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Abstract 11 

We present a simple model to retrieve actual evapotranspiration (ET) from satellites’ 12 

vegetation indices (PaVI-E) for the Eastern Mediterranean (EM) at a spatial resolution of 250 13 

m. The model is based on the empirical relationship between satellites’ vegetation indices 14 

(NDVI and EVI from MODIS) and total annual ET (ETAnnual) estimated at 16 FLUXNET sites 15 

representing a wide range of plant functional types and ETAnnual. Empirical relationships were 16 

first examined separately for (a) annual vegetation systems (i.e., croplands and grasslands) 17 

and (b) systems with combined annual and perennial vegetation (i.e., woodlands, forests, 18 

savannah and shrublands). Vegetation indices explained most of the variance in ETAnnual in 19 

those systems (71% for annuals, and 88% for combined annuals and perennials systems) 20 

while adding land surface temperature data in multiple regression and modified Temperature 21 

and Greenness models did not result in better correlations (p>0.1). After establishing 22 

empirical relationships, PaVI-E was used to retrieve ETAnnual for the EM from 2000 to 2014. 23 

Models’ estimates were highly correlated (R = 0.92, p<0.01) with ETAnnual calculated from 24 

water catchment balances along rainfall gradient of the EM. They were also comparable to the 25 

coarser resolution ET products of MSG (LSA-SAF MSG ETa, 3.1 km) and MODIS (MOD16, 26 

1 km) at 148 EM basins with R of 0.75 and 0.77 and relative biases of 5.2 and -5.2%, 27 

respectively (p<0.001 for both). In the lack of high-resolution (<1 km) ET models for the EM 28 



 2 

the proposed model is expected to contribute to the hydrological study of this region assisting 1 

in water resource management, which is one of the most valuable resources of this region. 2 

 3 

1 Introduction 4 

Actual evapotranspiration (ET) is a primary component of the global water cycle. Its 5 

assessment at global and regional scales is essential for forecasting future atmospheric 6 

feedback (Jung et al., 2010; Oki and Kanae, 2006; Zemp et al., 2014). Estimating ET at such 7 

scales though, is not straightforward and requires the use of models (Chen et al., 2014; Hu et 8 

al., 2015; Jung et al., 2009; Trambauer et al., 2014). Data-driven models using satellite 9 

information benefit from a continuous spatio-temporal direct observation of the land surface 10 

(Ma et al., 2014; Shi and Liang, 2014).  11 

Satellite-based ET models are classified into two: (1) empirical, using the relationship 12 

between in situ ET and satellites-derived vegetation indices (VIs) (Glenn et al., 2011; Nagler 13 

et al., 2012; Tillman et al., 2012) and (2) physical, using surface temperature from satellites to 14 

solve energy balance equations (Anderson et al., 2008; Colaizzi et al., 2012). While some 15 

models combine the two approaches (Tsarouchi et al., 2014).  16 

Although physical-based models are much more common their performance is comparable to 17 

that of the empirical-based models (Glenn et al., 2010). The accuracy of both approaches is 18 

within that of the eddy covariance measurements (70-90%) used for their calibration or 19 

validation (Kalma et al., 2008). Yet, the empirical approach is simpler than the physical-based 20 

model and requires less additional information.  21 

The basis for the empirical model is the resource optimisation theory. This theory suggests 22 

that plants adjust their foliage density to the environmental capacity to support photosynthetic 23 

activity and transpiration (Glenn et al., 2010). Accordingly, changes in vegetation foliage 24 

cover (and VIs) would affect ET resulting in high ET-VIs correlations. Then, the empirical 25 

equation could be used to retrieve ET in space and time. 26 

This approach is mostly used in vegetation systems with annual cycle of growth and drying 27 

where VIs define well the phenological stages (Glenn et al., 2011; Senay et al., 2011). 28 

However, in complex systems comprised of annual (i.e., herbaceous) and perennial (i.e., 29 

woody) vegetation the model must be adjusted with additional meteorological data (Maselli et 30 

al., 2014). 31 
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The main drawback of the empirical-based approach is that it is limited to a specific site and 1 

vegetation type (Glenn et al., 2010; Maselli et al., 2014; Nagler et al., 2012). No common 2 

relationship was found between ET and VIs for different sites and climatic conditions. 3 

Here we used MODIS VIs and land surface temperature (LST) products and eddy covariance 4 

ET from 16 FLUXNET sites with different plant functional types to establish empirical 5 

relationships between VIs (and/or LST) and ET in Mediterranean vegetation systems. We first 6 

examined those relationships in annual vegetation systems and complex systems comprising 7 

both annuals and perennials vegetation. Three empirical models were examined: (1) simple 8 

regression, (2) multiple variable and (3) modified Temperature and Greenness models with 9 

16-day and mean annual data. We used a performance-simplicity criterion to choose the best 10 

model to retrieve ET for the EM. Estimates were compared with MODIS and MSG ET 11 

operational products and evaluated against ET calculated from water catchment balances in 12 

the EM. 13 

 14 

2 Data 15 

2.1 Evapotranspiration from eddy covariance towers 16 

In situ ET was derived from eddy covariance towers that constitute the international flux 17 

towers net (FLUXNET). Two open FLUXNET sources were used to acquire the datasets: the 18 

Oak Ridge National Laboratory Distributed Active Archive Centre (available online 19 

[http://fluxnet.ornl.gov] from ORNL DAAC, Oak Ridge, Tennessee, U.S.A) and the 20 

European fluxes database [http://gaia.agraria.unitus.it/home]. Half-hourly level 4 ET data 21 

were checked for acceptable quality (Reichstein et al., 2005) and gap-filled using methods 22 

described in Reichstein et al. (2005) and Moffat et al. (2007). Then, data were aggregated to 23 

16-day means (mm d-1) and total annual ET (mm yr-1). Only ET data since the time MODIS 24 

VIs products are available were used (i.e., since 2000).  25 

2.2 Satellite products 26 

We used 16-day NDVI and EVI at a spatial resolution of 250 m (MOD13Q1) and 8-day LST 27 

at 1 km spatial resolution (MOD11A2) from MODIS on board Terra satellite. Although Terra 28 

provides LST twice a day (around 10:30 a.m./p.m. local time) here we used only daytime 29 

LST, which is the relevant for ET processes. The 8-day LST were averaged to match the 16-30 
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day temporal resolution of the VIs product.  1 

The MODIS 16-day VIs product is a composite of a single day value selected from 16 days 2 

period based on a maximum value criterion (Huete et al., 2002). It represents the vegetation 3 

status of the entire 16-day period because of the gradual development of the vegetation. This 4 

enables regressing MODIS VIs product against 16-day averages of ET. NDVI is defined as 5 

(Rouse et al., 1974):  6 

NDVI = R0.8 − R0.6
R0.8 + R0.6          (1) 7 

and EVI as (Huete et al., 2002): 8 

EVI = 2.5× R0.8 − R0.6
R0.8 + 6R0.6 − 7.5R0.5 +1        (2)

 9 

where R0.8, R0.6 and R0.5 are the reflectance at near infrared (0.8 µm), red (0.6 µm) and blue 10 

(0.5 µm) bands, respectively. NDVI suffers from asymptotic problems (saturation) over high 11 

density of vegetation biomass while EVI is more sensitive in such cases (Huete et al., 2002). 12 

For model development, time series of NDVI, EVI and LST at each FLUXNET site were 13 

obtained from MODIS Land Product Subsets [http://daac.ornl.gov/MODIS/modis.html] 14 

(ORNL DAAC, Oak Ridge, Tennessee, U.S.A., last accessed December 2014) for the years 15 

when ET data was available since 2000 (see ‘Period’ column in Table 1). NDVI and EVI time 16 

series were smoothed using local weighted scatterplot technique (LOWESS) as in Helman et 17 

al. (2014a, 2014b and 2015). For model implementation, tiles h20v05, h21v05, h20v06 and 18 

h21v06 of the MOD13Q1 product were downloaded for 2000–2014 using the USGS 19 

EarthExplorer tool [http://earthexplorer.usgs.gov]. These tiles fully cover the Eastern 20 

Mediterranean region. 21 

Model results were compared with two satellite operational ET products from MODIS 22 

(MOD16) and MSG (LSA-SAF MSG ETa) in 2011 at 148 main basins in the Eastern 23 

Mediterranean. MODIS and MSG ET products are based on different physical models, and 24 

have different spatial and temporal resolutions (1km/8day for MODIS, and 3.1km/daily for 25 

MSG) (Hu et al., 2015). The annual MODIS (MOD16A3) and daily MSG (LSA-SAF MSG 26 

Eta) ET products were downloaded for 2011 for the EM region. The basins map was taken 27 

from HydroSHEDS, a mapping product based on high-resolution elevation layer developed 28 

by the Conservation Science Program of World Wildlife Fund 29 
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(http://hydrosheds.cr.usgs.gov). Only main basins with an area greater than 10 km2 were 1 

selected (Fig. S1). 2 

2.3 Evapotranspiration from water catchment balances for validation 3 

We evaluated our model with mean annual ET calculated from six water catchment balances 4 

along a north-south rainfall gradient (130 – 800 mm yr-1) in the Eastern Mediterranean (Fig. 5 

S2 and Table 2). The calculation follows the classical water balance equation: 6 

ET = P −Q− dS
dt

         (3) 7 

where P and Q are the total annual precipitation and discharge measured in the catchment, 8 

and dS/dt is the change in water storage.  9 

Precipitation data (P) were collected for 2000-2013 from a total of 30 stations of the Israel 10 

Meteorological Service: 5 in Kziv, 2 in HaShofet, 21 in the Mountain Aquifer (north, centre 11 

and south) and 2 stations in the Mamashit catchment. Data were interpolated for the entire 12 

catchment area using ArcGIS and the inverse-distance weighting (IDW) methodology (Lu 13 

and Wong, 2008). Discharges (Q) were measured for the same period (2000-2013) for Kziv, 14 

Hashofet and Mamashit catchments using runoff gauges of the Hydrological Service of Israel 15 

(HSI) in: Gesher Haziv hydrometric station for Kziv, HaShofet-Hazorea for HaShofet and 16 

Mamashit station for the Mamashit catchment. Annual runoffs at the upper parts of the 17 

Mountain Aquifer (drainage areas without hydrometric stations at the Hedera, Alexander, 18 

Yarkon, Ayalon, Soreq and Lachish basins) were calculated using the HEC-HMS (Hydrologic 19 

Engineering Centre – Hydrologic Modelling System) model (Feldman, 2000) run by the HSI 20 

(http://www.water.gov.il). 21 

For timescales of several years dS/dt is assumed to be negligible (dS/dt = 0) so the mean 22 

annual ET could be simply calculated from P minus Q (Conradt et al., 2013). Following this 23 

assumption, we averaged water components over the 14 years of data (i.e., 2000-2013) to 24 

calculate mean annual ET. Water balances components (P and Q) and calculated mean annual 25 

ET for the six catchments are presented in Table 2. 26 

Calculating ET from water balances has some drawbacks like the difficulty to properly 27 

estimate the spatial distribution of precipitation over the entire catchment and uncertainties of 28 

catchment boundaries (Conradt et al., 2013). However, this is the best existing approach to 29 

compare in situ ET with satellite-derived ET at a basin scale. 30 
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 1 

3 Methods 2 

3.1 Site selection 3 

Perennial and annual vegetation in Mediterranean regions have distinct phenology 4 

contributing differently to the VIs signal (Helman et al., 2015; Karnieli, 2003; Lu et al., 5 

2003). Here we examined VIs - ET relationships in vegetation systems comprising both 6 

annual and perennial vegetation (i.e., forests, woodlands, savannah and shrublands, hereafter 7 

PA) separately from those comprising only annual vegetation (i.e., croplands and grasslands, 8 

hereafter AN).  9 

We found that annual vegetation in the understory of PA systems might contribute 10 

significantly to VIs while having very small contribution to the total ecosystem ET. In some 11 

cases, this results in an apparent phase shift between ET and VIs (Fig. 1) leading to negative 12 

or a lack of correlation. Moreover, we found that AN sites exhibit one single ET–VI 13 

relationship under wide range of rainfall conditions whereas similar types of PA systems have 14 

significantly different ET – VI relationships (i.e., different slopes) under different climatic 15 

regimes (Unpublished results).  16 

Therefore, AN sites (FLUXNET sites in AN systems) were selected from wide range of 17 

climatic regimes while PA sites (FLUXNET sites in PA systems) were selected only from 18 

Mediterranean-climate regions. Selection of the FLUXNET sites had to fulfil the following 19 

criteria: (1) at least three years of satellite and eddy covariance data in the FLUXNET site; (2) 20 

missing data less than 30 days yr-1 for ET and 15% for VIs; and (3) homogeneous vegetation 21 

cover near the FLUXNET tower within at least the 250 m spatial resolution of the MODIS 22 

VIs product. The last criterion was manually assured using Google EarthTM. These led us to 23 

select 16 FLUXNET sites that represent a wide range of plant functional types and ET rates 24 

(Table 1, Figures S3 and S4).  25 

3.2 Empirical ET models using VIs and LST 26 

Three regression models were examined using the satellite-derived NDVI, EVI, LST and 27 

eddy covariance ET data:  28 

(1) Simple regressions of ET against VIs or LST with 16-day and annual data.  29 



 7 

(2) Multiple variable regressions using NDVI (or EVI) and LST as dependent variables 1 

and ET as the independent variable. Regressions were conducted with both, 16-day 2 

averages and annual data 3 

(3) Modified version of the Temperature and Greenness (TG) model proposed by Sims et 4 

al. (2008) using LST as a proxy for radiation and potential ET (Maeda et al., 2011) 5 

with 16-day data alone. 6 

We used all models with 16-day ET averages and 16-day VIs and/or LST data but only the 7 

first two models with total annual ET and mean annual VIs and/or LST because the TG model 8 

was designed to work only with 16-day data (Sims et al. 2008). In AN, we subtracted the 9 

annual minimum VIs before integrating it over the growing season instead of using the 10 

original 16-day VIs data (see in Helman et al., 2014a, 2014b and 2015). The integral over the 11 

VIs during the growth season was used in the two first models against total annual ET. 12 

Multiple variables regressions were applied only on NDVI and LST data or EVI and LST 13 

data, but not on NDVI with EVI data because NDVI and EVI were highly correlated (R > 14 

0.95, p<0.001).  15 

The original TG model is based on the observed correlations between MODIS-EVI and 16 

FLUXNET GPP, which were further refined by incorporating LST data (Sims et al., 2008): 17 

GPP = a×EVIscaled × LSTscaled  ,       (4) 18 

where EVIscaled is the scaled EVI set to zero at EVI = 0.1 (i.e., EVIscaled = EVI – 0.1) due to 19 

absence of photosynthetic activity at this value (Sims et al., 2006); a is the slope of the 20 

relationship that enables parameterization of the model; and LSTscaled is daytime LST scaled 21 

to 1 at an optimum temperature for leaf photosynthetic response around 30 °C, decreasing 22 

towards 0 at lower and higher temperatures as follows (Sims et al., 2008):  23 

LSTscaled =min
LST
30
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,
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. .      (5) 24 

Note that LSTscaled in Eq. (5) is negative at LST higher than 50°C. In such case, LSTscaled is set 25 

to 0 in Eq. (4) assuming no photosynthetic activity at those high temperatures due to stomata 26 

closure (Sims et al., 2008).  27 

Here, we modified the TG model by using ET instead of GPP in Eq. (4):  28 

ET = a×EVIscaled × LSTscaled         (6) 29 
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The rationale is that GPP and ET are correlated through the trade-off of carbon gain and water 1 

loss through stomata opening during photosynthetic activity. We used the modified TG model 2 

with EVI and NDVI alternatively in Eq. (6). 3 

3.3 Model evaluation 4 

Pearson’s correlation coefficient (R) and mean absolute error (MAE) were chosen as accuracy 5 

metrics to evaluate the VIs-based ET models. The best model was considered as the one with 6 

the highest |R| and lowest MAE or at least lower than the eddy covariance accuracy (<30%). 7 

If two (or more) models fulfil these requirements, the one with the best performance with 8 

respect to its complexity i.e., with respect to the number of variables and operations needed, 9 

was preferred. A two-tailed Student’s t-test was used to examine statistical differences 10 

between the models p-values. 11 

3.4 Land cover map for model implementation 12 

ET was assessed for the Eastern Mediterranean using the best models for AN and PA systems 13 

separately. To produce the required land cover map, we classified pixels as AN and PA based 14 

on their NDVI during the year. Low NDVI during the dry season (<0.25) implies absent or 15 

dry vegetation typical for AN systems (Lu et al., 2003). Yet, some PA systems (e.g., open 16 

shrublands) also have low NDVI during this period but differ from AN systems by smaller 17 

NDVI change (<0.4) during the growth season (Lu et al., 2003; Roderick et al., 1999).  18 

Hence, we classified pixels with minimum NDVI < 0.25 as AN only if their NDVI increased 19 

by more than 0.4 during the growth season. To account for the high NDVI in agricultural 20 

fields of the Nile delta, pixels with minimum NDVI smaller or equal to 0.35 were also 21 

classified as AN only if their NDVI increased by more than 0.35. All remaining pixels were 22 

classified as PA (Fig. S5).  23 

Although this classification procedure might be coarse, we preferred it to the MODIS land 24 

cover product for two reasons. First, a significant discrepancy was found between MODIS-25 

based land cover product and actual land cover type distribution in the Eastern Mediterranean 26 

(Sprintsin et al., 2009a). Second, this procedure produces the required mask layer at the 27 

spatial resolution of the model (250 m), while the MODIS-derived land cover product is 28 

available at a coarser resolution (500 m). 29 

The produced AN/PA land cover map showed the general pattern known for this region (Fig. 30 
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S5). Moreover, the total AN area estimated for Israel not considering the Golan Heights 1 

grasslands (i.e. considering mostly Israel’s croplands) was 255∙103 ha. This agreed well with 2 

the total cropland area reported by the Israeli Central Bureau of Statistics for the same years 3 

(220∙103 ha, CBS 2014). 4 

 5 

4 Results and discussion 6 

4.1 ET-VIs simple relationships in systems comprising annual and perennial 7 

vegetation 8 

On average, the absolute correlation coefficient (|R|) for the ET-VIs linear regressions using 9 

annual data were higher by 60% (for NDVI) and 40% (for EVI) than the |R| for the 16-day 10 

regressions in PA sites. Total annual ET was highly correlated with mean annual NDVI in PA 11 

sites, 0.85<R<0.93 (Table 3; Fig. 2). In contrast, 16-day ET averages were only poorly 12 

correlated with 16-day NDVI (0.17<R<0.63). The same was for total annual ET and mean 13 

annual EVI with 0.66<R<0.94 compared to 0.28<R<0.70 when using 16-day EVI and ET 14 

data. The year-to-year changes in mean annual NDVI and EVI were significant enough to 15 

detect even small interannual changes in ET of 20 – 40 mm yr-1 (see e.g. of ES-Amo site in 16 

Fig. 2).  17 

LST was negatively correlated with 16-day and total annual ET in all PA FLUXNET sites. 18 

This implies the role of transpiration in attenuating thermal load (Rotem-Mindali et al., 2015). 19 

Mean annual LST was highly correlated with total annual ET (|R| > 0.84, p< 0.05) particularly 20 

in sites with low canopy cover (IL-Yat – 30-45% and ES-LMa – 20-30%; Casals et al., 2009; 21 

Sprintsin et al., 2009b). Those sites had relatively high interannual variability in LST (2 – 3.5 22 

°C; Fig. 2). 23 

Correlation coefficients from the cross-site comparisons were as high as those from site-24 

specific regressions when using annual data in PA sites (Fig. 3). Correlations were equally 25 

high for both, linear and exponential functions (R = 0.94, p<0.05 for both VIs and estimating 26 

functions). The linear functions were ET = 1277 NDVI – 189 and ET = 2844 EVI – 300 (mm 27 

y-1). Exponential functions were ET = 85 e3.12 NDVI and ET = 65 e6.31 EVI (mm y-1).  28 

Although a linear regression function is usually preferred to explain simple relationships 29 

between two parameters, the exponential relationship is more realistic in the case of ET-VIs. 30 
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This is because VIs exhibit exponential relationships with LAI (Baret et al., 1989; Duchemin 1 

et al., 2006), which is directly related to water consumption and ET. Also, ET is usually 2 

greater than zero in places with low vegetation cover (VIs≤0.1) due to soil evaporation. The 3 

mean annual NDVI and EVI explained 71 and 88% of the variability (R2) in the total annual 4 

ET using these functions. This is within the accuracy of the eddy covariance technique for 5 

estimating ET (Glenn et al., 2010; Kalma et al., 2008). Cross-site correlations of annual ET 6 

and LST in PA were also high with a negative relationship (R = -0.89, p<0.05, Fig. 3). 7 

The contribution of annual and perennial vegetation to VIs at the sub pixel level is most 8 

difficult to distinguish in PA systems. In some cases, one of those components might have a 9 

dominant contribution to VIs but insignificant for the ecosystem flux exchange (Fig. 1). This 10 

is probably one of the reasons that VIs could not be used to assess ET at a seasonal timescale 11 

(i.e., using 16-day data) in such systems. However, at interannual timescales (i.e., using the 12 

annual mean) relationships between ET and VIs were strong and might be used to retrieve 13 

total annual ET in PA systems. 14 

4.2 Comparison between empirical VIs-based ET models 15 

In AN, correlation coefficients from the cross-site regressions of ET against VIs (i.e., the 16 

integrals over the growing season period) using the annual data were comparable to those 17 

achieved when using the 16-day data (Table 4). The R from the linear regression using 16-day 18 

was high as 0.86 for both indices (p<0.001). When using the annual data, R was even higher 19 

for ET-NDVI (R = 0.88, p<0.001), but lower for ET-EVI (R = 0.79, p<0.001). The mean 20 

relative error (i.e., MAE/mean) was substantially lower for regressions using annual data (12-21 

16%) than for those using the 16-day data (32-33%, Table 5). The relatively high R for the 22 

16-day ET-VIs regressions in AN supports the biomass-ET-VIs relationship in those systems 23 

described elsewhere (Glenn et al., 2010).  24 

Correlations did not significantly improve (p>0.1) when LST was added in a multiple variable 25 

regression at the AN sites (Tables 4 and 5). The R from the multiple variable regressions of 26 

LST, VIs and ET was 0.87 when using 16-day data (for LST with each one of the VIs). The R 27 

from the multiple variable regressions on the annual data was 0.89 and 0.79 (ET, LST and 28 

NDVI or EVI, respectively with p<0.001 for both). 29 

In PA, correlation coefficients from the multiple variable regressions were substantially 30 

higher (p<0.05 using both VIs) than the obtained from simple ET-VIs regressions. R from 31 
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multiple variable regressions were 0.71 and 0.73 for 16-day ET against LST with NDVI or 1 

EVI, respectively compared to 0.51 and 0.61 for ET against NDVI and EVI. R from the single 2 

and multiple variable regressions were not statistically different (p>0.1) in PA when using 3 

annual data. The R was 0.94 and 0.96 for multiple variable models with NDVI and EVI, 4 

respectively and 0.94 for simple regression of ET against VIs (both VIs). 5 

The modified TG model resulted in significantly higher R (p<0.05 for both indices) only for 6 

PA when using 16-day data (R = 0.80 and 0.78 using NDVI or EVI in Eq. (6)). However, it 7 

was still significantly lower (p<0.05 for both VIs) than the R obtained from simple ET–VIs 8 

regressions when using the annual data (Table 4 and Fig. S6B). In AN, the R from TG using 9 

16-day data were not significantly different than those obtained from simple ET–VIs 10 

regressions (p>0.1, Table 4 and Fig.S6A). 11 

4.3 PaVI-E model 12 

NDVI and EVI explained most of the interannual changes in ET in both AN and PA systems 13 

(Table 4). This means that a single ET–VIs regression function could be used to estimate total 14 

annual ET in those systems. Multiple regression and TG modified models had higher R and 15 

lower MAE in some cases (Table 5), but differences were not significant (p>0.05). Hence, 16 

following the performance-simplicity criterion we chose to use the simple regression 17 

functions. The functions obtained from ET-NDVI and ET-EVI regressions were averaged for 18 

PA:  19 

ETAnnual =
85exp(3.1⋅NDVI )+ 65exp(6.9 ⋅EVI )

2      (7) 20 

and AN systems:  21 

ETAnnual =
187exp(0.23⋅NDVI )+ 224exp(0.26 ⋅EVI )

2
    (8) 22 

Where ETAnnual is the total annual ET in mm yr-1. NDVI and EVI in Eq. (7) are the mean 23 

annual NDVI and EVI. NDVIGSI and EVIGSI in Eq. (8) are the integrals over the NDVI and 24 

EVI during the growth season, respectively. We used exponential functions because VIs 25 

exhibit exponential relationships with LAI, which is directly related to ET and because ET is 26 

greater than zero in areas with low vegetation cover due to soil evaporation.  27 
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Finally, we named this model the Parameterization of Vegetation Indices for ET estimation 1 

model (PaVI-E). The mean relative error of PaVI-E was 13 and 12% for AN and PA, 2 

respectively. This is within the accuracy of the eddy covariance measurements that were used 3 

for calibration and much lower than the reported for more complex models (Glenn et al., 4 

2010; Kalma et al., 2008). PaVI-E was used to assess total annual ET at a spatial resolution of 5 

250 m for the Eastern Mediterranean (EM) after using the land cover map created for AN and 6 

PA as a mask layer (Section 3.3 and Fig. S5).  7 

Figure 4 shows the mean annual ET at the EM for the period of 2000-2014. The annual 8 

products of PaVI-E will be soon available by request at 1 km spatial resolution for the entire 9 

EM and at 250 m for Israel (http://davidhelman.weebly.com). 10 

4.4 Model evaluation in the Eastern Mediterranean 11 

4.4.1 Comparison with MODIS and MSG ET models 12 

ET estimates from PaVI-E were compared with two operational remote sensing ET products 13 

in 148 large basins (>10 km2). The spatial patterns of annual ET for 2011 from PaVI-E, 14 

MOD16 and MSG were generally similar over the EM (Fig. 5). The three models show a 15 

general west to east and south to north ET gradients along the eastern coastline, matching the 16 

rainfall gradients of this region (Ziv et al., 2014). Also, all three models show higher ET 17 

estimates over agricultural fields in the Nile delta compared to the surrounding desert.  18 

However, some discrepancies also exist. MOD16 estimates were lower along the EM coast 19 

compared to PaVI-E and MSG. ET estimates from MSG were higher along the eastern coast 20 

especially to the east of the Galilee Sea (mean ET of ~800 mm yr-1). Differences between 21 

models were particularly noted over the Nile delta. Annual ET for 2011 over the Nile delta 22 

was on average 160 mm yr-1 from MSG, 530 mm yr-1 from MOD16, and 680 mm yr-1 from 23 

PaVI-E. While MSG estimates seem extremely low for a such highly productive area, PaVI-E 24 

and MOD16 estimates agreed well with the high ET reported from in situ measurements 25 

(Elhag et al., 2011). Besides the advantage of an improved spatial resolution (250 m 26 

compared to 1 km and 3.1 km of MOD16 and MSG) PaVI-E also has the ability to produce 27 

spatially continuous ET compared to MSG and MODIS products (Fig. 5). 28 

Comparing the three models at a basin scale resulted in good agreement between them (R = 29 

0.77 and 0.75 for PaVI-E vs. MOD16 and MSG, respectively, p<0.001 for both; Fig. 6). 30 
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MOD16 and MSG products had small biases with respect to PaVI-E with relative biases (i.e., 1 

bias/mean) of -5.2% and 5.2% and slopes of 0.76 and 1.17 for MOD16 and MSG ET 2 

products, respectively.  3 

The relatively higher (lower) MOD16 estimates in xeric (mesic) Mediterranean areas (Fig. 6) 4 

was already pointed out by Trambauer et al. (2014) that compared this product with several 5 

independent ET models. Furthermore, comparison of MOD16 and MSG ET products in 6 

Europe showed that correlations with in situ ET (from 15-eddy covariance sites) were better 7 

for MSG (Hu et al., 2015), and that MOD16 underestimate ET in Mediterranean dry regions 8 

similarly to the observed in this study (Fig. 5).  9 

4.4.2 Evaluation against ET calculated from water catchment balances along 10 

rainfall gradient 11 

ET estimates for PaVI-E were evaluated against ET calculated from six water catchments 12 

along rainfall gradient in the Eastern Mediterranean (EM). PaVI-E estimates were highly 13 

correlated with the ET calculated from water balances (R = 0.92, p<0.01) at six catchments 14 

along the north – south rainfall gradient in the EM (Fig. 7a). ET from MOD16 and MSG were 15 

also significantly correlated with the water balances-derived ET (p<0.05, Fig. S7). All three 16 

models had very similar ET estimates in the mountain aquifer catchments (MA-N, MA-CS, 17 

and MA-S), lower than the calculated from water balances (Fig. 7b). Still, within the accuracy 18 

of the models (~12%) and gauging/rainfall distribution uncertainties (~10 – 15%, Conradt et 19 

al., 2013).  20 

As shown in Fig. 5, ET estimates derived from PaVI-E are significantly higher than those 21 

from MOD16 and MSG in the dry areas of the EM. This is due to the exponential functions 22 

used in PaVI-E (Eq. (7) and (8)). It derived a comparable ET to the calculated from the water 23 

balance equation at the dry catchment of Mamashit with a slight overestimation of 15 mm 24 

(<15%, Fig. 7b). MSG largely underestimated the calculated ET in Mamashit (by more than 25 

85%) while MOD16 had no data for this area.  26 

 27 

5 Conclusions 28 

Three empirical VIs-based ET models using only eddy covariance ET and MODIS vegetation 29 

indices and land surface temperature data for Mediterranean vegetation systems were tested. 30 

Vegetation systems comprising mostly annual vegetation (i.e., grasslands and croplands) had 31 



 14 

strong ET-VIs relationships with intra-annual (16-day ET averages) and interannual (total 1 

annual ET) ET estimates. The mean relative error was larger for intra-annual relationships 2 

compared to interannual relationships (32% compared to 12%). In systems with annual and 3 

perennial vegetation (i.e., forests, woodlands, savannah and shrublands) ET-VIs relationships 4 

were strong only at interannual timescales (i.e., using annual data). Intra-annual relationships 5 

were poor probably due to the mixed VI signal contributed by annual and perennial vegetation 6 

that constitute different vertical layers in those systems (Helman et al., 2015). While annual 7 

vegetation (mostly herbaceous vegetation in the understory) is the main contributor to the 8 

intra-annual VI change, it constitutes only a minor contributor to the total ecosystem ET in 9 

complex Mediterranean systems. Multiple variable regression and modified TG models using 10 

VIs and LST were not significantly better than the simple ET-VIs model for both PA and AN 11 

vegetation systems (p>0.1). 12 

The empirical ET-VIs model, named here the parameterized vegetation index for ET 13 

estimates model (PaVI-E), had comparable estimates to MODIS and MSG ET models in the 14 

Eastern Mediterranean. PaVI-E also agreed well with ET calculated using the water balance 15 

equation at six catchments along the south-north EM rainfall gradient. PaVI-E is the first ET 16 

model with such high-resolution (250 m) for this region. Its advantage is in its simplicity and 17 

spatial resolution compared to the coarser resolutions of MODIS and MSG ET products (1 18 

and 3.1 km, respectively). We are confident that using PaVI-E will enhance the hydrological 19 

study in this region where ET plays a major role in the hydrological cycle. 20 
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Table 1. Description of the 16 selected FLUXNET sites. Horizontal line divides between the 1 

six FLUXNET sites in PA systems (Top) and the nine FLUXNET sites in AN systems 2 

(Bottom). Plant functional types (PFT) include CSH: closed shrublands, WDL: woodland, 3 

SAV: savannah, ENF: evergreen needle-leaved forest, WSA: woody savannah, CRO: 4 

croplands, and GRA: grasslands. Mean annual precipitation (P) is in mm yr-1 for the years in 5 

which ET data was used (Period).  6 

Site ID Lat Lon PFT Main species P Period Reference 

ES-Amo 36.83 -2.25 OSH Dwarf shrubs 200 2009–11 Chamizo et al. (2012) 

IL-Yat 31.35 35.05 WDL Pinus halepensis 300 2003–09 Maseyk et al. (2008) 

ES-LMa 39.94 -5.77 SAV Quercus ilex 660 2004–09 Casals et al. (2009) 

ES-ES 39.35 -0.32 ENF Pinus halepensis 580 2001–06 Reichstein et al. (2007) 

FR-Lbr 44.72 -0.77 WSA Pinus pinaster 825 2004–08 Reichstein et al. (2007) 

US-Blo 38.90 -120.63 ENF Pinus ponderosa 1350 2001–06 Sims et al. (2006) 

ES-ES2 39.28 -0.32 CRO Rice 620 2005–08 Kutsch et al. (2010) 

IT-Cas 45.07 8.72 CRO Rice 960 2007–10 Skiba et al. (2009) 

US-Bo1 40.01 -88.29 CRO Corn–soybeans  795 2001–06 Hollinger et al. (2005) 

US-Ne1 41.17 -96.48 CRO Maize 590 2002–04 Suyker and Verma (2008) 

US-Ne2 41.16 -96.47 CRO Maize–soybean  590 2002–04 Suyker and Verma (2008) 

US-Ne3 41.18 -96.44 CRO Maize–soybean  590 2002–05 Suyker and Verma (2008) 

US-Var 38.41 -120.95 GRA C3 grass & herbs 465 2003–09 Baldocchi et al. (2004) 

US-Kon 39.08 -96.56 GRA C4 grasses 660 2007–12 Craine et al. (2012) 

US-Wkg 31.74 -109.94 GRA C4 grasses 190 2005–07 Scott et al. (2010) 

US-Goo 34.25 -89.87 GRA C4 grasses 1300 2003–06 Wilson and Meyers (2007) 

 7 
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Table 2. Water balances from six catchments along the north to south rainfall gradient in the 1 

Eastern Mediterranean (Fig. S2). Catchments area is in 103 ha. Precipitation (P), discharge 2 

(Q) and calculated ET as P – Q, are all in mm yr-1. Fluxes were averaged over the years 2000 3 

– 2013. MA-N, MA-CS and MA-S stand for the northern, central-southern and southern parts 4 

of the Mountain Aquifer of Israel, respectively, as defined by the Hydrological Service of 5 

Israel (HSI).  6 

Name Area P Q ET 

Kziv 13 799 284 515 

HaShofet 1.2 654 183 471 

MA-N 59 615 193 422 

MA-CS 93 592 202 390 

MA-S 28 619 257 362 

Mamashit 6 130 28 102 

 7 
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Table 3. Correlation coefficients (R) from the linear regression between eddy covariance ET 1 

and MODIS NDVI, EVI and LST using 16-day and annual data at six FLUXNET sites in PA 2 

systems (perennials and annuals vegetation systems, i.e. forests, woodlands, savannah and 3 

shrublands). Statistically significant correlations at p<0.05 were indicated by * while ** 4 

indicates p = 0.06 and *** p = 0.07.  5 

 NDVI  EVI  LST 

Site ID 16-day Annual  16-day Annual  16-day Annual 

ES-Amo 0.63* 0.89  0.62* 0.71  -0.51* -0.33 

IL-Yat 0.62* 0.88*  0.70* 0.89*  -0.36* -0.84* 

ES-LMa 0.17** 0.93*  0.28* 0.80**  -0.22* -0.93* 

ES-ES 0.41* 0.91*  0.30* 0.94*  -0.62* -0.32 

FR-Lbr 0.36* 0.85***  0.68* 0.93*  -0.65* -0.63 

US-Blo 0.17** 0.92*  0.46* 0.66  -0.87* -0.59 

  
  

 
  

 
 

6 
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Table 4. Correlations coefficients (R) of three empirical VIs-based ET models using MODIS-1 

derived NDVI, EVI and LST. Results are for models using 16-day/annual data in AN (annual 2 

vegetation systems i.e., croplands and grasslands), and PA (perennials and annuals vegetation 3 

systems i.e., forests, savannah and shrublands) systems. All R were significant at p<0.05 4 

except for the 16-day ET-LST simple regression in PA. Mean annual NDVI and EVI were 5 

regressed against annual ET using linear and exponential functions. 6 

  

  
AN  PA 

Model type Variables used 16-day Annual  16-day Annual 

Simple regression NDVI (linear) 

NDVI (expo) 

0.86 

– 

 0.88  

 0.87 

 0.51 

– 

0.94 

0.94 

 EVI (linear) 

EVI (expo) 

0.86 

– 

 0.79 

 0.82 

 0.61 

– 

0.95 

0.94 

 LST -0.42 -0.64  0.00ns -0.89 

Multiple regression NDVI, LST 0.87  0.89  0.71 0.94 

 EVI, LST 0.87  0.79  0.73 0.96 

Modified TG NDVI, LSTscaled 0.87 –  0.78 – 

 EVI, LSTscaled 0.87 –  0.80 – 

7 
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Table 5. The mean absolute error (MAE) for Table 4. The 16-day MAE is in mm d-1, while 1 

annual MAE is in mm y-1. In parenthesis is the mean relative error (MAE/mean) in %. 2 

  

  
AN  PA 

Model type Variables used 16-day Annual  16-day Annual 

Simple regression NDVI (linear) 

NDVI (expo) 

0.51(32) 

– 

66(12)  

83(15) 
 

0.65(47) 

– 

52(11) 

58(12) 

 

EVI (linear) 

EVI (expo) 

0.52(33) 

– 

79(14) 

90(16) 
 

0.59(43) 

– 

53(11)  

63(13) 

 
LST 0.94(60) 119(21)  0.78(57)ns 74(15) 

Multiple regression NDVI, LST 0.51(32) 63(11)  0.57(41) 52(11) 

 
EVI, LST 0.51(33) 79(14)  0.54(40) 49(10) 

Modified TG NDVI, LSTscaled 0.48(30) –  0.47(34) – 

 
EVI, LSTscaled 0.50(32) –  0.45(33) – 

3 
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Figure 1. Sixteen-day eddy covariance ET averages and MODIS-derived NDVI at two 2 

vegetation systems: (Top) PA, i.e. comprising perennial and annual vegetation (evergreen 3 

coniferous forest), and (Bottom) AN, i.e. annual vegetation alone (corn and soybean 4 

cropland). Note: In the cropland site (Bottom) is the NDVI during the growing season after 5 

the annual minimum was subtracted. 6 
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Figure 2. Relationships between annual ET (mm yr-1) from eddy covariance towers and mean 2 

annual MODIS-derived NDVI, EVI and LST (°C) in PA sites (perennials and annuals 3 

vegetation systems, i.e. forests, woodlands, savannah and shrublands). 4 
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Figure 3. Same as Fig. 2 but for all PA sites together. The linear (dashed line) and exponential 2 

(solid line) functions are presented for the ET-VIs relationships and the R is for the 3 

exponential function. 4 

5 

y = 65.31e6.91x 
R = 0.94 

0

200

400

600

800

1000

0.1 0.2 0.3 0.4
EVI 

y = -35x + 1,283 
R = -0.89 

0

200

400

600

800

1000

10 15 20 25 30 35

LSTday (°C) 

y = 84.94e3.12x 
R = 0.94 

0

200

400

600

800

1000

0.1 0.3 0.5 0.7 0.9

ES-Amo
IL-Yat
ES-LMa
ES-ES
FR-Lbr
US-Blo

NDVI 

E
T

 (
m

m
 y

r-1
) 



 30 

 1 

Figure 4. Mean annual ET (2000–2014) from PaVI-E for the Eastern Mediterranean.  2 

Fig.%6.%Mean%annual%ETA%over%the%Eastern%Mediterranean%for%the%years%2000;2013%retrieved%
from%PaVI;E.%

0           250          500          750        1000 
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Figure 5. Total annual ET for the Eastern Mediterranean from PaVI-E, MODIS (MOD16) and 2 

MSG (LSA-SAF MSG ETa) for 2011. Grey colour in MOD16 and MSG indicates missing 3 

data. 4 
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Figure 6. Total annual ET at 148 Eastern Mediterranean basins (Fig. S1) from MODIS 2 

(MOD16) and MSG (LSA-SAF MSG ETa) vs. PaVI-E. The slope (a), intersection (b), 3 

Pearson’s (R) and relative bias (bias/mean) are also presented for each one of the linear 4 

regressions. Dashed line indicates the 1:1 ratio. 5 
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 2 

 3 

Figure 7. (a) Scatter plot of the mean annual ET (2000-2013) retrieved from PaVI-E and 4 

calculated using the water balance equation at six catchments along the EM north – south 5 

rainfall gradient (Fig. S2). (b) Comparison between mean annual ET estimates from PaVI-E, 6 

MOD16, MSG and the water balances in those six water catchments. MA-N, MA-CS and 7 

MA-S stand for the northern, central-southern, and southern parts of the Mountain Aquifer of 8 

Israel, respectively. 9 
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