808 Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-
809 Raki, S., Boulet, G., de Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K. and Timouk, F.:
810 Evapotranspiration components determined by stable isotope, sap flow and eddy covariance
811 techniques, *Agric. For. Meteorol.*, 125, 241–258, doi:10.1016/j.agrformet.2004.04.008, 2004.

812 Worden, J., Noone, D. and Bowman, K.: Importance of rain evaporation and continental
813 convection in the tropical water cycle, *Nature*, 445, 528–32, doi:10.1038/nature05508, 2007.

814 Yakir, D. and Sternberg, L. da S. L.: The use of stable isotopes to study ecosystem gas
815 exchange, *Oecologia*, 123, 297–311, 2000.

816 Yamanaka, T. and Shimizu, R.: Spatial distribution of deuterium in atmospheric water vapor:
817 Diagnosing sources and the mixing of atmospheric moisture, *Geochim. Cosmochim. Acta*, 71,
818 3162–3169, doi:10.1016/j.gca.2007.04.014, 2007.

819 Yepez, E. A., Williams, D. G., Scott, R. L. and Lin, G.: Partitioning overstory and understory
820 evapotranspiration in a semiarid savanna woodland from the isotopic composition of water
821 vapor, *Agric. For. Meteorol.*, 119, 53–68, doi:10.1016/S0168-1923(03)00116-3, 2003.

822 Zhang, S., Wen, X., Wang, J., Yu, G. and Sun, X.: The use of stable isotopes to partition
823 evapotranspiration fluxes into evaporation and transpiration, *Acta Ecol. Sin.*, 30, 201–209,
824 doi:10.1016/j.chnaes.2010.06.003, 2010.

825 Zhang, S., Sun, X., Wang, J., Yu, G. and Wen, X.: Short-term variations of vapor isotope
826 ratios reveal the influence of atmospheric processes, *J. Geogr. Sci.*, 21, 401–416,
827 doi:10.1007/s11442-011-0853-6, 2011.

828

829

830

831

831 Table 1. Isotopic compositions of laboratory standards (δ_{LS}), and statistics on raw
832 measurements from all calibrations (average and standard deviation of δ_{raw} from 40 data
833 between 20 July to 24 August 2011).

834

835

	δ_{LS} (‰ vs VSMOW)	Average and standard deviation of	
		δ_{raw} (‰)	
Standard 1	$\delta^{18}\text{O}$	-17.12	-13.89
	δD	-133.3	2.0
Standard 2	$\delta^{18}\text{O}$	-7.85	-4.85
	δD	-53.5	1.5
Standard 3	$\delta^{18}\text{O}$	0.68	3.41
	δD	3.7	1.8

836

837

837 Table 2. Evaluation of the stability of the calibrations in water vapor concentration and
838 isotopic composition, with mean slope and mean intercept \pm 1 standard deviation obtained for
839 $\delta^{18}\text{O}$ and δD with n calibrations performed from 20 July to 24 August 2011.

840

	$\delta^{18}\text{O}$	δD
Water vapor concentration		
Slope	$-0.16 \ 10^{-4} \pm 0.13 \ 10^{-4}$	$6.08 \ 10^{-4} \pm 0.99 \ 10^{-4}$
Intercept	-13.68 ± 0.25	-165.4 ± 2.0
R^2 (n=23)	$0.26 \leq R^2 \leq 1.00$	$0.89 \leq R^2 \leq 0.99$
Isotopic composition		
Slope	1.03 ± 0.01	0.98 ± 0.01
Intercept	-2.83 ± 0.07	16.3 ± 1.7
R^2 (n=40)	1.00	1.00

841

842

842

843 Table 3. Results of Standard 2 measurements ($\delta_{\text{std2-m}}$) normalized to the VSMOW2-SLAP2
 844 scale by using Standards 1 and 3 as working standards, following the IAEA Reference Sheet
 845 (IAEA, 2009). Statistics are performed from the set of 40 calibrations. Standard deviation
 846 provides the reproducibility, and the root mean square deviation from the known value
 847 (RMSE) provides the accuracy of liquid measurements.

848

	$\delta^{18}\text{O}$ (‰ VSMOW)	δD (‰ VSMOW)	d (‰)
Average of $\delta_{\text{std2-m}}$	-7.82	-53.4	9.16
Standard deviation	0.117	0.89	1.29
RMSE	0.121	0.89	1.30

849

850

851

851 Table 4. Determination coefficients (R^2) and slopes (S) of linear correlations between daily
 852 means of water vapor composition ($\delta^{18}\text{O}$, δD , d_v) and air temperature (T_a), mixing ratio (q),
 853 relative humidity at air temperature (RH_a) and relative humidity at water surface temperature
 854 (RH_s).

855

	$\delta^{18}\text{O}$ (‰)		δD (‰)		d_v (‰)	
	R^2	S	R^2	S	R^2	S
T_a (°C)	0.30	+0.54	0.27	+3.48	0.20	-0.88
q (mmol.mol ⁻¹)	0.72	+0.38	0.62	+2.39	0.54	-0.66
RH_a (%)	0.64	+0.13	0.55	+0.80	0.51	-0.23
RH_s (%)	0.33	+0.13	0.31	+0.83	0.19	-0.19

856

857

857 Table 5. Number of days (n) associated with the different origins of air masses (Figure 1).
 858 Corresponding mean values of $\delta^{18}\text{O}$, δD , deuterium excess (d_v), air temperature (T), mixing
 859 ratio (q), relative humidity (RH), wind speed (V) and potential evapotranspiration (PET)
 860 measured in the experimental site.

861

	North Atlantic [310°-360°]	Mediterranean [110°-220°]	Bay of Biscay [220°-310°]
N	10	13	13
$\delta^{18}\text{O}$ (‰)	-15.83	-13.13	-14.90
δD (‰)	-103.5	-86.5	-96.3
d_v (‰)	23.2	18.6	22.9
T_a (°C)	21.6	23.3	22.3
q (mmol.mol ⁻¹)	15.0	21.8	18.0
RH (%)	59.5	78.5	68.1
V (m.s ⁻¹)	2.0	0.7	1.6
PET (mm.day ⁻¹)	5.8	3.8	4.9

862

863

863
864 Figure 1. Location of the experimental site (star) in Camargue (Rhône River Delta), 170m
865 from the Vaccarès lagoon and 12km from the Mediterranean Sea. Coloured arrows represent
866 the three main origins and trajectories of air masses affecting the study site, (1) North
867 Atlantic, (2) Mediterranean and (3) Bay of Biscay.
868
869 Figure 2. Raw $\delta^{18}\text{O}$ and δD of our three laboratory liquid standards measured at various water
870 vapor concentrations. Error bars are smaller than the symbols. Linear regressions within the
871 concentration range encountered in Camargue during the field experiment and associated
872 slopes and determination coefficients are shown.
873
874 Figure 3. Hourly mean values of air temperature (T), mixing ratio (q), $\delta^{18}\text{O}$, δD , deuterium
875 excess (d_v) from 20 July to 24 August 2011 at the experimental site according to air mass
876 origin (see Figure 1). Grey dots are δ_v calculated in isotopic equilibrium with precipitation.
877
878 Figure 4. Hourly day-time and night-time isotopic composition of atmospheric water vapor in
879 according to air mass origin. For reference, the GMWL and LMWL are also plotted.
880
881 Figure 5. 24-hour average values of $\delta^{18}\text{O}$, δD , deuterium excess (d), relative humidity (RH),
882 mixing ratio (q) and planetary boundary layer height (PBLH) calculated from 20 July to 24
883 August 2011 according to air mass origin. Grey shading indicates standard deviation of each
884 average.
885
886 Figure 6. Relationships between 24-hour average values of δ_v and $1/q$ according to the two
887 main air mass origins, and corresponding linear regressions for the period of q increase (see
888 text). Squares indicate the isotopic composition of the local vapor end-member calculated for
889 a mixing ratio corresponding to saturation at the water surface temperature.
890
891 Figure 7. 24-hour average values of δ_v according to the two main air mass origins,
892 corresponding linear regressions for the period of q increase (see text), and calculated local
893 vapor end-member (see Figure 6 for details). For reference, the LMWL is also plotted.
894