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ABSTRACT 8 

Co-located measurements of fine particulate matter (PM2.5) organic carbon, elemental carbon, 9 

radiocarbon (14C), speciated volatile organic compounds (VOCs), and OH radical during the 10 

CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air 11 

Quality (CMAQ) model’s representation of organic species from VOCs to particles. Episode 12 

averaged daily 23-hr average 14C analysis indicate PM2.5 carbon at Pasadena and Bakersfield 13 

during the CalNex field campaign were evenly split between contemporary and fossil origin. 14 

CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both 15 

locations. The model underestimates measured PM2.5 organic carbon at both sites with very little 16 

(7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with 17 

the ambient based SOC/OC fraction of 63% at Pasadena.  18 

 19 

Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, 20 

are generally within a factor of 2, but the corresponding secondary organic carbon (SOC) tracer 21 

(2,3-dihydroxy-4-oxo-pentanioc acid) is systematically underpredicted by more than a factor of 2. 22 
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Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at 1 

Pasadena and over predicted at Bakersfield and isoprene SOC mass is underestimated at both sites. 2 

Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a 3 

factor of 2) in predicting hydroxyl radical and VOC gas phase precursors suggests error(s) in the 4 

parameterization of semi-volatile gases to form SOC. Yield values (α) applied to semi-volatile 5 

partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking 6 

in account recent findings of underestimated yields in chamber experiments due to gas wall losses. 7 

This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field 8 

study locations and at routine monitor network sites in California. Modeled percent secondary 9 

contribution (22% at Pasadena) becomes closer to ambient based estimates but still contains a 10 

higher primary fraction than observed. 11 

 12 

1 INTRODUCTION 13 

Secondary organic aerosol (SOA) forms in the atmosphere during the gas-phase photooxidation of 14 

volatile organic compounds (VOCs) that produce semi-volatile and water-soluble gases that 15 

condense to form new particles or partition to pre-existing aerosol mass (Ervens et al., 2011).  SOA 16 

contributes to the atmospheric fine particulate matter (PM2.5) burden, with subsequent effects on 17 

air quality, visibility, and climate (Hallquist et al., 2009).  Despite its importance and abundance, 18 

ambient SOA mass is not well characterized by atmospheric models (Wagstrom et al., 2014).  For 19 

example, the Community Multiscale Air Quality (CMAQ) model consistently underpredicts 20 

surface SOA mass concentrations for a variety of seasons and locations when compared to ambient 21 
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observational estimates (Carlton and Baker, 2011;Carlton et al., 2010;Hayes et al., 2014;Zhang et 1 

al., 2014a).  2 

 3 

SOA formation and the preceding gas-phase photooxidation chemistry are complex and often 4 

involve multiple oxidation steps in the gas, aqueous, and particle phase as well as accretion 5 

reactions in the particle phase that yield high molecular weight (MW) products. However, three-6 

dimensional photochemical models must represent the gas-phase chemistry and SOA formation in 7 

a simplified fashion for computational efficiency (Barsanti et al., 2013).  Gas-phase chemical 8 

mechanisms employ “lumped” VOC species, categorized primarily according to reactivity (e.g., 9 

reaction rate constants with the OH radical) (Carter, 2000;Yarwood et al., 2005), not product 10 

volatility or solubility. Condensable SOA-forming oxidation products are typically represented 11 

with 2 products in the standard versions of publically available and routinely applied 12 

photochemical modeling systems such as GEOS-CHEM (Chung and Seinfeld, 2002;Henze and 13 

Seinfeld, 2006) and WRF-CHEM (Grell et al., 2005) and those employed in regulatory 14 

applications for rulemaking such as CMAQ (Carlton et al., 2010) and the Comprehensive Air 15 

Quality Model with extensions (CAMx) (ENVIRON, 2014). Given the relationships between 16 

precursor VOC, OH radical abundance and SOA formation, it is important to simultaneously 17 

evaluate the model representation of all three within the context of how organic species evolve in 18 

the atmosphere to diagnose persistent SOA model bias.  19 

 20 

Recent studies have shown that warm season SOA mass concentrations are usually greater than 21 

primary organic aerosol (POA) mass in the Los Angeles (Docherty et al., 2008;Hersey et al., 22 
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2011;Hayes et al., 2013) and Bakersfield (Liu et al., 2012) areas. Gas-to-particle condensation of 1 

VOC oxidation products dominate formation of summer SOA in Bakersfield (Liu et al., 2012;Zhao 2 

et al., 2013) and up to a third of nighttime organic aerosols (OA) in Bakersfield are organic nitrates 3 

(Rollins et al., 2012). Sources of warm season OA in Bakersfield include fossil fuel combustion, 4 

vegetative detritus, petroleum operations, biogenic emissions, and cooking (Liu et al., 2012;Zhao 5 

et al., 2013). Despite numerous studies based on observations and models, less consensus exists 6 

regarding the largest sources of warm season SOA at Pasadena. Bahreini et al. (2012) concluded 7 

that SOA at Pasadena is largely derived from gasoline engines with minimal biogenic and diesel 8 

fuel contribution (Bahreini et al., 2012). Others concluded large contributions from gasoline fuel 9 

combustion to SOA but also found notable contributions from diesel fuel combustion, cooking, 10 

and other sources (Gentner et al., 2012;Hayes et al., 2013). Zotter at al. (2014) conclude that 70% 11 

of the SOA in the urban plume in Pasadena is due to fossil sources, and that at least 25% of the 12 

non-fossil carbon is due to cooking sources. Lower volatility VOC measurements made at 13 

Pasadena have been estimated to produce approximately 30% of fresh SOA in the afternoon with 14 

a large contribution to these low volatility VOC from petroleum sources other than on-road 15 

vehicles  (Zhao et al., 2014).  16 

 17 

Chemical measurements of PM2.5 carbon, fossil and contemporary aerosol carbon fraction, OC 18 

and its components, SOC tracers and speciated VOCs taken as part of the 2010 California Research 19 

at the Nexus of Air Quality and Climate Change (CalNex) field study in central and southern 20 

California (Ryerson et al., 2013) provide a unique opportunity to quantitatively evaluate modeled 21 

organic predictions. These special study data combined with routine PM2.5 OC measurements in 22 

California are compared with model estimates to gauge how well the modeling system captures 23 
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the gas and aerosol carbon burden using the standard CMAQ aerosol approach. The SOC 1 

mechanism in the base version of CMAQ lends itself well to comparison with chemical tracers 2 

because it retains chemical identity traceable to the precursor VOC (Carlton et al., 2010). Finally, 3 

a CMAQ sensitivity simulation was performed where the yields of semi-volatile gases from VOC 4 

oxidation were increased by a factor of 4 (Zhang et al., 2014b) to determine whether this may 5 

ameliorate the model underprediction of secondary organic carbon (SOC) seen here and in other 6 

studies (Ensberg et al., 2014).  7 

 8 

2 METHODS  9 

Predictions of speciated VOC, speciated COC, and aerosol-phase carbon are simultaneously 10 

compared to co-located ambient measurements at two surface locations, one in Los Angeles 11 

County (Pasadena) and one in the San Joaquin Valley (Bakersfield) air basin. The CMAQ 12 

photochemical model is applied with a fine grid resolution (4 km sized grid cells) using emissions 13 

from the 2011 National Emissions Inventory and 2010 specific point source information where 14 

available.  15 

 16 

2.1 Model Background 17 

CMAQ version 5.0.2 (www.cmaq-model.org) was applied to estimate air quality in California 18 

from May 5 to July 1, 2010, coincident with the CalNex Study.  Gas-phase chemistry is simulated 19 

with the SAPRC07TB condensed mechanism (Hutzell et al., 2012) and aqueous-phase chemistry 20 

that oxidizes sulfur, methylglyoxal, and glyoxal (Carlton et al., 2008;Sarwar et al., 2013). The 21 

AERO6 aerosol chemistry module includes ISORROPIAII (Fountoukis and Nenes, 2007) 22 
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inorganic chemistry and partitioning. The modeling system generally does well capturing ambient 1 

inorganic gases and PM2.5 species during this time period at Pasadena and Bakersfield (Kelly et 2 

al., 2014;Markovic et al., 2014).  3 

 4 

Model predicted OC species are shown in Figure 1 by volatility bin (log of C*) and O:C ratio (see 5 

Supporting Information for related details). Aqueous-phase species are shown with blue circles, 6 

species largely fossil in origin are colored brown and those non-fossil in origin are green.  A 7 

general trend of increasing O:C ratio as volatility decreases is consistent with laboratory and field 8 

measurements (Jimenez et al., 2009). The placement of the MGLY gem-diol vertically above gas-9 

phase MGLY in Figure 1 represents hydration processes. Aqueous-phase organic chemistry 10 

represents multiple processes, including functionalization and oligomerization, because some 11 

photooxidation products are small carboxylic acids and others are high molecular weight species 12 

(Tan et al., 2010;Carlton et al., 2007). 13 

 14 

VOC precursors for SOA include isoprene, monoterpenes, sesquiterpenes, xylenes, toluene, 15 

benzene, alkanes, glyoxal, and methylglyoxal (Figure 1 right panel). Benzene, toluene, and xylene 16 

form SOA precursors with high-NOX (RO2+NO) and low-NOX (RO2+HO2) specific yields 17 

(Carlton et al., 2010). CMAQ converts these precursors into multiple semi-volatile products 18 

(Figure 1 middle panel) after a single oxidation step. These multiple products vary in terms of 19 

assigned volatility and oxygen-to-carbon (O:C) ratio. When semi-volatile SOA mass oligomerizes 20 

in CMAQ the SOA identity is lost and becomes classified only as anthropogenic or biogenic, 21 

dependent on the VOC precursor (see Figure S2).  After oligomerization, the saturation vapor 22 
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pressure (C*) and OM:OC ratio associated with all of the 2-product semi-volatile SOA species 1 

change from the individual values to the values assigned for non-volatile, non-partitioning SOA 2 

mass (C*≈0; OM:OC = 2.1) (Carlton et al., 2010).   3 

 4 

CMAQ VOCs and SOC species are paired in time and space with measurements (Table S2). 5 

Modeled predictions are averaged temporally to match observations and extracted from the grid 6 

cell where the monitor is located.  Modeled toluene and xylene SOC are aggregated to match the 7 

measured SOC tracer (2,3-dihydroxy-4-oxopentanoic acid) which is known to represent products 8 

from both compounds and potentially other methylated aromatics (Kleindienst et al., 2004). 9 

Because the original VOCs contributing to oligomerized species are not tracked by CMAQ, 10 

biogenic oligomerized species mass is apportioned to parent VOC based on the fraction each semi-11 

volatile SOC species contributes to the total semi-volatile (non-oligomerized) biogenic SOC at 12 

that time and location.  The same technique is applied to anthropogenic SOC.  13 

 14 

2.2 Model Application 15 

The model domain covers the State of California and part of northwest Mexico using 4 km square 16 

sized grid cells (Figure S1). The vertical domain extends to 50 mb using 34 layers (layer 1 top ~35 17 

m) with most resolution in the boundary layer.  Initial and boundary conditions are from a coarser 18 

CMAQ simulation that used 3-hourly boundary inflow from a GEOS-Chem (v8-03-02) global 19 

model (http://acmg.seas.harvard.edu/geos/) simulation for the same period (Henderson et al., 20 

2014). The coarser continental U.S. CMAQ simulation was run continuously from December 2009 21 

through this study period and the first week of the finer 4 km CMAQ simulation was not used to 22 
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minimize the influence of initial chemical conditions. Gridded meteorological variables are 1 

generated using the Weather Research and Forecasting model (WRF), Advanced Research WRF 2 

core (ARW) version 3.1 (Skamarock et al., 2008). Surface meteorology including temperature, 3 

wind speed, and wind direction and daytime mixing layer height were well characterized by WRF 4 

in central and southern California during this period (Baker et al., 2013).  5 

 6 

Emissions are processed to hourly gridded input for CMAQ with the Sparse Matrix Operator 7 

Kernel Emissions (SMOKE) modeling system (http://www.cmascenter.org/smoke/). Solar 8 

radiation and temperature estimated by the WRF model are used as input to the Biogenic Emission 9 

Inventory System (BEIS) v3.14 to generate hourly emissions estimates of biogenic speciated VOC 10 

and NO (Carlton and Baker, 2011). Continuous emissions monitor (CEM) data are used in the 11 

modeling to reflect 2010 emissions information for electrical generating units and other point 12 

sources that provide that information. Day specific fires are represented but minimally impacted 13 

air quality during this period (Hayes et al., 2013). Mobile source emissions were generated using 14 

the SMOKE-MOVES integration approach (United States Environmental Protection Agency, 15 

2014) and then interpolated between totals provided by the California Air Resources Board for 16 

2007 and 2011. Other anthropogenic emissions are based on the 2011 National Emissions 17 

Inventory (NEI) version 1 (United States Environmental Protection Agency, 2014). Primary mass 18 

associated with carbon (non-carbon organic mass, NCOM) is estimated based on sector specific 19 

organic matter-to-organic carbon (OM:OC) ratios (Simon and Bhave, 2012).  20 

 21 
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Emissions of primarily emitted PM2.5 OC and the sum of anthropogenic SOA precursors benzene, 1 

toluene, and xylenes (BTX) are shown in Table 1 by source sector and area. Here, the southern 2 

San Joaquin valley includes emissions from Kern, Tulare, Kings, and Fresno counties and the Los 3 

Angeles area include emissions from Los Angeles and Orange counties. BTX emissions in both 4 

areas are dominated by mobile sources (onroad and offroad) and area sources such as solvent 5 

utilization and waste disposal (Table S1). Primary OC emissions are largely commercial cooking 6 

(non-point area) in both locations with notable contribution from various types of stationary point 7 

and mobile sources. BTX emissions are almost completely fossil in origin and primarily emitted 8 

OC is split fairly evenly between contemporary and fossil origin in these areas based on the 2011 9 

version 1 NEI (Table 1).  10 

 11 

2.3 Sampling and Analysis Methods 12 

CalNex ground-based measurements took place in Pasadena, CA, from 15 May – 15 June 2010 13 

and in Bakersfield, CA, from 15 May – 30 June 2010. The Bakersfield sampling site was located 14 

in a transition area of southeast Bakersfield between the city center and areas of agricultural 15 

activity. The Pasadena sampling site was located on the California Institute of Technology campus 16 

with the Los Angeles metropolitan area to the southwest and San Gabriel Mountains directly north 17 

(see Figures S3).  18 

 19 

An ambient-based approach is used here to estimate secondary OC from individual or groups of 20 

similar hydrocarbons (Kleindienst et al., 2010). Concentrations of specific compounds, tracers, are 21 

determined and used to estimate SOC contributions from the particular source groups based on 22 

measured laboratory tracer-to-SOC mass fractions (Kleindienst et al., 2007). Filter-based 23 
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particulate matter sampling conducted at each site for 23-h periods starting at midnight (PDT) of 1 

the designated sampling day was used for tracer-based organic aerosol characterization. In total, 2 

there were 32 filter samples from Pasadena and 36 from the Bakersfield site (Lewandowski et al., 3 

2013). The filter sampling protocols have been described in detail elsewhere (Kleindienst et al., 4 

2010). For the analysis of the SOC tracer compounds, filters and field blanks were treated using 5 

the derivatization method described by Kleindienst et al. (Kleindienst et al., 2007). The mass 6 

spectral analysis for the organic compounds used as secondary molecular tracers has been 7 

described (Edney et al., 2003). The method detection limit (MDL) for the SOC tracer species is 8 

0.1 ng m-3. Additional details of this methodology are provided in the Supporting Information. 9 

 10 

OC and elemental carbon (EC) concentrations were determined using the thermal-optical 11 

transmittance (TOT) method (Birch and Cary, 1996) from 1.54 cm2 punches of quartz filters 12 

collected concurrent with the filters used for tracer analyses (hereafter referred to as UNC/EPA 13 

OC). The outer non-loaded rings were removed from filter samples then sent to Woods Hole 14 

Oceanographic Institute Accelerator Mass Spectrometry for 14C analysis. The fraction of modern 15 

carbon is provided for each daily total PM2.5 carbon sample (Geron, 2009). The modern carbon 16 

fraction is expressed as a percentage of an oxalic acid standard material that represents the carbon 17 

isotopic ratio for wood growth during 1890 (Stuiver, 1983). To account for the atmospheric 14C 18 

enhancement due to nuclear bomb testing in the 1950s and 1960s, a factor of 1.044 (Zotter et al., 19 

2014) was used to calculate the contemporary carbon fraction from the measured modern carbon 20 

result (Lewis et al., 2004;Zotter et al., 2014). 21 

 22 
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Two VOC datasets (one canister based, and one in situ) from each site were used in this analysis. 1 

Three hour integrated (06:00 – 09:00 PDT) canister samples for VOC analysis were collected at 2 

both sites. A total of 41 samples were collected at the Bakersfield site and 31 at Pasadena. The 3 

offline VOC analysis details are given in the Supporting Information. In Bakersfield, online VOC 4 

mixing ratios were collected for 30 minutes on the hour and analyzed via gas chromatography-5 

flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) 6 

(Gentner et al., 2012). In Pasadena, online VOC measurements were collected for 5 minutes every 7 

30 minutes and analyzed via GC-MS (Borbon et al., 2013;Gilman et al., 2010). Carbon monoxide 8 

measurements at Pasadena were determined using UV fluorescence (Gerbig et al., 1999).  9 

 10 

Hydroxyl (OH) and hydroperoxyl (HO2) radical measurements were made at both locations using 11 

Fluorescence Assay with Gas Expansion (FAGE). The Bakersfield OH measurements used in this 12 

analysis were collected using the OHchem method from the Penn State ground-based FAGE 13 

instrument (Mao et al., 2012).  The Pasadena hydroperoxyl observations were made using the 14 

Indiana University FAGE instrument (Dusanter et al., 2009). HO2 measurements from both 15 

instruments could contain an interference from various RO2, therefore when comparing the model 16 

output with the observations, the sum of modeled HO2 and RO2 has been used (Griffith et al., 17 

2013).  18 

 19 

OC measurements from nearby Chemical Speciation Network (CSN) sites in Pasadena and 20 

Bakersfield were also used for comparison purposes. The Los Angeles CSN site (60371103) was 21 

approximately 9 miles from the CalNex site, and the Bakersfield CSN site (60290014) was 22 
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approximately 3 miles from the CalNex site (see Figures S3a and S3b in the supporting 1 

information). The CSN network uses quartz-fiber filters and analyzes the carbon off-line using the 2 

thermal-optical reflectance method. Aerodyne High-Resolution Time-of-Flight Aerosol Mass 3 

Spectrometer (AMS) measurements of PM1 OC made at Pasadena are described in Hayes et al., 4 

2013 and online Sunset PM2.5 OC measurements made at Bakersfield are described in Liu et al., 5 

2012. 6 

 7 

3 Results & Discussion 8 

The results and discussion are organized such that the contemporary and fossil components of 9 

PM2.5 carbon at the Pasadena and Bakersfield sites are discussed, followed by model performance 10 

for PM2.5 carbon, speciated VOC, and SOC tracer groups. Table 2 shows episode aggregated model 11 

performance metrics for PM2.5 organic and elemental carbon, SOC tracers, total VOC, and select 12 

VOC species. The results of a sensitivity increasing semi-volatile yields are presented throughout 13 

and discussed in detail before finally providing an evaluation of PM2.5 carbon at all routine monitor 14 

sites in California.  15 

 16 

3.1 Contemporary and Fossil Origins of PM2.5 Carbon 17 

Field campaign average total PM2.5 carbon measurements indicate nearly equal amounts of 18 

contemporary and fossil contribution at Pasadena and Bakersfield. The field study average 19 

contemporary fraction of 23-hr average PM2.5 total carbon samples is 0.51 at Bakersfield (N=35) 20 

and 0.48 at Pasadena (N=25). The estimate for contemporary carbon fraction at Pasadena is 21 
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consistent with other 14C measurements at this location for this period (Zotter et al., 2014) and 1 

similar to measurements made at urban areas in the Southeast United States: Birmingham 52% 2 

and Atlanta 63% contemporary carbon (Kleindienst et al., 2010).  3 

 4 

Figure 2 shows observed daily 23-hr PM2.5 OC shaded by contemporary and fossil component 5 

and also PM2.5 elemental carbon. The fractional contribution of contemporary carbon to total 6 

PM2.5 carbon is variable from day-to-day at the Pasadena site and steadily increases through the 7 

study period at the Bakersfield location (first week average of 0.44 and final week average of 8 

0.58). Some of the contemporary carbon fraction measurements from Pasadena were above 1.0. 9 

These samples were considered erroneous and not included in the analysis and suggest the 10 

possibility of positive biases due to nearby sources (e.g. medical incinerator) in the area. It is 11 

possible some of the stronger day-to-day variability in contemporary carbon fraction 12 

measurements at Pasadena may be related to biases due to nearby “hot” sources. Higher time 13 

resolution 14C measurements at Pasadena show an increase in fossil fraction during the middle of 14 

the day related to increased emissions of fossil PM2.5 carbon precursors and SOA formation in the 15 

Los Angeles area (Zotter et al., 2014). PM2.5 OC of fossil origin at Pasadena shows the strongest 16 

relationship to daily average temperature (Figure S4a) compared with contemporary carbon, total 17 

carbon, and elemental carbon. At Bakersfield the relationship between daily average temperature 18 

and fossil and contemporary carbon is similar (Figure S4b) and not as strong as the relationship in 19 

Pasadena. Neither fossil nor contemporary carbon concentrations show discernible patterns by day 20 

of the week at either location (Figure S5). 21 

 22 
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Modeled contemporary PM2.5 carbon is estimated by summing primarily emitted PM2.5 multiplied 1 

by the contemporary fraction of urban area emissions (see Section 2.1 and Table 1) with model 2 

estimated biogenic SOC species. The average baseline modeled contemporary fraction of PM2.5 3 

OC in Pasadena is 0.51 and Bakersfield 0.54, both of which are similar to average observation 4 

estimates. However, the model shows little day to day variability in contemporary carbon fraction 5 

which does not match observed trends (Figure S6). Episode average modeled estimates of PM2.5 6 

OC contemporary fraction are similar to the estimated contemporary fraction of the urban 7 

emissions of primary PM2.5 OC (Bakersfield=.53 and Pasadena=.51), as noted in Table 1. 8 

 9 

3.2 PM2.5 Carbon 10 

Figure 3 shows measured (UNC/EPA data) and modeled PM2.5 OC at Bakersfield and Pasadena. 11 

Organic carbon measurements from co-located instruments (AMS at Pasadena measured PM1 and 12 

Sunset at Bakersfield measured PM2.5) and a nearest CSN monitor are also shown in Figure 3. The 13 

co-located AMS measurements compare well with the UNC/EPA PM2.5 organic carbon 14 

measurements at Pasadena, while the concentrations measured at the nearby CSN site are 15 

substantially lower. At Bakersfield, UNC/EPA measurements are higher compared with the nearby 16 

CSN (episode average ~3 times higher) and co-located daily average Sunset (episode average 20% 17 

higher) measured PM2.5 OC illustrate possible measurement artifacts in the CalNex measurements 18 

at this location. These differences in measured concentration at Bakersfield may be related to filter 19 

handling, variability in collected blanks, true differences in the OC concentrations since the CSN 20 

site is spatially distinct, differences in the height of measurement (these CSN monitors are situated 21 
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on top of buildings), and differences in analytical methods since CSN sites use thermal optical 1 

reflectance (TOR) to operationally define OC and EC.  2 

 3 

Modeled PM2.5 OC is underestimated at both CalNex locations (Figure 3), most notably at 4 

Bakersfield. However, given the large differences in PM2.5 OC mass compared to co-located and 5 

nearby routine measurements, it is not clear which measurement best represents ambient PM2.5 OC 6 

concentrations and would be most appropriate for comparison with the model. The model 7 

generally compares well to the CSN site nearest Pasadena and Bakersfield. PM2.5 elemental carbon 8 

is well characterized by the model at Bakersfield (fractional bias = -13% and fractional error = 9 

35%) and over-estimated at Pasadena (fractional bias and error = 125%) (Figure S7). Since the 10 

emissions are based on TOR and UNC/EPA measurements use the TOT operational definition of 11 

total carbon some of the model overestimation may be related to the TOR method estimating 12 

higher elemental carbon fraction of total carbon (Chow et al., 2001).  13 

 14 

PM2.5 OC is mostly primary (Pasadena 93% and Bakersfield 88%) in the baseline model 15 

simulation. AMS measurements at Pasadena suggest OC is mostly secondary in nature with an 16 

average of 63% for the SVOOA and OOA components for this field study (Hayes et al., 2013). 17 

Model estimated PM2.5 OC is largely from primarily emitted sources and contemporary in nature 18 

based on the contemporary/fossil split of primary PM2.5 emissions near both sites (Figure S6). 19 

Primarily emitted PM2.5 OC emissions sources near Pasadena and Bakersfield include mobile 20 

sources, cooking, and dust based on emissions inventory information (Table 1). Some of these 21 

sources of primarily emitted PM2.5 OC may be semi-volatile in nature. Model treatment of POA 22 
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as semi-volatile may improve the primary-secondary comparison with observations but would 1 

likely exacerbate underpredictions of PM2.5 OC unless oxidation and re-partitioning of the products 2 

is considered (Robinson et al., 2007). The underestimation of SOC may result from underestimated 3 

precursor VOC, poorly characterized oxidants, underestimated semi-volatile yields, missing 4 

intermediate volatility VOC emissions (Stroud et al., 2014;Zhao et al., 2014), other issues, or some 5 

combination of each.  6 

 7 

3.3 Gas-phase carbon 8 

Model estimates are paired with hourly VOC (Figure S8) and mid-morning 3-hr average VOC 9 

(Figure S9) at both locations. Compounds considered largely fossil in origin including xylene, 10 

toluene, and benzene are generally well predicted at both sites although these species tend to be 11 

slightly overestimated at Pasadena and slightly underestimated at Bakersfield. Since emissions of 12 

these compounds near these sites are largely from mobile sources (Table 1), this suggests 13 

emissions from this sector are fairly well characterized in this application.  14 

 15 

Contemporary (biogenic) origin monoterpenes are underestimated at both sites while isoprene is 16 

underestimated at Pasadena and has little bias at Bakersfield based on hourly measurements 17 

(Figure S8; Table 2). Isoprene and monoterpene performance may be partly related to the model 18 

not fully capturing transport from nearby areas with large emitting vegetation to these monitor 19 

locations (Heo et al., 2015), deficiencies in emissions factors, or poorly characterized vegetation. 20 

Speciated monoterpene measurements made at Bakersfield during this field campaign suggest 21 

emissions of certain species were elevated at the start of this time period due to flowering (Gentner 22 
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et al., 2014b), which is a process not included in current biogenic emissions models and thus may 1 

contribute to modeled monoterpene underestimates.  2 

 3 

Other VOC species that are systematically underestimated include ethane, methanol, ethanol, and 4 

acetaldehyde. Underprediction of methanol and ethanol in Bakersfield may be largely related to 5 

missing VOC emissions for confined animal operations in the emission inventory (Gentner et al., 6 

2014a). Underestimates of oxygenated VOC compounds may indirectly impact SOC formation 7 

through muted photochemistry (Steiner et al., 2008). Carbon monoxide tends to be underestimated 8 

at both locations (Figure S8), possibly due to boundary inflow concentrations from the global 9 

model simulation being too low or underestimated regional emissions. 10 

 11 

3.4 PM2.5 SOC tracers 12 

Figure 4 shows modeled and measured total PM2.5 OC mass. Measured mass explained by fossil 13 

and contemporary SOC tracers are shown in the top row. The unexplained observed fraction is a 14 

mixture of primary, secondary, fossil and contemporary origin. Modeled mass is colored to 15 

differentiate primarily emitted OC and SOC. Estimates of SOC mass from a specific or lumped 16 

VOC group (e.g. isoprene, monoterpenes, toluene), hereafter called SOC tracer mass, comprise 17 

little of the measured or modeled PM2.5 OC at either of these locations during this field study 18 

(Figure 4). Total SOC tracer estimates explain only 9% of the total measured UNC/EPA PM2.5 OC 19 

at Pasadena and 5% at Bakersfield. The percentage of mass explained by known secondary tracers 20 

is smaller than urban areas in the southeast United States: Atlanta 27% and Birmingham 31% 21 

(Kleindienst et al., 2010).  22 
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 1 

The portion of measured and modeled PM2.5 carbon not identified with tracers may be from 2 

underestimated adjustment factors related to previously uncharacterized SVOC wall loss in 3 

chamber studies (Zhang et al., 2014b) and unidentified SOC pathways. Additional reasons for the 4 

low estimate of observed tracer contribution to PM2.5 carbon include known pathways without an 5 

ambient tracer and tracer degradation between formation and measurement. Based on 14C 6 

measurements, this unidentified portion of the measurements is likely comprised of both 7 

contemporary and fossil carbon in generally similar amounts. Total modeled SOC explain only 8 

12% of the PM2.5 carbon at Bakersfield and 7% at Pasadena. As noted previously, AMS based 9 

observations suggest most OC is SOC (63%) at Pasadena (Hayes et al., 2013) meaning both the 10 

SOC tracer measurements and model estimates explain little of the SOC at this location.  11 

 12 

Despite the relatively small component of PM2.5 carbon explained by SOC tracers, a comparison 13 

of measured and modeled SOC and precursor VOC provides additional opportunity to better 14 

understand sources of PM2.5 carbon in these areas and begin to establish relationships between 15 

precursors and resulting SOC formation. Ambient and model estimated SOC tracers and daily 16 

average VOC precursors are shown in Figure 5 for Pasadena and Figure 6 for Bakersfield. The 17 

model underestimates toluene and xylene SOC at both locations even though VOC gas precursors 18 

show an overprediction tendency at Pasadena and slight underestimation at Bakersfield. Isoprene 19 

SOC is generally under predicted at both sites, in particular at Bakersfield. This is in contrast to 20 

the slight overprediction of daily 24-hr average isoprene at Bakersfield. One explanation may be 21 

that isoprene SOC is formed elsewhere in the region (e.g. the nearby foothills of the Sierra Nevada 22 
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where emissions are highest in the region), which would support the lack of relationship between 1 

isoprene SOC and isoprene concentrations at Bakersfield (Heo et al., 2015;Shilling et al., 2013). 2 

The lack of relationship could also be related to the reactive uptake kinetics of isoprene-derived 3 

epoxydiols (IEPOX) (Gaston et al., 2014) and methacrylic acid epoxide (MAE). Since the model 4 

does not include the reactive uptake of IEPOX and MAE and subsequent acid-catalyzed aqueous 5 

phase chemistry it is likely isoprene SOC would be underestimated to some degree at both sites 6 

(Karambelas et al., 2013;Pye et al., 2013). Of these channels the IEPOX channel is thought to have 7 

the largest SOA production potential, but the chemistry in the LA basin is dominated by the high-8 

NO channel (Hayes et al., 2014) and thus IEPOX is not formed from isoprene emitted within the 9 

LA basin. Consistent with that observation, the AMS tracer of IEPOX SOA is only detected at 10 

background level in the LA basin. 11 

 12 

Monoterpene VOC and monoterpene SOC are underestimated systematically at both locations 13 

suggesting underpredictions of the VOC precursor translates to underestimates in SOC. As noted 14 

previously, monoterpene measurements suggest an emissions enhancement related to flowering or 15 

other emission events (e.g. harvest or pruning) (Gentner et al., 2014b) that is not included in current 16 

biogenic emissions model formulations. The monoterpene measured tracer SOC group is based on 17 

α-pinene products. Measured SOC at these sites could be from monoterpene species other than α-18 

pinene. A coincident study near Bakersfield indicates α- and β-pinene emissions represent a fairly 19 

small fraction of total monoterpene emissions during this time period (Gentner et al., 2014b). SOA 20 

yields in CMAQ for monoterpenes are heavily weighted toward α- and β- pinene, which may be 21 

appropriate in most places, but not here where measurements show large contributions from 22 
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limonene, myrcene, and para-cymene. This is important because yields vary among from different 1 

monoterpenes and limonene has a much larger SOA yield than pinenes (Carlton et al., 2010).  2 

 3 

Sesquiterpene VOC and SOC tracer (β-caryophyllenic acid) mass measurements were never above 4 

the MDL at either site during CalNex, but the modeling system often predicts SOC from this VOC 5 

group (Table 2, Figure S10b). The SOC tracer measurement methodology is more uncertain for 6 

sesquiterpene products (Offenberg et al., 2009) and gas-phase sesquiterpenes would have oxidized 7 

before reaching the measurement sites since sesquiterpene emitting vegetation exists in the San 8 

Joaquin Valley (Ormeño et al., 2010). It is also possible that SOC is forming from sesquiterpenes 9 

other than β-caryophyllene. 10 

 11 

One potential explanation for an underestimation of SOC despite well characterized precursors 12 

(e.g. toluene and xylenes) could be lack of available oxidants. As shown in Figure 7, the model 13 

tends to overestimate the hydroxyl radical compared with measurement estimates at Pasadena. 14 

Hydroperoxyl+peroxy radical measurements are underestimated at Pasadena by a factor of 2 on 15 

average. The model overestimates preliminary measurements of both hydroxyl (by nearly a factor 16 

of 2 on average) and hydroperoxyl+peroxy radicals at Bakersfield. Model representation of 17 

hydroxyl radical at these locations during this time period does not seem to be limiting VOC 18 

oxidation to semi-volatile products. Better agreement between radical ambient and modeled 19 

estimates could result in less SOC produced by the model and exacerbate model SOC 20 

underestimates. This suggests deficiencies other than radical representation by the modeling 21 

system are more influential in SOC performance for these areas. However, hydroperoxyl 22 
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underestimates at Pasadena could lead to muted SOA formation through low-NOX pathways 1 

dependent on hydroperoxyl concentrations and contribute to model under-estimates of SOC.  2 

 3 

3.5 Sensitivity Simulation 4 

OH is not underestimated in the model and biases in precursor VOC do not clearly translate into 5 

similar biases in SOC (e.g. toluene and xylene VOC are overestimated at Pasadena but tracer SOC 6 

for this group is underestimated) for these sites during this time period. Modeled SOC may partly 7 

be underestimated due to the use of experimental SOC yields that may be biased low due to 8 

chamber studies not fully accounting for SVOC wall loss (Zhang et al., 2014b). Even though Zhang 9 

et al., 2014b showed results for one precursor to SOA pathway, as a sensitivity study here the yield 10 

of all semivolatile gases are increased by a factor of 4. This was done by increasing in the mass-11 

based stoichiometric coefficients for each VOC to SOA pathway in the model to provide a 12 

preliminary indication about how increased yields might impact model performance. A factor of 13 

4 is chosen based on the upper limit related to SVOC wall loss in Zhang et al. (Zhang et al., 2014b). 14 

Aside from wall loss characterization, there are a variety of other aspects of chamber studies that 15 

could result in underestimated yields including particle-phase accretion and aqueous phase 16 

chemistry and differences in chamber and ambient humidity.  17 

 18 

Model estimates of PM2.5 OC increase in urban areas and regionally when semivolatile yields are 19 

increased. The sensitivity simulation results in episode average anthropogenic SOC increases by a 20 

factor of 3 (benzene SOC at Pasadena) to 4.8 (toluene and xylene SOC at Pasadena) and biogenic 21 

SOC increases between a factor of 5.1 (isoprene SOC at Pasadena) to 8.9 (monoterpene SOC at 22 
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Bakersfield). Model performance improves at the CalNex locations (Figures 3 and 4) and at routine 1 

monitors throughout California (Figure 8). Average fractional bias improves from -34% to -11% 2 

at routine monitor locations and fractional error is reduced from 53% to 42%.  3 

 4 

The sensitivity simulation with increased semivolatile yields results in increased model estimated 5 

secondary contribution as a percent of PM2.5 carbon, but still does not conform to observation 6 

based estimates that indicate PM2.5 carbon is largely secondary in nature at these sites (Liu et al., 7 

2012;Hayes et al., 2013). Modeled SOC in the sensitivity simulation explains 36% of the PM2.5 8 

OC at Bakersfield and 22% at Pasadena, which is larger than the baseline simulation by more than 9 

a factor of 3. The model predicted percent contemporary fraction of PM2.5 carbon changed very 10 

little due to this sensitivity. The model sensitivity results are not compared to SOC tracer group 11 

estimates since the conversion of tracer concentrations to SOC concentrations would require a 12 

similar adjustment and would result in similar relationships between model estimates and 13 

observations. 14 

 15 

3.6 Aqueous and other SOC processes 16 

Measurements in Pasadena during the summer of 2009 suggest aqueous processes can be important 17 

for SOC mass (Hersey et al., 2011). For the CalNex period at Pasadena, Washenfelder et al. (2012) 18 

showed box model estimated 8-hr average SOC from aqueous-phase chemistry of glyoxal to be 19 

between 0.0 and 0.2 µg m-3 (Washenfelder et al., 2011) and Hayes et al. (2014) showed that the 20 

observed SOA was not different between cloudy and clear morning days. CMAQ predicted 24-21 

hour average SOC from glyoxal and methygloxal through aqueous chemistry at Pasadena ranges 22 
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from 0.0 to 0.04 µg/m3. CMAQ estimates of SOC from small carbonyl compounds via aqueous-1 

phase processes are within the range inferred from measurements.  2 

 3 

Not all CMAQ SOC formation pathways can be included in this analysis.  No observational 4 

indicator exists for SOC derived from alkanes, benzene, glyoxal, and methylglyoxal since unique 5 

tracer species have not been determined. Conversely, naphthalene/PAH SOC tracers were 6 

measured, but not modeled in CMAQ. Measured naphthalene SOC at these sites is minor (Hayes 7 

et al., 2014) which is consistent with other areas (Dzepina et al., 2009). Previous CMAQ 8 

simulations predict that PAHs contribute less than 30 ng m-3 of SOA in Southern California in 9 

summer (Pye and Pouliot, 2012), and thus including those pathways is unlikely to close the model-10 

measurement gap in PM2.5 OC. 2-Methyl-3-Buten-2-ol (MBO) derived SOC concentrations (3-4 11 

ngC m-3) were low at both monitor locations throughout the campaign (Lewandowski et al., 2013). 12 

MBO does not appear to notably contribute SOC at these locations during this time period, which 13 

is consistent with low yields estimated in laboratory experiments (Chan et al., 2009). Organic 14 

carbon emitted from marine biological activity is not included in this modeling assessment and 15 

may contribute to some degree at Pasadena (Gantt et al., 2010) based on ship-based measurements 16 

(Hayes et al., 2013). 17 

 18 

3.7 Regional PM2.5 Organic Carbon  19 

Including routine measurement data is important to provide broader context for PM2.5 carbon in 20 

California and understand how the model performs and responds to perturbations at diverse 21 

locations beyond the two CalNex sites. The highest average modeled PM2.5 OC in California 22 
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during this period is in the Los Angeles area (Figure 8). The Sacramento and San Joaquin valleys 1 

also show higher concentrations of PM2.5 OC than more rural parts of the State (Figure 8). 2 

Measurements made at routine monitor networks (Figure 8) show similar elevated concentrations 3 

near Los Angeles, Sacramento valley, and San Joaquin valley. These areas of elevated OC 4 

generally coincide with areas of the State that experience a build-up of pollutants due to terrain 5 

features blocking air flow (Baker et al., 2013). The model does not tend to capture the highest 6 

concentrations of measured PM2.5 OC in the central San Joaquin valley, Imperial Valley, or at one 7 

CSN monitor in the northeast Sierra Nevada that is near large residential wood combustion 8 

emissions (Figure S11). The model underestimates PM2.5 OC on average across all CSN sites 9 

during this time period (fractional bias = -34% and fractional error = 53%). The modeling systems 10 

show an overprediction tendency (fractional bias = 77%) across all CSN sites for PM2.5 elemental 11 

carbon in California during this period. 12 

 13 

4 Conclusions 14 

Total PM2.5 carbon at Pasadena and Bakersfield during the CalNex period in May and June of 2010 15 

is fairly evenly split between contemporary and fossil origin. Total PM2.5 OC is generally 16 

underestimated at both field study locations and at many routine measurement sites in California 17 

and comparison with AMS observations suggest a large underestimation of SOC. Semivolatile 18 

yields were increased by a factor of 4 based on recent research suggesting yields may be higher 19 

due to updated accounting for SVOC wall loss. This sensitivity resulted in a better comparison to 20 

routine and field study measurements. However, the model estimated OC is still largely primary 21 

in nature and inconsistent with observation based approaches at these sites. A modeling study for 22 
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the same time period using different emissions, photochemical transport model, and SOA 1 

treatment also show underestimated OA and SOA at Pasadena and underestimated SOA but 2 

comparable OA at the Bakersfield location (Fast et al., 2014). 3 

 4 

CMAQ predictions of individual VOCs are often not consistent with model performance for the 5 

corresponding subsequent SOC species mass. Gas-phase mixing ratios of toluene and xylene are 6 

well-predicted by CMAQ, typically within a factor of 2 of the observations at both sites. However, 7 

measurement-based estimates of the corresponding SOC mass are consistently greater than model-8 

predicted mass. Mass concentrations of the isoprene SOC are systematically underpredicted, most 9 

noticeably at Bakersfield, while model predictions of gas-phase isoprene are not biased in only 10 

one direction to the same degree. Gas-phase monoterpenes and the related SOC species are 11 

underpredicted at both CalNex monitoring sites. The hydroxyl radical is fairly well characterized 12 

at Pasadena and systematically overestimated at Bakersfield suggesting oxidants are not limiting 13 

SOC production in the model. 14 

 15 

Episode average CMAQ model estimates of PM2.5 OC contemporary fraction at Pasadena and 16 

Bakersfield are similar to radiocarbon measurements but lack day to day variability. CMAQ PM2.5 17 

OC is predominantly primary in origin which is contrary to findings from other studies that PM2.5 18 

OC in these areas are largely secondary in nature during this time period (Bahreini et al., 19 

2012;Hayes et al., 2013;Liu et al., 2012). Treatment of primarily emitted PM2.5 OC as semi-volatile 20 

would likely result in total PM2.5 OC estimates that would be mostly secondary rather than primary. 21 

However, this would likely exacerbate model underestimates of PM2.5 OC. Some model 22 
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performance features including underestimated SOC may be related to less volatile hydrocarbon 1 

emissions missing from the emission inventory (Chan et al., 2013;Gentner et al., 2012;Jathar et 2 

al., 2014;Zhao et al., 2014) or mischaracterized when lumped into chemical mechanism VOC 3 

species (Jathar et al., 2014). A future intent is to simulate this same period using a volatility basis 4 

set approach to treat primary OC emissions with some degree of volatility and potential for SOC 5 

production and better account for sector specific intermediate volatility emissions. 6 

 7 

Disclaimer 8 

Although this work was reviewed by EPA and approved for publication, it may not necessarily 9 

reflect official Agency policy.   10 
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Table 1. Episode total anthropogenic emissions of primarily emitted PM2.5 organic carbon and 1 

the sum of benzene, toluene, and xylenes by emissions sector group. The Los Angeles (LA) total 2 

includes Los Angeles and Orange counties. The southern San Joaquin Valley (SSJV) total 3 

includes Kern, Fresno, Kings, and Tulare counties. Residential wood combustion, fugitives, and 4 

non-point area PM2.5 emissions are largely contemporary in origin. 5 

 6 

  7 

Sector SSJV (tons) SSJV (%) LA (tons) LA (%) SSJV (tons) SSJV (%) LA (tons) LA (%)

Non-point area 139.9 33.8 410.1 40.8 326.7 37.2 1229.3 35.8

Onroad mobile 73.3 17.7 263.6 26.2 273.5 31.2 1190.9 34.6

Nonroad mobile 23.9 5.8 161.4 16.1 170.1 19.4 822.3 23.9

Point: non-electrical generating 61.3 14.8 56.3 5.6 68.3 7.8 177.7 5.2

Residential wood combustion 54.1 13.1 82.7 8.2 2.0 0.2 3.2 0.1

Oil & gas exploration and related 28.5 6.9 0.0 0.0 34.2 3.9 1.1 0.0

Fugitive dust 24.9 6.0 18.1 1.8 0.0 0.0 0.0 0.0

Commercial marine & rail 3.8 0.9 11.4 1.1 2.6 0.3 12.8 0.4

Point: electrical generating 4.3 1.0 1.7 0.2 0.1 0.0 1.0 0.0

Total Contemporary Carbon 218.9 52.9 510.9 50.8 2.0 0.2 3.2 0.1

Total Fossil Carbon 195.2 47.1 494.5 49.2 875.3 99.8 3435.1 99.9

Primarily emitted PM2.5 organic carbon Benzene + Toluene + Xylenes
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Table 2. Episode average measured and modeled PM2.5 carbon, PM2.5 SOC groups, and VOC 1 

at the Pasadena and Bakersfield sites. 2 

 3 

 4 

  5 

Specie Model Run Location N

Observed 

(ugC/m3)

Predicted 

(ugC/m3)

Bias 

(ugC/m3)

Error 

(ugC/m3)

Fractional 

Bias (%)

Fractional 

Error (%) r

Elemental Carbon Baseline Bakersfield 35 0.5 0.4 -0.1 0.1 -13 35 0.17

Baseline Pasadena 31 0.2 1.0 0.8 0.8 125 125 0.70

Baseline CSN/IMPROVE sites 220 0.2 0.6 0.6 0.6 77 87 0.47

Organic Carbon Baseline Bakersfield 35 5.4 0.8 -4.6 4.6 -144 144 0.11

Baseline Pasadena 31 3.6 2.0 -1.6 1.6 -53 53 0.73

Baseline CSN/IMPROVE sites 220 1.9 1.3 -0.6 0.9 -34 53 0.06

Sensitivity CSN/IMPROVE sites 220 1.9 1.7 -0.2 0.8 -11 42 0.32

Specie Model Run Location N

Observed 

(ngC/m3)

Predicted 

(ngC/m3)

Bias 

(ngC/m3)

Error 

(ngC/m3)

Fractional 

Bias (%)

Fractional 

Error (%) r

Isoprene SOC Baseline Bakersfield 36 96 21 -75 75 -126 128 0.36

Pasadena 32 42 27 -15 25 -60 83 0.10

Monoterpene SOC Baseline Bakersfield 35 56 21 -35 37 -75 89 0.66

Pasadena 32 82 21 -60 61 -89 93 0.55

Toluene+Xylene SOC Baseline Bakersfield 35 59 15 -44 44 -114 114 0.62

Pasadena 32 125 36 -89 89 -100 100 0.82

Sesquiterpene SOC Baseline Bakersfield 41 17

Pasadena 41 7

Benzene SOC Baseline Bakersfield 41 2

Pasadena 41 2

Alkane SOC Baseline Bakersfield 41 12

Pasadena 41 22

Cloud SOC Baseline Bakersfield 41 1

Pasadena 41 5

Naphthalene SOC Baseline Bakersfield 36 43

Pasadena 32 114

Specie Model Run Location N

Observed 

(ppbC)

Predicted 

(ppbC) Bias (ppbC)

Error 

(ppbC)

Fractional 

Bias (%)

Fractional 

Error (%) r

Isoprene VOC 3-hr Baseline Bakersfield 5 0.1 0.3 0.2 0.2 79 79 0.79

Pasadena 8 0.6 0.5 -0.2 0.5 0 84 -0.21

Monoterpene VOC 3-hr Baseline Bakersfield 37 1.4 0.5 -0.9 1.0 -72 89 0.25

Pasadena 28 1.8 0.3 -1.5 1.6 -129 137 0.15

Toluene VOC 3-hr Baseline Bakersfield 41 4.3 2.7 -1.6 1.9 -48 55 0.44

Pasadena 29 7.3 7.7 0.4 3.5 17 44 0.24

Xylene VOC 3-hr Baseline Bakersfield 41 4.3 1.8 -2.5 2.5 -82 83 0.34

Pasadena 29 6.7 4.5 -2.1 2.6 -33 41 0.20

Benzene VOC 3-hr Baseline Bakersfield 41 1.2 1.3 0.2 0.5 6 38 0.14

Pasadena 29 1.5 1.6 0.1 0.5 0 30 0.16

Total VOC 3-hr Baseline Bakersfield 41 186.9 63.7 -123.2 124.2 -95 97 0.37

Pasadena 29 188.9 88.7 -100.1 100.1 -66 66 0.26

Isoprene VOC 1-hr Baseline Bakersfield 712 0.4 0.4 0.0 0.3 -21 83 0.15

Pasadena 718 1.6 0.8 -0.9 1.7 -32 139 -0.10

Monoterpene VOC 1-hr Baseline Bakersfield 605 0.8 0.3 -0.6 0.7 -63 101 0.25

Pasadena 707 0.7 0.2 -0.5 0.5 -105 111 0.05

Toluene VOC 1-hr Baseline Bakersfield 737 2.5 1.7 -0.8 1.5 -25 56 0.31

Pasadena 717 4.0 6.1 2.0 2.8 36 54 0.23

Xylene VOC 1-hr Baseline Bakersfield 737 1.9 1.1 -0.7 1.2 -37 64 0.32

Pasadena 718 3.2 3.4 0.2 1.7 2 51 0.15
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Figure 1. Gas (right panel), semi-volatile (middle panel), and particle phase (left panel) CMAQ 1 

organic carbon shown by saturation vapor pressure and O:C ratio. Compounds shown in blue 2 

exist in the aqueous phase, brown suggest generally fossil in origin, green generally 3 

contemporary in origin, and gray both contemporary and fossil in origin. Other known processes 4 

such as fragmentation are not shown as they are not currently represented in the modeling 5 

system.  6 

 7 
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Figure 2. Observed daily 23-h average PM2.5 elemental carbon, PM2.5 contemporary-origin 1 

organic carbon, and PM2.5 fossil-origin organic carbon at Pasadena and Bakersfield.  2 

3 
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Figure 3. Model predicted and measured PM2.5 organic carbon at Pasadena and Bakersfield. The 1 

nearby CSN measurements are intended to provide additional context and are not co-located with 2 

CalNex measurements or model estimates.  3 

4 

 5 

  6 
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Figure 4. Observed (top row) and modeled (middle and bottom rows) PM2.5 organic carbon at 1 

Pasadena and Bakersfield. Mass explained by SOA tracers shown in green (contemporary origin 2 

tracers) and brown (fossil origin tracers). Top row gray shading indicates mass not explained by 3 

known observed SOC tracers. Middle and bottom row gray shading shows modeled primarily 4 

emitted PM2.5 that is both contemporary and fossil in origin. Middle row shows baseline model 5 

estimates and bottom row model sensitivity results with increased SOA yields.  6 

7 
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Figure 5. Comparison of CMAQ-predicted and measured VOC (daily average of hourly samples) 1 

and corresponding SOC species (daily 23-hr average samples) for Pasadena. Comparison points 2 

outside the gray lines indicate model predictions are greater than a factor of 2 different from the 3 

measurements. 4 

 5 
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Figure 6. Comparison of CMAQ-predicted and measured VOC (daily average of hourly samples) 1 

and corresponding SOC species (daily 23-hr average samples) for Bakersfield. Comparison 2 

points outside the gray lines indicate model predictions are greater than a factor of 2 different 3 

from the measurements. 4 

5 

 6 
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Figure 7. Measured and model estimated OH radical (top) and HO2+RO2 (bottom) at Pasadena. 1 

The ratio shown on the scatterplots is the episode average model estimate divided by the episode 2 

average measured values. 3 

 4 
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Figure 8. Episode average modeled PM2.5 organic carbon and measurements from both CalNex 1 

locations and routine networks including CSN (circles) and IMPROVE (squares). Left panel 2 

shows baseline model predictions and right panel shows model estimates with increased SOA 3 

yields.  4 
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