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Abstract 24 

Ieodo Ocean Research Station (IORS), a research tower (~40 m a.s.l.) for atmospheric and 25 

oceanographic observations, is located in the East China Sea (32.07˚N, 125.10˚E). The IORS 26 

is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to 27 

observe Asian outflows without local emission effects. The seasonal variation of ozone was 28 

distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), 29 

and was largely affected by seasonal wind pattern over East Asia. At IORS, six types of air 30 

masses were distinguished with different levels of O3 concentrations by the cluster analysis of 31 

backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean 32 

background air with a lowest ozone level of 32 ppbv, which was most frequently observed in 33 

summer (July ~ August). In spring (March~April) and winter (December ~ February), the 34 

influence of Chinese outflows was dominant with higher ozone concentrations of 62 ppbv and 35 

49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the 36 

main factor determining O3 levels at IORS and its extent was dependent on meteorological 37 

state, particularly at a long-term scale.  38 

39 
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1. Introduction 40 

Ozone (O3) and its photochemical derivative, OH, are primary oxidants and key players 41 

determining oxidation capacity within the troposphere (e.g., Berchet et al. , 2013; Seinfeld and 42 

Pandis, 2006). A short-lived greenhouse gas, O3 also affects climate change and air quality 43 

(e.g., Berchet et al., 2013; Brasseur et al., 1999; IPCC 2013; Jacobson, 2012). Exposure to 44 

high O3 levels is known to increase human mortality rates (Bell and Dominici, 2008; Chang et 45 

al., 2010), reduce agricultural yields, and damage natural ecosystems (e.g., Bell et al., 2011; 46 

Karnosky et al. , 2007; Schaub et al. , 2005; Wang and Mauzerall, 2004). Tropospheric O3 is 47 

primarily transported from the stratosphere upon tropopause folding and produced by in situ  48 

photochemical reactions involving carbon monoxide (CO) and hydrocarbons in the presence 49 

of nitrogen oxides (NOx) (Brasseur et al. , 1999). Ozone is also lost by photochemical 50 

reactions and deposition to the Earth’s surface. As a result, the lifetime of O3 ranges from 51 

about a week in summer to several months in winter, which permits O3, along with other 52 

pollutants, to be transported over long distances. In previous studies, ozone levels were 53 

observed to be enhanced episodically in polluted air masses from continental outflow in 54 

remote regions of the North Atlantic and North Pacific Oceans (e.g., Fischer et al., 2011; Lin 55 

et al., 2012; Parrish et al. , 2009; Zhang et al., 2008).  56 

Particularly, East Asia has experienced a rapid development in economy and industry, from 57 

which emissions of O3 precursors such as NOx and VOCs have gradually increased (Huang et 58 

al., 2013; Monks et al., 2009; Zhao et al. , 2013) and the emission of O3 and its precursors in 59 

East Asia is expected to increase further in the near future (Zhao et al., 2013; Ohara et al., 60 

2007). As a result, the study region became a hot spot for high O3 and intensive measurements 61 

have been performed there to chart O3 and the effects it has in conjunction with climate 62 

change. Over the North Pacific Ocean, ozone has been measured on remote islands (Kato et 63 

al., 2001; Parrish et al., 2012; Tanimoto et al. , 2009; Wada et al., 2011), from ships (Ridder et 64 
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al., 2012;Watanabe et al., 2005) and by aircraft (Dupont et al., 2012; Kotchenruther et al. , 65 

2001; Walker et al. , 2010; Zhang et al., 2008).  66 

The impact of continental outflow upon the background O3 is substantial in Northeast Asia 67 

(Akimoto et al., 1996; Kondo et al., 2008; Tanimoto et al. , 2008; Wada et al. , 2011; Yamaji et 68 

al., 2006). This impact has similarly been detected near the western U.S (Fischer et al., 2011; 69 

Lin et al., 2012; Parrish et al. , 2009). Walker et al. (2010) estimated that Asian anthropogenic 70 

outflow and lightning-derived NOx emissions contributed at least 7.2 ppbv and 3.5 ppbv to O3 71 

concentration, respectively, in the North Pacific Ocean and western North America. In 72 

addition, Zhang et al. (2008) assessed that O3 in western North America was increased by 73 

Asian outflow 5-7 ppbv during spring 2006. The results of these studies indicate O3 74 

concentrations in the North Pacific-rim are regularly affected by Asian outflow. Therefore, it 75 

is critical to understand the impact of continental outflows from East Asia on O3 and 76 

oxidizing power over the North Pacific Ocean. Since IORS is located in the East China Sea 77 

(32.07̊ N, 125.10˚E) (Fig. 1) and almost equidistant from nearby South Korea, China, and 78 

Japan, it is an ideal place to observe Asian outflows without local effects (Hwang et al., 2008; 79 

Shin et al. , 2007). In this study, we present long-term measurements of O3 at IORS, located in 80 

the boundary zone between the Yellow and East China Sea. Then, we describe their 81 

characteristic variations and evaluate the continental influence on the regional background 82 

concentrations of O3.  83 

 84 

2. Methodology 85 

Ieodo Ocean Research Station is an unmanned research tower (~40 m a.s.l.) for 86 

atmospheric and oceanographic observations. It was built on rock 36 m below sea level by the 87 

Korea Institute of Ocean Science and Technology (KIOST) in 2003 (Moon et al., 2010; Shim 88 

et al., 2004). O3 has been measured at IORS since June 2003. In addition, meteorological 89 
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parameters have been monitored, which include air pressure, air temperature, relative 90 

humidity, wind speed and direction, and visibility. O3 was measured by an UV photometric 91 

analyzer (49C, Thermo Inc., U.S.A.) using the absorption of UV radiation at 253.7 nm by O3 92 

molecules. The analyzer was installed in a dry lab of the main deck, which is 29 m above sea 93 

level. Ambient air was pulled underneath the main deck through a 7 m PFA tubing (6 mm-94 

OD). The detection limit of the instrument was 1.0 ppbv. Calibration was done about once 95 

every two months with an internal ozonator. In addition, the ozone analyzer was inter-96 

compared with an identical instrument, which was calibrated against the Primary Standard. 97 

The two instruments were run side-by-side using a common inlet. The correlation coefficient 98 

of the two measurements was 0.99 in the range between 10 and 90 ppbv and ambient 99 

measurements were scaled using the relationship between the two.  100 

The data logger stored 10-min averages. There were power failures and system malfunction 101 

at IORS when it was hit by typhoon several times. Thus, raw data were first filtered manually 102 

and then the measurements bigger and smaller than 2σ (standard deviation) of the average for 103 

10 neighboring values were eliminated. This method is widely used to remove local effects 104 

for long-term period measurement (Cvitaš et al., 2004). Statistical analysis was conducted 105 

using R (v.3.0.1) (R Core Team, 2014).  106 

Backward trajectories arriving at 100 and 1500 m a.s.l. were calculated for 40 h every 00, 107 

06, 12, and 24 UTC (03, 09, 18, and 21 local time) using the NOAA Air Resources 108 

Laboratory (ARL) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 109 

model (version 4) (Draxler and Rolph, 2003, http://www.arl.noaa.gov/ready/hysplit4.html) with 110 

NCEP Final Analyses (FNL) six-hourly archived data. Isentropic trajectory was selected as it 111 

was believed to reflect a more realistic vertical motion for an adiabatic atmosphere. Forty 112 

hours were selected because it was long enough to capture regional transport patterns in the 113 

northwestern Pacific and short enough to minimize trajectory errors. The results for 100 and 114 
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1500 m showed no meaningful differences and so the following discussion will be based on 115 

1500 m.  116 

 117 

3. Ozone variations 118 

The mean concentration of 10 min O3 measurements was 52 ppbv with a maximum of 128 119 

ppbv. The variation of monthly means is presented for eight years, from June 2003 to 120 

December 2010 (Fig. 2), during which O3 increased ~2.8% year-1 until 2009 and slightly 121 

decreased afterwards. The long-term trend of O3 at IORS is consistent with recent findings of 122 

slowdown in the increase of O3 concentrations observed in Japanese background stations at 123 

Mt. Happo and others (Parrish et al., 2012). This hemispheric baseline likely affects O3 124 

distributions at IORS. Additionally, the vertical column density of tropospheric NO2 was 125 

reported to be decreased over East Asia in 2009, as observed by satellites GOME-2 and 126 

SCIAMACHY (Itahashi et al. , 2014). In the same context, emissions of NOx sharply 127 

increased in East Asia after 2000 mostly from China, but then slowed down in 2009 128 

(Tanimoto et al. , 2009; Zhao et al. , 2013). Gu et al. (2013) pointed out that the stagnation of 129 

NOx emissions in 2009 were associated with an economic recession in China.  130 

The O3 concentrations of IORS were compared with those of other remote sites in East 131 

Asia and the North Pacific for the same period: Gosan in Korea (National Institute of 132 

Environmental Research) and Ryori, Yonagunijima, and Minamitorishima in Japan (World 133 

Data Centre for Greenhouse Gases (WDCGG), http://ds.data.jma.go.jp/gmd/wdcgg/) (Fig. 1). 134 

The diurnal and seasonal variations of eight-year averaged O3 are presented here in Fig. 3. 135 

The averaged O3 concentrations of IORS, Gosan, Ryori, Yonagunijima, and Minamitorishima 136 

were 52, 39, 40, 39, and 27 ppbv, respectively. In these remote sites, the level of averaged O3 137 

concentrations decreased with increased distance from China. At IORS, O3 mixing ratios 138 

show the minimum at 9 a.m. and reached to the broad maximum at 5 p.m. The daytime build-139 
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up of O3 was 5 ppbv, which was much smaller than that in urban areas, but implied in-situ 140 

photochemical production for O3 in the marine boundary layer of the remote site (Fig. 3a). 141 

While diurnal patterns of O3 concentration stayed unchanged through seasons, their 142 

background concentrations were clearly different with being the highest in spring and the 143 

lowest in summer monsoon season. The daytime build-up of O3 at Gosan in southern island of 144 

Korea and Ryori, located at the northeasterly edge of Japan, were 8 ppbv and 6 ppbv, 145 

respectively, significantly greater than 2 ppbv at Yonagunijima (Fig. 3b). Among the five sites, 146 

the O3 concentration decreased in the afternoon only at Minamitorishima, implying O3 147 

destruction. Considering O3 loss is generally observed under low NOx conditions in the 148 

remote marine boundary layer (MBL) (Ayers et al. 1996), these variations indicate that IORS 149 

including other remote sites in East Asia were influenced by continental outflows. In the study 150 

region, the high concentration of O3 was reported to be attributed to transport of ozone or its 151 

precursors mainly from China (Tanimoto et al., 2008).  152 

At IORS, the monthly averaged O3 concentrations were the highest in April and October 153 

(62 ppbv) and lowest in August (37 ppbv) (Fig. 3c). The O3 concentrations remained high 154 

during March ~ May, resulting in a broad spring peak which was in contrast to a sharp fall 155 

peak. This is in accordance with a typical pattern that has been observed in other remote sites 156 

over Northeast Asia during the past decades (Chan et al., 2002; Jaffe et al., 1996; Kanaya et 157 

al., 2015; Kondo et al., 2008; Oltmans and Levy II, 1994; Tanimoto et al., 2005; Tanimoto et 158 

al., 2009; Watanabe et al., 2005; Weiss-Penzias et al., 2004). In particular, the second peak of 159 

O3 was the most noticeable at IORS along with Gosan in October, which was also observed in 160 

previous studies (Kanaya et al., 2015; Tanimoto et al. 2005). It is also noteworthy that outlier 161 

levels were the highest and the maximum concentration (128 ppbv) was observed in July (Fig. 162 

4a). In summer, the study region is under influence of Asian monsoon system which brings 163 

moist air from the Pacific Ocean. Meteorological parameters including relative humidity, 164 
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wind speed, and visibility indicate a clear shift in air mass from pre-monsoon to monsoon 165 

season (Fig. 4b). At IORS, O3 concentration was noticeably decreased during summer, even 166 

though temperature was high. Likewise, the O3 level of Gosan was at a minimum in summer, 167 

when the levels of precursors were the lowest with heavy rainfall. To examine seasonal 168 

characteristics of O3 distributions, all measured species were divided into five seasons: 169 

March–April, May–June (pre-monsoon period), July–August, September–November, and 170 

December–February. The seasonal wind patterns are presented in Figure 5. 171 

All O3 measurements showed bimodal distribution, with a little shoulder on the larger peak 172 

(Fig. 6a). In seasonal distributions, the smaller peak (25 ppbv) was the main mode of summer 173 

monsoon season. As shown in Figure 5, southerly winds were dominant during July–August 174 

(82%) under the influence of North Pacific High. This pattern reveals that the decrease in O3 175 

was associated with the aged marine air masses brought by the North Pacific High or tropical 176 

cyclones (Fig. 5c). In addition to aged air masses, precipitation had scavenged O3 precursors, 177 

possibly leading to lowered O3 concentrations (Hou et al. , 2015). It was also observed that O3 178 

was decreased in Beijing and Shanghai during the summer monsoon season (Safieddine et al. , 179 

2013). In May–June, the mode concentration was the highest at 65 ppbv with the least 180 

frequency (Fig. 6c). It is a transition period from continental air mass to oceanic air mass and, 181 

as a result, the stagnant conditions which had developed under high temperature without 182 

prevailing wind (Fig. 5b), led to elevated O3 concentrations. The mode concentration was the 183 

second highest (59 ppbv) in spring, which is characterized by the most effective transport of 184 

Chinese outflow by the passage of frontal system (Hou et al. , 2014; Kondo et al., 2008; Lim et 185 

al., 2012). The mode frequency was the greatest in winter, which was due to prevailing 186 

northerly winds accounting for ~87% of that period. The main mode of winter and fall, and 187 

the second mode of summer monsoon season displayed similar concentrations, which 188 

comprised the primary mode of O3 distributions observed at IORS. O3 levels are known to 189 
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exhibit lower variability at remote sites and rural areas (McKendry et al., 2014; Oltmans and 190 

Levy II, 1994). However, the results of this study challenge those of previous studies. O3 191 

concentrations of IORS were highly dependent on air masses, upon which anthropogenic 192 

influence was highly variable. This finding emphasizes the significant role of continental 193 

outflows in determining O3 concentrations in the Northeast Asian region.  194 

 195 

4. Source signatures of O3 196 

4.1. Cluster analysis of air mass trajectories  197 

 198 

Trajectories were divided into several groups using an agglomerative and hierarchical 199 

clustering algorithm with an average linkage function. Average linkage minimizes the within-200 

cluster variance while maximizing between-cluster variance and has been identified as an 201 

effective method for categorizing different synoptic situations (Kalkstein et al. , 1987). Within 202 

a cluster, the root mean square deviation (RMSD) of each trajectory from the cluster center 203 

was quantified and then summed to give the total root mean square deviation (TRMSD) (Cape 204 

et al., 2000). As a result, six trajectories were identified. The cluster analysis was performed 205 

using the Openair package in R (Carslaw and Ropkins, 2012, 2014). The distance matrix was 206 

calculated by the Euclidean distance.  207 

The averaged backward trajectories of each cluster are presented in a map (Fig. 7). Among 208 

the six clusters, W was the most dominant (23.0 %), followed by NW1 (19.9 %), N (17.9 %), 209 

SE (16.6 %), SW (13.4 %), and NW2 (9.2 %). The average O3 concentration was the highest 210 

for N (60 ppbv) and lowest for SE (40 ppbv). For the four clusters of continental air masses, 211 

the mean O3 concentrations were similar to the mean (52 ppbv) of the entire measurement set. 212 

In contrast, the marine air masses of SE and SW were characterized by low O3 concentrations, 213 

particularly during summer (32 ppbv). 214 
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 215 

4.2. Source signature by CWT (Concentration Weighted Trajectory) analysis  216 

The CWT (Concentration Weighted Trajectory) method was employed to figure out the 217 

potential source of O3 observed at IORS. The concentration of O3 for each grid-cell was 218 

calculated using the following equation (Carslaw, 2013):  219 

ln��̅�𝑖𝑗�= 1
∑ 𝜏𝑖𝑗𝑙𝑁
𝑙=1

∑ 𝑙𝑛(𝑐𝑙)𝜏𝑖𝑗𝑙𝑁
𝑙=1              (1)  220 

where, i and j indicate the indices of grid, N shows the entire number of backward trajectories, 221 

l represents the index of trajectory, 𝑐𝑙 signifies the concentration of O3 observed upon arriva l 222 

of trajectory l, and 𝜏𝑖𝑗𝑙 is the residence time of trajectory l in the grid-cell (i, j) (Carslaw, 2013; 223 

Cheng et al., 2013). In Fig. 8, the average O3 concentrations were presented over each grid-224 

cell. The O3 concentration was notably higher for NW1 when air mass passed through the 225 

Beijing region. The trajectory of NW2 was similar to that of NW1 except for vertical 226 

movement, which is typical for air masses laden with Asian dusts (e.g., Kang et al. , 2013).  227 

Because the trajectory length is inversely proportional to the residence time of air in a grid-228 

cell, the clusters N and W represent stagnant conditions, which was favorable for O3 to build 229 

up. These two trajectories were constantly observed through the year with relatively less 230 

seasonal variation at IORS (Fig. 9b). Although the air masses of SW and SE originated from 231 

the Pacific Ocean, they were likely to pick urban emissions up when passing through the 232 

Southeastern China and South Japan, respectively. The result of CWT analysis confirms that 233 

the outflows from nearby lands were the source of O3 observed at IORS, of which the Chinese 234 

influence was the most dominant.  235 

 236 

4.3. Influence of Asian continental outflows 237 
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For all clusters, the monthly variations of O3 concentrations were compared (Fig. 9a). In 238 

general, six clusters were similar in their annual pattern of O3, with higher concentrations in 239 

spring and fall and lower concentrations in summer. In contrast, for NW1, which passes 240 

through the Beijing metro area, O3 concentrations stayed high over 60 ppbv during July–241 

August without considerable decrease (Fig. 9a). Although the summer concentrations in SE 242 

were low, below 30 ppbv, in spring and fall the O3 concentration were high and comparable to 243 

those of NW1.  244 

The influence of Chinese outflows, represented by NW1, NW2, and W, was highest in 245 

winter, with a maximum occurrence (86%) in December. The study region is under influence 246 

of Asian monsoon and is characterized by winds southerly in summer and northerly in winter. 247 

The occurrence of maritime air, SE and SW, was the most frequent in summer monsoon 248 

season. The westerlies prevalent in this region are coupled with the steady occurrence of W 249 

through the year, implying a constant influence of Chinese outflows. The cluster N was 250 

commonly observed before and after summer monsoon season, during which a stagnant 251 

condition often developed under the influence of migratory anticyclone systems. The 252 

stagnation tends to linger over the Yellow Sea, accumulating pollutants from nearby lands 253 

including China, Japan as well as Korea. In fact, the high concentrations of O3 turned out to 254 

be associated with air trajectories from Chinese coastal regions. The model results of Zhao et 255 

al. (2009) also showed that the high concentration of O3 can be expanded under a high 256 

pressure system in East Asia.  257 

The annual variation of each cluster was examined (Fig. 10a). As the O3 measurement 258 

began in June 2003, the measurements of 2003 were not included in this analysis. The yearly 259 

O3 concentrations increased from 49 ppbv in 2004 to 55 ppbv in 2009 and then decreased to 260 

49 ppbv in 2010 (Fig. 2). This pattern was not reflected in NW1 and NW2, for which annual 261 

means were the highest in 2004 and lowest in 2010. Marine air masses, including SE and SW, 262 
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showed the most visible change during this period. Particularly, their annual frequencies 263 

increased in 2010, while those of clusters W, N, NW1 decreased (Fig. 10b). These results 264 

imply that marine air masses were likely to play a significant role in decreasing O3 265 

concentration in 2010. The causes underlying increased occurrence of marine air masses 266 

needs to be further investigated. These results suggest that a decrease in O3 concentrations 267 

after 2009 was not only associated with the decrease in NOx emission from China, but also a 268 

change in meteorological state in the study region.  269 

Considering that Chinese influence is implicit in N and SW, Chinese emission was the 270 

predominant factor determining the concentrations of O3 at IORS. The impact of Korean and 271 

Japanese emissions were incorporated in N and SE, apparent in spring and fall, respectively.  272 

 273 

5. Conclusion 274 

Surface O3 concentrations were determined at Ieodo Ocean Research Station (IORS) in the 275 

East China Sea (32.07̊N, 125.10˚E) from June 2003 to December 2010. The IORS is a 40 m 276 

research tower roughly equidistant from Korean, Chinese, and Japanese shores. The average 277 

concentration of O3 for the entire period was of 52 ± 16 ppbv. It is higher than those of remote 278 

sites in the Northeast Asia and implies the steady influence of continental outflows. 279 

Particularly, the seasonal differences were prominent, with two peaks in April and October 280 

(62 ppbv) and a minimum in August (37 ppbv), which are greatly dependent on synoptic scale 281 

circulation of the atmosphere which, except for summer, expedites effective transport of 282 

Asian outflows into the Northwest Pacific region. The diurnal variation of O3 showed a broad 283 

maximum in late afternoon, resulting in 5 ppbv of daytime build-up.  284 

The cluster analysis of backward trajectories identified the six air masses affecting O3 285 

concentrations at IORS. Among the six, four types of air masses originated from Asian 286 

continents, carrying their outflows (NW1, NW2, W, and N) and the other two were aged 287 



 

13 

  

marine air from the Pacific Ocean (SE, SW). The O3 concentration of these continental and 288 

marine air masses was the maximum (62 ppbv) in spring and minimum (32 ppbv) in summer, 289 

respectively. Particularly, the three clusters of NW1, NW2, and W, coming directly from 290 

mainland China, comprised 53% of all air masses which arrived at IORS, their contribution 291 

increasing up to ~86% in winter. The clusters N and W were the most frequent under stagnant 292 

condition before and after summer monsoon. In summer, the occurrence of marine air reached 293 

the maximum (~74%). These results confirm that Chinese emissions were the dominant 294 

source of O3 observed at IORS.  295 

The annual O3 concentrations increased until 2009, and then slightly decreased in 2010, 296 

which is in good accordance with NOx observed in East Asia, where a slowdown of NOx 297 

emission occurred in 2009 as a result of economic recession in China. In addition, the cluster 298 

analysis of air masses highlighted the increased contribution of marine air masses also played 299 

a role in decreasing mean concentration of O3 in 2010.  300 

 301 
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Figure Captions 530 

 531 

Figure 1. Geographical locations of (a) Ieodo Ocean Research Station and (b) Gosan, Korea, 532 

and (c) Ryori, (d) Yonagunijima, and (e) Minamitorishima, Japan. 533 

Figure 2. Monthly mean O3 concentrations at IORS, from June 2003 to December 2010, with 534 

smoothed trend (thick line) and estimated 95% confidence interval (gray shade). 535 

Figure 3. Comparison of diurnal and seasonal variations of O3 concentrations at remote sites 536 

in the Northwest Pacific region including IORS, Gosan, Yonagunijima, Ryori, and 537 

Minamitorishima. All data were averaged for 8 years (2003–2010) and seasons 538 

were divided into spring (May-April), dry summer (May- June), wet summer (July-539 

August), fall (September-November), and winter (December-February). a) diurnal 540 

variations of O3 at IORS in different seasons, b) diurnal variations of O3 at five sites, 541 

and b) monthly variations of O3 at five sites.  542 

Figure 4. a) Monthly variations of O3 presented with median, interquartile range (IQR), 543 

1.5IQR, and outliers and b) monthly distributions of temperature, relative humidity, 544 

wind speed, and visibility at IORS.  545 

Figure 5. The left panel for contour maps presenting NCEP/NCAR reanalysis wind speed in 546 

color and wind vector at 850 mb in East Asia from 2004 to 2010 and the right panel 547 

for windroses measured at IORS during (a) March–April, (b) May–June, (c) July–548 

August, (d) September–November, and (e) December–February. 549 

Figure 6. Frequency distributions of 10 min averaged O3 concentrations at IORS for a) all data, 550 

b) spring, c) dry summer, d) wet summer, e) fall, and f) winter with mode 551 

concentrations given.  552 

Figure 7. Mean trajectories of air masses classified into 6 groups. Air masses of 1500 altitude 553 

were traced backward for 40 h.  554 

Figure 8. Concentration Weighted Trajectory (CWT) analysis of O3 concentrations (ppbv).  555 

Figure 9. Monthly variations of a) O3 concentrations of six clusters and b) their monthly 556 

frequency.  557 

Figure 10. Annual variations of a) O3 concentrations for six clusters, b) their frequency.   558 
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 559 

Figure 1. Geographical locations of (a) Ieodo Ocean Research Station and (b) Gosan, Korea, 560 

and (c) Ryori, (d) Yonagunijima, and (e) Minamitorishima, Japan.  561 
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 562 

Figure 2. Monthly mean O3 concentrations at IORS, from June 2003 to December 2010, with 563 

smoothed trend (thick line) and estimated 95% confidence interval (gray shade).  564 
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c)570 

 571 

 Figure 3. Comparison of diurnal and seasonal variations of O3 concentrations at remote sites 572 

in the Northwest Pacific region including IORS, Gosan, Yonagunijima, Ryori, and 573 

Minamitorishima. All data were averaged for 8 years (2003–2010) and seasons 574 

were divided into spring (May-April), dry summer (May- June), wet summer (July-575 

August), fall (September-November), and winter (December-February). a) diurnal 576 

variations of O3 at IORS in different seasons, b) diurnal variations of O3 at five sites, 577 

and c) monthly variations of O3 at five sites.   578 
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Figure 4. a) Monthly variations of O3 presented with median, interquartile range (IQR), 583 

1.5IQR, and outliers and b) monthly distributions of temperature, relative humidity, 584 

wind speed, and visibility at IORS.  585 

 586 
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(d) 594 

 595 

(e) 596 

 597 

 598 

 599 

Figure 5. The left panel for contour maps presenting NCEP/NCAR reanalysis wind speed in 600 

color and wind vector at 850 mb in East Asia from 2004 to 2010 and the right panel 601 

for windroses measured at IORS during (a) March–April, (b) May–June, (c) July–602 

August, (d) September–November, and (e) December–February. 603 
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 604 

Figure 6. Frequency distributions of 10 min averaged O3 concentrations at IORS for a) all data, 605 

b) spring, c) dry summer, d) wet summer, e) fall, and f) winter with mode 606 

concentrations given.  607 
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  608 

Figure 7. Mean trajectories of air masses classified into 6 groups. Air masses of 1500 altitude 609 

were traced backward for 40 h.  610 
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 611 

Figure 8. Concentration Weighted Trajectory (CWT) analysis of O3 concentrations (ppbv).   612 
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 616 

Figure 9. Monthly variations of a) O3 concentrations of six clusters and b) their monthly 617 

frequency.  618 



 

35 

  

a) 619 

  620 

b) 621 

 622 

Figure 10. Annual variations of a) O3 concentrations for six clusters, b) their frequency. 623 

 624 


