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ABSTRACT 	�

Co-located measurements of fine particulate matter (PM2.5) organic carbon, elemental carbon, 
�

radiocarbon (14C), speciated volatile organic compounds (VOCs), and OH radical during the ���

CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air ���

Quality (CMAQ) model’s representation of organic species from VOCs to particles. Episode ���

averaged daily 23-hr average 14C analysis indicate PM2.5 carbon at Pasadena and Bakersfield ���

during the CalNex field campaign were evenly split between contemporary and fossil origin. ���

CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both ���

locations. The model underestimates measured PM2.5 organic carbon at both sites with very little ���

(7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with ���

the ambient based SOC/OC fraction of 63% at Pasadena.  �	�

 �
�

Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, ���

are generally within a factor of 2, but the corresponding secondary organic carbon (SOC) tracer ���

(2,3-dihydroxy-4-oxo-pentanioc acid) is systematically underpredicted by more than a factor of 2. ���
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Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at ��

Pasadena and over predicted at Bakersfield and isoprene SOC mass is underestimated at both sites. ��

Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a ��

factor of 2) in predicting hydroxyl radical and VOC gas phase precursors suggests error(s) in the ��

parameterization of semi-volatile gases to form SOC. Yield values (� ) applied to semi-volatile ��

partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking ��

in account recent findings of underestimated yields in chamber experiments due to gas wall losses. ��

This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field 	�

study locations and at routine monitor network sites in California. Modeled percent secondary 
�

contribution (22% at Pasadena) becomes closer to ambient based estimates but still contains a ���

higher primary fraction than observed. ���

 ���

1 INTRODUCTION ���

Secondary organic aerosol (SOA) forms in the atmosphere during the gas-phase photooxidation of ���

volatile organic compounds (VOCs) that produce semi-volatile and water-soluble gases that ���

condense to form new particles or partition to pre-existing aerosol mass (Ervens et al., 2011).  SOA ���

contributes to the atmospheric fine particulate matter (PM2.5) burden, with subsequent effects on ���

air quality, visibility, and climate (Hallquist et al., 2009).  Despite its importance and abundance, �	�

ambient SOA mass is not well characterized by atmospheric models (Wagstrom et al., 2014).  For �
�

example, the Community Multiscale Air Quality (CMAQ) model consistently underpredicts ���

surface SOA mass concentrations for a variety of seasons and locations when compared to ambient ���
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observational estimates (Carlton and Baker, 2011;Carlton et al., 2010;Hayes et al., 2014;Zhang et ��

al., 2014a).  ��

 ��

SOA formation and the preceding gas-phase photooxidation chemistry are complex and often ��

involve multiple oxidation steps in the gas, aqueous, and particle phase as well as accretion ��

reactions in the particle phase that yield high molecular weight (MW) products. However, three-��

dimensional photochemical models must represent the gas-phase chemistry and SOA formation in ��

a simplified fashion for computational efficiency (Barsanti et al., 2013).  Gas-phase chemical 	�

mechanisms employ “lumped” VOC species, categorized primarily according to reactivity (e.g., 
�

reaction rate constants with the OH radical) (Carter, 2000;Yarwood et al., 2005), not product ���

volatility or solubility. Condensable SOA-forming oxidation products are typically represented ���

with 2 products in the standard versions of publically available and routinely applied ���

photochemical modeling systems such as GEOS-CHEM (Chung and Seinfeld, 2002;Henze and ���

Seinfeld, 2006) and WRF-CHEM (Grell et al., 2005) and those employed in regulatory ���

applications for rulemaking such as CMAQ (Carlton et al., 2010) and the Comprehensive Air ���

Quality Model with extensions (CAMx) (ENVIRON, 2014). Given the relationships between ���

precursor VOC, OH radical abundance and SOA formation, it is important to simultaneously ���

evaluate the model representation of all three within the context of how organic species evolve in �	�

the atmosphere to diagnose persistent SOA model bias.  �
�

 ���

Recent studies have shown that warm season SOA mass concentrations are usually greater than ���

primary organic aerosol (POA) mass in the Los Angeles (Docherty et al., 2008;Hersey et al., ���
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2011;Hayes et al., 2013) and Bakersfield (Liu et al., 2012) areas. Gas-to-particle condensation of ��

VOC oxidation products dominate formation of summer SOA in Bakersfield (Liu et al., 2012;Zhao ��

et al., 2013) and up to a third of nighttime organic aerosols (OA) in Bakersfield are organic nitrates ��

(Rollins et al., 2012). Sources of warm season OA in Bakersfield include fossil fuel combustion, ��

vegetative detritus, petroleum operations, biogenic emissions, and cooking (Liu et al., 2012;Zhao ��

et al., 2013). Despite numerous studies based on observations and models, less consensus exists ��

regarding the largest sources of warm season SOA at Pasadena. Bahreini et al. (2012) concluded ��

that SOA at Pasadena is largely derived from gasoline engines with minimal biogenic and diesel 	�

fuel contribution (Bahreini et al., 2012). Others concluded large contributions from gasoline fuel 
�

combustion to SOA but also found notable contributions from diesel fuel combustion, cooking, ���

and other sources (Gentner et al., 2012;Hayes et al., 2013). Zotter at al. (2014) conclude that 70% ���

of the SOA in the urban plume in Pasadena is due to fossil sources, and that at least 25% of the ���

non-fossil carbon is due to cooking sources. Lower volatility VOC measurements made at ���

Pasadena have been estimated to produce approximately 30% of fresh SOA in the afternoon with ���

a large contribution to these low volatility VOC from petroleum sources other than on-road ���

vehicles  (Zhao et al., 2014).  ���

 ���

Chemical measurements of PM2.5 carbon, fossil and contemporary aerosol carbon fraction, OC �	�

and its components, SOC tracers and speciated VOCs taken as part of the 2010 California Research �
�

at the Nexus of Air Quality and Climate Change (CalNex) field study in central and southern ���

California (Ryerson et al., 2013) provide a unique opportunity to quantitatively evaluate modeled ���

organic predictions. These special study data combined with routine PM2.5 OC measurements in ���

California are compared with model estimates to gauge how well the modeling system captures ���
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the gas and aerosol carbon burden using the standard CMAQ aerosol approach. The SOC ��

mechanism in the base version of CMAQ lends itself well to comparison with chemical tracers ��

because it retains chemical identity traceable to the precursor VOC (Carlton et al., 2010). Finally, ��

a CMAQ sensitivity simulation was performed where the yields of semi-volatile gases from VOC ��

oxidation were increased by a factor of 4 (Zhang et al., 2014b) to determine whether this may ��

ameliorate the model underprediction of secondary organic carbon (SOC) seen here and in other ��

studies (Ensberg et al., 2014).  ��

 	�

2 METHODS  
�

Predictions of speciated VOC, speciated COC, and aerosol-phase carbon are simultaneously ���

compared to co-located ambient measurements at two surface locations, one in Los Angeles ���

County (Pasadena) and one in the San Joaquin Valley (Bakersfield) air basin. The CMAQ ���

photochemical model is applied with a fine grid resolution (4 km sized grid cells) using emissions ���

from the 2011 National Emissions Inventory and 2010 specific point source information where ���

available.  ���

 ���

2.1 Model Background ���

CMAQ version 5.0.2 (www.cmaq-model.org) was applied to estimate air quality in California �	�

from May 5 to July 1, 2010, coincident with the CalNex Study.  Gas-phase chemistry is simulated �
�

with the SAPRC07TB condensed mechanism (Hutzell et al., 2012) and aqueous-phase chemistry ���

that oxidizes sulfur, methylglyoxal, and glyoxal (Carlton et al., 2008;Sarwar et al., 2013). The ���

AERO6 aerosol chemistry module includes ISORROPIAII (Fountoukis and Nenes, 2007) ���
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inorganic chemistry and partitioning. The modeling system generally does well capturing ambient ��

inorganic gases and PM2.5 species during this time period at Pasadena and Bakersfield (Kelly et ��

al., 2014;Markovic et al., 2014).  ��

 ��

Model predicted OC species are shown in Figure 1 by volatility bin (log of C*) and O:C ratio (see ��

Supporting Information for related details). Aqueous-phase species are shown with blue circles, ��

species largely fossil in origin are colored brown and those non-fossil in origin are green.  A ��

general trend of increasing O:C ratio as volatility decreases is consistent with laboratory and field 	�

measurements (Jimenez et al., 2009). The placement of the MGLY gem-diol vertically above gas-
�

phase MGLY in Figure 1 represents hydration processes. Aqueous-phase organic chemistry ���

represents multiple processes, including functionalization and oligomerization, because some ���

photooxidation products are small carboxylic acids and others are high molecular weight species ���

(Tan et al., 2010;Carlton et al., 2007). ���

 ���

VOC precursors for SOA include isoprene, monoterpenes, sesquiterpenes, xylenes, toluene, ���

benzene, alkanes, glyoxal, and methylglyoxal (Figure 1 right panel). Benzene, toluene, and xylene ���

form SOA precursors with high-NOX (RO2+NO) and low-NOX (RO2+HO2) specific yields ���

(Carlton et al., 2010). CMAQ converts these precursors into multiple semi-volatile products �	�

(Figure 1 middle panel) after a single oxidation step. These multiple products vary in terms of �
�

assigned volatility and oxygen-to-carbon (O:C) ratio. When semi-volatile SOA mass oligomerizes ���

in CMAQ the SOA identity is lost and becomes classified only as anthropogenic or biogenic, ���

dependent on the VOC precursor (see Figure S2).  After oligomerization, the saturation vapor ���
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pressure (C*) and OM:OC ratio associated with all of the 2-product semi-volatile SOA species ��

change from the individual values to the values assigned for non-volatile, non-partitioning SOA ��

mass (C*� 0; OM:OC = 2.1) (Carlton et al., 2010).   ��

 ��

CMAQ VOCs and SOC species are paired in time and space with measurements (Table S2). ��

Modeled predictions are averaged temporally to match observations and extracted from the grid ��

cell where the monitor is located.  Modeled toluene and xylene SOC are aggregated to match the ��

measured SOC tracer (2,3-dihydroxy-4-oxopentanoic acid) which is known to represent products 	�

from both compounds and potentially other methylated aromatics (Kleindienst et al., 2004). 
�

Because the original VOCs contributing to oligomerized species are not tracked by CMAQ, ���

biogenic oligomerized species mass is apportioned to parent VOC based on the fraction each semi-���

volatile SOC species contributes to the total semi-volatile (non-oligomerized) biogenic SOC at ���

that time and location.  The same technique is applied to anthropogenic SOC.  ���

 ���

2.2 Model Application ���

The model domain covers the State of California and part of northwest Mexico using 4 km square ���

sized grid cells (Figure S1). The vertical domain extends to 50 mb using 34 layers (layer 1 top ~35 ���

m) with most resolution in the boundary layer.  Initial and boundary conditions are from a coarser �	�

CMAQ simulation that used 3-hourly boundary inflow from a GEOS-Chem (v8-03-02) global �
�

model (http://acmg.seas.harvard.edu/geos/) simulation for the same period (Henderson et al., ���

2014). The coarser continental U.S. CMAQ simulation was run continuously from December 2009 ���

through this study period and the first week of the finer 4 km CMAQ simulation was not used to ���
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minimize the influence of initial chemical conditions. Gridded meteorological variables are ��

generated using the Weather Research and Forecasting model (WRF), Advanced Research WRF ��

core (ARW) version 3.1 (Skamarock et al., 2008). Surface meteorology including temperature, ��

wind speed, and wind direction and daytime mixing layer height were well characterized by WRF ��

in central and southern California during this period (Baker et al., 2013).  ��

 ��

Emissions are processed to hourly gridded input for CMAQ with the Sparse Matrix Operator ��

Kernel Emissions (SMOKE) modeling system (http://www.cmascenter.org/smoke/). Solar 	�

radiation and temperature estimated by the WRF model are used as input to the Biogenic Emission 
�

Inventory System (BEIS) v3.14 to generate hourly emissions estimates of biogenic speciated VOC ���

and NO (Carlton and Baker, 2011). Continuous emissions monitor (CEM) data are used in the ���

modeling to reflect 2010 emissions information for electrical generating units and other point ���

sources that provide that information. Day specific fires are represented but minimally impacted ���

air quality during this period (Hayes et al., 2013). Mobile source emissions were generated using ���

the SMOKE-MOVES integration approach (United States Environmental Protection Agency, ���

2014) and then interpolated between totals provided by the California Air Resources Board for ���

2007 and 2011. Other anthropogenic emissions are based on the 2011 National Emissions ���

Inventory (NEI) version 1 (United States Environmental Protection Agency, 2014). Primary mass �	�

associated with carbon (non-carbon organic mass, NCOM) is estimated based on sector specific �
�

organic matter-to-organic carbon (OM:OC) ratios (Simon and Bhave, 2012).  ���

 ���
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Emissions of primarily emitted PM2.5 OC and the sum of anthropogenic SOA precursors benzene, ��

toluene, and xylenes (BTX) are shown in Table 1 by source sector and area. Here, the southern ��

San Joaquin valley includes emissions from Kern, Tulare, Kings, and Fresno counties and the Los ��

Angeles area include emissions from Los Angeles and Orange counties. BTX emissions in both ��

areas are dominated by mobile sources (onroad and offroad) and area sources such as solvent ��

utilization and waste disposal (Table S1). Primary OC emissions are largely commercial cooking ��

(non-point area) in both locations with notable contribution from various types of stationary point ��

and mobile sources. BTX emissions are almost completely fossil in origin and primarily emitted 	�

OC is split fairly evenly between contemporary and fossil origin in these areas based on the 2011 
�

version 1 NEI (Table 1).  ���

 ���

2.3 Sampling and Analysis Methods ���

CalNex ground-based measurements took place in Pasadena, CA, from 15 May – 15 June 2010 ���

and in Bakersfield, CA, from 15 May – 30 June 2010. The Bakersfield sampling site was located ���

in a transition area of southeast Bakersfield between the city center and areas of agricultural ���

activity. The Pasadena sampling site was located on the California Institute of Technology campus ���

with the Los Angeles metropolitan area to the southwest and San Gabriel Mountains directly north ���

(see Figures S3).  �	�

 �
�

An ambient-based approach is used here to estimate secondary OC from individual or groups of ���

similar hydrocarbons (Kleindienst et al., 2010). Concentrations of specific compounds, tracers, are ���

determined and used to estimate SOC contributions from the particular source groups based on ���

measured laboratory tracer-to-SOC mass fractions (Kleindienst et al., 2007). Filter-based ���
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particulate matter sampling conducted at each site for 23-h periods starting at midnight (PDT) of ��

the designated sampling day was used for tracer-based organic aerosol characterization. In total, ��

there were 32 filter samples from Pasadena and 36 from the Bakersfield site (Lewandowski et al., ��

2013). The filter sampling protocols have been described in detail elsewhere (Kleindienst et al., ��

2010). For the analysis of the SOC tracer compounds, filters and field blanks were treated using ��

the derivatization method described by Kleindienst et al. (Kleindienst et al., 2007). The mass ��

spectral analysis for the organic compounds used as secondary molecular tracers has been ��

described (Edney et al., 2003). The method detection limit (MDL) for the SOC tracer species is 	�

0.1 ng m-3. Additional details of this methodology are provided in the Supporting Information. 
�

 ���

OC and elemental carbon (EC) concentrations were determined using the thermal-optical ���

transmittance (TOT) method (Birch and Cary, 1996) from 1.54 cm2 punches of quartz filters ���

collected concurrent with the filters used for tracer analyses (hereafter referred to as UNC/EPA ���

OC). The outer non-loaded rings were removed from filter samples then sent to Woods Hole ���

Oceanographic Institute Accelerator Mass Spectrometry for 14C analysis. The fraction of modern ���

carbon is provided for each daily total PM2.5 carbon sample (Geron, 2009). The modern carbon ���

fraction is expressed as a percentage of an oxalic acid standard material that represents the carbon ���

isotopic ratio for wood growth during 1890 (Stuiver, 1983). To account for the atmospheric 14C �	�

enhancement due to nuclear bomb testing in the 1950s and 1960s, a factor of 1.044 (Zotter et al., �
�

2014) was used to calculate the contemporary carbon fraction from the measured modern carbon ���

result (Lewis et al., 2004;Zotter et al., 2014). ���

 ���
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Two VOC datasets (one canister based, and one in situ) from each site were used in this analysis. ��

Three hour integrated (06:00 – 09:00 PDT) canister samples for VOC analysis were collected at ��

both sites. A total of 41 samples were collected at the Bakersfield site and 31 at Pasadena. The ��

offline VOC analysis details are given in the Supporting Information. In Bakersfield, online VOC ��

mixing ratios were collected for 30 minutes on the hour and analyzed via gas chromatography-��

flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) ��

(Gentner et al., 2012). In Pasadena, online VOC measurements were collected for 5 minutes every ��

30 minutes and analyzed via GC-MS (Borbon et al., 2013;Gilman et al., 2010). Carbon monoxide 	�

measurements at Pasadena were determined using UV fluorescence (Gerbig et al., 1999).  
�

 ���

Hydroxyl (OH) and hydroperoxyl (HO2) radical measurements were made at both locations using ���

Fluorescence Assay with Gas Expansion (FAGE). The Bakersfield OH measurements used in this ���

analysis were collected using the OHchem method from the Penn State ground-based FAGE ���

instrument (Mao et al., 2012).  The Pasadena hydroperoxyl observations were made using the ���

Indiana University FAGE instrument (Dusanter et al., 2009). HO2 measurements from both ���

instruments could contain an interference from various RO2, therefore when comparing the model ���

output with the observations, the sum of modeled HO2 and RO2 has been used (Griffith et al., ���

2013).  �	�

 �
�

OC measurements from nearby Chemical Speciation Network (CSN) sites in Pasadena and ���

Bakersfield were also used for comparison purposes. The Los Angeles CSN site (60371103) was ���

approximately 9 miles from the CalNex site, and the Bakersfield CSN site (60290014) was ���
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approximately 3 miles from the CalNex site (see Figures S3a and S3b in the supporting ��

information). The CSN network uses quartz-fiber filters and analyzes the carbon off-line using the ��

thermal-optical reflectance method. Aerodyne High-Resolution Time-of-Flight Aerosol Mass ��

Spectrometer (AMS) measurements of PM1 OC made at Pasadena are described in Hayes et al., ��

2013 and online Sunset PM2.5 OC measurements made at Bakersfield are described in Liu et al., ��

2012. ��

 ��

3 Results & Discussion 	�

The results and discussion are organized such that the contemporary and fossil components of 
�

PM2.5 carbon at the Pasadena and Bakersfield sites are discussed, followed by model performance ���

for PM2.5 carbon, speciated VOC, and SOC tracer groups. Table 2 shows episode aggregated model ���

performance metrics for PM2.5 organic and elemental carbon, SOC tracers, total VOC, and select ���

VOC species. The results of a sensitivity increasing semi-volatile yields are presented throughout ���

and discussed in detail before finally providing an evaluation of PM2.5 carbon at all routine monitor ���

sites in California.  ���

 ���

3.1 Contemporary and Fossil Origins of PM 2.5 Carbon ���

Field campaign average total PM2.5 carbon measurements indicate nearly equal amounts of �	�

contemporary and fossil contribution at Pasadena and Bakersfield. The field study average �
�

contemporary fraction of 23-hr average PM2.5 total carbon samples is 0.51 at Bakersfield (N=35) ���

and 0.48 at Pasadena (N=25). The estimate for contemporary carbon fraction at Pasadena is ���
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consistent with other 14C measurements at this location for this period (Zotter et al., 2014) and ��

similar to measurements made at urban areas in the Southeast United States: Birmingham 52% ��

and Atlanta 63% contemporary carbon (Kleindienst et al., 2010).  ��

 ��

Figure 2 shows observed daily 23-hr PM2.5 OC shaded by contemporary and fossil component ��

and also PM2.5 elemental carbon. The fractional contribution of contemporary carbon to total ��

PM2.5 carbon is variable from day-to-day at the Pasadena site and steadily increases through the ��

study period at the Bakersfield location (first week average of 0.44 and final week average of 	�

0.58). Some of the contemporary carbon fraction measurements from Pasadena were above 1.0. 
�

These samples were considered erroneous and not included in the analysis and suggest the ���

possibility of positive biases due to nearby sources (e.g. medical incinerator) in the area. It is ���

possible some of the stronger day-to-day variability in contemporary carbon fraction ���

measurements at Pasadena may be related to biases due to nearby “hot” sources. Higher time ���

resolution 14C measurements at Pasadena show an increase in fossil fraction during the middle of ���

the day related to increased emissions of fossil PM2.5 carbon precursors and SOA formation in the ���

Los Angeles area (Zotter et al., 2014). PM2.5 OC of fossil origin at Pasadena shows the strongest ���

relationship to daily average temperature (Figure S4a) compared with contemporary carbon, total ���

carbon, and elemental carbon. At Bakersfield the relationship between daily average temperature �	�

and fossil and contemporary carbon is similar (Figure S4b) and not as strong as the relationship in �
�

Pasadena. Neither fossil nor contemporary carbon concentrations show discernible patterns by day ���

of the week at either location (Figure S5). ���

 ���
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Modeled contemporary PM2.5 carbon is estimated by summing primarily emitted PM2.5 multiplied ��

by the contemporary fraction of urban area emissions (see Section 2.1 and Table 1) with model ��

estimated biogenic SOC species. The average baseline modeled contemporary fraction of PM2.5 ��

OC in Pasadena is 0.51 and Bakersfield 0.54, both of which are similar to average observation ��

estimates. However, the model shows little day to day variability in contemporary carbon fraction ��

which does not match observed trends (Figure S6). Episode average modeled estimates of PM2.5 ��

OC contemporary fraction are similar to the estimated contemporary fraction of the urban ��

emissions of primary PM2.5 OC (Bakersfield=.53 and Pasadena=.51), as noted in Table 1. 	�

 
�

3.2 PM2.5 Carbon ���

Figure 3 shows measured (UNC/EPA data) and modeled PM2.5 OC at Bakersfield and Pasadena. ���

Organic carbon measurements from co-located instruments (AMS at Pasadena measured PM1 and ���

Sunset at Bakersfield measured PM2.5) and a nearest CSN monitor are also shown in Figure 3. The ���

co-located AMS measurements compare well with the UNC/EPA PM2.5 organic carbon ���

measurements at Pasadena, while the concentrations measured at the nearby CSN site are ���

substantially lower. At Bakersfield, UNC/EPA measurements are higher compared with the nearby ���

CSN (episode average ~3 times higher) and co-located daily average Sunset (episode average 20% ���

higher) measured PM2.5 OC illustrate possible measurement artifacts in the CalNex measurements �	�

at this location. These differences in measured concentration at Bakersfield may be related to filter �
�

handling, variability in collected blanks, true differences in the OC concentrations since the CSN ���

site is spatially distinct, differences in the height of measurement (these CSN monitors are situated ���
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on top of buildings), and differences in analytical methods since CSN sites use thermal optical ��

reflectance (TOR) to operationally define OC and EC.  ��

 ��

Modeled PM2.5 OC is underestimated at both CalNex locations (Figure 3), most notably at ��

Bakersfield. However, given the large differences in PM2.5 OC mass compared to co-located and ��

nearby routine measurements, it is not clear which measurement best represents ambient PM2.5 OC ��

concentrations and would be most appropriate for comparison with the model. The model ��

generally compares well to the CSN site nearest Pasadena and Bakersfield. PM2.5 elemental carbon 	�

is well characterized by the model at Bakersfield (fractional bias = -13% and fractional error = 
�

35%) and over-estimated at Pasadena (fractional bias and error = 125%) (Figure S7). Since the ���

emissions are based on TOR and UNC/EPA measurements use the TOT operational definition of ���

total carbon some of the model overestimation may be related to the TOR method estimating ���

higher elemental carbon fraction of total carbon (Chow et al., 2001).  ���

 ���

PM2.5 OC is mostly primary (Pasadena 93% and Bakersfield 88%) in the baseline model ���

simulation. AMS measurements at Pasadena suggest OC is mostly secondary in nature with an ���

average of 63% for the SVOOA and OOA components for this field study (Hayes et al., 2013). ���

Model estimated PM2.5 OC is largely from primarily emitted sources and contemporary in nature �	�

based on the contemporary/fossil split of primary PM2.5 emissions near both sites (Figure S6). �
�

Primarily emitted PM2.5 OC emissions sources near Pasadena and Bakersfield include mobile ���

sources, cooking, and dust based on emissions inventory information (Table 1). Some of these ���

sources of primarily emitted PM2.5 OC may be semi-volatile in nature. Model treatment of POA ���



���
�

as semi-volatile may improve the primary-secondary comparison with observations but would ��

likely exacerbate underpredictions of PM2.5 OC unless oxidation and re-partitioning of the products ��

is considered (Robinson et al., 2007). The underestimation of SOC may result from underestimated ��

precursor VOC, poorly characterized oxidants, underestimated semi-volatile yields, missing ��

intermediate volatility VOC emissions (Stroud et al., 2014;Zhao et al., 2014), other issues, or some ��

combination of each.  ��

 ��

3.3 Gas-phase carbon 	�

Model estimates are paired with hourly VOC (Figure S8) and mid-morning 3-hr average VOC 
�

(Figure S9) at both locations. Compounds considered largely fossil in origin including xylene, ���

toluene, and benzene are generally well predicted at both sites although these species tend to be ���

slightly overestimated at Pasadena and slightly underestimated at Bakersfield. Since emissions of ���

these compounds near these sites are largely from mobile sources (Table 1), this suggests ���

emissions from this sector are fairly well characterized in this application.  ���

 ���

Contemporary (biogenic) origin monoterpenes are underestimated at both sites while isoprene is ���

underestimated at Pasadena and has little bias at Bakersfield based on hourly measurements ���

(Figure S8; Table 2). Isoprene and monoterpene performance may be partly related to the model �	�

not fully capturing transport from nearby areas with large emitting vegetation to these monitor �
�

locations (Heo et al., 2015), deficiencies in emissions factors, or poorly characterized vegetation. ���

Speciated monoterpene measurements made at Bakersfield during this field campaign suggest ���

emissions of certain species were elevated at the start of this time period due to flowering (Gentner ���



�	�
�

et al., 2014b), which is a process not included in current biogenic emissions models and thus may ��

contribute to modeled monoterpene underestimates.  ��

 ��

Other VOC species that are systematically underestimated include ethane, methanol, ethanol, and ��

acetaldehyde. Underprediction of methanol and ethanol in Bakersfield may be largely related to ��

missing VOC emissions for confined animal operations in the emission inventory (Gentner et al., ��

2014a). Underestimates of oxygenated VOC compounds may indirectly impact SOC formation ��

through muted photochemistry (Steiner et al., 2008). Carbon monoxide tends to be underestimated 	�

at both locations (Figure S8), possibly due to boundary inflow concentrations from the global 
�

model simulation being too low or underestimated regional emissions. ���

 ���

3.4 PM2.5 SOC tracers ���

Figure 4 shows modeled and measured total PM2.5 OC mass. Measured mass explained by fossil ���

and contemporary SOC tracers are shown in the top row. The unexplained observed fraction is a ���

mixture of primary, secondary, fossil and contemporary origin. Modeled mass is colored to ���

differentiate primarily emitted OC and SOC. Estimates of SOC mass from a specific or lumped ���

VOC group (e.g. isoprene, monoterpenes, toluene), hereafter called SOC tracer mass, comprise ���

little of the measured or modeled PM2.5 OC at either of these locations during this field study �	�

(Figure 4). Total SOC tracer estimates explain only 9% of the total measured UNC/EPA PM2.5 OC �
�

at Pasadena and 5% at Bakersfield. The percentage of mass explained by known secondary tracers ���

is smaller than urban areas in the southeast United States: Atlanta 27% and Birmingham 31% ���

(Kleindienst et al., 2010).  ���



�
�
�

 ��

The portion of measured and modeled PM2.5 carbon not identified with tracers may be from ��

underestimated adjustment factors related to previously uncharacterized SVOC wall loss in ��

chamber studies (Zhang et al., 2014b) and unidentified SOC pathways. Additional reasons for the ��

low estimate of observed tracer contribution to PM2.5 carbon include known pathways without an ��

ambient tracer and tracer degradation between formation and measurement. Based on 14C ��

measurements, this unidentified portion of the measurements is likely comprised of both ��

contemporary and fossil carbon in generally similar amounts. Total modeled SOC explain only 	�

12% of the PM2.5 carbon at Bakersfield and 7% at Pasadena. As noted previously, AMS based 
�

observations suggest most OC is SOC (63%) at Pasadena (Hayes et al., 2013) meaning both the ���

SOC tracer measurements and model estimates explain little of the SOC at this location.  ���

 ���

Despite the relatively small component of PM2.5 carbon explained by SOC tracers, a comparison ���

of measured and modeled SOC and precursor VOC provides additional opportunity to better ���

understand sources of PM2.5 carbon in these areas and begin to establish relationships between ���

precursors and resulting SOC formation. Ambient and model estimated SOC tracers and daily ���

average VOC precursors are shown in Figure 5 for Pasadena and Figure 6 for Bakersfield. The ���

model underestimates toluene and xylene SOC at both locations even though VOC gas precursors �	�

show an overprediction tendency at Pasadena and slight underestimation at Bakersfield. Isoprene �
�

SOC is generally under predicted at both sites, in particular at Bakersfield. This is in contrast to ���

the slight overprediction of daily 24-hr average isoprene at Bakersfield. One explanation may be ���

that isoprene SOC is formed elsewhere in the region (e.g. the nearby foothills of the Sierra Nevada ���



���
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where emissions are highest in the region), which would support the lack of relationship between ��

isoprene SOC and isoprene concentrations at Bakersfield (Heo et al., 2015;Shilling et al., 2013). ��

The lack of relationship could also be related to the reactive uptake kinetics of isoprene-derived ��

epoxydiols (IEPOX) (Gaston et al., 2014) and methacrylic acid epoxide (MAE). Since the model ��

does not include the reactive uptake of IEPOX and MAE and subsequent acid-catalyzed aqueous ��

phase chemistry it is likely isoprene SOC would be underestimated to some degree at both sites ��

(Karambelas et al., 2013;Pye et al., 2013). Of these channels the IEPOX channel is thought to have ��

the largest SOA production potential, but the chemistry in the LA basin is dominated by the high-	�

NO channel (Hayes et al., 2014) and thus IEPOX is not formed from isoprene emitted within the 
�

LA basin. Consistent with that observation, the AMS tracer of IEPOX SOA is only detected at ���

background level in the LA basin. ���

 ���

Monoterpene VOC and monoterpene SOC are underestimated systematically at both locations ���

suggesting underpredictions of the VOC precursor translates to underestimates in SOC. As noted ���

previously, monoterpene measurements suggest an emissions enhancement related to flowering or ���

other emission events (e.g. harvest or pruning) (Gentner et al., 2014b) that is not included in current ���

biogenic emissions model formulations. The monoterpene measured tracer SOC group is based on ���

� -pinene products. Measured SOC at these sites could be from monoterpene species other than � -�	�

pinene. A coincident study near Bakersfield indicates � - and � -pinene emissions represent a fairly �
�

small fraction of total monoterpene emissions during this time period (Gentner et al., 2014b). SOA ���

yields in CMAQ for monoterpenes are heavily weighted toward � - and � - pinene, which may be ���

appropriate in most places, but not here where measurements show large contributions from ���
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limonene, myrcene, and para-cymene. This is important because yields vary among from different ��

monoterpenes and limonene has a much larger SOA yield than pinenes (Carlton et al., 2010).  ��

 ��

Sesquiterpene VOC and SOC tracer (� -caryophyllenic acid) mass measurements were never above ��

the MDL at either site during CalNex, but the modeling system often predicts SOC from this VOC ��

group (Table 2, Figure S10b). The SOC tracer measurement methodology is more uncertain for ��

sesquiterpene products (Offenberg et al., 2009) and gas-phase sesquiterpenes would have oxidized ��

before reaching the measurement sites since sesquiterpene emitting vegetation exists in the San 	�

Joaquin Valley (Ormeño et al., 2010). It is also possible that SOC is forming from sesquiterpenes 
�

other than � -caryophyllene. ���

 ���

One potential explanation for an underestimation of SOC despite well characterized precursors ���

(e.g. toluene and xylenes) could be lack of available oxidants. As shown in Figure 7, the model ���

tends to overestimate the hydroxyl radical compared with measurement estimates at Pasadena. ���

Hydroperoxyl+peroxy radical measurements are underestimated at Pasadena by a factor of 2 on ���

average. The model overestimates preliminary measurements of both hydroxyl (by nearly a factor ���

of 2 on average) and hydroperoxyl+peroxy radicals at Bakersfield. Model representation of ���

hydroxyl radical at these locations during this time period does not seem to be limiting VOC �	�

oxidation to semi-volatile products. Better agreement between radical ambient and modeled �
�

estimates could result in less SOC produced by the model and exacerbate model SOC ���

underestimates. This suggests deficiencies other than radical representation by the modeling ���

system are more influential in SOC performance for these areas. However, hydroperoxyl ���
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underestimates at Pasadena could lead to muted SOA formation through low-NOX pathways ��

dependent on hydroperoxyl concentrations and contribute to model under-estimates of SOC.  ��

 ��

3.5 Sensitivity Simulation ��

OH is not underestimated in the model and biases in precursor VOC do not clearly translate into ��

similar biases in SOC (e.g. toluene and xylene VOC are overestimated at Pasadena but tracer SOC ��

for this group is underestimated) for these sites during this time period. Modeled SOC may partly ��

be underestimated due to the use of experimental SOC yields that may be biased low due to 	�

chamber studies not fully accounting for SVOC wall loss (Zhang et al., 2014b). Even though Zhang 
�

et al., 2014b showed results for one precursor to SOA pathway, as a sensitivity study here the yield ���

of all semivolatile gases are increased by a factor of 4. This was done by increasing in the mass-���

based stoichiometric coefficients for each VOC to SOA pathway in the model to provide a ���

preliminary indication about how increased yields might impact model performance. A factor of ���

4 is chosen based on the upper limit related to SVOC wall loss in Zhang et al. (Zhang et al., 2014b). ���

Aside from wall loss characterization, there are a variety of other aspects of chamber studies that ���

could result in underestimated yields including particle-phase accretion and aqueous phase ���

chemistry and differences in chamber and ambient humidity.  ���

 �	�

Model estimates of PM2.5 OC increase in urban areas and regionally when semivolatile yields are �
�

increased. The sensitivity simulation results in episode average anthropogenic SOC increases by a ���

factor of 3 (benzene SOC at Pasadena) to 4.8 (toluene and xylene SOC at Pasadena) and biogenic ���

SOC increases between a factor of 5.1 (isoprene SOC at Pasadena) to 8.9 (monoterpene SOC at ���
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Bakersfield). Model performance improves at the CalNex locations (Figures 3 and 4) and at routine ��

monitors throughout California (Figure 8). Average fractional bias improves from -34% to -11% ��

at routine monitor locations and fractional error is reduced from 53% to 42%.  ��

 ��

The sensitivity simulation with increased semivolatile yields results in increased model estimated ��

secondary contribution as a percent of PM2.5 carbon, but still does not conform to observation ��

based estimates that indicate PM2.5 carbon is largely secondary in nature at these sites (Liu et al., ��

2012;Hayes et al., 2013). Modeled SOC in the sensitivity simulation explains 36% of the PM2.5 	�

OC at Bakersfield and 22% at Pasadena, which is larger than the baseline simulation by more than 
�

a factor of 3. The model predicted percent contemporary fraction of PM2.5 carbon changed very ���

little due to this sensitivity. The model sensitivity results are not compared to SOC tracer group ���

estimates since the conversion of tracer concentrations to SOC concentrations would require a ���

similar adjustment and would result in similar relationships between model estimates and ���

observations. ���

 ���

3.6 Aqueous and other SOC processes ���

Measurements in Pasadena during the summer of 2009 suggest aqueous processes can be important ���

for SOC mass (Hersey et al., 2011). For the CalNex period at Pasadena, Washenfelder et al. (2012) �	�

showed box model estimated 8-hr average SOC from aqueous-phase chemistry of glyoxal to be �
�

between 0.0 and 0.2 µg m-3 (Washenfelder et al., 2011) and Hayes et al. (2014) showed that the ���

observed SOA was not different between cloudy and clear morning days. CMAQ predicted 24-���

hour average SOC from glyoxal and methygloxal through aqueous chemistry at Pasadena ranges ���
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from 0.0 to 0.04 µg/m3. CMAQ estimates of SOC from small carbonyl compounds via aqueous-��

phase processes are within the range inferred from measurements.  ��

 ��

Not all CMAQ SOC formation pathways can be included in this analysis.  No observational ��

indicator exists for SOC derived from alkanes, benzene, glyoxal, and methylglyoxal since unique ��

tracer species have not been determined. Conversely, naphthalene/PAH SOC tracers were ��

measured, but not modeled in CMAQ. Measured naphthalene SOC at these sites is minor (Hayes ��

et al., 2014) which is consistent with other areas (Dzepina et al., 2009). Previous CMAQ 	�

simulations predict that PAHs contribute less than 30 ng m-3 of SOA in Southern California in 
�

summer (Pye and Pouliot, 2012), and thus including those pathways is unlikely to close the model-���

measurement gap in PM2.5 OC. 2-Methyl-3-Buten-2-ol (MBO) derived SOC concentrations (3-4 ���

ngC m-3) were low at both monitor locations throughout the campaign (Lewandowski et al., 2013). ���

MBO does not appear to notably contribute SOC at these locations during this time period, which ���

is consistent with low yields estimated in laboratory experiments (Chan et al., 2009). Organic ���

carbon emitted from marine biological activity is not included in this modeling assessment and ���

may contribute to some degree at Pasadena (Gantt et al., 2010) based on ship-based measurements ���

(Hayes et al., 2013). ���

 �	�

3.7 Regional PM 2.5 Organic Carbon  �
�

Including routine measurement data is important to provide broader context for PM2.5 carbon in ���

California and understand how the model performs and responds to perturbations at diverse ���

locations beyond the two CalNex sites. The highest average modeled PM2.5 OC in California ���
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during this period is in the Los Angeles area (Figure 8). The Sacramento and San Joaquin valleys ��

also show higher concentrations of PM2.5 OC than more rural parts of the State (Figure 8). ��

Measurements made at routine monitor networks (Figure 8) show similar elevated concentrations ��

near Los Angeles, Sacramento valley, and San Joaquin valley. These areas of elevated OC ��

generally coincide with areas of the State that experience a build-up of pollutants due to terrain ��

features blocking air flow (Baker et al., 2013). The model does not tend to capture the highest ��

concentrations of measured PM2.5 OC in the central San Joaquin valley, Imperial Valley, or at one ��

CSN monitor in the northeast Sierra Nevada that is near large residential wood combustion 	�

emissions (Figure S11). The model underestimates PM2.5 OC on average across all CSN sites 
�

during this time period (fractional bias = -34% and fractional error = 53%). The modeling systems ���

show an overprediction tendency (fractional bias = 77%) across all CSN sites for PM2.5 elemental ���

carbon in California during this period. ���

 ���

4 Conclusions ���

Total PM2.5 carbon at Pasadena and Bakersfield during the CalNex period in May and June of 2010 ���

is fairly evenly split between contemporary and fossil origin. Total PM2.5 OC is generally ���

underestimated at both field study locations and at many routine measurement sites in California ���

and comparison with AMS observations suggest a large underestimation of SOC. Semivolatile �	�

yields were increased by a factor of 4 based on recent research suggesting yields may be higher �
�

due to updated accounting for SVOC wall loss. This sensitivity resulted in a better comparison to ���

routine and field study measurements. However, the model estimated OC is still largely primary ���

in nature and inconsistent with observation based approaches at these sites. A modeling study for ���
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the same time period using different emissions, photochemical transport model, and SOA ��

treatment also show underestimated OA and SOA at Pasadena and underestimated SOA but ��

comparable OA at the Bakersfield location (Fast et al., 2014). ��

 ��

CMAQ predictions of individual VOCs are often not consistent with model performance for the ��

corresponding subsequent SOC species mass. Gas-phase mixing ratios of toluene and xylene are ��

well-predicted by CMAQ, typically within a factor of 2 of the observations at both sites. However, ��

measurement-based estimates of the corresponding SOC mass are consistently greater than model-	�

predicted mass. Mass concentrations of the isoprene SOC are systematically underpredicted, most 
�

noticeably at Bakersfield, while model predictions of gas-phase isoprene are not biased in only ���

one direction to the same degree. Gas-phase monoterpenes and the related SOC species are ���

underpredicted at both CalNex monitoring sites. The hydroxyl radical is fairly well characterized ���

at Pasadena and systematically overestimated at Bakersfield suggesting oxidants are not limiting ���

SOC production in the model. ���

 ���

Episode average CMAQ model estimates of PM2.5 OC contemporary fraction at Pasadena and ���

Bakersfield are similar to radiocarbon measurements but lack day to day variability. CMAQ PM2.5 ���

OC is predominantly primary in origin which is contrary to findings from other studies that PM2.5 �	�

OC in these areas are largely secondary in nature during this time period (Bahreini et al., �
�

2012;Hayes et al., 2013;Liu et al., 2012). Treatment of primarily emitted PM2.5 OC as semi-volatile ���

would likely result in total PM2.5 OC estimates that would be mostly secondary rather than primary. ���

However, this would likely exacerbate model underestimates of PM2.5 OC. Some model ���
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performance features including underestimated SOC may be related to less volatile hydrocarbon ��

emissions missing from the emission inventory (Chan et al., 2013;Gentner et al., 2012;Jathar et ��

al., 2014;Zhao et al., 2014) or mischaracterized when lumped into chemical mechanism VOC ��

species (Jathar et al., 2014). A future intent is to simulate this same period using a volatility basis ��

set approach to treat primary OC emissions with some degree of volatility and potential for SOC ��

production and better account for sector specific intermediate volatility emissions. ��

 ��
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Table 1. Episode total anthropogenic emissions of primarily emitted PM2.5 organic carbon and ��
the sum of benzene, toluene, and xylenes by emissions sector group. The Los Angeles (LA) total ��
includes Los Angeles and Orange counties. The southern San Joaquin Valley (SSJV) total ��

includes Kern, Fresno, Kings, and Tulare counties. Residential wood combustion, fugitives, and ��
non-point area PM2.5 emissions are largely contemporary in origin. ��
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Table 2. Episode average measured and modeled PM2.5 carbon, PM2.5 SOC groups, and VOC ��
at the Pasadena and Bakersfield sites. ��

 ��

 ��

  ��

������ ����	
�� ������� �
��������

��������

���������

��������

����

��������

 ����

��������

!�������	

����
�"�

!�������	

 ����
�"� �

8%#���%�0��$�� 4��%�� 4�9��:�%" �� � � � � �� � � � �� � �� � ��
4��%�� &���"�� �� � � � � � 	 � 	 ��� ��� � ��
4��%�� 0��;<3&)!�8����� ��� � � � � � � � � �� 	� � ��

!�(�����0��$�� 4��%�� 4�9��:�%" �� � � � 	 �� � � � ��� � ��� � ��
4��%�� &���"�� �� � � � � �� � � � ��� �� � ��
4��%�� 0��;<3&)!�8����� ��� � 
 � � �� � � 
 ��� �� � ��
������/��2 0��;<3&)!�8����� ��� � 
 � � �� � � 	 ��� �� � ��

������ ����	
�� ������� �
��������

�������

���������

�������

����

�������

 ����

�������

!�������	

����
�"�

!�������	

 ����
�"� �

<�������!0 4��%�� 4�9��:�%" �� 
� �� ��� �� ���� ��	 � ��
&���"�� �� �� �� ��� �� ��� 	� � ��

3���������!0 4��%�� 4�9��:�%" �� �� �� ��� �� ��� 	
 � ��
&���"�� �� 	� �� ��� �� �	
 
� � ��

1�%+�672%���!0 4��%�� 4�9��:�%" �� �
 �� ��� �� ��� � ��� � ��
&���"�� �� ��� �� �	
 	
 ���� ��� � 	�

��=+�������!0 4��%�� 4�9��:�%" �� ��
&���"�� �� �

4�5���!0 4��%�� 4�9��:�%" �� �
&���"�� �� �

�%9����!0 4��%�� 4�9��:�%" �� ��
&���"�� �� ��

0%�+"��!0 4��%�� 4�9��:�%" �� �
&���"�� �� �

���>�>�%���!0 4��%�� 4�9��:�%" �� ��
&���"�� �� ���

������ ����	
�� ������� �
��������


������
���������


������ ����
������
 ����


������
!�������	

����
�"�

!�������	

 ����
�"� �

<�������!0���>� 4��%�� 4�9��:�%" � � � � � � � � � �
 �
 � �

&���"�� 	 � � � � �� � � � � 	� �� ��

3���������!0���>� 4��%�� 4�9��:�%" �� � � � � �� 
 �  � ��� 	
 � ��
&���"�� �	 � 	 � � �� � � � ���
 ��� � ��

1�%+���!0���>� 4��%�� 4�9��:�%" �� � � � � �� � � 
 � �	 �� � ��
&���"�� �
 � � � � � � � � �� �� � ��

72%���!0���>� 4��%�� 4�9��:�%" �� � � � 	 �� � � � �	 � 	� � ��
&���"�� �
 � � � � �� � � � ��� �� � ��

4�5���!0���>� 4��%�� 4�9��:�%" �� � � � � � � � � � � 	 � ��
&���"�� �
 � � � � � � � � � �� � ��

1���%��!0���>� 4��%�� 4�9��:�%" �� �	� 
 �� � ���� � �� � � �
� 
� � ��
&���"�� �
 �		 
 		 � ���� � ��� � ��� �� � ��

<�������!0���>� 4��%�� 4�9��:�%" ��� � � � � � � � � ��� 	� � ��
&���"�� ��	 � � � 	 �� 
 � � ��� ��
 �� ��

3���������!0���>� 4��%�� 4�9��:�%" ��� � 	 � � �� � � � ��� ��� � ��
&���"�� ��� � � � � �� � � � ���� ��� � ��

1�%+���!0���>� 4��%�� 4�9��:�%" ��� � � � � �� 	 � � ��� �� � ��
&���"�� ��� � � � � � � � 	 �� �� � ��

72%���!0���>� 4��%�� 4�9��:�%" ��� � 
 � � �� � � � � �� �� � ��
&���"�� ��	 � � � � � � � � � �� � ��



���
�

Figure 1. Gas (right panel), semi-volatile (middle panel), and particle phase (left panel) CMAQ ��
organic carbon shown by saturation vapor pressure and O:C ratio. Compounds shown in blue ��
exist in the aqueous phase, brown suggest generally fossil in origin, green generally ��

contemporary in origin, and gray both contemporary and fossil in origin. Other known processes ��
such as fragmentation are not shown as they are not currently represented in the modeling ��
system.  ��
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Figure 2. Observed daily 23-h average PM2.5 elemental carbon, PM2.5 contemporary-origin ��
organic carbon, and PM2.5 fossil-origin organic carbon at Pasadena and Bakersfield.  ��
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Figure 3. Model predicted and measured PM2.5 organic carbon at Pasadena and Bakersfield. The ��
nearby CSN measurements are intended to provide additional context and are not co-located with ��
CalNex measurements or model estimates.  ��
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Figure 4. Observed (top row) and modeled (middle and bottom rows) PM2.5 organic carbon at ��
Pasadena and Bakersfield. Mass explained by SOA tracers shown in green (contemporary origin ��
tracers) and brown (fossil origin tracers). Top row gray shading indicates mass not explained by ��

known observed SOC tracers. Middle and bottom row gray shading shows modeled primarily ��
emitted PM2.5 that is both contemporary and fossil in origin. Middle row shows baseline model ��
estimates and bottom row model sensitivity results with increased SOA yields.  ��
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Figure 5. Comparison of CMAQ-predicted and measured VOC (daily average of hourly samples) ��
and corresponding SOC species (daily 23-hr average samples) for Pasadena. Comparison points ��
outside the gray lines indicate model predictions are greater than a factor of 2 different from the ��

measurements. ��

 ��
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Figure 6. Comparison of CMAQ-predicted and measured VOC (daily average of hourly samples) ��
and corresponding SOC species (daily 23-hr average samples) for Bakersfield. Comparison ��
points outside the gray lines indicate model predictions are greater than a factor of 2 different ��

from the measurements. ��
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Figure 7. Measured and model estimated OH radical (top) and HO2+RO2 (bottom) at Pasadena. ��
The ratio shown on the scatterplots is the episode average model estimate divided by the episode ��
average measured values. ��
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Figure 8. Episode average modeled PM2.5 organic carbon and measurements from both CalNex ��
locations and routine networks including CSN (circles) and IMPROVE (squares). Left panel ��
shows baseline model predictions and right panel shows model estimates with increased SOA ��

yields.  ��
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