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Abstract

Highly non-linear dynamical systems, such as those found in atmospheric chemistry,
necessitate hierarchical approaches to both experiment and modeling in order,
ultimately, to identify and achieve fundamental process-understanding in the full
open system. Atmospheric simulation chambers comprise an intermediate in
complexity, between a classical laboratory experiment and the full, ambient system.
As such, they can generate large volumes of difficult-to-interpret data. Here we
describe and implement a chemometric dimension reduction methodology for the
deconvolution and interpretation of complex gas- and particle-phase composition
spectra. The methodology comprises principal component analysis (PCA),
hierarchical cluster analysis (HCA) and positive least squares-discriminant analysis
(PLS-DA). These methods are, for the first time, applied to simultaneous gas- and
particle-phase composition data obtained from a comprehensive series of
environmental simulation chamber experiments focused on biogenic volatile organic
compound (BVOC) photooxidation and associated secondary organic aerosol (SOA)
formation. We primarily investigated the biogenic SOA precursors isoprene, a-
pinene, limonene, myrcene, linalool and B-caryophyllene. The chemometric analysis
is used to classify the oxidation systems and resultant SOA according to the

III

controlling chemistry and the products formed. Results show that “model” biogenic
oxidative systems can be successfully separated and classified according to their
gaseous oxidation products. Furthermore, a holistic view of results across both the
gas- and particle-phases shows the different SOA formation chemistry, initiating in
the gas-phase, proceeding to govern the differences between the various BVOC SOA
compositions. The results obtained are used to describe the particle composition in
the context of the oxidized gas-phase matrix. An extension of the technique, which
incorporates into the statistical models data from anthropogenic (i.e. toluene)
oxidation and “more realistic” plant mesocosm systems, demonstrates that such an
ensemble of chemometric mapping has the potential to be used for the classification
of more complex spectra of unknown origin. More specifically, the addition of
mesocosm data from fig and birch tree experiments shows that isoprene and

monoterpene emitting sources, respectively, can be mapped onto the statistical

model structure and their positional vectors can provide insight into their biological
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sources and controlling oxidative chemistry. The potential to extend the
methodology to the analysis of ambient air is discussed using results obtained from a
zero-dimensional box model incorporating mechanistic data obtained from the
Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient
air would prove a powerful asset in assisting with the identification of SOA sources

and the elucidation of the underlying chemical mechanisms involved.

Keywords: Volatile organic compounds, secondary organic aerosol, environmental
simulation chamber, photooxidation, principal component analysis, cluster analysis,

positive least-squares discriminant analysis, chemometrics, terpenes, mesocosm
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1. Introduction

Biogenic Volatile Organic Compounds (BVOCs) are ubiquitous in the global
troposphere, being emitted primarily from terrestrial plant life (Kanakidou et al.,
2005). It is estimated that the total annual emission rate of all (non-methane)
BVOCs is roughly ten times that of all anthropogenic volatile organic compounds,
being around 750 Tg C yr* (Sindelarova et al., 2014). With the exception of
methane, the most dominant species of BVOCs in terms of emission strength,
reactivity and their impact upon the atmosphere, are terpenes (Reinnig et al., 2008)
a subdivision of BVOCs that primarily comprise the hemiterpene, isoprene (Cs),
monoterpenes (Ci) and sesquiterpenes (Cis) (e.g. (Atkinson and Arey,

2003a;Kanakidou et al., 2005)).

Within the troposphere terpenes are able to react with OH, O3 and NOs at
appreciable rates (e.g. (Calvert et al.,, 2000;Koch et al., 2000;Fantechi et al.,
2002;Capouet et al., 2004;Kroll et al., 2006) such that their atmospheric lifetimes are
in the order of minutes — hours (e.g. (Calogirou et al., 1999)). Because of their large
emission rates and high reactivities, terpenes have a strong impact upon the
chemistry of the troposphere at the local, regional and global scales (e.g. (Jaoui and
Kamens, 2001;Paulot et al., 2012;Surratt, 2013). For instance, terpenes have high
photochemical ozone creation potentials (Derwent et al., 2007) and extensive
photochemical oxidation pathways that lead to the production of a complex array of
oxygenated and nitrated products, some of which are able to form secondary
organic aerosol (SOA) (e.g. (Calvert et al., 2000;Capouet et al., 2004;Jenkin,
2004;Baltensperger et al., 2008;Kanakidou et al., 2005;Surratt et al., 2006;Kroll and
Seinfeld, 2008;Hallquist et al., 2009).

Aerosol particles are natural components of the Earth’s atmosphere responsible for
a range of well-documented impacts, ranging from visibility impairment on the local
scale to climate change, with suspended particles being able to perturb the Earth’s
radiative budget via both direct and indirect mechanisms (IPCC, 2007). Furthermore,

fine airborne particles have been shown to have numerous detrimental effects on
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human health, particularly in vulnerable members of the population (Harrison et al.,

2010;Heal et al., 2012).

Biogenic SOA (BSOA) has been estimated to account for a significant fraction of total
global SOA. Modelling studies suggest the annual global production rate of BSOA is
of the order 16.4 Tg Yr'* (Henze and Seinfeld, 2006). However, despite its importance
and the significant amount of investigation conducted upon it, the formation
mechanisms and chemical composition of BSOA are still not well characterised (e.g.
(Librando and Tringali, 2005;Wang et al., 2013). Indeed under certain conditions as
much as 80 — 90 % of analysed SOA mass is unknown (Limbeck et al., 2003;Kalberer
et al., 2006). In particular, there remains a significant lack of information regarding
the composition and evolution of the complex organic gas-phase matrix during
aerosol formation, and its linkage to SOA (Kroll et al., 2005;Librando and Tringali,
2005). Indeed, in the many studies conducted on BSOA, very few oxidation products

of the precursor are routinely identified and reported.

The chemistry of the atmospheric system is highly non-linear and can be studied by
experiments ranging from highly controlled laboratory studies of a single process, to
field studies of the whole complex system. A significant proportion of the findings
gained regarding SOA over the last decade and more have come from atmospheric
simulation chamber experiments, intermediate in complexity between classical
single-process experiments and the fully open system (for various different chamber
systems and VOC precursors, see for example, Pandis et al., 1991; Odum et al., 1996;
Hoffmann et al., 1997; Griffin et al., 1999; Glasius et al., 2000; Cocker et al., 2001;
Jaoui and Kamens, 2003; Kleindienst et al., 2004; Presto et al., 2005; Bloss et al.,
2005; Rohrer et al., 2005; Ng et al., 2006, 2007; Dommen et al., 2006; Surrat et al.,
2006; Grieshop et al., 2007; Chan et al., 2007; Wyche et al., 2009; Hildebrandt et al.,
2009; Rickard et al., 2010; Camredon et al., 2010; Chhabra et al., 2011; Hennigan et
al., 2011; Jenkin et al., 2012). Chamber experiments produce a large amount of data,
the interpretation of which can often be highly complex and time consuming even

though the set-up of the chamber constrains the complexity to a large degree.
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In the current “big data” age, advanced monitoring techniques are producing
increasingly larger, more complex and detailed data sets. Modern chamber
experiments, monitored by state-of-the-art gas- and particle-phase instrumentation,
often yield so much data that often only a fraction is subsequently used in a given
analysis. For example, during a typical six-hour environmental simulation chamber
experiment, VOC monitoring chemical ionisation reaction time-of-flight mass
spectrometry (CIR-TOF-MS) will produce roughly 1.1 x 10’ data points. In order to
keep pace with instrument development and maximise the information extracted
from sometimes-complex experiments, it is crucial that we advance our data analysis

methods and introduce new data mining techniques.

The work reported here focuses on detailed organic gas-phase and particle-phase
composition data, recorded during SOA atmospheric simulation chamber
experiments, using CIR-TOF-MS and liquid chromatography-ion trap mass
spectrometry (LC-MS/MS), respectively, as well as broad (i.e. generic composition
“type”; oxygenated organic aerosol, nitrated, sulphated etc) aerosol composition
data, recorded by compact time-of-flight aerosol mass spectrometry (cTOF-AMS).
The goal of this paper is to demonstrate and evaluate the application of an ensemble
reductive chemometric methodology for these comprehensive oxidation chamber
datasets, to be used as a model framework to map chemical reactivity from
mesocosm systems, thus providing a link from model systems to more “real”
mixtures of organics. The intermediate complexity offered by simulation chamber
experiments makes them an ideal test-bed for the methodology. Application of the
methodology to resultant particle-phase data also aims to provide a level of particle

composition classification in the context of gas-phase oxidation.

Similar approaches using statistical analyses have been recently applied to both
detailed and broad ambient aerosol composition data (e.g. (Heringa et al.,,
2012;Paglione et al., 2014)), particularly in the context of source apportionment (e.g.
(Alier et al., 2013)). Different methods have been attempted by several groups to
deconvolve organic aerosol spectra measured by the Aerosol Mass Spectrometer

(AMS) in particular (e.g. Zhang et al., 2005, 2007; Marcolli et al., 2006; Lanz et al.,
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2007). Zhang et al. (2005) applied a custom principal component analysis (CPCA)
method to extract two distinct sources of organic aerosols in an urban environment
using linear decomposition of AMS spectra and later applied a Multiple Component
Analysis technique (MCA, an expanded version of the CPCA) to separate more than
two factors in datasets from 37 field campaigns in the Northern Hemisphere (Zhang
et al., 2007). Marcolli et al. (2006) applied a hierarchical cluster analysis method to
an ambient AMS data set, and reported clusters representing biogenic VOC oxidation
products, highly oxidised organic aerosols and other small categories. Receptor
modelling techniques such as Positive Matrix Factorization (PMF) employ similar
multivariate statistical methods in order to deconvolve a time series of simultaneous
measurements into a set of factors and their time-dependent concentrations
(Paatero and Tapper, 1994; Paatero, 1997). Depending on their specific chemical
and temporal characteristics, these factors may then be related to emission sources,
chemical composition and atmospheric processing. For example, Lanz et al. (2007)
and Ulbrich et al., (2009) applied PMF to the organic fraction of AMS datasets and
were able to conduct source apportionment analysis identifying factors contributing
to the composition of organic aerosol at urban locations. Slowik et al. (2010),
combined both particle-phase AMS and gas-phase proton transfer reaction mass
spectrometry data for the PMF analysis of urban air, and were able to successfully
obtain “regional transport, local traffic, charbroiling and oxidative process” factors.
By combining the two datasets, Slowik and colleagues were able to acquire more in-
depth information regarding the urban atmosphere than could be derived from the

analysis of each of the sets of measurements on their own.

Because receptor models require no a priori knowledge of meteorological conditions
or emission inventories, they are ideal for use in locations where emission
inventories are poorly characterised or highly complicated (e.g. urban areas), or
where atmospheric processing plays a major role. However, because all of the values
in the profiles and contributions are constrained to be positive, the PMF model can

have an arbitrary number of factors and the user must select the “best” solution that
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explains the data. This subjective step of PMF analysis relies greatly on the judgment

and skill of the user.

The central methodology employed, is based around the application of principal
component analysis (PCA), hierarchical cluster analysis (HCA) and positive least
squares-discriminate analysis (PLS-DA) of single-precursor oxidant chemistry in
environmental simulation chambers. Colloquially, we can describe these three
approaches as providing dimensions along which the data are separable (PCA), tests

of relatedness (HCA) and checks for false-positives (PLS-DA).

Such dimension reduction techniques can be very powerful when used in
chemometrics, enabling large and often complex datasets to be rendered down to a
relatively small set of pattern-vectors provide an optimal description of the variance
of the data (Jackson, 1980;Sousa et al., 2013;Kuppusami et al., 2014). Unlike other
statistical techniques such as PMF, the ensemble methodology presented here does
not require the use of additional external databases (comprising information
regarding different environments/reference spectra), is simpler to use and less
labour intensive, and places less importance on user skill in the production of
accurate and meaningful results. Moreover, the primary focus of techniques such as
PMF is on source identification/separation, whereas here the focus is placed on
compositional isolation.

III

The analysis conducted in this work shows that “model” biogenic oxidative systems
can be clearly separated and classified according to their gaseous oxidation products,
i.e. isoprene from B-caryophyllene from non-cyclic monoterpenes and cyclic
monoterpenes. The addition of equivalent mesocosm data from fig and birch tree
experiments shows that large isoprene and large monoterpene emitting sources,
respectively, can be mapped onto the statistical model structure and their positional
vectors can provide insight into the oxidative chemistry at play. The analysis is

extended to particle-phase data to show further classifications of model systems

based on both broad and detailed SOA composition measurements.
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The methodology described and the results presented (supported by findings
obtained from zero-dimensional box modelling), indicate that there is some
potential that the approach could ultimately provide the foundations for a
framework onto which it would be possible to map the chemistry and oxidation
characteristics of ambient air measurements. This could in turn allow “pattern”
typing and source origination for certain complex air matrices and provide a
snapshot of the reactive chemistry at work, lending insight into the type of chemistry
driving the compositional change of the contemporary atmosphere. There are
similarities between this approach to discovery science in the atmosphere and

metabolomics strategies in biology (e.g. (Sousa et al., 2013;Kuppusami et al., 2014)).

2. Experimental details

2.1 Choice of precursors

Six different BVOCs and one anthropogenic VOC were chosen for analysis. The
target compounds, their structures and reaction rate constants with respect to OH
and Os are given in Table 1. The BVOCs were chosen according to their atmospheric
prevalence, structure and contrasting photooxidative reaction pathways; all have
previously been shown to form SOA under simulation chamber conditions (e.g.
Hoffmann et al., 1997; Griffin et al., 1999; Glasius et al., 2000; Jaoui and Kamens,
2003; Presto et al., 2005; Ng et al., 2006; Surratt et al., 2006; Dommen et al., 2006;
Lee et al., 2006; Hallquist et al., 2009; Alfarra et al., 2013, and references therein).
Isoprene is a Cs diene that accounts for around 62 % (~ 594 Tg yr'") of total annual
non-methane BVOC emissions (Sindelarova et al.,, 2014). After isoprene,
monoterpenes (CsHig) have the next largest annual emission rate, they account for
around 11 % (~ 95 Tg yr™") of total annual non-methane BVOC emissions (Sindelarova
et al., 2014). a-pinene and limonene were chosen for analysis here alongside
isoprene, the former acting as a model system to represent bicyclic monoterpenes,
the later to represent monocyclic diene terpenes. In this work, a-pinene and
limonene together generically represent (and are referred to hereafter as) “cyclic”
monoterpenes (i.e. monoterpenes that contain one six-member carbon ring). In
order to explore the chemistry of non-cyclic monoterpenes, myrcene, an acyclic

triene monoterpene, was also included, as was the structurally similar acyclic diene



264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

0OVOC, linalool. In this work, myrcene and linalool together generically represent
(and are referred to hereafter as) “straight chain” monoterpenes/BVOCs (note:
linalool is not technically a monoterpene, but does contain the same carbon
backbone as myrcene, consequently it is expected to exhibit similar photooxidative
chemistry). Finally, B-caryophyllene was included to represent sesquiterpenes,
which have annual emissions of the order 20 Tg yr (Sindelarova et al., 2014). In
order to test the ability of the methodology to distinguish between biogenic and
anthropogenic systems, toluene was also included. Toluene is often used as a model
system to act as a proxy for aromatic species in general (Bloss et al.,, 2005). For
contrasting plant mesocosm systems, Ficus benjamina and Ficus cyathistipula (fig)
and Betula pendula (birch) species were chosen to represent tropical rainforest and

European environs, respectively.

In general, the VOC precursors employed have roughly similar reaction rate
constants with respect to OH and Os, e.g. limonene, myrcene, linalool and PB-
caryophyllene all have atmospheric lifetimes with respect to OH of the order 40 — 50
minutes (Alfarra et al., 2013;Atkinson and Arey, 2003b). B-caryophyllene has the
shortest lifetime with respect to O3 (ca. 2 minutes) and isoprene and a-pinene have
the longest lifetimes with respect to both OH and Os, e.g. isoprene and a-pinene
have atmospheric lifetimes with respect to OH of the order 1.4 — 2.7 hours (Alfarra et
al.,, 2013;Atkinson and Arey, 2003b). In order to ensure the various systems had
progressed sufficiently down their respective photooxidative reaction pathways, the
experiment duration was set to be sufficiently long that the majority of the precursor

had been consumed by the conclusion of the experiment.

2.2 Chamber Infrastructure

Experiments were carried out across three different European environmental
simulation chamber facilities over a number of separate campaigns. The chambers
used, included (1) The University of Manchester Aerosol Chamber (MAC), UK (Alfarra
et al., 2012); (2) The European Photoreactor (EUPHORE), ES (Becker, 1996) and (3)
The Paul Scherrer Institut Smog Chamber (PSISC), CH (Paulsen et al., 2005). A brief

technical description of each facility is given in Table 2.

10
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2.3 Experiment Design

Table 2 provides a summary of the experiments conducted, which can be divided
into three separate categories, (1) photooxidation, indoor chamber (Wyche et al.,
2009;Alfarra et al., 2012;Alfarra et al., 2013), (2) photooxidation, outdoor chamber
(Bloss et al., 2005;Camredon et al., 2010) and (3) mesocosm photooxidation, indoor
chamber (Wyche et al., 2014). In each case the reaction chamber matrix comprised
a temperature (T = 292 — 299 K) and humidity (49 — 84 % for photooxidation, indoor
chamber and < 2 — 6 % for photooxidation, outdoor chamber) controlled synthetic
air mixture. For all experiments the chamber air matrix also contained a pre-defined
initial quantity of NO and NO, (VOC/NOy ratios in the range 0.6 — 20, but typical ~ 2).
The VOC precursor was introduced into the reaction chamber in liquid form via a
heated inlet. In the case of the mesocosm photooxidation experiments, a known
volume of air containing the precursor VOCs was transferred to the reaction
chamber from a separate, illuminated plant chamber, which contained several tree
specimens. For the indoor chamber systems, the experiments were initiated, after
introduction of all reactants, by the switching on of artificial lights. For the outdoor
chamber systems, the opening of the chamber cupola marked the start of the

experiment. Experiments were typically run for 4 — 6 hours.

2.4 Instrumentation

CIR-TOF-MS was used to make real-time (i.e. 1 minute) measurements of the
complex distribution of volatile organic compounds (ZVOC, i.e. the sum of VOCs,
oxygenated VOCs — OVOCs and nitrated VOCs — NVOCs) produced in the gas-phase
during oxidation of each parent compound. In brief, the CIR-TOF-MS comprises a
temperature controlled (T = 40 °C) ion source/drift cell assembly coupled to an
orthogonal time-of-flight mass spectrometer equipped with a reflectron array (Kore
Technology, UK). Proton Transfer Reaction (PTR) from hydronium (H;0%) and
hydrated hydronium (H30".(H,0),) was employed as the ionisation technique during
all experiments (Jenkin et al., 2012). Further details regarding the CIR-TOF-MS can
be found in Blake et al. (Blake et al., 2004) and Wyche et al. (Wyche et al., 2007).

11
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Aerosol samples were collected on 47 mm quartz fibre filters at the end of certain
experiments and the water-soluble organic content was extracted for analysis using
LC-MS/MS. Reversed phase LC separation was achieved using an HP 1100 LC system
equipped with an Eclipse ODS-C18 column with 5 um particle size (Agilent, 4.6 mm x
150 mm). Mass spectrometric analysis was performed in negative ionisation mode
using an HCT-Plus ion trap mass spectrometer with electrospray ionisation (Bruker
Daltonics GmbH). Further details can be found in Hamilton et al. (Hamilton et al.,

2003).

For several experiments, real-time broad chemical characterisation of the SOA was
made using a cTOF-AMS (Aerodyne Research Inc., USA). The cTOF-AMS was
operated in standard configuration, taking both mass spectrum (MS) and particle
time-of-flight (PTOF) data; it was calibrated for ionisation efficiency using 350 nm
monodisperse ammonium nitrate particles, the vapouriser was set to ~ 600 °C and a
collection efficiency value of unity was applied (Alfarra et al., 2006). For further
details, refer to Drewnick et al. (Drewnick et al., 2005) and Canagaratna et al.

(Canagaratna et al., 2007).

Each chamber was additionally instrumented with on-line
chemiluminescence/photolytic NO, NO, analysers, UV photometric O3 detectors, and
scanning mobility particle sizers and condensation particle counters for aerosol size
and number concentration, as well as temperature, pressure and humidity monitors.
For full details regarding the various instrument suites employed at each chamber
see Alfarra et al. (Alfarra et al., 2012), Paulsen et al. (Paulsen et al., 2005), Camredon

et al. (Camredon et al., 2010) and references therein.
Filter and cTOF-AMS data were collected only during photooxidation experiments
conducted at the MAC. Repeat experiments conducted at the MAC were carried out

under similar starting conditions (e.g. VOC/NOy ratio (Alfarra et al., 2013)).

2.5 Model construction

12



359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

In order to aid analysis, the composition and evolution of the gas-phase components
of the a-pinene chamber system were simulated using a chamber optimised
photochemical box model incorporating the comprehensive a-pinene atmospheric
oxidation scheme extracted from the Master Chemical Mechanism website (Jenkin
et al., 1997;Saunders et al., 2003;Jenkin et al., 2012;http://mcm.leeds.ac.uk/MCM).
The a-pinene mechanism employed (along with an appropriate inorganic reaction
scheme) contained approximately 313 species and 942 different reactions. The box
model employed also incorporated a series of “chamber specific” auxiliary reactions
adapted from Bloss et al. (Bloss et al., 2005), Zador et al. (Zador et al., 2006) and
Metzger et al., (Metzger et al., 2008) in order to take into account background
chamber reactivity. Photolysis rates were parameterised for the PSI chamber and
constrained using measured values of (j(NO,)). All simulations were run at 295 K and
50 % relative humidity. NO, NO,, HONO and a-pinene were either initialised or
constrained, depending on the scenario investigated. For further details see Rickard

et al. (Rickard et al., 2010).

3. Data Analysis

3.1 Data Processing

All CIR-TOF-MS data were recorded at a time resolution of 1-minute. In order to
remove the time dimension and simultaneously increase detection limit, the
individual mass spectra were integrated over the entire experiment; as such no
account is taken of overall reaction time in the CIR-TOF-MS analysis. Removing the
time dimension acts to reduce the dimensionality of the data, whilst maintaining the
central characteristic spectral fingerprints produced by the photooxidation process.
On average across all experiments studied, 98 % of the precursor had been
consumed by the conclusion of the experiment; hence it is assumed that sufficient
reaction took place in each instance to provide summed-normalised mass spectra

that fully capture first- and higher-generation product formation.

The resultant summed spectra were normalised to 10° primary reagent ion counts
(i.e. Z(H30" + H30".(H,0),)). Similarly normalised background spectra (recorded prior

to injection of the precursor) were then subtracted from the summed-and-

13
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normalised experiment spectra. The 65 < m/z < 255 channels of the background
removed spectra were extracted to comprise the region of interest. These ions tend
to carry the most analyte-specific information, with lower m/z features tending to
comprise either generic fragment ions that provide little chemical information (Blake
et al., 2006) and/or small compounds emitted from illuminated chamber walls (e.g.
(Bloss et al., 2005;Zador et al., 2006;Metzger et al., 2008). These extracted data
were refined further by the application of a Mann-Whitney test (see Statistical
Analysis for details), leaving residual spectra that comprised only the integrated-
over-time signals corresponding to the VOC precursor and any reactive intermediate
and product VOCs formed within the chamber during the experiment. Finally, the
signal counts (in units of normalised counts per second; ncps) in each mass channel
of the residuals, were expressed as a percentage of the total ion count in the refined

region of interest.

The LC-MS/MS signal intensity data for the region 51 < m/z < 599 were extracted for
analysis. For the AMS data, a 10-minute average was produced at 4 hours after
lights on (roughly around the time when SOA mass had reached a peak and towards
to the end of the experiment) and the region 40 < m/z < 150 (again the region
carrying the most information; Alfarra et al., 2006) was extracted. Similar to the gas-
phase data sets, the LC-MS/MS and AMS data were filtered using a Mann-Whitney
test. Finally, for each data set all signal counts were expressed as a percentage of

the total ion count in the respective m/z region of interest.

3.2 Statistical Analysis

Before any multivariate analysis was conducted, the processed CIR-TOF-MS, LC-
MS/MS and AMS spectra were first filtered to remove unwanted data that were
deemed to not be statistically significant. In order to do this, the mass spectra were
initially grouped by structure of the precursor employed, giving seven separate
groups for the CIR-TOF-MS data and three groups (owing to the smaller number of
precursor species investigated) for the LC-MS/MS and AMS data, respectively. A
two-sided Mann-Whitney test was then used to assess whether signals reported in

individual mass channels were significantly different from the corresponding signals

14
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measured during a blank experiment. SPSS V20 (IBM, USA) was used for the
analysis. A p value of < 0.05 was considered statistically significant. The final
summed-normalised and filtered spectra were then subjected to a series of
multivariate statistical analysis techniques in order to probe the underlying chemical
information. PLS-Toolbox (Eigenvector Research Inc., USA) operated in MatlLab

(Mathworks, USA; PLS-Tool Box) was used for the analysis.

To begin with, to reduce the data and identify similarities between the precursor
oxidation systems, a PCA was conducted on the BVOC dataset and the model
generated was then employed to map the reactivity of fig and birch tree mesocosm
systems and to investigate the fit of a typical anthropogenic system (toluene) into
the PCA space (both introduced into the model as test datasets). An unsupervised
pattern recognition, hierarchical cluster analysis was also conducted on the data and
a dendrogram produced to test relatedness, support the PCA and help interpret the
precursor class separations achieved. The dendrogram was constructed using PCA
scores, the centroid method and Mahalanobis distance coefficients. Finally, a
supervised pattern recognition PLS-DA analysis was employed as a check for false-
positives and as a quantitative classification tool to test the effectiveness of

classification of the various systems in the model.

For the superposition of “classification” confidence limits onto the results of the PCA
and HCA and for classification discrimination in the PLS-DA, prior to analysis the
experiments were grouped according to the structure of the precursor investigated.
Group 1 = isoprene (hemiterpene) and group 2 = a-pinene and limonene (both cyclic
monoterpenes with an endocyclic double bond). Although limonene also has an
exocyclic double bond in a side chain, we justify this classification on account of the
endocyclic double bond in limonene being much more reactive towards ozone and
slightly more reactive towards OH (Calvert et al., 2000). Group 3 = B-caryophyllene
(sesquiterpene) and group 4 = myrcene (straight chain monoterpene) and linalool
(straight chain OVOC). Strictly speaking, linalool is an OVOC (structure C;9H130) and
not a monoterpene (structure CioHi6), however we justify this grouping on account

of both myrcene and linalool comprising primary BVOCs (often co-emitted; (Bouvier-
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Brown et al.,, 2009;Kim et al., 2010;Wyche et al., 2014)) with certain structural

similarities.

4. Results

4.1 Experiment overview

The temporal evolution of various key gas-phase (a) and particle-phase (b)
parameters measured during a typical photooxidation experiment, are shown in
Figure 1 in order to provide background context. In this instance the precursor was
myrcene and the facility employed was the MAC. Full details describing the
underlying chemical and physical mechanisms at play within such experiments can
be found elsewhere (e.g. Larsen et al., 2001; Bloss et al., 2005; Paulsen et al., 2005;
Surratt et al., 2006 and 2010; Wyche et al., 2009; 2014; Camredon et al., 2010;
Rickard et al., 2010; Eddingsaas et al., 2012b; Hamilton et al., 2011; Jenkin et al.,
2012; Alfarra et al., 2012, 2013; and references therein).

4.2 Mapping gas-phase composition

Of the 191 different mass channels extracted from the CIR-TOF-MS data for analysis
(i.e. 65 < m/z < 255), the Mann-Whitney test identified 151 as significant for one or
more of the terpene precursor groups tested. These data were subsequently
subjected to PCA. From inspection of the Eigenvalues derived, four principal
components (PCs) were selected for analysis, which collectively accounted for 96 %
of the variance within the data, with PCs 1 and 2 accounting for the vast majority, i.e.
63 and 18 %, respectively. This step, therefore, reduced the temporal traces of 191

mass-spectrum peaks to 4 composite and orthogonal dimensions.

Figure 2 shows a loadings bi-plot of PC2 vs. PC1. It is clear from Figure 2, that the
model is able to successfully separate the four different classes of biogenic systems
investigated. B-caryophyllene mass spectra are grouped in the upper left-hand
quadrant of Figure 2, the monoterpenes in the lower left-hand quadrant and
isoprene to the centre right. Moreover, the principal component analysis is able to
distinguish between the cyclic monoterpene experiments of limonene and a-pinene

(grouped into one class), and the straight chain monoterpene experiments of
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myrcene and linalool (grouped into a second class), albeit with the latter having a

greater spread in confidence.

The m/z loadings of the PCA allow us to understand how the spectral fingerprints of
the different terpene oxidation systems are grouped/separated by the PCA model.
The first set of ions that contribute to separation of the different terpene systems
comprises the protonated parent ions (MH") of the precursors themselves (and
major fragments thereof), i.e. m/z 69 for isoprene, 137 (and fragment 81) for all
monoterpenes (regardless of structure) and 205 for B-caryophyllene. Important
contributions are to be expected from the respective parent-ions (being the basis for
the use of chemical-ionisation mass spectrometry as an analyser of gas mixtures
(Blake et al., 2009)). Our purpose here goes beyond identification of precursor and
intermediate VOCs to an interpretation of reaction pathways in complex mixtures
and potential linkages to SOA. In doing this, a certain amount of disambiguation of
isobaric compounds becomes possible; indeed, as discussed in more detail below,
Figure 2 clearly shows separation between cyclic and non-cyclic monoterpene
oxidation groups, both of which have precursors of molecular weight (MW) 136 g
mol™. Note, for clarity within Figure 2, the scale has been set to show the bulk of the

data, hence precursor parent ions and m/z 71 are not shown.

Moving past the precursors into the detailed chemical information provided by the
oxidation products formed within the chamber, we can see from Figure 2 that
amongst others, m/z 71 (methyl vinyl ketone and methacrolein), 75 (hydroxy
acetone), 83 (methyl furan) and 87 (Cs-hydroxycarbonyls/methacrylic acid) all
contribute to separation of the isoprene group, and m/z 237 (B-caryophyllene
aldehyde) and 235 and 253 (B-caryophyllene secondary ozonide and isomers
thereof) to that of the B-caryophyllene group. The monoterpene groupings are
influenced by the presence of m/z 107, 151 and 169 (primary aldehydes-
piononaldehyde and limononaldehyde) and 139 (primary ketone- limonaketone)
ions in their mass spectra. Helping to separate the straight chain from cyclic
monoterpenes are m/z 95 and 93, relatively dominant features in both the myrcene

and linalool spectra (relative abundance 10 — 24 % for m/z 93). m/z 93 has
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previously been identified as a major fragment ion of first generation myrcene and
linalool  products 4-vinyl-4-pentenal and  4-hydroxy-4-methyl-5-hexen-1-al,
respectively (Shu et al., 1997;Lee et al., 2006). A list of major ions contributing to the
separation of spectra in statistical space is given in Table 3 along with potential
identities and precursors. It is worthy of note here that these ions and the overall
fragmentation patterns observed in this study are largely in-line with those reported
by Lee et al. (2006), in their comprehensive PTR-MS analysis of a wide range of BVOC

precursors and their associated oxidation products.

4.3 Implementation of the model to classify mesocosm data

Having employed the terpene data as a training set to construct a PCA model, a test
set of mesocosm data was introduced in order to investigate the ability of the model
to map the classification of more complex biogenic mixtures. In this instance the
mesocosm test set comprised two birch tree and two fig tree photooxidation
experiments, containing a more complex and “realistic” mixture of various different

VOCs (Wyche et al., 2014). The resultant scores plot is shown in Figure 3.

Figure 3 demonstrates that the model can successfully distinguish between the two
different types of mesocosm systems. Moreover, the model correctly classifies the
mesocosm systems within the PCA space, with the birch trees (which primarily emit
monoterpenes and only small quantities of isoprene; (Wyche et al., 2014)) grouped
with the single precursor monoterpene cluster, and the fig trees (which primarily
emit isoprene and camphor and only a small amount of monoterpenes; (Wyche et
al., 2014)) grouped between the monoterpene and isoprene clusters. Investigation
of the mesocosm mass spectra and PCA loadings shows that mass channels 137, 139,
107, 95, 93, 81 and 71 are amongst features important in classifying the birch tree
systems, with the relatively strong presence of m/z 93 suggesting the emission of
noncyclic as well as cyclic monoterpenes from the birch trees. This was confirmed by
cross-reference with GC-MS analysis, which showed that the acyclic monoterpene,
ocimene, was the third most abundant monoterpene present in the birch tree
emissions (Wyche et al., 2014). For the fig tree systems, mass channels 153, 81, 73,

71 and 69 are key for classification, with the presence of small quantities of camphor
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(m/z 153) and monoterpenes (m/z 81) causing the group to undergo a lateral shift in

the PCA space, along PC1 away from the single precursor isoprene cluster.

As a further test of the technique to distinguish between and to classify VOCs and
the matrix of oxidized organic compounds that may derive from their atmospheric
chemistry, test data from an anthropogenic system was introduced into the model.
In this instance, the toluene photooxidation system was employed. Toluene is an
important pollutant in urban environments, originating from vehicle exhausts and
fuel evaporation; furthermore it represents a model mono-aromatic, SOA precursor
system (e.g. (Bloss et al., 2005)). As can be seen from the resultant scores plot in
Figure 4, the model is also able to discriminate the anthropogenic system from those
of biogenic origin. Besides the protonated toluene parent ion, those ions
contributing to the positioning of the toluene cluster within the PCA space, include
the protonated parent ions m/z 109 and 107, i.e. the ring retaining primary products
benzaldehyde and phenol, respectively; m/z 123, i.e. the ring retaining secondary
product, methyl benzoquinone and m/z 99 and 85, i.e. higher generation ring
opening products (e.g. 4-oxo-2-pentenal and butenedial, respectively). A brief
discussion regarding aromatic BVOCs is provided separately in the supplementary

material.

4.4 Cluster analysis and classification

The relationships between the various terpene and mesocosm systems and their
groupings with respect to one another can be explored further via the
implementation of HCA; Figure 5 gives the dendrogram produced. Inspection of
Figure 5 provides further evidence that the various systems in the four classes of
terpenes investigated distinctly group together, with overall relatedness < 1 on the
(centroid) distance between clusters scale using the Mahalanobis distance measure
(Mahalanobis, 1936). Figure 5 shows that the sesquiterpene oxidation system has
the most distinct spectral fingerprint (containing distinctive, higher mass oxidation
products, e.g. m/z 253) and that the cyclic and straight chain monoterpene systems
appear the most similar (with some common features alongside key, unique

precursor/mechanism specific product patterns, e.g. m/z 93 for myrcene and
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linalool), grouping together with subclusters of cyclic and noncyclic precursors. The
monoterpene dominated birch tree mesocosm experiments are grouped with the
cyclic monoterpenes and show a close relationship with noncyclic monoterpene
systems. Being dominated by isoprene emissions, yet with some monoterpenes and
camphor present, the fig tree mesocosm experiments group separately but with a

close degree of relation to the single precursor isoprene experiments.

In order to advance our chemometric mapping of biogenic systems beyond PCA and
HCA (which do not consider user supplied a priori observation “class” information)
and to provide a degree of quantification to our analysis, a PLS-DA using six latent
variables (LVs) was conducted on the terpene and mesocosm data. For the PLS-DA,
the experiments were grouped into their respective “classes”, i.e. hemiterpene =
isoprene; cyclic monoterpene = a-pinene and limonene; sesquiterpene = [-
caryophyllene; noncyclic monoterpene = myrcene and linalool; birch trees; fig trees.
Figure 6 shows a plot of the resultant scores on the first three LVs (accounting for ~
85 % of the variance), from which it is clear that the PLS-DA is able to successfully
discriminate between the four terpene classes, and places the monoterpene
dominant birch experiments within the single precursor monoterpene cluster, and
the isoprene dominant fig experiments close to the single precursor isoprene cluster
within the PLS-DA model. The greater spread in confidence of the noncyclic
monoterpene group is once again likely to result to some extend from the low
number of repeat experiments employed (i.e. only two each for myrcene and

linalool).

As can be seen from inspection of Table 4, model classification sensitivity and
specificity was high in each instance. Each of the biogenic systems studied were
predicted with 100 % sensitivity (with the exception of birch mesocosm), meaning
that each set of experiments (again, except birch mesocosm) was predicted to fit
perfectly within its class. The relatively low sensitivity obtained for birch mesocosm
(50 %), is most likely a result of the use of only two repeat experiments in the model,
coupled with experiment limitations and ageing trees producing slightly lower

emissions during the final birch mesocosm experiment. All of the systems were
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predicted with > 90 % specificity (four of the six with 100 % specificity), indicating

that all experiments are highly unlikely to be incorrectly classified.

4.5 Mapping particle-phase composition
In order to explore similar classifications and linkages in the concomitant particle-
phase, the PCA, HCA and PLS-DA techniques were also applied to the off-line LC-

MS/MS spectra obtained from analysis of filter samples and on-line AMS spectra.

As can be seen from inspection of Figure 7, the detailed LC-MS/MS aerosol spectra
produce PCA results somewhat similar to those of the gas-phase CIR-TOF-MS
spectra, with distinct clusters of cyclic monoterpenes, straight chain monoterpenes
and sesquiterpenes. From inspection of the loadings components of the bi-plot
(Figure 7a), we can see that m/z 237 (3-[2,2-dimethyl-4-(1-methylene-4-oxo-butyl)-
cyclobutyl]-propanoic acid), 251 (B-caryophyllonic acid), 255 (4-(2-(2-carboxyethyl)-
3,3-dimethylcyclobutyl)-4-oxobutanoic acid), 267 (B-14-hydroxycaryophyllonic acid
and B-10-hydroxycaryophyllonic acid) and 271 (4-(2-(3-hydroperoxy-3-oxopropyl)-
3,3-dimethylcyclobutyl)-4-oxobutanoic acid or 4-(2-(2-carboxy-1-hydroxyethyl)-3,3-
dimethylcyclobutyl)-4-oxobutanoic acid), are amongst those ions dominant in
classifying the sesquiterpenes. For further details regarding B-caryophyllene
oxidation products, see for example Lee et al. (2006), Winterhalter et al. (2009),
Hamilton et al. (2011), Chan et al. (2011), Li et al. (2011) and Jenkin et al. (2012) and
references therein, and Sect. 5. Of this set of oxidation products, B-caryophyllonic

acid is common between the gas- (i.e. m/z 253) and particle- (i.e. m/z 251) phases.

Similarly, those ions (compounds) significant in isolating the cyclic monoterpenes
include, m/z 169 (pinalic-3-acid, ketolimononaldehyde and limonalic acid), 183
(pinonic acid, limononic acid and 7-hydroxylimononaldehyde) and 185 (pinic acid,
limonic acid), of which only those compounds of m/z 169 were observed to be of
significant contribution to the gas-phase composition (observed as m/z 171; relative
contribution as high as 1 - 5 % during a-pinene experiments). For further details
regarding a-pinene and limonene oxidation products, see for example Larsen et al.

(2001), Jaoui et al. (2003), Capouet et al. (2004), Jenkin (2004), Jaoui et al. (2006),
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Lee et al. (2006), Ng et al. (2006), Camredon et al. (2010) and Hamilton et al. (2011)
and references therein. Comparatively little information is available on the
speciated composition of myrcene and linalool SOA, however, from Figure 7a it is
clear that somewhat larger mass compounds are important in classifying straight
chain monoterpenes, e.g. m/z 321 (adduct ion [M-H,+FA+Na] M = 254 Da; potential
formulae - C35H1406, six double bond equivalents or Cy3H;30s, five double bond
equivalents; indicative of oligomer formation), 325, 322 (the C13 peak for the m/z
321 ion), 227 (C10H1106), 215 (C10H150s5) and 199 (CgH1105). Compounds of such high
molecular weight were not observed in the concomitant gas-phase spectra. A list of
major ions contributing to the separation of spectra in statistical space is given in

Table 3 along with potential identities and precursors.

As with the PCA, the dendrogram produced via cluster analysis of the LC-MS/MS
particle-phase data gave three distinct clusters (Figure 7b), i.e. cyclic monoterpene,
straight chain monoterpene and sesquiterpene. The corresponding PLS-DA analysis
reported 100 % sensitivity in each case and 100 % specificity for all systems except
sesquiterpenes (i.e. B-caryophyllene = 83 %), suggesting a good level of model

classification for the three types of terpene systems studied.

Despite utilising the somewhat destructive electron impact (El) ionisation technique,
the cTOF-AMS produces spectra of sufficient chemical detail such that the PCA and
HCA are able to successfully differentiate between the groups of terpenes tested
(Figure 8a and b). However, unlike the outputs from the CIR-TOF-MS and LC-MS/MS
PCA’s, the cyclic and straight chain monoterpenes in the AMS PCA do not group into
two distinct classes, instead they tend to group in their species-specific sub-classes
within the upper half of the PCA space. Indeed, the PLS-DA gave 100 % sensitivity
and specificity for the cyclic monoterpenes and sesquiterpenes, but only 75 %
sensitivity for the straight chain monoterpenes, suggesting that the model does less

well at assigning myrcene and linalool cTOF-AMS spectra to their defined class.

As can be seen from inspection of Figure 8a, a-pinene, limonene and linalool tend in

general to cluster towards the upper and right regions of the PCA space, primarily
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owing to the significant presence of m/z 43 and to a lesser extent m/z 44, in their
spectra; both ions constituting common fragments observed in AMS of SOA (Alfarra
et al., 2006). During such chamber experiments, the m/z 43 peak tends to comprise
the CHs:CO® ion, originating from oxidised compounds containing carbonyl
functionalities; it is usually representative of freshly oxidised material and semi-

volatile oxygenated organic aerosol (SV-OO0A; (Alfarra et al., 2006)).

From further inspection of the loadings bi-plot (Figure 8a) we see that the four
sesquiterpene (B-caryophyllene) experiments cluster towards the lower left hand
quadrant, their clustering heavily influenced by the presence of m/z 41 in their
spectra as well as m/z 55, 79 and 95. In EI-AMS, m/z 41 comprises the unsaturated
C3Hs' fragment (Alfarra et al., 2006). As well as being influenced by the m/z 41 ion,
the myrcene cluster (situated in the region of both the a-pinene and B-caryophyllene
clusters in the PCA space) is also influenced by m/z 44, i.e. most likely the CO," ion.
In this instance m/z 44 would tend to result from low volatility oxygenated organic
aerosol (LV-O0A), derived from highly oxidised compounds, including oxo- and di-
carboxylic acids (Alfarra et al., 2004;Alfarra et al., 2006). For full details regarding
the particle-phase specific experiments conducted at the MAC, see Hamilton et al.

(2011), Jenkin et al., (2012) and Alfarra et al. (2012 and 2013).

5. Discussion

5.1 Mapping chemistry

Figure 9 provides a highly simplified overview of the current state of knowledge
regarding the atmospheric oxidation of hemi-, sesqui-, cyclic and straight chain
mono-terpenes, showing selected key steps and intermediates on route to SOA
formation. The mechanisms outlined in Figure 9 underpin the findings reported here
and explain how the atmospheric chemistry of the various terpene oxidation systems

and their SOA can be chemometrically mapped with respect to one another.

From a review of recent literature and from the summary presented in Figure 9, it
can be seen that isoprene can react to form condensable second and higher

generation nitrates in the presence of NO,, e.g. Cs-hydroxy nitrate peroxy acetyl
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nitrate (C4-HN-PAN in Figure 9) (Surratt et al., 2010), as well as condensable OVOCs,
e.g. hydroxymethyl-methyl-a-lactone (HMML) (Kjaergaard et al.,, 2012) and
methacrylic acid epoxide (MAE) (Lin et al., 2013), via metharcolein (MACR) and
methacryloyl-peroxy nitrate (MPAN). Alternatively, under “low NO,” conditions (e.g.
< 1 ppbV) isoprene can react to form condensable second-generation epoxides, e.g.
isoprene epoxides (IEPOX), via primary peroxides (ISOPOOH) (Paulot et al.,,
2009a;Surratt et al.,, 2006)). Such C; and Cs saturated, low volatility species
constitute the monomer building blocks that proceed to form relatively high O:C
ratio (nitrated in the presence of NO, and sulphated in the presence of H,SO,)
isoprene SOA oligomers (e.g. 2-methyl tetrol dimer O:C = 7:9) (Claeys et al.,
2004;Surratt et al., 2006;Surratt et al., 2010;Worton et al., 2013). Consequently, the
gas-phase composition under conditions forming isoprene SOA will therefore be
dominated by relatively low MW monomer precursors, e.g. MACR (MH* = m/z 71),
isoprene nitrates (ISOPN in Figure 9; MH" - HNO3 = m/z 85) and MPAN (MH".H,0 -
HNO; = m/z 103) under “high NO,” conditions (e.g. ~ 10’s — 100’s ppbV; (Paulot et al.,
2009b;Surratt et al., 2010;Surratt et al., 2006)), and ISOPOOH and IEPOX (MH" - H,0O
= m/z 101) under “low NO,” conditions. For the “high NO,” isoprene experiments
conducted here, besides m/z 71, i.e. MACR (measured together with methyl vinyl
ketone), m/z 87, 85, 83 and 75 ie. (tentatively assigned to be) C;-
hydroxycarbonyls/methacrylic acid, ISOPN, Cs-hydroxy carbonyls (C5HC in Figure
9)/3-methyl furan (3-MF) and hydroxy acetone, respectively, were significant in
classifying the isoprene group; MPAN at the m/z 103 ion was only a minor
contributor. It should be noted that in theory, both HMML and MAE (MH* = m/z
103) may produce fragment ions of m/z 85 (i.e. MH"-H,0) following PTR ionisation,
however without further detailed characterisation we are unable at this stage to

postulate their fractional contribution to the measured m/z 85 signal.

Depending on the chemistry involved (Figure 9), potential SOA forming
monoterpene products will either be (six-member-) ring retaining (e.g. from reaction
with OH) or (six-member-) ring cleaved (e.g. from reaction with OH or O3), producing
gas-phase spectra with mid MW Cq and C;o oxygenated (and nitrated in the presence

of NO,) products (e.g. (Kamens and Jaoui, 2001;Larsen et al., 2001;Capouet et al.,
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2004;Yu et al., 2008;Camredon et al., 2010;Eddingsaas et al., 2012b)). Both (six-
member-) ring retaining and (six-member-) ring-opening products have been
observed in monoterpene SOA (e.g. (Yu et al., 1999;Larsen et al., 2001;Camredon et
al., 2010)), with the latter generally being dominant in terms of abundance
(Camredon et al., 2010). Furthermore, (six-member-) ring-opening products are
believed to undergo chemistry within the aerosol to form relatively low O:C ratio
oligomers (e.g. 10-hydroxy-pinonic acid-pinonic acid dimmer, O:C = 7:19) (Gao et al.,

2004;Tolocka et al., 2004;Camredon et al., 2010).

OH will react with straight chain monoterpenes, such as myrcene, primarily by
addition to either the isolated or the conjugated double bond system. Reaction at
the isolated C=C bond can proceed via fragmentation of the carbon backbone,
producing acetone and mid MW, unsaturated C; OVOCs (and/or NVOCs, depending
on NO, levels). Reaction at the conjugated double bond system in myrcene would be
expected to form formaldehyde in conjunction with either a Co aldehyde or G
ketone. Structure activity relationships (SARs) predict that the conjugated double
bond system accounts for almost half of the OH reactivity. The conjugated double
bond would therefore be expected to have a partial rate coefficient of the order 1 x
10™° (i.e. similar to OH + isoprene) (Atkinson and Arey, 2003b). Consistent with this,
the reported yields of acetone and formaldehyde from OH + myrcene are similar
(Atkinson and Arey, 2003b), suggesting that the isolated double bond and the
conjugated double bond system have comparable OH reactivity, as such we would
expect Cg and C; co-products to be formed in comparable yields. However, with a
significant fraction of reactions with OH leading to the loss of three carbon atoms
from the parent structure, the straight chain monoterpene gas-phase spectra tend to
contain fewer features of MW greater than that of the precursor and more mid MW
features. It tends to be these mid MW features, such as m/z 111 and 93 (e.g. 4-vinyl-
4-pentenal, MYR 1.2 in Figure 9, MH" and MH"-H,0, respectively) and 113 and 95
(e.g. 2-methylenepentanedial MH" and MH'-H,0, respectively) that assist in the
classification of the straight chain monoterpene experiments within the statistical
space. Besides these ions, m/z 139 (primary myrcene Cq aldehyde and/or Cq ketone

product) also assists in separating the myrcene spectra from those of a-pinene.

25



775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

By comparing both the gas- and particle-phase cyclic monoterpenes in Figures 2 and
73, it is evident that the dominant loadings represent compounds of similar MW, i.e.
169, 151 and 107 (primary aldehyde product, e.g. pinonaldehyde- PINAL in Figure 9,
parent ion and fragments thereof) and 139 (primary ketone product parent ion) for
the gas-phase and 187, 185, 183 and 169 for the particle-phase. Conversely, for the
straight chain monoterpene experiments the major gas-phase loadings represent
compounds of significantly smaller MW than their particle-phase counterparts, i.e.
113 and 95 and 111 and 93, compared to 325, 322, 321, 227 and 215. Indeed, the
straight chain monoterpene LC-MS/MS spectra contained on average ~ 10 % more
signal > 250 Da than the cyclic monoterpene spectra. Also, the composition of the
ions observed in the straight chain monoterpene LC-MS/MS spectra suggests that
the SOA particles contained both oligomers and highly oxidized species, with the Cy
backbone intact (i.e. O:C = 0.6), similar in structure to (but a little less oxidised than)
extremely low volatility organic vapours (ELV-VOC), which have been observed
previously in significant yield from «-pinene and limonene (as well as 6-nonenal)
ozonolysis chamber experiments in the absence of an OH scavenger, as well as
boreal forests in Finland (Ehn et al., 2014). Further evidence to elucidate the type
of SOA formed from the oxidation of straight chain monoterpenes can be obtained
from investigation of the grouping of myrcene spectra in the cTOF-AMS PCA (Figure
8a). In the hour-4 cTOF-AMS PCA loadings bi-plot, we see that the grouping of the
myrcene spectra is influenced somewhat by both m/z 41 and 44, indicating the
presence of LV-OOA in the SOA, potentially a result of oligomerisation or further
oxidative heterogeneous chemistry involving reaction at remaining C=C double bond

sites.

B-caryophyllene readily forms particulate matter on oxidation (e.g. Jaoui et al., 2003;
Lee et al., 2006; Winterhalter et al., 2009; Alfarra et al., 2012; Chen et al., 2012), with
reaction predominantly at one of the two C=C sites (e.g. with OH or O3, although O3
attack occurs almost exclusively at the endocyclic double bond (Jenkin et al., 2012)),
yielding relatively low vapour pressure, unsaturated and oxygenated primary

products (Figure 9), which have significant affinity for the particle-phase (Jenkin et
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al.,, 2012). A further oxidation step involving the second C=C site can result in
increased oxygen (and/or nitrogen, depending on NO, conditions) content, yet with
little, if any reduction in the original C number. As with the cyclic monoterpene
PCAs, the CIR-TOF-MS and LC-MS/MS PCA bi-plots demonstrate similarities in terms
of classifying B-caryophyllene oxidation and SOA formation with comparable MW
species, e.g. primary products B-caryophyllon aldehyde (MW 236, BCAL in Figure 9)
and B-caryophyllene secondary ozonide in the gas-phase (MW 252, BCSOZ in Figure
9), B-caryophyllonic acid (MW 252, C141CO2H in Figure 9) in both phases and
secondary product B-nocaryophyllinic acid (MW 254, C131CO2H in Figure 9) in the
particle-phase. In the hour-4 cTOF-AMS PCA scores plot, the myrcene and [-
caryophyllene clusters are located adjacent to one another, with B-caryophyllene
classification also influenced by the m/z 41 peak, which similar to myrcene SOA for
example, is indicative of higher oxidized content (Alfarra et al., 2012), a result of
either the partitioning of higher generation gas-phase products or heterogeneous

oxidation of condensed first or second generation products.

5.2 Mapping within a class

Within the monoterpene group there is a small degree of separation between the
limonene and a-pinene experiments, with three out of the four a-pinene
experiments located to the upper and right region of the monoterpene cluster. This
distribution/separation within the group may be a consequence of precursor-specific
reaction pathways; for instance, although structurally similar, o-pinene and
limonene react at somewhat different rates with respect to both OH and O;
(Atkinson and Arey, 2003a). Over a fixed time period, such system reactivity will
govern the degree of oxygenated content present within a closed analyte matrix and
may facilitate the isolation of specific reaction pathways. Furthermore, the
separation of such similar gas-phase precursors within a class cluster may help us to
elucidate differences in resultant SOA yield and composition (e.g. limonene tends to
have a larger SOA yield than a-pinene; Lee et al., 2006; Fry et al., 2014). It therefore
may be possible with the use of larger and more detailed data sets, to employ

loading information to determine the importance of certain products to SOA
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composition. However, additional data to those reported here would be required to

fully test this hypothesis.

5.3 Mapping reactivity

In order to explore how the PCA technique can be used to investigate product
distributions driven by certain starting conditions, a separate analysis was conducted
on the five toluene experiments. In this instance we investigate the product
distribution dependency on initial VOC/NO, ratios. The VOC/NO, ratios employed
nominally represent “low”, “medium” and “high” NOy conditions, with values of
roughly 11 (i.e. low NO,, “NO,-limited” ozone formation conditions — as determined
from simulation chamber ozone isopleth plots, see Wagner et al.,, 2003; two
experiments), 4 (i.e. moderate NO,, two experiments) and 1 (i.e. high NO,, “VOC-

limited”; one experiment), respectively. The resultant PCA loadings bi-plot

(produced using the methodology described in Section 3) is given in Figure 10.

From inspection of the PCA loadings bi-plot in Figure 10, it is clear that the toluene
photooxidation spectra distribute in statistical space according to their respective
initial VOC/NO, ratios. Figure 10 shows the low NO,, high VOC/NO, ratio
experiments grouped in the lower right-hand quadrant of the PCA space, principally
influenced by loadings representing toluene (m/z 93 and 77, parent and fragment
ions, respectively; note m/z 93 off-scale in Figure 10) and cresol (m/z 109). Summed
spectra containing larger quantities of precursor would suggest the presence of a
less reactive environment, which is the case here, where low NOy levels in the NO,
limited regime, result in low [OH] (reduced radical cycling) and low [O3] (less NO to
NO, conversions) (see also Bloss et al., 2005). Similarly, the relatively large
contribution from cresol to the low NO, summed spectra, originates from a larger
net cresol concentration across the experiment on account of low system reactivity

(i.e. loss via reaction with OH).

The moderate NO,, medium VOC/NO, experiments group uniquely in the lower left-
hand quadrant of the PCA space in Figure 10, principally on account of loadings

representing benzaldehyde (m/z 107) and the ring-opening products, citraconic
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anhydride (m/z 113), 4-oxo-2-pentenal, maleic anhydride and/or angelicalactone
(m/z 99) and methyl glyoxal (m/z 73). The greater abundance of higher generation,
ring-opening products implies a more reactive environment (i.e. increased chemical
processing) than that formed under low NOy conditions. Larger net benzaldehyde
concentrations originate from greater system reactivity and greater abundance of

NO to fuel the RO, + NO reaction.

The high NO,, low VOC/NOj ratio experiment is sited in the left-hand half of Figure
10, on account of it possessing higher system reactivity (with respect to the low NOy
experiments) and the resultant greater proportion of ring-opening product ions (as
the case for the moderate NO, experiments). However, the low VOC/NO, ratio
experiment is uniquely displaced into the upper region of the PCA space owing to a
large contribution from 2-butenedial and/or 2(5H)-furanone (m/z 85, off scale in
Figure 10) to the summed spectra (the yields of both of which are likely to be
important under high NO4 conditions, owing to reaction through the RO, + NO

channel).

6. Atmospheric relevance and future directions

Having successfully used the mechanistic fingerprints in the chamber data to
construct descriptive statistical models of the gas- and particle-phases, and having
applied the methodology to map mesocosm environments, a next logical step would
be to use this detailed chemical knowledge to investigate ambient VOC and SOA
composition data in an attempt to help elucidate and deconvolve the important
chemistry controlling the gas- and particle-phase composition of inherently more

complex real world environments.

If ambient biogenic gas/particle composition spectra of unknown origin, uncertain
speciated composition and/or a high level of detail and complexity were to be
mapped onto the relevant statistical model (i.e. introduced as a separate test set),
their resultant vector description in the statistical space would provide information
regarding the type of precursors present and the underlying chemical mechanisms at

play, as exemplified by the classifying of the mesocosm experiments by the fraction
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of isoprene, monoterpene and sesquiterpene chemistry in the experimental
fingerprints. Furthermore, as shown by the mapping of toluene photooxidation
experiments into a separate and distinct cluster, the methodology is potentially able
to be robust with respect to other chemical compositions expected for a “real world”
environment that is significantly impacted by both anthropogenic and biogenic
emissions (e.g. Houston, USA and the Black Forest — Munich, DE). This capability is
important when attempting to understand the complex interactions that exist
between urban and rural atmospheres and when attempting to understand VOC and

SOA source identification.

One potential problem in moving from simulation chamber data to “real world”
systems, would be the applicability of using “static” experimental spectra (i.e. time
averaged) to build a model to accept “dynamic” data, in which there would be
potentially overlapping reaction coordinates and multiple precursor and radical

sources.

In order to investigate the impact of a more dynamic system on the composition of
the gas-phase matrix and hence on the composition of the spectra employed to build
the model, a zero-dimensional chamber box model was constructed for the a-pinene

system and operated under three different scenarios:

(1) Basic chamber simulation: a-pinene concentration constrained to
measurements (initial concentration 124 ppbV); NO and NO, initialised
according to measurements (31 and 41 ppbV, respectively).

(2) Spiked chamber simulation: a-pinene constrained as in (1), but profile
duplicated to represent a fresh injection of the precursor (at the midpoint
of the experiment) on top of the already evolving matrix; constant 10 ppbV
HONO employed as NO and radical source.

(3) Constant injection chamber simulation: a-pinene and HONO constrained to

constant values of 5 and 10 ppbV, respectively.
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It should be noted here that the model runs are not idealised. The aim of these
simulations is to provide systematically more complex chemical systems with which
to compare and contrast a simulation representing the measured dataset. For work
regarding the evaluation of the MCM with respect to single VOC precursor chamber
experiments (including model-measurement intercomparison), see for example,
Bloss et al., 2005 (toluene), Metzger et al., 2008 and Rickard et al., 2010 (1,3,5-TMB),

Camredon et al., 2010 (a-pinene) and Jenkin et al., 2012 (f-caryophyllene).

The results of the three different model scenarios are given in Figure 11, mapped
through to (i.e. integrated across the experiment) the resultant simulated mass

spectra.

Figures 11a and b show the results from scenario (1). Figure 11a gives the evolution
of the system over the molecular weight region of interest with time and Figure 11b
gives the scenario summed “model mass spectra”, i.e. the relative abundance of all
simulated compounds within the gas-phase molecular weight region of interest (with
relative contributions from isobaric species summed into a single “peak”). Scenario
(1) and Figures 11a and b approximate the experimental data employed within this

work and constitute the model base-case.

Figures 11c and d show the results from scenario (2). Figure 11c clearly shows the
second a-pinene injection on top of the evolving matrix and the resultant system
evolution. Figure 11d show the “difference model mass spectra” between scenarios
(1) and (2), from which it can clearly be seen that there is very little difference
between the spectra of the basic model and the “spiked” system. The difference in
“mass channel” relative abundance (AMC) is generally < 2 %, with the exceptions of
MWs 168 and 186. MW 168 primarily comprises pinonaldehyde, with a AMC of
around - 6 %; pinonaldehyde is a primary product and is slightly lower in relative
abundance in scenario (2) owing to the longer reaction time employed and the
greater proportion of pinonaldehyde reacted. MW 186 comprises a number of

primary and secondary products and has a AMC of roughly + 3 %.
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The results from model scenario (3) are given in Figures 11e and f. As with scenario
(2), there is no dramatic difference between the simulated mass spectra of scenario
(3) and the base-case scenario (1). In this instance AMC is generally < £ 5 %, with the
exceptions of MWs 136 and 168 and MWs 121 and 245. The relative abundance of
the precursor is lower in this case on account of the constraining method employed
and once again the relative abundance of pinonaldehyde is slightly lower due to the
longer reaction time. MW 121 solely comprises PAN and MW 245 primarily
comprises a Cyo tertiary nitrate (Ci0H1sNOs, MCM designation: C106NO3). Both
species are slightly elevated with respect to the base-case in scenario (3) owing to
the longer reaction time and the continual input of OH and NO into the model in the

form HONO.

Scenarios (2) and (3) represent complex mixtures with overlapping reaction
coordinates, each one step closer to a “real world” case than scenario (1) and the
chamber data employed within this work. However, despite the increase in
complexity of the scenarios, both exhibit very little compositional difference to the
base-case scenario and hence the chamber data employed in this work. These
results give some confidence that despite being constructed from summed
simulation chamber data, the statistical models employed here represents a solid

framework onto which real atmosphere spectra could be mapped and interpreted.

A further step in increasing complexity and hence a further step towards the “real
world” system, would be the addition of other (potentially unidentified) precursors
to the simulation, which may be at different stages of oxidation or have passed
through different reactive environments. Further increases in complexity, beyond

the analysis discussed here, will form the focus of future work.

7. Conclusions

A chemometric dimension reduction methodology, comprising PCA, HCA and PLS-DA
has been successfully applied for the first time to complex gas- and particle-phase
composition spectra of a wide range of BVOC and mesocosm environmental

simulation chamber photooxidation experiments. The results show that the oxidized
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gas-phase atmosphere (i.e. the integrated reaction coordinate) of each different
structural type of BVOC can be classified into a distinct group according to the
controlling chemistry and the products formed. Indeed, a potential major strength
of the data analysis methodology described here, could lie in the decoding of
mechanisms into pathways (i.e. separation within a group on account of different
underlying chemistry) and consequently linking chemical pathways to precursor
compounds. Furthermore, the methodology was similarly able to differentiate
between the types of SOA particles formed by each different class of terpene, both
in the detailed and broad chemical composition spectra. In concert, these results
show the different SOA formation chemistry, starting in the gas-phase, proceeding to

govern the differences between the various terpene particle compositions.

The ability of the methodology employed here to efficiently and effectively “data
mine” large and complex datasets becomes particularly pertinent when considering
that modern instrumentation/techniques produce large quantities of high-resolution
temporal and speciated data over potentially long observation periods. Such
statistical mapping of organic reactivity offers the ability to simplify complex
chemical datasets and provide rapid and meaningful insight into detailed reaction
systems comprising hundreds of reactive species. Moreover, the demonstrated
methodology has the potential to assist in the evaluation of (chamber and real
world) modelling results, providing easy to use, comprehensive observational
metrics with which to test and evaluate model mechanisms and outputs and thus
help advance our understanding of complex organic oxidation chemistry and SOA

formation.
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10. Tables

Table 1: Summary of experiments conducted

Experiment ID Precursor Structure k(OH) / k(0s)* / cm® molec’ s*  Experiment Type (no.) VOC/NO,Range RH /% Range
ISOP1 — 10™° isoprene \)k 9.9x10™/1.2x10" Photooxidation (10) 1.3-20.0 49 -72
APIN1 — 4%*MP a-pinene @, 5.3x10"/8.4x 10" Photooxidation (4) 1.3-2.0" 49 -73
LIM1 — 6>>MEP limonene }_@ 1.7x10%°/2.1x 10" Photooxidation (6) 1.4-2.0" 50' - 82
BCARY1-10**"  B-caryophyllene ng 2.0x10"°/1.2x10™ Photooxidation (10) 0.6-2.0" 50' - 72
MYRC1 - 2%>M myrcene R [ 21x10"°/4.7x10" Photooxidation (2) 1.4-1.9 52 —54



Experiment ID Precursor Structure k(OH) / k(0s)* / cm® molec’ s*  Experiment Type (no.) VOC/NO,Range RH /% Range

LINAL — 2%3M linalool M 1.6 x10"°/4.5x10"° Photooxidation (2) 1.4-2.6 42 -47
=

BIR1 -2V birch trees Multiple emissions® Multiple emissions Mesocosm 55-56 73-84
Photooxidation (2)

FIG1-2" fig trees Multiple emissions® Multiple emissions Mesocosm 2.7-94 65-75
Photooxidation (2)

TOL1 - 5¢ toluene Q 37x10%2/- Photooxidation (5) 13-11.6 2-6

1 = Estimated using known volume of reactants injected

2 = LC-MS/MS filter data available for at least one of these experiments (MAC)

3 = c-TOF-AMS data available for at least one of these experiments (MAC)

4 = From (Atkinson and Arey, 2003b;Sun et al., 2012;Khamaganov and Hites, 2001) and references therein
5 =See Wyche et al., 2014
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M = experiments conducted in the MAC
E = experiments conducted in the EUPHORE

P = experiments conducted in the PSISC
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Table 2: Key technical features of MAC, EUPHORE and PSISC (Alfarra et al., 2012;Becker, 1996;Bloss et al., 2005;Camredon et al., 2010;Paulsen

et al., 2005;Zador et al., 2006).

Chamber Material Environment Size Light Source Spectrum

MAC FEP Teflon Indoor 18 m?, 1 x 6 kW Xe arc lamp A range =290 — 800 nm
3(H) x 3(L) x 2(W) m Bank of halogen lamps jno2=6x10"* s (290 — 422 nm)

EUPHORE FEP Teflon Outdoor 200 m?, Solar Solar; 75 % transmission at 290
(hemispherical) nm, 85 % transmission > 320 nm

Jno2="5-9x 10735t
PSISC FEP DuPont Indoor 27 m’, 4 x 4 kW Xenon arc A range =290 -800 nm
Tedlar 3(H) x 3(L) x 3(W) m lamps jno2 =0.12 min™
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Table 3: List of certain major product ions integral to the separation of spectra in statistical space, their corresponding tentative assignments

and their precursor. See main text, Section 4.2 for further information.

lon/ m/z CIR-TOF-MS LC-MS/MS cTOF-AMS
Assignment Precursor Assignment Precursor Assignment Precursor
41 - - - - CsHs' All
43 - - - - CH5CO" All
44 - - - - co,’ All
71 methyl vinyl ketone isoprene - - - -

+ methacrolein

75 hydroxyl acetone isoprene - - - -
83 3-methyl furan isoprene - - - -
87 C4-hydroxycarbonyls Isoprene - - - -

/ methacrylic acid

93 4-vinyl-4-pentenal / myrcene / - - - -
4-hydroxy-4- linalool
methyl-5-hexen-1-al

95 4-vinyl-4-pentenal / myrcene / - - - -
4-hydroxy-4- linalool
methyl-5-hexen-1-al

107 piononaldehyde / a-pinene / - - - -
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139

151

169

183

185

199

215

235

227

237

limononaldehyde
limonaketone

piononaldehyde /
limononaldehyde

piononaldehyde /
limononaldehyde

B-caryophyllene

secondary ozonide

+ isomers

B-caryophyllene
aldehyde

limonene
limonene

a-pinene /
limonene

a-pinene /
limonene

B-caryophyllene

B-caryophyllene

pinalic-3-acid /
ketolimonon-
aldehyde + limonalic
acid
pinonic acid /
limononic acid + 7-
hydroxylimonon-

aldehyde

pinic acid /
limonic acid

C9H 1105

C10H1505

C10H1106

3-[2,2-dimethyl-4-
(1-methylene-4-oxo-
butyl)-cyclobutyl]-

a-pinene /
limonene

a-pinene /
limonene

a-pinene /
limonene

myrcene

myrcene

myrcene

B-caryophyllene
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251

253

255

267

271

321

B-caryophyllene
secondary ozonide
+isomers

B-caryophyllene

propanoic acid

B-caryophyllonic B-caryophyllene -
acid
4-(2-(2- B-caryophyllene -

carboxyethyl)-3,3-
dimethylcyclobutyl)-
4-oxobutanoic acid

B-14-hydroxy- B-caryophyllene -
caryophyllonic acid
+ B-10-hydroxy-
caryophyllonic acid

4-(2-(3- B-caryophyllene -
hydroperoxy-3-
oxopropyl)-3,3-
dimethylcyclobutyl)-
4-oxobutanoic acid /
4-(2-(2-carboxy-1-
hydroxyethyl)-3,3-
dimethylcyclobutyl)-
4-oxobutanoic acid

[M-H,+FA+Na] myrcene -
C12H1406 / C13H1805
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Table 4: PLS-DA model classification sensitivity and specificity for the gas-phase biogenic air matrices

Cross Validation isoprene cyclic- sesquiterpene straight-chain- Fig tree Birch tree
monoterpene monoterpene

Sensitivity (%) 100.0 100.0 100.0 100.0 100.0 50.0

Specificity (%) 100.0 92.9 100.0 100.0 100.0 91.7
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11. Figures

Figure 1: (a) NO,, O3, myrcene and 4-vinyl-4-pentenal (primary aldehyde product)
and (b) particle mass (not wall loss corrected and assuming p = 1.3) and size

evolution within the MAC during a typical photooxidation experiment.

Figure 2: PCA loadings bi-plot of the second vs. first principal components derived
from the PCA analysis of the isoprene, cyclic monoterpene (“c-m-terpene” in the
legend; a-pinene and limonene), sesquiterpene (B-caryophyllene) and straight chain
biogenic (“s-m-terpene” in the legend; myrcene and linalool) chamber data.
Classification confidence limits = 95 %. Tentative assignments of major ions, include
m/z 71 = methyl vinyl ketone and methacrolein, 75 = hydroxy acetone, 83 = e.g. 3-
methyl furan, 87 = C4-hydroxycarbonyls/methacrylic acid, m/z 237 = B-caryophyllene
aldehyde, 235 and 253 = B-caryophyllene secondary ozonide (and isomers thereof),
m/z 107, 151 and 169 = piononaldehyde and limononaldehyde, 139 = limonaketone,
m/z 95 and 93 = 4-vinyl-4-pentenal and 4-hydroxy-4-methyl-5-hexen-1-al. See main
text, Section 4.2 and Table 3 for further information. For clarity, the scale has been
set to show the bulk of the data, hence precursor parent ions and m/z 71 are not

shown.

Figure 3: PCA scores plot of the first vs. second principal components derived from
the PCA analysis of the mesocosm test set using the PCA model developed from the
isoprene, cyclic monoterpene (a-pinene and limonene), sesquiterpene (B-
caryophyllene) and straight chain monoterpene (myrcene and linalool) chamber

data. Classification confidence limits = 95 %.

Figure 4: PCA scores plot of the first vs. second principal components derived from
the PCA analysis of the toluene test set using the PCA model developed from the

isoprene, cyclic monoterpene (a-pinene and limonene), sesquiterpene (B-
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caryophyllene) and straight chain monoterpene (myrcene and linalool) chamber

data. Classification confidence limits = 95 %.

Figure 5: Dendrogram showing the grouping relationship between the various gas-
phase matrices of systems examined. Red = isoprene, pink = fig, green = cyclic
monoterpenes (a-pinene and limonene), yellow = birch, light blue = straight chain
monoterpenes (myrcene and linalool) and dark blue = sesquiterpene (B-

caryophyllene).

Figure 6: scores plot of the first three latent variables derived from the PLS-DA
model analysis of the isoprene, cyclic monoterpene (a-pinene and limonene),
sesquiterpene (B-caryophyllene), straight chain monoterpene (myrcene and

linalool), fig and birch chamber data. Classification confidence limits = 95 %.

Figure 7: (a) Loadings bi-plot of the second vs. first principal components obtained
from the PCA of LC-MS aerosol spectra from a subset of terpene experiments and (b)
the corresponding HCA dendrogram. See main text, Section 4.5 and Table 3 for

further information, including ion assignments.

Figure 8: (a) Loadings bi-plot of the second vs. first principal components obtained
from the PCA of AMS aerosol spectra from of a subset of terpene experiments and
(b) the corresponding HCA dendrogram. See main text, Section 4.5 and Table 3 for

further information, including ion assignments.

Figure 9: Simplified schematic illustrating some of the important mechanistic

pathways in the gas-phase oxidation of isoprene, a-pinene, B-caryophyllene and
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myrcene, and the associated mass transfer to the particle-phase. Red arrows and
text = “high” NOy pathways, green arrows and text = “low NO,” pathways, blue
arrows and text = ozonolysis reactions, grey arrow and text = speculative, dashed
arrows = multiple steps. * = multiple photooxidative routes initiated by reaction with
OH (i.e. involving the reactants — OH, O,, NO, HO, and/or RO;), leading to structurally
similar products containing different functional groups. a-pinene mechanism — X =
OH, =0, OOH or ONO,; Y = CHO or C(O)OH; Z = OH, OOH or ONO,. B8-caryophyllene
mechanism — X = CH,0H(OH), CH,OH(OOH), CH,OH(ONO;) or =0. Myrcene
mechanism — Y = OOH or ONO;; Z = CHO or C(O)OH. See text, section 5 for

references.

Figure 10: PCA loadings bi-plot of the second vs. first principal components derived
from the PCA analysis of the toluene experiments. Experiments were conducted
under low NO,, high VOC/NO, ratio (red diamonds), moderate NO,, medium
VOC/NOy ratio (green squares) and high NO,, low VOC/NO, ratio (blue triangle)
conditions. For clarity, the scale has been set to show the bulk of the data, hence

m/z 93 and 85 are not shown.

Figure 11: Results from MCM a-pinene photooxidation simulations. (a) and (b) =
basic a-pinene photooxidation; (c) and (d) = spiked injection of a-pinene,
continuous HONO input; (e) and (f) = continuous a-pinene and HONO input. Left
hand image plots show the evolution of the respective systems over the molecular
weight region of interest with time; colour scale = relative abundance (%). Right
hand plots = (b) relative abundance of simulated molecular weights during straight
a-pinene photooxidation; (d) difference in relative abundance of simulated
molecular weights between double injection of a-pinene continuous HONO input
and straight a-pinene photooxidation; (f) difference in relative abundance of
simulated molecular weights between continuous a-pinene and HONO input and

straight a-pinene photooxidation. See text for details.
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