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Abstract

Tar balls (TBs) are a specific particle type which is abundant in the global troposphere,
in particular in biomass smoke plumes. These particles belong to the family of atmo-
spheric brown carbon (BrC) which can absorb light in the visible range of the solar spec-
trum. Albeit TBs are typically present as individual particles in biomass smoke plumes,5

their absorption properties have been only indirectly inferred from field observations or
calculations based on their electron energy-loss spectra. This is because in biomass
smoke TBs coexist with various other particle types (e.g. organic particles with inor-
ganic inclusions and soot, the latter is emitted mainly during flaming conditions) from
which they cannot be physically separated; thus, a direct experimental determination10

of their absorption properties is not feasible. Very recently we have demonstrated that
TBs can be generated in the laboratory from droplets of wood tar that resemble atmo-
spheric TBs in all of their observed properties. As a follow-up study we have installed
on-line instruments to our laboratory set-up generating pure TB particles to measure
the absorption and scattering, as well as size distribution of the particles. In addition,15

samples were collected for transmission electron microscopy (TEM) and total carbon
(TC) analysis. The effects of experimental parameters were also studied. The mass
absorption coefficients of the laboratory generated TBs were found to be in the range
of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7
and 3.4 (average 2.9) in the wavelength range 467–652 nm. The refractive index of20

TBs as derived from Mie calculations was about 1.84–0.21i at 550 nm. In the brown
carbon continuum these values fall closer to those of soot than to other light-absorbing
species such as humic-like substances (HULIS). Considering the abundance of TBs in
biomass smoke and the global magnitude of biomass burning emissions, these find-
ings may have substantial influence on the understanding of global radiative energy25

fluxes.

16216

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/16215/2015/acpd-15-16215-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/16215/2015/acpd-15-16215-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 16215–16234, 2015

Light absorption
properties of

laboratory generated
tar ball particles

A. Hoffer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 Introduction

Tar balls (TBs) are abundant and represent a peculiar particle type emitted from
biomass burning. They can be readily identified by transmission electron microscopy
(TEM) by their morphology, chemical composition, and amorphous structure. TBs are
homogeneous and spherical particles that can withstand the high-energy electron5

beam of the TEM. They are most often present in external mixture, i.e. as individ-
ual standalone particles. Their sizes range from 30 to 500 nm in optical diameter as
determined by TEM (Pósfai et al., 2004; Cong et al., 2009; Adachi and Buseck, 2010;
Fu et al., 2012; China et al., 2013). Very recently we have demonstrated that TBs can
be generated in the laboratory from droplets of wood tar that resemble atmospheric10

TBs in all of their observed properties (Tóth et al., 2014). These particles belong to the
family of atmospheric brown carbon (BrC) which can absorb light in the visible range
of the solar spectrum (Andreae and Gelencsér, 2006). Chung et al. (2012) have esti-
mated that the global contribution of BrC to light absorption may be as high as 20 %
at 550 nm. Given that the estimated contribution of humic-like substances (HULIS) to15

solar absorption can be only few per cent at 500 nm (Hoffer et al., 2006), a substantial
fraction of BrC absorption may be attributed to TBs. So far a direct experimental de-
termination of absorption properties of TBs has not been feasible because in biomass
smoke TBs coexist with various other particle types from which they cannot be sepa-
rated. Thus, their absorption properties have been so far only indirectly inferred from20

field observations (Hand et al., 2004; Chakrabarty et al., 2010) or calculations based on
their dielectric functions obtained from electron energy-loss spectrometry (Alexander
et al., 2008).

Hand et al. (2004) were the first to estimate the optical properties of TB by mea-
suring the optical properties of ambient particles emitted from biomass burning during25

the YACS (Yosemite Aerosol Characterization Study) conducted from July to Septem-
ber 2002 in the western United States. The derived (estimated from OC/EC and scat-
tering data) ensemble complex index of refraction of TBs was found to be 1.56–0.02i
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at 632 nm, indicating that the TBs do absorb light. The difference between the mea-
sured absorption between 370 and 880 nm was the highest in periods when TBs were
the predominant particle type, suggesting that the absorption Ångström exponent of
TB was different from 1. Back-trajectory analyses showed that the particles measured
were affected by long-range transport, thus the residence time of the particles allowed5

photochemical and ageing processes to take effect. These effects can be observed on
the distribution of the elements in individual TB particles. Whereas carbon and nitrogen
were homogenously distributed over the entire particle volume, the abundance of oxy-
gen was strongly enhanced in the ∼ 30 nm outmost shell of the particles. Since these
particles were affected by atmospheric processing, some of their properties might be10

different from those of the freshly emitted TB particles.
Alexander et al. (2008) investigated individual particles (“carbon spheres”) from

ambient aerosols collected above the Yellow Sea during the Asian Pacific Regional
Aerosol Characterization Experiment (ACE-Asia). The morphological properties (size,
structure, and mixing state) of the carbon spheres observed by TEM were similar to15

those characteristic of TB particles. The refractive indices of individual carbon spheres
were derived from theoretical calculations based on electron energy-loss spectra and
were found to be centred around 1.67–0.27i at 550 nm. The authors also calculated
the wavelength dependence of the absorption and found AAE of 1.5 which is not much
different from that reported for BC (Schnaiter et al., 2003; Moosmüller et al., 2009).20

The derived mass absorption coefficients of the carbon spheres were in the range of
3.6–4.1 m2 g−1, almost as high as those of BC (4.3–4.8 m2 g−1) (Alexander et al., 2008).

Chakrabarty et al. (2010) measured the optical properties of tar balls from smol-
dering combustion of Ponderosa pine and Alaskan Pine duffs in the laboratory. They
found the index of refraction of TB particles similar to those of humic-like substances25

(Hoffer et al., 2006). The wavelength dependent absorption Ångström exponents were
split into 2.3–2.8 and 4.2–6.4 in the spectral range of 532–780 nm and 405–532 nm,
respectively. The TB particles were almost spherical, having a carbon-to-oxygen ratio
of about 6, as determined by SEM-EDX.

16218

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/16215/2015/acpd-15-16215-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/16215/2015/acpd-15-16215-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 16215–16234, 2015

Light absorption
properties of

laboratory generated
tar ball particles

A. Hoffer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The absorption properties of BrC including TBs are very important in regional and
global modelling of the radiative budget, as well as in interpreting satellite-based radi-
ation measurements. In spite of being an abundant particle type among BrC particles,
TBs have so far eluded direct measurements of their optical properties, since they al-
ways coexist with other particle types and UV-absorbing gaseous species in biomass5

smoke. By generating pure TB particles in the laboratory without concurrent emission
of other combustion products, we have directly measured the optical properties of TBs
for the first time in aerosol science. In this paper we report the fundamental optical
properties of laboratory generated TBs generated under different conditions.

2 Experimental10

For particle generation liquid tar was produced by dry distillation of wood, as described
in our previous paper (Tóth et al., 2014). Dry European turkey oak wood (Quercus
cerris) chops (25mm×10mm×10mm) were placed in a Kjeldahl flask (100 mL) fixed
above a Bunsen burner in a slightly down-tilted position. Liquid condensate was col-
lected in a 40 mL vial in which it separated into “oily” and “aqueous” phases (Maschio15

et al., 1992). Both phases were aged further on a ∼ 300 ◦C plate to concentrate the so-
lutions. The concentrates were taken up with high purity methanol (J. T. Baker, HPLC
Gradient), the concentration of solutions used for particle generation were 1–3 gL−1.

A modified experimental setup similar to that used in previous experiments (Tóth
et al., 2014) was applied for particle generation. In order to maintain the concentration20

of the generated particles constant for a longer time that is necessary for measuring
the size distribution and optical properties of the particles, particles were generated
with an ultrasonic atomizer used in a fashion described previously by Okuyama and
Lenggoro (2003). The production of tar droplets from their solution in methanol was
performed in a plastic flask placed above the ultrasonic nebulizer (1.6 MHz, Exo Terra25

Fogger, PT2080, Rolf C. Hagen Corp.), held in a water bath at room temperature. The
nebulizer flask was continuously rinsed with purified nitrogen (Messer, purity 99.5 %)
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at a flow rate of 0.100 Lmin−1. The generated droplets were passed through a glass
tube of 300 mm length (id= 9 mm) heated directly with a tube furnace (Carbolite, MTF
10/25/130). The temperature of the heated zone (30 mm isotherm zone) was set in the
experiments between 500 and 800 ◦C. The residence time of the particles in the heated
zone was about 1.15 s. After leaving the heated zone the nitrogen flow was mixed with5

dry filtered air at a flow rate of ∼ 30 Lmin−1, then passed through a buffer volume of
10.75 L (residence time 21.5 s). A PM1 cyclone (SCC 2.229) was deployed at the outlet
of the system to remove the large particles (the calculated cut-off was ∼ 500 nm aero-
dynamic diameter) from the gas stream. The measurements of the optical parameters
(scattering and absorption) and the size distribution as well as the aerosol sampling10

were performed in a single setup. The light absorption coefficients were measured with
a CLAP (Continuous Light Absorption Photometer) at 3 different wavelengths (467,
528, 652 nm). The light scattering coefficients were measured with a TSI 3563 neph-
elometer at 450, 550, 700 nm (Anderson et al., 1996). The data were recorded with
a time resolution of 5 s, the raw light absorption and scattering data were corrected15

according to Bond et al. (1999) and Anderson and Ogren (1998), respectively. All data
were also corrected for standard temperature and pressure. The absorption Ångström
exponents of the particles were calculated from the measured and corrected absorp-
tion coefficient for the wavelength range between 467 and 652 nm with the equation
(Moosmüller et al., 2011):20

AAE = − ln(A467/A652)/ ln(467/652),

where A467 and A652 are the absorbances measured at the two different wavelengths.
The size distribution was measured in the range of 7–800 nm with a Differential Mo-

bility Particle Sizer (DMPS), constructed at the University of Helsinki.
The generated particles were collected on Whatman QMA quartz filters (pre-baked25

at 680 ◦C for 6 h). The elemental composition (CHNS) of the particles on filters was
measured by elemental analyser (EuroVector EA3000). In certain cases the particles
were collected on TEM grids (lacey Formvar/carbon TEM copper grid of 200 mesh, Ted
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Pella Inc., USA) fixed on 13.1 mm spots of quartz filters placed in the filter holder that
were used for sampling for elemental analysis as well.

The morphologies of the particles were studied in bright-field TEM images obtained
using a Philips CM20 TEM operated at 200 kV accelerating voltage. The possible pres-
ence of an internal structure was checked in high-resolution electron micrographs and5

in selected-area electron diffraction patterns. The electron microscope was equipped
with an ultra-thin-window Bruker Quantax X-ray detector that allowed the energy-
dispersive X-ray analysis (EDS) of the elemental compositions of individual particles.
Spectra were acquired for 60 s, with the diameter of electron beam adjusted to include
the entire individual TB particles.10

3 Results

3.1 Morphology, elemental composition and structure of the generated
particles

Two samples were collected for TEM analysis to investigate the morphology and el-
emental composition of the generated particles, one representing the particles gen-15

erated from the aqueous phase of the tar, whereas the other was collected from the
oily phase. In both cases the oven temperature was set to 650 ◦C, the flows and other
experimental parameters were similar to those applied for samples collected for TC
analysis.

As it can be observed in Fig. 1, the particles generated from the aqueous phase20

were spherical. From the oily phase more irregularly shaped particles with oval two-
dimensional outlines were produced, indicating that in the latter case the particles were
not perfectly solid at the time of collection. It was observed during the TEM analysis
that all of the generated particles can withstand the high-energy electron beam of the
instrument: they did not evaporate or shrink while exposed to the electron beam.25
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The observed sizes of the particles vary widely (up to ∼ 360 nm in diameter), the
number size distribution peaks at ∼ 100 nm as determined from the TEM images. Bi-
modal number size distribution was obtained from the DMPS measurements for the
particles produced from both the aqueous and oily phase of the tar (Fig. 2). For the
particles aged at 650 ◦C the two modes are centred around 20–40 and 100–140 nm.5

The number size distributions of nigrosin and the blank (pure methanol) are unimodal
peaking at 117 and 41 nm, respectively. Nevertheless, in cases when the ageing tem-
perature was higher than 500 ◦C the mass and volume of the particles are dominated by
the larger particles: at least 86 and 70 % of the total mass is represented by the larger
particle mode in the case of the aqueous and oily samples, respectively. Considering10

that both the absorption and scattering efficiencies are very small for small particles,
the optical properties are also determined by the particles of the larger mode. (Here
we note that the mass absorption coefficient was calculated only for size distributions
in which the relative contribution of the second mode to total volume was larger than
93 %.) The sizes of the particles of the second mode were similar to those determined15

for ambient TB particles observed in samples from K-puszta and Southern Africa (Pós-
fai et al., 2004).

The EDS spectra of the particles generated from both the aqueous and oily phase
indicated that the particles consist predominantly of carbon and oxygen. In the case
of the particles formed from the aqueous phase the average carbon to oxygen molar20

ratio was 10 : 1, with 90 mol% C (RSD= 10 %), 9 mol% O (RSD= 16 %) and N, Na, Si,
S, K only in trace amounts. The limitations of determining molar ratios by this method
are described in detail elsewhere (Pósfai et al., 2003). It should be noted that the
spectra were practically indistinguishable from those obtained from atmospheric TBs.
Both HRTEM images and electron diffraction confirm that the particles in both samples25

are perfectly amorphous, lacking even the short-range order that is characteristic of
ns-soot (Buseck et al., 2014).
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3.2 Measurement uncertainties

In order to estimate the measurement uncertainties, nigrosin dye (Sigma-Aldrich, Acid
black 2, water soluble) was measured with the same setup that was used for the mea-
surements of TBs. The nigrosin was also dissolved in methanol and particles were
generated with the process used for the TB samples. Oven temperature was set to5

65 ◦C in order to evaporate methanol from the droplets without inducing compositional
changes of nigrosin. According to Massoli et al. (2009), the scattering coefficient of
absorbing particles with single scattering albedo (SSA)=0.4 (at 532 nm) is overesti-
mated by 25 % using the Anderson and Ogren correction (Anderson and Ogren, 1998)
for the raw data measured by a TSI nephelometer. Since in our case the SSA of the10

generated nigrosin was ∼ 0.4 at 550 nm, the scattering coefficient might be also over-
estimated by ∼ 25 %. The uncertainty of the measurements of Particle Soot Absorption
Photometer (PSAP) whose measurement principle is very similar to that of the CLAP is
20–30 % (Bond, 1999). It was demonstrated that the presence of organic compounds
(secondary organic aerosol, SOA) causes positive bias and enhances the uncertainty15

of the PSAP (Cappa et al., 2008; Lack et al., 2008). This effect has to be considered
in the case of particles generated from tar which contain condensable organic com-
pounds as well. Based on the above, if we consider that the CLAP overestimated the
absorption of nigrosin by 25 % and the scattering is also overestimated by 25 %, we ob-
tain a refractive index of 1.65–0.29i and 1.77–0.27i for nigrosin at wavelengths of 55020

and 652 nm, respectively. The index of refraction of nigrosin at 633 nm was reported
to be 1.67–0.26i (Pinnick et al., 1973). By assuming that the absorption is similar at
both 633 and 652 nm, Mie calculations using the refractive index of nigrosin (1.67–
0.26i ) and the measured size distribution yield scattering and absorption coefficients
at 652 nm higher by ∼ 17 % and lower by ∼ 2 %, respectively, as compared to those25

directly measured. These uncertainties are considered when interpreting the results.
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4 Mass absorption coefficient

Table 1 summarizes the measured optical properties of the particles produced from the
aqueous phase. At 650 ◦C the measured mass absorption coefficients of the TBs gen-
erated from the aqueous phase of the wood tar varied between 2.4 and 3.2 m2 g−1C, the
average being 2.7 m2 g−1C at 550 nm. Taking into account the potential positive bias in5

absorption measurements (see discussions in Sect. 2) and related uncertainties (e.g.
uncertainty of total carbon measurements) and the fact that the mass-to-carbon ratio
of TBs is about 1.2 this range translates into mass absorption coefficients of about
0.8–3.0 m2 g−1 (see Table 1). These values are similar to that characteristic for BC
(∼ 7 m2 g−1, Schnaiter et al., 2003; Clarke et al., 2004; Taha et al., 2007). The mass10

absorption coefficient of HULIS is a factor of 25–100 lower (∼ 0.032 m2 g−1, Hoffer
et al., 2006).

The range of the measured mass absorption coefficients for the particles generated
from the oily phase of wood tar was found to be largely similar to that obtained for
the particles from the aqueous phase. However, the former is not evaluated since the15

particles generated from the oily phase morphologically differ from atmospheric TB
particles.

5 Ångström exponent of generated tar balls

The absorption Ångström exponents of particles generated varied between 2.7 and
3.7 (2.7–3.4 and 3.1–3.7 for the aqueous and oily phase, respectively) in the spectral20

range between 467–652 nm. The Ångström exponents of the particles being closest to
atmospheric TB particles in all of their observed properties are in the lower part of this
range. These values are in line with those derived from laboratory observations (2.3–
2.8 and 4.2–6.4 in the spectral range of 532–780 nm and 405–532 nm, respectively;
Chakrabarty et al., 2010) but are markedly higher than that calculated for individual25

carbon spheres based on measured electron energy-loss spectra (Alexander et al.,
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2008). The lack of highly ordered structures in laboratory-generated TB particles as
observed by HRTEM, and the carbon-to-oxygen ratios measured by EDS reasonably
explain the measured Ångström exponents. These values fall between those of BC
and humic-like substances, the less polar fraction of the water soluble fraction of the
aerosol (Hoffer et al., 2006).5

The optical properties of the generated TB particles were measured continuously
while the oven was gradually cooled from the temperature of ∼ 650 ◦C. In the case
of particles generated from the aqueous phase of the tar the Ångström exponent did
not change significantly down to about 550 ◦C, below which it drastically increased.
The same phenomenon was observed for particles generated from the oily phase,10

the Ångström exponent (and also the SSA, not shown in the figure) changed rapidly
only below a certain oven temperature (< 580 ◦C). This finding implies that the opti-
cal properties of tar balls are markedly different from those of the bulk tar material,
and suggests that the chemical transformations induced by heat shock or atmospheric
ageing that produce rigid and refractory spherical particles also significantly alter the15

absorption properties of the resulting TB particles.

6 Index of refraction of tar ball particles

The indices of refraction of particles generated from the aqueous phase and aged at
650 ◦C were calculated based on the method of Guyon et al. (2003), also used in Hoffer
et al. (2006). Since the SSA of TB samples varied between 0.4 and 0.5 (at 550 nm) the20

measured absorption and scattering coefficients were corrected as described for the
nigrosin particles. The obtained index of refraction was 1.94–0.21i (at 550 nm). Based
on the nigrosin measurements, if we assume that the measured scattering coefficient
is overestimated by a further 17 %, the real part of the obtained index of refraction can
be considered as an upper limit, as it is overestimated by about 5 %, the average value25

is 1.84–0.21i. This is comparable to the complex refractive index of individual carbon
spheres – in particular in its imaginary part – calculated from TEM electron energy loss
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spectra (Alexander et al., 2008). The real part of the index of refraction as measured in
our experiment is higher by about 10 % than the one calculated for the carbon spheres.

7 Conclusions

Tar balls have been shown to be abundant in the troposphere impacted by biomass
smoke which is now the main global source of anthropogenic aerosol particles. The5

contribution of TBs to the number concentration of particles could be as high as 80 %
in the vicinity of biomass burning sources (Pósfai et al., 2003), while it was in the
range of 6–14 % away from the sources (Adachi et al., 2011), as observed using TEM.
At a site that represents regional background conditions (K-puszta) the abundance of
TBs varied from 0 to 40 % depending on the season and time of sampling (Pósfai et al.,10

2004). Even over the Himalaya TB particles accounted for 3 % of all observed particles
(Cong et al., 2009). Near the Arctic, in Hyytiälä during a pollution episode 1–4 % of
the particles were identified as TBs (Niemi et al., 2006). Given the abundance of TBs
in the global troposphere and their relatively high absorption efficiency over the entire
solar spectrum, their contribution to column absorption can be clearly significant. This15

is particularly true for immense geographical regions impacted by Atmospheric Brown
Clouds (ABCs) where TBs may make a contribution to solar absorption comparable to
that of BC. The last question that remains is where TBs are positioned in the black-
to-brown carbon continuum of atmospheric aerosols (Andreae and Gelencsér, 2006;
Sun et al., 2007). Somewhat surprisingly, their optical properties suggest that they are20

not very far from BC or amorphous carbon, despite their markedly different formation
mechanism and chemical composition. On the other hand, it is clear that TBs are very
much different from faintly coloured species such as HULIS or SOA in their absorption
properties. We suggest that TBs are on the dark side of brownness of aerosol carbon,
but clearly out of the BC regime both in terms of their key absorption parameters (e.g.25

refractive index and AAE) and for lack of fundamental properties (Petzold et al., 2013).
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Nevertheless, the importance of TBs in the global radiation budget is unquestionable
and warrants further modelling and observational studies.
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Table 1. Optical parameters of tar ball particles generated from the aqueous phase.

Sample name Oven
temperature
(◦C)

AAE MAE
(m2 g−1)

Re Im Volume of
large particles
(%)

18-d1 500 3.4 59

14-d1 650 2.8 0.8–2.5 1.88 0.27 98
15-d1 650 3.4 1.79 0.15 86
16-d2 650 2.8 1.87 0.27 99
17-d1 650 2.8 1.0–3.0 1.82 0.18 93
22-d2 650 3.0 0.8–2.3 93
25-d2 650 2.7 0.8–2.3 1.84 0.17 95

20-d1 800 3.0 1.0–3.1 97
20-d2 800 3.0 96
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Figure 1. TEM images of tar balls generated from the aqueous (a, b) (sample 16-d2) and
oily (c, d) phase of tar obtained from dry distillation of wood.
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Figure 2. Number and volume size distribution of particles generated from aqueous tar (sample
16-d2) measured with DMPS and TEM.
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Figure 3. The effect of heat shock (oven temperature) on the Ångström exponent of TB particles
generated from the aqueous and from the oily phase of wood tar.
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