Spatial and temporal variations of the concentrations of PM₁₀, PM_{2.5} and PM₁ in China

3

4 Y. Q. Wang^{1*}, X. Y. Zhang^{1*}, J. Y. Sun¹, X. C. Zhang², H. Z. Che¹, Y. Li¹

- 56 [1]{Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological
- 7 Sciences, Beijing, China}
- 89 [2]{Meteorological Observation Center, Beijing, China}
- 10 Correspondence to: Y. Q. Wang (<u>wangyq@cams.cma.gov.cn</u>), X. Y. Zhang
- 11 (<u>xiaoye@cams.cma.gov.cn</u>)

Abstract:

14	Concentrations of PM_{10} , $PM_{2.5}$ and PM_1 were monitored at 24 CAWNET (China
15	Atmosphere Watch Network) stations from 2006 to 2014. The highest particulate
16	matter (PM) concentrations were observed at the stations of Xian, Zhengzhou and
17	Gucheng, on the Guanzhong Plain and the Hua Bei Plain (HBP). The second highest
18	PM concentrations were observed in northeast China, followed by southern China.
19	According to the latest air quality standards of China, 14 stations reached the PM_{10}
20	standard, and only 7 stations, mainly rural and remote stations, reached the $PM_{2.5}$
21	standard. The ratios of $PM_{2.5}$ to PM_{10} showed a clear increasing trend from northern
22	to southern China, because of the substantial contribution of coarse mineral aerosol in
23	northern China. The ratios of PM_1 to $PM_{2.5}$ were higher than 80% at most stations.
24	PM concentrations tended to be highest in winter and lowest in summer at most
25	stations, and mineral dust influenced the results in spring. A decreasing interannual
26	trend was observed on the HBP and in southern China for the period 2006 to 2014,
27	but an increasing trend occurred at some stations in northeast China. Bimodal and
28	unimodal diurnal variation patterns were identified at urban stations. Both emissions
29	and meteorological variations dominate the long-term PM concentration trend, while
30	meteorological factors play a leading role in the short-term.
31	Keywords: particulate matter, observation, spatiotemporal variation
32	

34 **1. Introduction**

Tropospheric aerosols are important because of their strong influence on the 35 climate system through both direct and indirect effects. These include the direct effect 36 of scattering and absorbing radiant energy, and the indirect effect of modifying the 37 microphysical properties of clouds, and hence their radiative properties and lifetime 38 (Haywood and Boucher, 2000). They also attract attention because of their adverse 39 40 effects on visibility (Watson, 2002) and human health (Delfino et al., 2005; Pope III and Dockery, 2006). Therefore, the spatial and temporal variation of aerosols is 41 42 essential to understand, but remains a complex subject because of their ephemeral 43 nature and the complexity of their physical and chemical properties (Ramanathan et al., 2001). 44

45	Particle size is considered a key parameter to define the impact of particulate
46	matter (PM) on human health; specifically, fine PM ($PM_{2.5}$ and PM_1) poses a greater
47	health risk than coarse PM (PM_{10}) (Oberdörster et al., 2005). There have been
48	numerous network-based observation studies of the PM2.5 concentration and chemical
49	composition in North America and Europe. For example, based on a dataset across 19
50	Canadian sites, most of the $PM_{2.5}$ concentrations were found to be below 26 $\mu g \ m^{-3},$
51	and $PM_{2.5}$ accounted for 49% of the measured PM_{10} (Brook et al., 1997). Meanwhile,
52	Eldred et al. (1997) reported that $PM_{2.5}$ and PM_{10} particulate concentrations measured
53	at 42 sites of the Interagency Monitoring of Protected Visual Environments
54	(IMPROVE) network over the 1993 seasonal year (March 1993 to February 1994)

55	showed the $PM_{2.5}$ concentration had a large gradient from west to east in the US,
56	averaging 3 $\mu g \; m^{-3}$ in most of the west compared with 13 $\mu g \; m^{-3}$ in the Appalachian
57	region. Another study, based on 143 IMPROVE sites in the year 2001, showed that
58	sulfates, carbon and crustal material were responsible for most of the measured $PM_{2.5}$
59	at the majority of sites in the US (Malm et al., 2004). The temporal variation and
60	spatial distribution of $PM_{2.5}$ concentrations have also been reported in Switzerland
61	(Gehrig and Buchmann, 2003), Austria (Gomiscek et al., 2004), and six central and
62	eastern European countries (Houthuijs et al., 2001).
63	As a country with a rapidly developing economy, China has suffered from a
64	serious air pollution problem in recent years due to substantial increases in energy
65	consumption and other related production of large amounts of aerosols and precursor
66	gas emissions (Zhang et al., 2009). At the coarse end of the spectrum (PM_{10}), the
67	spatial distribution and interannual variation of concentrations has been
68	comprehensively studied using a dataset accumulated from 86 Chinese cites (Qu et al.,
69	2010). Furthermore, the chemical compositions of PM_{10} samples were investigated at
70	16 sites over China, and the result indicated a dominant scattering feature of aerosols
71	(Zhang et al., 2012). Network-based studies of $PM_{2.5}$ observations have, however,
72	been limited to certain seasons in a single year (Cao et al., 2012), and most other
73	research has focused on one or more of the largest cities (He et al., 2001; Wang et al.,
74	2002; Wang et al., 2006; Wei et al., 1999; Yao et al., 2002; Zhao et al., 2009; Zheng et
75	al., 2005). The focus on $PM_{2.5}$ needs to improve, not least because the growing
76	problem of heavy haze has compelled the Chinese government to pay greater attention

77	to PM _{2.5} monitoring and air quality standards. Indeed, the Ministry of Environmental
78	Protection of China issued new ambient air quality standards in 2012, among which
79	the $PM_{2.5}$ concentration was the first to be included. Subsequently, the construction of
80	a network of national environmental $PM_{2.5}$ monitoring stations began in 2013.
81	In this paper, we present a long-term PM_{10} , $PM_{2.5}$ and PM_1 monitoring dataset
82	from 2006 to 2014, based on 24 stations of CAWNET (China Atmosphere Watch
83	Network), operated by the China Meteorological Administration (CMA). The spatial
84	pattern of average PM concentration levels and the relationships among them are
85	reported. In addition, their seasonal and interannual variations are presented.
86	
87	2. The near real-time PM dataset
87 88	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET
87 88 89	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with
87 88 89 90	 2. The near real-time PM dataset The PM₁₀, PM_{2.5} and PM₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with 31 different size channels at a flow rate of 1.2 L/min. The instrument is designed to
87 88 89 90 91	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with 31 different size channels at a flow rate of 1.2 L/min. The instrument is designed to measure the particle size distribution and particulate mass, based on a light scattering
87 88 89 90 91 92	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with 31 different size channels at a flow rate of 1.2 L/min. The instrument is designed to measure the particle size distribution and particulate mass, based on a light scattering measurement of individual particles in the sampled air. GRIMM-developed protocols
 87 88 89 90 91 92 93 	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with 31 different size channels at a flow rate of 1.2 L/min. The instrument is designed to measure the particle size distribution and particulate mass, based on a light scattering measurement of individual particles in the sampled air. GRIMM-developed protocols were used to convert the measured size number distribution to a mass concentration
 87 88 89 90 91 92 93 94 	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with 31 different size channels at a flow rate of 1.2 L/min. The instrument is designed to measure the particle size distribution and particulate mass, based on a light scattering measurement of individual particles in the sampled air. GRIMM-developed protocols were used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring PM
 87 88 89 90 91 92 93 94 95 	2. The near real-time PM dataset The PM ₁₀ , PM _{2.5} and PM ₁ concentrations were monitored at 24 CAWNET stations from 2006 to 2014 using GRIMM dust monitor EDM 180 instruments with 31 different size channels at a flow rate of 1.2 L/min. The instrument is designed to measure the particle size distribution and particulate mass, based on a light scattering measurement of individual particles in the sampled air. GRIMM-developed protocols were used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring PM using the aerodynamic diameter. A Nafion dryer was equipped at the inlet to exclude

- 97 in the measurement result (Grimm and Eatough, 2009). The instruments were
- 98 calibrated annually using a calibration tower that permitted powder injection (on

99	demand) of aerosol particles in a wide size range of 0.2–30 μ m. The operation was
100	fully computer-controlled and permitted access to one to three spectrometers in
101	comparison to one reference "mother unit". The 5-min averaged PM_{10} , $PM_{2.5}$ and PM_1
102	concentrations were recorded at each station and transported to the CMA information
103	center hourly in near real-time.
104	The PM concentration results from the GRIMM instruments were compared to
105	those from tapered element oscillating microbalance (TEOM) instruments reported in
106	a number of other studies (Grimm and Eatough, 2009; Hansen et al., 2010). The
107	instruments were in good agreement; linear regression with TEOM data from
108	Rubidoux (California, USA) yielded a slope of 1.10 ± 0.05 , with an intercept of -3.9
109	$\pm~4.2~\mu g~m^{-3}$ and an uncertainty of 9.9% (Grimm and Eatough, 2009). Furthermore,
110	GRIMM and TEOM measurements in Beijing have shown a close linear relationship,
111	suggesting that optical measurements can be used to derive $PM_{2.5}$ and account for
112	semi-volatile material in aerosols (Sciare et al., 2007; Zhao et al., 2011).
113	The 24 PM observation stations are detailed in Table 1, and a map of their
114	distribution is given in Figure 1. Most of the stations were located in East China, an
115	area of high population density and rapid economic development, meaning the PM
116	emitted from human activities was mainly recorded. The stations were classified as
117	urban/suburban, rural and remote stations, according to their location. Unlike rural
118	stations, remote stations were located in areas far away from regions of strong
119	anthropogenic emissions, and thus natural emissions and long-range transport of
120	anthropogenic air pollution were the main sources of PM at these stations.

122 **3. Results and discussion**

3.1. Average PM₁₀, PM_{2.5} and PM₁ levels in China 123 The averaged PM concentration values are presented in Table 2, and their 124 distributions in Figure 1. The highest PM₁₀, PM_{2.5} and PM₁ concentrations were 125 observed at the stations of Xian (135.4, 93.6 and 77.0 μ g m⁻³, respectively), 126 Zhengzhou (131.7, 84.8 and 71.0 μ g m⁻³, respectively) and Gucheng (127.8, 89.7 and 127 79.4 μ g m⁻³, respectively), which are located in the most polluted areas of the Hua 128 129 Bei Plain (HBP) and the Guanzhong Plain. Although Gucheng is a rural site, it is 130 located in the rapid urbanization area around Beijing, and is therefore subjected to 131 associated large quantities of air pollutants. These areas were also identified by Zhang 132 et al. (2012) as having experienced similar visibility changes and large visibility loss in the past 40 years. The stations all recorded very high coarse and fine PM 133 concentrations, implying high emissions of both primary emitted mineral particles and 134 secondary anthropogenic particles in these areas. Qingdao is a coastal city with 135 136 relatively low PM concentrations compared with inland cities on the HBP. The PM concentrations were also high in northeast China, which is an 137 established industrial area. The ensemble average values of the five urban stations of 138 Ansan, Shenyang, Benxi, Fushun and Shiping were 88.8, 58.4 and 49.8 μ g m⁻³, for 139 PM₁₀, PM_{2.5} and PM₁, respectively. Dandong is a rural station with relatively low PM 140 concentrations. 141

The similarity among the PM values for Chifeng, Erlianhaote and Yulin is due to

143 their location, far from regions of intensive economic development but strongly

144 affected by sand and dust storms given their proximity to dust source areas. Thus, the

145 average PM_{10} concentrations were much higher than the $PM_{2.5}$ and PM_1

146 concentrations at these sites. For example, the average PM₁₀ concentration at Chifeng,

147 which is surrounded by sandy land, was 88.0 μ g m⁻³, compared with 42.4 and 32.6

148 $\mu g m^{-3}$ for PM_{2.5} and PM₁, respectively.

149 Chengdu, the capital of Sichuan Province, is located in the Sichuan Basin,

another highly polluted area. High aerosol optical depth and low visibility, due to the

151 poor dispersion conditions and heavy local industrial emissions, have been reported

152 for this site (Li et al., 2003; Luo et al., 2001; Zhang et al., 2012). In the present study,

153 the average PM_{10} , $PM_{2.5}$ and PM_1 concentrations were 78.0, 59.5 and 52.7 μ g m⁻³,

154 respectively.

There are three stations in the South China area: Panyu, located in Guangzhou 155 City, the capital of Guangdong Province, which is the center of the Pearl River Delta 156 region; Nanning, the capital of Guangxi Province; and Guilin, a famous tourist city, 157 also located in Guangxi Province. The ensemble average PM concentrations of these 158 three sites were 55.8, 43.1 and 38.8 μ g m⁻³ for PM₁₀, PM_{2.5} and PM₁, respectively. 159 160 Significant visibility loss and relatively high PM₁₀ concentrations have been observed over the middle and lower reaches of the Yangtze River after the 1980s due 161 to the rapid economic development that has taken place in this region (Qu et al., 2010; 162 Zhang et al., 2012). Although there was no urban site available for this study to help 163

164 quantify the high PM concentrations in this region, the background conditions and

165	temporal variance could be determined from the rural site data. Dongtan, near
166	Shanghai City, is located on Chongming Island, where there were low PM
167	concentrations (31.9, 27.4 and 24.8 $\mu g~m^{-3}$ for $PM_{10},PM_{2.5}$ and $PM_1,$ respectively)
168	due to the substantial influence of clean sea air mass. The ensemble average PM
169	concentrations for Lushan, Changde and Jinsha were 44.3, 37.2 and 33.6 $\mu g \; m^{-3}$ for
170	PM ₁₀ , PM _{2.5} and PM ₁ , respectively.

171 Lhasa, the capital of Tibet Autonomous Region, is located in the center of the Tibetan Plateau at a very high altitude of 3663 m. The PM_{2.5} and PM₁ concentrations 172 in Lhasa were low, with average values of 14.0 and 9.6 μ g m⁻³, respectively, because 173 of its relatively small population and few industrial emissions. However, the average 174 PM_{10} concentration was 37.7 µg m⁻³, mainly due to the high amounts of fugitive dust 175 176 from dry and bare land and the impacts of regional dust storm events (Chen et al., 2013). As a result, minerals are the main constituent of aerosol samples in this area 177 (Zhang et al., 2012). 178

179 The lowest PM concentration values were observed in the two remote sites of Akadala and Shangri-La. The lower altitude and stronger contribution of soil dust at 180 Akadala (Qu et al., 2009), located in a dry region, lead to higher PM concentrations 181 than at the Shangri-La site. 182

According to the latest air quality standards of China (annual averaged PM₁₀ and 183

 $PM_{2.5}$ concentrations of 70 and 35 µg m⁻³), 14 stations reached the PM_{10} standard, 184

while only 7 stations, mainly rural and remote stations, reached the PM_{2.5} standard. 185

The ratio of substandard (daily averaged PM₁₀ or PM_{2.5} concentrations that exceed the 186

187	standard values) days to total observation days at each station was calculated using
188	the standard daily averaged PM_{10} and $PM_{2.5}$ concentrations of 150 and 75 $\mu g \; m^{-3}$
189	(Table 2). Substandard days of PM_{10} and $PM_{2.5}$ represented more than 30% and 50%
190	of the total period at the three most polluted sites (Xian, Zhengzhou and Gucheng).
191	The PM _{2.5} substandard day ratios at five other stations (Chengdu, Anshan, Shenyang,
192	Benxi and Siping) were also larger than 20%.
193	Average PM_{10} , $PM_{2.5}$ and PM_1 concentrations at urban/suburban stations in this
194	study were 83.6, 56.3 and 48.3 $\mu g~m^{-3},$ respectively. Meanwhile, the values were 54.8,
195	36.3 and 30.8 $\mu g~m^{-3}$ at rural stations, and 11.9, 7.5 and 6.1 $\mu g~m^{-3}$ at remote stations.
196	All values were much higher than results from other countries. For example, the
197	observed PM concentration in Canada between 1984 to 1993 showed the average
198	$PM_{2.5}$ concentration was 14.1 and 10.7 $\mu g \ m^{-3}$ at urban and rural stations, respectively
199	(Brook et al., 1997). The average $PM_{2.5}$ values from west to east across the
200	IMPROVE network in 1993 (most stations located in rural areas) were 3 to 13 $\mu g \ m^{-3}$
201	(Eldred et al., 1997). Observations in Switzerland from 1998 to 2001 showed average
202	PM_{10} and $PM_{2.5}$ concentrations at urban/suburban stations of 27.7 and 20.1 $\mu g~m^{-3},$
203	respectively (Gehrig and Buchmann, 2003). In Austria, in 1998, the annual mean mass
204	concentrations of PM_{10} , $PM_{2.5}$ and PM_1 were around 28, 20 and 16 µg m ⁻³ ,
205	respectively, at urban sites, and slightly lower at rural sites (Gomiscek et al., 2004).
206	The average PM_{10} and $PM_{2.5}$ concentrations were 23.9 and 16.3 µg m ⁻³ , respectively,
207	for the period 2008–2009 in the Netherlands (Janssen et al., 2013). Between October
208	2008 and April 2011, the 20 study areas of the European ESCAPE project showed

209	PM_{10} and $PM_{2.5}$ with similar spatial patterns; specifically, low concentrations in
210	Northern Europe and high concentrations in Southern and Eastern Europe (Eeftens et
211	al., 2012). With the rapid urbanization and corresponding increase in traffic and
212	energy consumption in India, the ambient concentrations of fine PM are also high. For
213	example, measurements in New Delhi during August to December 2007 showed
214	concentrations of $PM_{10},PM_{2.5}$ and PM_1 ranged from 20 to 180 $\mu g\ m^{-3}$ during the
215	monsoon season, and from 100 to 500 μ g m ⁻³ during winter (Tiwari et al., 2012).

3.2. Relationships between PM₁₀, PM_{2.5} and PM₁ concentrations

The squared correlation coefficient (R^2) values of the linear fit between PM₁₀ and 217 218 $PM_{2.5}$ and between PM_1 and $PM_{2.5}$ are given in Table 2. Higher values indicate that 219 the two PM size bins were closer matched in terms of their sources. At most stations, the R^2 values between PM₁ and PM_{2.5} were higher than the values between PM_{2.5} and 220 221 PM_{10} . This is because PM_1 and $PM_{2.5}$ both belong to fine particle size bins, which are normally emitted from the same sources. For example, the R^2 values were 0.7857 222 between PM_{2.5} and PM₁₀, and 0.9689 between PM₁ and PM_{2.5}, at Gucheng. 223 224 Correlation analysis is sensitive to outliers, and thus sand storm events may have impacted upon the results considerably, due to abnormally high concentration values. 225 There were four strong dust storm event days at Akdala in 2012, on April 21 and 22, 226 227 and May 9 and 20, which resulted in the four outliers shown in Figure 2a, and the low R^2 value of 0.5346 between PM₁ and PM_{2.5}. The value increased to 0.9406 when the 228 four outliers were removed (Figure 2b). Similar results were also observed at Yulin 229

and Erlianhaote around dust storm source regions (Table 2).

231	The average values of the daily $PM_{2.5}/PM_{10}$ and $PM_1/PM_{2.5}$ ratios are listed in
232	Table 2. The spatial distribution of the average $PM_{2.5}/PM_{10}$ ratios (Figure 3a) shows
233	lower values in northern China, influenced by Asian sand and dust storms (Wang et al.
234	2008; Zhang et al., 2003). The values were also influenced by fugitive dust due to the
235	low precipitation amounts in northern China, especially at Lhasa, Erlanhaote, Yulin
236	and Chifeng, with ratios of less than 0.6. The ratios at the stations in northeast China
237	were between 0.6 and 0.7, except at Dandong where the value was 0.71. The values
238	were also low at Zhengzhou and Akdala, at 0.68 and 0.67, respectively. The highest
239	ratio was 0.9 at Dongtan, and the other stations with ratios higher than 0.8 were
240	Chengdu, Changde, Guilin, Jinsha and Lushan. The values were between 0.7 and 0.8
241	at other stations. The $PM_{1}/PM_{2.5}$ ratios (Figure 3b) showed a similar spatial
242	distribution, but the values were higher than $PM_{2.5}/PM_{10}$. The lowest ratio of 0.6 was
243	also observed at Lhasa, and the values at most stations in southern China were greater
244	than or equal to 0.9.

245 **3.3. Seasonal variation**

The seasonal variations of PM_{10} concentrations (Figure 4a) show that winter and spring were the most polluted seasons at all sites except Lushan, where the highest value was observed in autumn. This result is consistent with a previous study of PM_{10} variation across China from 2000 to 2006 (Qu et al., 2010). The higher winter concentrations were caused by higher emissions during the cold season from heating, and more stagnant weather conditions with a lower planetary boundary layer. The opposite conditions and more precipitation due to the summer monsoon resulted in the

lowest PM₁₀ concentration values in summer. Spring is the dust storm season in East 253 Asia (Qian et al., 2004; Wang et al., 2008; Zhou and Zhang, 2003), which leads to 254 255 high PM₁₀ concentrations in dust source regions and downwind areas in northern China. For example, the PM₁₀ concentrations in spring were much higher than other 256 257 seasons at the dust source sites of Yulin and Erlianhaote. For PM_{2.5}, winter was still the most polluted season at most sites, while the 258 contribution of spring decreased substantially in northern China (Figure 4b). This 259 trend can be further observed from the PM₁ distribution (Figure 6c); hence, the 260 261 average PM₁ concentration in spring was lowest at Yulin, Xian, Zhengzhou, Gucheng and Benxi. The seasonal variation patterns were very similar for PM₁₀, PM_{2.5} and PM₁ 262 at the sites in southern China. 263 264 A spatial distribution map of the seasonal average $PM_{2.5}/PM_{10}$ ratios is given in Figure 6d. For the reasons given above, lower $PM_{2.5}/PM_{10}$ ratios were observed in 265 spring at the northern China sites, while the seasonal variation was not significant at 266

268

267

3.4 Interannual variation

the southern China sites.

The interannual variation of $PM_{2.5}$ at various stations is presented in Figure 5. Significant decreasing trends were observed at the HBP stations of Zhengzhou and Gucheng (Figure 5a). The annual averaged $PM_{2.5}$ concentration decreased from 123.4 to 65.2 µg m⁻³ at Zhengzhou, and from 101.0 to 69.1 µg m⁻³ at Gucheng, during 2006–2014. At Zhengzhou, the lowest value of 63.7 µg m⁻³ occurred in 2012, and this level was maintained in subsequent years; however, at Gucheng, the value increased

275	suddenly in 2012 to 95.1 $\mu g~m^{-3}$ and then declined rapidly during 2013 and 2014. At
276	Xian, the annual averaged $PM_{2.5}$ concentration decreased from 2006 to 2009,
277	increased until 2011, and then decreased again until 2014 (Figure 5a).
278	For the stations in northeast China, a significant increasing trend of the $PM_{2.5}$
279	concentration was observed at Shenyang and Benxi from 2006 to 2013, followed by a
280	decrease in 2014 (Figure 5b). The peak value at Shenyang was especially high in
281	2013 at 123.1 μ g m ⁻³ , while the values were less than 60 μ g m ⁻³ in the other years.
282	The highest values were observed in 2009 at Anshan and Dandong, but the lowest
283	values were in 2014 at Anshan and 2010 at Dandong. A general decreasing trend was
284	observed at Siping, with a few fluctuations. At Fushun, the value decreased from 2006
285	to 2011 and then increased to 2013, followed by a slight decrease in 2014.
286	For the stations along the middle and lower reaches of the Yangtze River, a
287	common trend was a clearly lower $PM_{2.5}$ value in 2014 than in 2013, but the general
288	variation trend was not significant (Figure 5c). A peak value of 33.7 $\mu g \ m^{-3}$ was
289	observed in 2012 at Dongtan, followed by a decrease to 24.12 $\mu g \ m^{-3}$ over the
290	subsequent two years. At Jinsha and Changde, the highest value was in 2013, while it
291	was in 2009 at Lushan.
292	For the stations in southern China, a general decreasing trend was observed, with
293	obvious fluctuations (Figure 5d). Panyu is a typical station in the centre of the Pearl
294	River Delta economic area of China. The $PM_{2.5}$ value decreased from 64.6 $\mu g \ m^{-3}$ in
295	2006 to 41.6 $\mu g~m^{-3}$ in 2014, and the lowest value was 36.4 $\mu g~m^{-3}$ in 2010. A similar
296	trend was observed in Gulin, with a stronger fluctuation from 2010 to 2012. At

Nanning, a peak value occurred in 2010 and the lowest value of 28.5 μ g m⁻³ was 297 observed in 2012. 298

299	Generally, the PM_{10} and PM_1 interannual variation trends were similar to that of
300	$PM_{2.5}$ at most stations. For example, a similar trend and fluctuations were observed at
301	the stations presented in Figure 8 and Figure 7a. A difference in the trend was
302	observed at Zhengzhou from 2013 to 2014, with a significant increasing trend of PM_{10}
303	and decreasing trend of PM_1 .

304

3.5 Diurnal variation

The average diurnal variation of PM_{2.5} at various stations is presented in Figure 7. 305 Pronounced diurnal variation of PM_{2.5} was observed at most urban sites, with an 306 307 obvious morning peak at around 7:00 to 8:00 a.m. and an afternoon valley between 2:00 and 4:00 p.m. At some stations, an evening peak could be recognized at around 308 309 7:00 to 9:00 p.m. (Siping, Benxi, Fushun, Anshan, Guilin and Panyu) or midnight (Gucheng, Xian). This bimodal pattern was also observed in Beijing city (Zhao et al., 310 2009). A unimodal pattern, without an evening peak, could be identified at some other 311 312 stations (Zhengzhou, Shengyang and Nanning). In urban areas, the morning and evening peaks are contributed to by enhanced anthropogenic activity during rush hour, 313 and the afternoon valley is mainly due to a higher atmospheric mixing layer, which is 314 315 beneficial for air pollution diffusion. Panyu station is on top of a 140 m hill at the edge of Guangzhou city, so aged and mixing aerosols were observed with a weak 316 urban diurnal variation pattern. Similar to Panyu station, the rural stations along the 317 middle and lower reaches of the Yangtze River showed no typical urban diurnal 318

variation pattern (Figure 7c). The diurnal variation in PM₁ and PM₁₀ concentrations
was similar to that of PM_{2.5} at most stations.

321	3.6 Emission and meteorological influences
322	PM loadings are controlled by both emissions and meteorological conditions.
323	Even mineral dust emissions from deserts and volatile organic compound (VOC)
324	emissions from vegetation are controlled by meteorological factors, e.g., wind speed
325	and temperature. The major source of air pollution in China is anthropogenic
326	emissions, especially with the rapid economic development that has taken place in
327	recent years. As such, the average PM concentration pattern is determined largely by
328	emissions, but meteorological factors also play an important role by affecting
329	pollutant diffusion and deposition.
330	The distributions of the anthropogenic emissions of black carbon (BC), $PM_{2.5}$,
331	SO_2 and NO_2 in 2010, based on the HTAP_v2 harmonized emissions database
332	(http://iek8wikis.iek.fz-juelich.de/HTAPWiki/WP1.1), are presented in Figure 8. The
333	emissions data for the East Asia domain were supplied by the MICS-Asia project. The
334	spatial distributions of species show a consistent pattern with the high emissions
335	regions of the HBP, Guanzhong Plain, Sichuan Basin, middle and lower reaches of the
336	Yangtze River, Pearl River Delta region, and the industrial region of northeast China,
337	which is generally similar to the PM loadings pattern for China (Figure 1). For
338	example, most stations subjected to PM pollution are located in the highest emissions
339	region of the HBP. This indicates that average PM loadings are controlled by the
340	quantity of anthropogenic emissions in central-eastern China.

341	The trends in emissions for China during 2005–2010 (Wang et al., 2014b) show
342	that emissions of SO ₂ and PM _{2.5} in East Asia decreased by 15% and 12 %,
343	respectively, while emissions of NOx and non-methane VOCs increased by 25% and
344	15%, respectively. Driven by changes in emissions, $PM_{2.5}$ concentrations decreased
345	by 2–17 $\mu g \; m^{-3}$ over most of the North China Plain, the Yangtze River Delta and the
346	Pearl River Delta (Zhao et al., 2013). This could explain the general decreasing trend
347	with respect to PM during 2006–2010 at most stations (Figure 5). The spatial
348	distributions of emissions differences between 2010 and 2008 for BC, $PM_{2.5}$, SO_2 and
349	NO ₂ are plotted in Figure 9, based on the HTAP_v2 emission dataset. BC emissions
350	decreased from 2008 to 2010 in most regions of east China, except the provinces of
351	Hebei, Shanxi, Hubei, Jiangxi and Inner Mongolia (Figure 9a). More areas of China
352	showed a reduction in PM _{2.5} emissions, except Shanxi and Hubei provinces (Figure
353	9b). The SO ₂ emissions difference (Figure 9c) showed a similar pattern to that of BC
354	but with an increasing trend apparent in northeast China. NOx emissions increased in
355	most regions of central-eastern China, except in the provinces of Guangdong,
356	Zhejiang and Taiwan (Figure 9d). This trend was driven by the rapid growth of
357	industry and transportation, combined with inadequate control strategies (Wang et al.,
358	2014b).
359	Although there are no published emissions data after 2010, it is believed that
360	emissions have to a certain extent been controlled well since the end of 2013, with the
361	arrival of China's "Action Plan for the Control of Air Pollution" document. This
362	could explain the general decreasing trend for the year 2014 at most stations (Figure

363 5).

364	Central-eastern China experienced severe haze events in January 2013, with a
365	regionally stable planetary boundary layer and low mixing height (Wang et al., 2014a).
366	The daily averaged $PM_{2.5}$ concentrations and meteorological factors of wind speed
367	and relative humidity for this period at Zhengzhou, Shenyang and Nanning are plotted
368	in Figure 10. Zhengzhou is located in this haze region, and experienced very high
369	$PM_{2.5}$ concentrations, especially from Jan. 6 to 15. The wind speed variation was
370	negatively related with $PM_{2.5}$ concentrations. The rapid increase in $PM_{2.5}$
371	concentrations from Jan. 1 to 6 corresponded with the rapid decrease in wind speed
372	during the same period. Also, the strong wind speed on Jan. 24 resulted in the low
373	PM _{2.5} concentration. Shenyang and Nanning are not located in this severe haze region,
374	but still suffered some fine PM days that month. A negative correlation between $PM_{2.5}$
375	and wind speed was also observed at Shengyang and Nanning. In general, relative
376	humidity (RH) was positively related with the $PM_{2.5}$ concentration if no precipitation
377	occurred. Otherwise, high RH with precipitation corresponded to low PM
378	concentrations due to wet deposition.
379	In terms of interannual variation, the negative correlation between $PM_{2.5}$
380	concentrations and wind speed, and the positive correlation between $PM_{2.5}$
381	concentrations and relative humidity, could not be well identified (Figure 11).
382	Although a generally similar variation trend for the PM_{10} concentration and relative
383	humidity was observed at Zhengzhou, this was not found at other stations. The $PM_{2.5}$
384	concentration in 2014 was lower than in 2013, but the relative humidity was much

385	higher and the wind speed much lower. The interannual variation of PM
386	concentrations could not be explained solely by meteorological factors, although a
387	recent model simulation for the period 2004–2012 with anthropogenic emissions fixed
388	at the values for the year 2006 indicated that variations in meteorological fields
389	dominated the interannual variation in aerosols in China (Mu and Liao, 2014).
390	Long-term, both emissions and meteorological factors play important roles; while in
391	the short-term, meteorological factors play a leading role-at least in the absence of
392	significant emissions changes.
393	4 Conclusion
394	Spatial and temporal trends in PM pollution were examined using PM_{10} , $PM_{2.5}$
395	and PM_1 concentration data at 24 stations from 2006 to 2014. Relatively high PM
396	concentrations were observed at most stations. There were 14 stations that reached the
397	PM_{10} annual air quality standard, but only 7 stations, mostly rural and remote stations,
398	reached the PM _{2.5} annual air quality standard of China. The highest PM
399	concentrations were observed at the stations on the HBP and Guanzhong Plain. In
400	addition, the percentage value of substandard days of $PM_{2.5}$ was greater than 50%,
401	indicating very serious air pollution in these regions. PM pollutants are also a serious
402	problem in the industrial regions of northeast China and the Sichuan basin. The PM
403	concentrations were relatively lower in southern areas of China, but the averaged
404	PM _{2.5} concentration was still higher than the national standard.
405	Given they are both fine particles, PM_1 and $PM_{2.5}$ were more closely correlated
406	than $PM_{2.5}$ and PM_{10} . The correlations were sensitive to the effect of outlier data at

those stations heavily impacted by dust storm events. More dust aerosol was observed 407 in northern China, and thus the PM2.5/PM10 ratios increased from less than 0.6 to 408 409 around 0.9 when moving from north to south China. 410 Pronounced seasonal variations were observed at most stations, with the highest concentrations in winter and lowest concentrations in summer. PM₁₀ concentrations 411 were also high in spring, due to the contribution of dust storm events, especially at 412 413 those stations near to dust source regions. For PM2.5 and PM1, spring was a relatively 414 low concentration season, especially at the stations in northern China. Also, low 415 $PM_{2.5}/PM_{10}$ ratios were observed in spring in northern China. An interannual decreasing trend was observed in the HBP and southern China 416 417 from 2006 to 2014, but an increasing trend occurred at some stations in northeast 418 China, and no significant trend could be found over the middle and lower reaches of the Yangtze River. Annual-averaged PM concentrations were lower in 2014 than 2013 419 at most stations, which may indicate an improvement in air quality following the 420 421 "Action Plan for the Control of Air Pollution" document issued by the Chinese government in September 2013. 422 423 Bimodal and unimodal diurnal variation patterns were identified at urban stations. A negative correlation between PM concentrations and wind speed was found in for 424 the short-term, but variations in emissions must be considered for long-term trend 425 analyses, especially in rapidly developing countries. 426 427 This network-based observation dataset provides the longest continuous record of fine particle concentrations in China, but it features a limited number of stations 428

- 429 and an uneven spatial distribution. Importantly, there is no representative city site in
- 430 the Yangtze River delta region, which is an important haze area in China. The
- 431 emissions sources and meteorological factors influencing PM spatial and temporal
- 432 patterns in China still require further study.
- 433

434 Acknowledgements

- 435 This work was supported by grants from the National Key Project of Basic Research
- 436 (2014CB441201), the National Natural Science Foundation of China (41275167) and
- 437 the Chinese Academy of Meteorological Sciences (2013Z007). It was also supported
- 438 by the Climate Change Collaborative Innovation Center and the CMA Innovation
- 439 Team of Haze-fog Observation and Forecasts.

441 References:

- Brook, J. R., Dann, T. F., and Burnett, R. T.: The relationship among TSP, PM10, PM2.5, and Inorganic
 constituents of atmospheric particulate matter at multiple Canadian locations. J. Air Waste
 Manage. Assoc. 47, 2-19, 1997.
- Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X., Ho, K.-F., Wang, G.-H., and
 Han, Y.-M.: Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities. J.
 Air Waste Manage. Assoc. 62, 1214-1226, 2012.
- Chen, S., Huang, J., Zhao, C., Qian, Y., Leung, R., and Yang, B.: Modeling the transport and radiative
 forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J.
 Geophys. Res. 118, 797-812, 2013.
- 451 Delfino, R. J., Sioutas, C., and Malik, S.: Potential role of ultrafine particles in associations between
 452 airborne particle mass and cardiovascular health. Environ. Health Persp. 113, 934-946, 2005.
- Eeftens, M., Tsai, M.-Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M.,
 Cyrys, J., Hoogh, K. d., Nazelle, A. D., Vocht, F. d., Declercq, C., Dedele, A., Eriksen, K.,
 Galassi, C., Grazuleviciene, R., Grivas, G., Heinrich, J., Hoffmann, B., Iakovides, M.,
- 456 Ineichen, A., Katsouyanni, K., Korek, M., Krämer, U., Kuhlbusch, T., Lanki, T., Madsen, C.,
- 457 Meliefste, K., Mölter, A., Moslerm, G., Nieuwenhuijsen, M., Oldenwening, M., Pennanen, A.,
- 458 Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Stephanou, E., Sugiri, D.,
- Udvardy, O., Vaskövi, É., Weinmayr, G., Brunekreef, B., and Hoek, G.: Spatial variation of
 PM_{2.5}, PM₁₀, PM_{2.5} absorbance and PMcoarse concentrations between and within 20 European
 study areas and the relationship with NO₂ Results of the ESCAPE project. Atmos. Environ.
 62, 303-317, 2012.
- Eldred, R. A., Cahill, T. A., and Flocchini, R. G.: Composition of PM2.5 and PM10 aerosols in the
 IMPROVE network. J. Air Waste Manage. Assoc. 47, 194-203, 1997.
- Gehrig, R., and Buchmann, B.: Characterising seasonal variations and spatial distribution of ambient
 PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos. Environ.
 37, 2571-2580, 2003.
- Gomiscek, B., Hauck, H., Stopper, S., and Preining, O.: Spatial and temporal variations of PM₁, PM_{2.5},
 PM₁₀ and particle number concentration during the AUPHEP project. Atmos. Environ. 38,
 3917-3934, 2004.
- Grimm, H., and Eatough, D. J.: Aerosol Measurement: The Use of Optical Light Scattering for the
 Determination of Particulate Size Distribution, and Particulate Mass, Including the
 Semi-Volatile Fraction. J. Air Waste Manage. Assoc. 59, 101-107, 2009.
- Hansen, J. C., Woolwine, W. R., Bates, B. L., Clark, J. M., Kuprov, R. Y., Mukherjee, P., Murray, J. A.,
 Simmons, M. A., Waite, M. F., Eatough, N. L., Eatough, D. J., Long, R., and Grover, B. D.:
 Semicontinuous PM_{2.5} and PM₁₀ mass and composition measurements in Lindon, Utah, during
 winter 2007. J. Air & Waste Manage. Assoc. 60, 346-355, 2010.
- Haywood, J., and Boucher, O.: Estimates of the direct and indirect radiative forcing due to tropospheric
 aerosols: A review. Rev. Geophys. 38, 513-543, 2000.
- He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan, T., and Mulawa, P.: The
 characteristics of PM2.5 in Beijing, China. Atmos. Environ. 35, 4959-4970, 2001.
- Houthuijs, D., Breugelmans, O., Hoek, G., Vaskövi, É., Miháliková, E., Pastuszka, J. S., Jirik, V.,
 Sachelarescu, S., Lolova, D., Meliefste, K., Uzunova, E., Marinescu, C., Volf, J., Leeuw, F. d.,

484	Wiel, H. v. d., Fletcher, T., Lebret, E., and Brunekreef, B.: PM10 and PM2.5 concentrations in
485	Central and Eastern Europe: results from the Cesar study. Atmos. Environ. 35, 2757-2771,
486	2001.
487	Janssen, N. A. H., Fischer, P., Marra, M., Ameling, C., and Cassee, F. R.: Short-term effects of PM _{2.5} ,
488	PM ₁₀ and PM _{2.5-10} on daily mortality in the Netherlands. Sci. Total Environ. 463-464, 20-26,
489	2013.
490	Li, C., Mao, J., Lau, KH. A., Chen, JC., Yuan, Z., Liu, X., Zhu, A., and Liu, G.: Characteristics of
491	distribution and seasonal variation of aerosol optical depth in eastern China with MODIS
492	products. Chinese Sci. Bull. 48, 2488-2495, 2003.
493	Luo, Y., Lu, D., Zhou, X., Li, W., and He, Q.: Characteristics of the spatial distribution and yearly
494	variation of aerosol optical depth over China in last 30 years. J. Geophys. Res. 106,
495	14501-14513, 2001.
496	Malm, W. C., Schichtel, B. A., Pitchford, M. L., Ashbaugh, L. L., and Eldred, R. A.: Spatial and
497	monthly trends in speciated fine particle concentration in the United States. J. Geophys. Res.
498	109, D03306, doi:10.1029/2003JD003739, 2004.
499	Mu, Q., and Liao, H.: Simulation of the interannual variations of aerosols in China: role of variations in
500	meteorological parameters. Atmos. Chem. Phys. 14, 9597-9612, 2014.
501	Oberdörster, G., Oberdörster, E., and Oberdörster, J.: Nanotoxicology: An Emerging Discipline
502	Evolving from Studies of Ultrafine Particles. Environ. Health Persp. 113, 823-839, 2005.
503	Pope III, C. A., and Dockery, D. W.: Health effects of fine particulate air pollution: Lines that connect.
504	J. Air Waste Manage. Assoc. 56, 709-742, 2006.
505	Qian, W. H., Tang, X., and Quan, L. S.: Regional characteristics of dust storms in China. Atmos.
506	Environ. 38, 4895-4907, 2004.
507	Qu, WJ., Zhang, XY., Arimoto, R., Wang, YQ., Wang, D., Sheng, LF., and Fu, G.: Aerosol
508	background at two remote CAWNET sites in western China. Sci. Total Environ. 407,
509	3518-3529, 2009.
510	Qu, W. J., Arimoto, R., Zhang, X. Y., Zhao, C. H., Wang, Y. Q., Sheng, L. F., and Fu, G.: Spatial
511	distribution and interannual variation of surface PM ₁₀ concentrations over eighty-six Chinese
512	cities. Atmos. Chem. Phys. 10, 5641-5662, 2010.
513	Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological
514	cycle. Science 294, 2119-2124, 2001.
515	Sciare, J., Cachier, H., Sarda-Este've, R., Yu, T., and Wang, X.: Semi-volatile aerosols in Beijing (R.P.
516	China): Characterization and influence on various PM2.5 measurements. J. Geophys. Res. 112,
517	D18202, doi:10.1029/2006JD007448, 2007.
518	Tiwari, S., Chate, D. M., Pragya, P., Ali, K., and Bisht, D. S.: Variations in Mass of the PM10, PM2.5
519	and PM1 during the Monsoon and Winter at New Delhi. Aerosol and Air Quality Research 12,
520	20-29, 2012.
521	Wang, G., Huang, L., Gao, S., Gao, S., and Wang, L.: Measurements of PM ₁₀ and PM _{2.5} in urban area of
522	Nanjing, China and the assessment of pulmonary deposition of particle mass. Atmos. Environ.
523	48, 689-695, 2002.
524	Wang, H., Xu, J., Zhang, M., Yang, Y., Shen, X., Wang, Y., Chen, D., and Guo, J.: A study of the
525	meteorological causes of a prolonged and severe haze episode in January 2013 over
526	central-eastern China. Atmospheric Environment 98, 146-157, 2014a.
527	Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y., Fu, X.,

- 528 Xu, J. Y., Hao, J. M., and He, K. B.: Emission trends and mitigation options for air pollutants in East Asia. Atmos. Chem. Phys. 14, 6571-6603, 2014b. 529 530 Wang, X., Bi, X., Sheng, G., and Fu, J.: Chemical composition and sources of PM10 and PM2.5 531 aerosols in Guangzhou, China. Environ. Monit. Assess. 119, 425-439, 2006. 532 Wang, Y. Q., Zhang, X. Y., Gong, S. L., Zhou, C. H., Liu, H. L., Niu, T., and Yang, Y. Q.: Surface 533 observation of sand and dust storm in East Asia and its application in CUACE/Dust. Atmos. 534 Chem. Phys. 8, 545-553, 2008. 535 Watson, J.: Visibility: Science and Regulation. J. Air Waste Manage. Assoc. 52, 628-713, 2002. 536 Wei, F., Teng, E., Wu, G., Hu, W., Wilson, W. E., Chapman, R. S., Pau, J. C., and Zhang, J.: Ambient 537 concentrations and elemental composition of PM₁₀ and PM_{2.5} in four Chinese cities. Environ. 538 Sci. Technol. 33, 4188-4193, 1999. 539 Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B.: The water-soluble 540 ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 36, 4223-4234, 541 2002. 542 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., 543 Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions 544 in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9, 5131-5153, 2009. 545 Zhang, X. Y., Gong, S. L., Zhao, T. L., Arimoto, R., Wang, Y. Q., and Zhou, Z. J.: Sources of Asian dust 546 and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 547 30, 2272 10.1029/2003GL018206, 2003. 548 Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: 549 Atmoshperic aerosol compositions in China: spatial/temporal variability, chemical signature, 550 regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 12, 551 779-799, 2012. 552 Zhao, B., Wang, S., Dong, X., Wang, J., Duan, L., Fu, X., Hao, J., and Fu, J.: Environmental effects of 553 the recent emission changes in China: implications for particulate matter pollution and soil 554 acidification. Environ. Res. Lett. 8, 024031, doi:10.1088/1748-9326/8/2/024031, 2013. 555 Zhao, X., Zhang, X., Pu, W., Meng, W., and Xu, X.: Scattering properties of the atmospheric aerosol in 556 Beijing, China. Atmos. Res. 101, 799-808, 2011. 557 Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W., and Pu, W.: Seasonal and diurnal variations of ambient 558 PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 43, 559 2893-2900, 2009. 560 Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., and Cass, G. R.: Seasonal 561 trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 39, 3967-3976, 2005. 562 Zhou, Z. J., and Zhang, G. C.: Typical severe dust storms in northern China during 1954-2002. Chinese 563 Sci. Bull. 48, 2366-2370, 2003. 564 565
 - 566

Stations	Latitude	Longitude	Altitude	Start	Description
	(°N)	(° E)	(m)	Time	Description
Zhengzhou	34.78	113.68	99.0	1/2006	Urban, in the center of
8					Zhengzhou city, 56 m building.
Chengdu	30.65	104.04	496.0	3/2006	Urban, in the center of Chengdu
					city, 91 m building.
					Vian city 20 km parth of center
Xian	34.43	108.97	363.0	1/2006	of Xian city 4 m sampling
					container.
					Urban, in Nanning city, 140 m
Nanning	22.82	108.35	84.0	1/2006	hill.
. 1	41.05	122.00	79.2	10/2007	Urban, in Anshan city, 10 m
Anshan	41.05	123.00	/8.3	10/2007	building.
Shenvana	<i>A</i> 1 76	123 /1	110.0	10/2007	Urban, in Shenyang city, 15m
Shenyang	41.70	125.41	110.0	10/2007	building.
Benxi	41.19	123.47	185.4	10/2007	Urban, in Benxi city, 12 m
					building.
Fushun	41.88	123.95	163.0	10/2007	Urban, in Fushun city, 10 m
					building.
Qingdao	36.07	120.33	77.2	3/2007	Urban, in Qingdao city, top of
					Turban in I hasa city 7 m
Lhasa	29.67	91.13	3663.0	1/2006	building.
					Urban, in Siping city, 4 m
Siping	43.18	124.33	165.4	3/2007	sampling container.
D	22.00	112.25	5.0	1/2000	Suburban, in Panyu district of
Panyu	23.00	113.35	5.0	1/2006	Guangzhou city, 140 m hill.
					Suburban, 38 km southwest of
Gucheng	39.13	115.80	15.2	1/2006	Baoding city, within area of
					rapid urbanization, 8 m building.
Chifeng	42.27	118.97	568.0	3/2007	Rural, suburbs of Chifeng city, 4
C					m sampling container.
Dandong	40.05	124.33	13.9	3/2007	Rural, suburbs of Dandong city,
					4 m sampling container.
Erlianhaote	43.65	111.97	965.9	3/2007	city 4 m sampling container
					Rural 10 km north of Yulin city
Yulin	38.43	109.20	1135.0	1/2006	at the southeastern edge of Mu
					Us desert.
.	00.50	111.000	44 4 9		Rural, 105 km north of Wuhan
Jinsha	29.63	114.20	416.0	4/2006	city, 8 m building.
Guilin	25.32	110.30	164.4	1/2006	Rural, north margin of Guilin

567 Table 1. Description of the PM stations.

					city, meteorological observation
					field.
Luchan	20.57	115.00	1165.0	1/2006	Rural, Kuniubei peak of Mount
Lushan	29.37	115.99	1105.0	1/2000	Lu.
Chanada	20.17	111 71	5(2)0	1/2006	Rural, 18 km northwest from
Changde	29.17	111./1	563.0	1/2006	Changde city, 8 m building.
Deveter	21.50	101.00	10.0	5/2000	Rural, east of Chongming island
Dongtan	31.30	121.80	10.0	5/2009	near Shanghai.
A 1- J-1-	47.10	97.07	5(2)0	0/2006	Remote, 55 km west of Fuhai
Akdala	4/.12	8/.9/	362.0	9/2006	county, 10 m building.
C1	28.02	00.72	2500.0	10/2006	Remote, 12 km northeast of
Shangri-La	28.02	yy./3	5580.0	10/2006	Shangri-La county.

cach station.									
	Averaged PM								
	concentrations			SB ratio	SB ratio	PM ₂ ¢	PM ₁ /	R^2 (PM _{2.5} to PM ₁₀)	R^2 (PM)
Stations	$(\mu g m^{-3})^a$			$(PM_{10})^{b}$	$(PM_{25})^{b}$	/PM ₁₀	PM ₂ s		to PMac
	PM_{10}	PM _{2.5}	PM_1	(* 10110)	(1112.3)	/1 1/10	1 1112.5	(0 1 10110)	0 1 1112.5)
Zhangzhau	131.7	84.8	71.0	0.21	0.51	0.68	0.84	0.69	0.01
Znengznou	(84.4)	(47.4)	(40.5)	0.51	0.31	0.08	0.84	0.08	0.91
Chanadu	78.0	59.5	52.7	0.11	0.27	0.83	0.01	0.76	0.04
Chenguu	(72.5)	(42.2)	(35.4)		0.27	0.85	0.91	0.70	0.94
Vian	135.4	93.6	77.0	0.34	0.52	0.73	0.83	0.77	0.03
Alan	(97.3)	(67.3)	(55.6)	0.54	0.52	0.75	0.85	0.77	0.95
Nanning	51.2	38.4	34.9	0.01	0.08	0.77	0.01	0.52	0.07
Ivaining	(56.3)	(24.7)	(22.2)	0.01	0.08	0.77	0.91	0.52	0.97
Anshan	97.8	60.9	52.3	0.17	0.25	0.65	0.85	0.72	0.98
Alishali	(62.9)	(42.9)	(39.0)	0.17	0.25	0.05	0.85	0.72	0.98
Shenvang	85.0	59.1	50.8	0.11	0.25	0.69	0.85	0.88	0.97
Shenyang	(58.2)	(42.7)	(36.7)	0.11	0.25	0.07	0.05	0.00	0.97
Benvi	97.6	66.7	54.8	0.13	0.30	0.69	0.82	0.81	0.94
Delixi	(57.4)	(45.0)	(36.4)	0.15	0.50	0.07		0.01	
Fuchup	80.3	50.1	42.8	0.07	0.17	0.66	0.85	0.64	0.97
1 ushun	(54.2)	(31.7)	(28.3)	0.07	0.17				
Oinadao	64.8	47.3	41.1	0.05	0.17	0.76	0.86	0.76	0.95
Qiliguao	(52.1)	(34.0)	(30.5)	0.05	0.17	0.70	0.80		0.95
I hasa	37.7	14.0	9.6	0.01	0.00	0.40	0.66	0.72	0.94
Liidöd	(30.8)	(10.7)	(8.6)	0.01	0.00	0.40	0.00		0.74
Panyu	58.7	44.5	39.7	0.02	0.12	0.77	0.89	0.95	0.98
1 any a	(33.1)	(24.4)	(22.1)	0.02	0.12				0.90
Gucheng	127.8	89.7	79.4	0.31	0.54	0.71	0.87	0 79	0.97
Outlieng	(75.1)	(53.0)	(48.8)	0.51	0.54	0.71	0.07	0.79	0.97
Sining	83.3	55.4	48.5	0.10	0.22	0.68	0.86	0.71	0.96
Siping	(54.3)	(35.2)	(32.5)	0.10	0.22	0.00	0.00	0.71	0.90
Chifeng	88.0	42.4	32.6	0.17	0.14	0.51	0.75	0.72	0.92
Childing	(68.9)	(33.1)	(27.8)	0.17	0.14	0.51	0.75	0.72	0.92
Dandong	66.8	45.6	39.3	0.03	0.11	0.71	0.86	0.64	0.90
Dandong	(44.0)	(24.8)	(21.3)	0.05	0.11	0.71	0.80	0.04	0.90
Frlianhaote	49.1	22.0	15.9	0.03	0.03	0.51	0.72	0.71	0.61
Linamiaote	(80.2)	(22.6)	(14.7)	0.05	0.05	0.51	0.72	0.71	0.01
Vulin	66.6	31.2	22.4	0.06	0.03	0.54	0.72	0.54	0.61
1 41111	(67.1)	(21.0)	(15.9)	0.00	0.03	0.27			0.01
Iinsha	42.0	33.6	30.5	0.01	0.06	0.85	0.90	0.63	0.89
3111311a	(38.6)	(24.1)	(21.9)	0.01				0.05	0.07
GuiLin	57.6	46.5	41.7	0.04	0.15	0.85	0.90	0.70	0.96

Table 2. Averaged PM₁₀, PM_{2.5} and PM₁ concentrations and their interrelationships at
 each station.

	(50.5)	(30.8)	(27.1)						
Lushan	45.4	37.8	33.2	0.01	0.09	0.85	0.86	0.91	0.95
	(32.7)	(27.9)	(26.7)	0.01					
Chanada	45.7	40.3	37.0	0.01	0.12	0.89	0.91	0.93	0.06
Changue	(33.8)	(29.1)	(27.5)	0.01	0.12				0.90
Dongtan	31.9	27.4	24.8	0.01	0.06	0.90	0.90	0.92	0.06
Doligiali	(34.0)	(25.9)	(23.8)	0.01					0.90
Akdala	17.1	9.8	7.7	0.00	0.00	0.67	0.70	0.80	0.53
AKuala	(57.6)	(13.7)	(6.9)	0.00	0.00	0.07	0.79	0.80	0.55
Shangri-La	6.8	5.2	4.5	0.00	0.00	0.76	0.81	0.04	0.00
	(6.3)	(5.3)	(5.0)	0.00	0.00	0.70	0.01	0.94	0.99

^aArithmetic mean value with standard deviation in parentheses.

^bThe ratio of substandard days (daily averaged PM₁₀ or PM_{2.5} concentrations that exceed the standard values) to total observation days.

576 Figure Captions

	· ·
577	
578	Figure 1. Map showing the PM observation stations and bar charts for their average
579	PM_{10} , $PM_{2.5}$ and PM_1 concentrations ($\mu g m^{-3}$).
580	Figure 2. Scatterplots of PM_1 versus $PM_{2.5}$ (a) with and (b) without data from the
581	strong sand and dust storm at Akdala.
582	Figure 3. Spatial distribution of the average ratios of (a) $PM_{2.5}/PM_{10}$ and (b)
583	$PM_{1}/PM_{2.5}$.
584	Figure 4. Spatial distribution of the seasonal average concentrations ($\mu g m^{-3}$) of (a)
585	PM_{10} , (b) $PM_{2.5}$, (c) PM_1 and (d) ratios of $PM_{2.5}/PM_{10}$.
586	Figure 5. Interannual variations of $PM_{2.5}$ concentrations at the stations (a) on the HBP
587	and Guanzhong Plain, (b) in northeast China, (c) along the middle and lower
588	reaches of the Yangtze River, and (d) in southern China.
589	Figure 6. Interannual variation of (a) PM_{10} concentration and (b) PM_1 concentration at
590	Zhengzhou, Xian and Gucheng.
591	Figure 7. Diurnal variation of $PM_{2.5}$ concentrations at the stations (a) on the HBP and
592	Guanzhong Plain, (b) in northeast China, (c) along the middle and lower
593	reaches of the Yangtze River, and (d) in southern China.
594	Figure 8. Anthropogenic emission distributions at a resolution of $0.1^{\circ} \times 0.1^{\circ}$, based on
595	HTAP_v2 dataset: (a) BC; (b) $PM_{2.5}$; (c) SO ₂ ; (d) NOx (units: kg m ⁻² s ⁻²).
596	Figure 9. Emissions differences between 2010 and 2008 at a resolution of $0.1^{\circ} \times 0.1^{\circ}$,
597	based on HTAP_v2 dataset: (a) BC; (b) $PM_{2.5}$; (c) SO ₂ ; (d) NOx (units: kg m ⁻²
598	s^{-2}).
599	Figure 10. Daily averaged PM _{2.5} concentrations vs wind speed and relative humidity at Zhengzhou,
600	Shenyang and Nanning in January 2013.
601	Figure 11. Interannual variation of PM_{10} , $PM_{2.5}$ and PM_1 vs wind speed and relative
602	humidity at Zhengzhou and Nanning.
603	
604	

 $\begin{array}{ll} & \text{Figure 1. Map showing the PM observation stations and bar charts for their average} \\ & \text{608} \quad \text{PM}_{10}, \text{PM}_{2.5} \text{ and PM}_1 \text{ concentrations } (\mu \text{g m}^{-3}). \end{array}$

Figure 2. Scatterplots of PM_1 versus $PM_{2.5}$ (a) with and (b) without data from the

- 616 strong sand and dust storm at Akdala.

Figure 3. Spatial distribution of the average ratios of (a) $PM_{2.5}/PM_{10}$ and (b)

 $PM_{1}/PM_{2.5}$.

40N-

30N-

20N

116

Spring Summe Autumn Winter

90E

Ч

Nanning

100E

(b)

Pañyd

120E

110E

626

627

Benxi

Figure 4. Spatial distribution of the seasonal average concentrations ($\mu g m^{-3}$) of (a)

 PM_{10} , (b) $PM_{2.5}$, (c) PM_1 and (d) ratios of $PM_{2.5}/PM_{10}$.

640 Figure 5. Interannual variations of $PM_{2.5}$ concentrations at the stations (a) on the HBP

and Guanzhong Plain, (b) in northeast China, (c) along the middle and lower reachesof the Yangtze River, and (d) in southern China.

Figure 6. Interannual variation of (a) PM₁₀ concentration and (b) PM₁ concentration at Zhengzhou, Xian and Gucheng.

Figure 7. Diurnal variation of $PM_{2.5}$ concentrations at the stations (a) on the HBP and

655 Guanzhong Plain, (b) in northeast China, (c) along the middle and lower reaches of

656 the Yangtze River, and (d) in southern China.

662 Figure 8. Anthropogenic emission distributions at a resolution of $0.1^{\circ} \times 0.1^{\circ}$, based on

669 Figure 9. Emissions differences between 2010 and 2008 at a resolution of $0.1^{\circ} \times 0.1^{\circ}$,

based on HTAP_v2 dataset: (a) BC; (b) $PM_{2.5}$; (c) SO₂; (d) NOx (units: kg m⁻² s⁻²).

Figure 10. Daily averaged PM_{2.5} concentrations vs wind speed and relative humidity at Zhengzhou,
Shenyang and Nanning in January 2013.

686 Figure 11. Interannual variation of PM₁₀, PM_{2.5} and PM₁ vs wind speed and relative

687 humidity at Zhengzhou and Nanning.