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Abstract 10 

Smog chambers are extensively used to study processes that drive gas and particle 

evolution in the atmosphere. A limitation of these experiments is that particles and gas-

phase species may be lost to chamber walls on shorter timescales than the timescales 

of the atmospheric processes being studied in the chamber experiments. These particle 

and vapor wall losses have been investigated in recent studies of secondary organic 15 

aerosol (SOA) formation, but they have not been systematically investigated in 

experiments of primary emissions from combustion. The semi-volatile nature of 

combustion emissions (e.g. from wood smoke) may complicate the behavior of particle 

and vapor wall deposition in the chamber over the course of the experiments due to the 

competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls 20 

may impact particle evaporation in these experiments, and potential precursors for SOA 

formation from combustion may be lost to the walls, causing underestimates of aerosol 

yields. Here, we conduct simulations to determine how particle and gas-phase wall 

losses contributed to the observed evolution of the aerosol during experiments in the 

third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol 25 

Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set 

(VBS) and wall-loss formulations to examine the predicted extent of particle and vapor 

wall losses. We limit the scope of our study to the dark periods in the chamber before 

photo-oxidation to simplify the aerosol system for this initial study.  

Our model simulations suggest that over one third of the initial particle-phase organic 30 

mass (41%) was lost during the experiments, and over half of this particle organic mass 

loss was from direct particle wall loss (65% of the loss) with the remainder from 

evaporation of the particles driven by vapor losses to the walls (35% of the loss). We 

perform a series of sensitivity tests to understand uncertainties in our simulations. 

Uncertainty in the initial wood-smoke volatility distribution contributes 18% uncertainty to 35 

the final particle organic mass remaining in the chamber (relative to base-assumptions 

simulation). We show that the total mass loss may depend on the effective saturation 
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concentration of vapor with respect to the walls as these values currently vary widely in 

the literature. The details of smoke dilution during the filling of smog chambers may 

influence the mass loss to the walls, and a dilution of ~25:1 during the experiments 

increased particle organic mass loss by 33% compared to a simulation where we 

assume the particles and vapors are initially in equilibrium in the chamber. Finally, we 5 

discuss how our findings may influence interpretations of emission factors and SOA 

production in wood-smoke smog-chamber experiments. 

 

1 Introduction 

Wood burning, including agricultural combustion and wildfires in forests, grasses and 10 

woodlands, is the major primary source of atmospheric carbonaceous particles globally, 

comprising black carbon (BC) as well as organic carbon material in both the particle and 

vapor phases. Wood smoke is known to have important health (Naeher et al., 2007; 

Jassen, 2012; Johnston et al., 2012) and climate effects (Bond et al., 2013), yet the 

aerosol emission estimates for wood burning (mainly open burning) of 33800 Gg-1 yr-1 15 

have an uncertainty ranging from a factor of 0.6 to 4 (Bond et al., 2013). The net effect 

of the climate forcing from biomass burning aerosol has been estimated in some studies 

to be nearly zero or negative due to the dominant cooling direct effect of primary organic 

aerosol (POA) over the warming from BC, as well as an indirect cooling effect from the 

particles’ interactions with clouds by modifying the cloud albedo (Bond et al., 2013). 20 

Others have argued that biomass burning may still cause a net global warming because 

warming effects (e.g. cloud absorption effects, semi-direct effects, and aerosol 

absorption) might exceed the cooling effects (Chung, et al., 2012; Jacobson, 2014). 

Thus, the climate effects of biomass burning aerosol are highly uncertain. In radiative 

forcing estimates, the size, composition and morphology of biomass burning particles 25 

are important parameters (Sakamoto et al., 2015; Giordano et al., 2015). In-plume 

coagulation, semi-volatile POA evaporation, and condensation of low-volatility 

secondary organic vapor onto the pre-existing aerosols in the atmosphere generally 

govern the particle size evolution during the smoke transport (Jimenez et al., 2009; 

DeCarlo et al., 2010; Sakamoto et al., 2015). In addition, nucleation of particles has also 30 

been observed in both chamber and field studies of biomass burning during the photo-

oxidation process (Rissler et al., 2006; Hennigan, et al., 2012).  

POA from wood smoke has been demonstrated to be semi-volatile in recent 

experiments, and thus some POA will evaporate during dilution of a smoke plume (May 

et al., 2013b). Related experiments have shown that photo-oxidation of wood smoke in 35 

smog chambers may more than double the organic aerosol mass concentration, but in 

some experiments the total organic aerosol mass concentration had a net loss 

(Grieshop et al., 2009; Hennigan, et al., 2011; Ortega et al., 2013; Platt et al., 2013). 
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Estimates of secondary organic aerosol (SOA) formation from observations in ambient 

plumes also have mixed results, with some plumes showing little or no formation 

(Capes, et al., 2009; Cubison et al., 2011; Akagi et al., 2012; May et al., 2015; 

Sakamoto et al., 2015) and some showing significant formation (Yokelson et al.,2009; 

DeCarlo et al., 2010; Vakkari et al., 2014), although different studies sampled the 5 

plumes during different stages of evolution, which may explain some of the 

discrepancies. Accurate simulation of wood-smoke particle mass evolution (i.e., POA 

and SOA) in chemical transport models is necessary to estimate the climate and health 

effects of wood-smoke emissions. 

Photo-chemical oxidation of semi-volatile organic species (species that have non-trivial 10 

partitioning in both the particle and vapor phases) and intermediate volatility organic 

species (species that are somewhat more volatile than semi-volatile species and 

primarily exist in the vapor phase) to lower volatility SOA is believed to be the major 

pathway of SOA formation during wood-smoke particle aging (Robinson et al., 2007; 

Grieshop et al., 2009; Huffman et al., 2009; Ortega et al., 2013; Jathar et al., 2014). As 15 

wood-smoke plumes dilute during transport, POA may evaporate from particles and 

SOA production enhanced by oxidation of these organic vapors. The volatility 

distribution of the biomass burning vapor and particles may change correspondingly 

with increasing distance to the emission sources as POA evaporates and SOA forms.    

Teflon smog chambers have been extensively used for emission and photochemistry 20 

studies. It has been known for decades that particle wall loss in these chambers may 

dominate the changes in the particle distribution under certain experimental conditions 

(Crump and Seinfeld, 1981; McMurry and Grosjean, 1985; McMurry and Rader, 1985). 

Particle wall losses are quantified and used to correct observed aerosol concentrations 

to deduce the SOA formation in smog chamber studies (Weitkamp et al., 2007; 25 

Hennigan et al., 2011). In these studies, semi-volatile vapors are generally assumed to 

be in equilibrium with particles deposited to the walls, but not in equilibrium with the 

walls themselves. While vapor wall loss has also been explored for decades (e.g. 

McMurry and Grosjean, 1985), its magnitude has been relatively unconstrained 

(compared to particle-phase wall losses), and it has not accounted for in most smog-30 

chamber studies. However, recent studies of vapor wall losses have shown that organic 

vapors have absorptive partitioning behavior to the Teflon walls of the smog chambers, 

and that this absorption may be modeled using Henry’s law (Loza, et al. 2010; 

Matsunaga and Ziemann, 2010; Zhang et al., 2015). Zhang et al. (2014) showed that 

vapor wall losses may lead to underestimates of SOA formation from both biogenic and 35 

anthropogenic SOA precursor gases in some experiments by a factor of 4 for their 

experimental conditions.  

In controlled wood-smoke smog-chamber experiments, particle and vapor wall losses 

may complicate the estimates of particle-phase mass loss and SOA production. Vapor 
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wall loss can force vapor concentrations to be lower than their equilibrium 

concentrations with respect to the particle phase. This deviation from equilibrium will 

cause evaporation of semi-volatile POA and lead to particle-phase mass loss beyond 

direct losses of the particles to the walls. Furthermore, losses of semi-volatile and 

intermediate volatility vapors to the walls will bias experimental SOA formation. Thus, 5 

both particle-phase and vapor-phase wall losses must be considered in wood-smoke 

smog-chamber experiments, yet to our knowledge, no such estimates are currently 

available. 

The goal of this study, therefore, is to simulate the vapor and particle wall losses of 

wood-smoke POA that is introduced into a smog chamber, based on current knowledge 10 

of vapor and particle loss rates, to quantify their relative importance. For model 

initialization and validation, we use observations from the third Fire Lab At Missoula 

Experiments (FLAME III). We perform a series of sensitivity studies on unknown 

parameters to evaluate the model uncertainties and their effect on the predicted POA 

partitioning behavior. As our analysis of POA contains several dimensions of wall-loss 15 

uncertainties, we limit the scope of this paper to POA and primary vapors, and we will 

investigate SOA production uncertainties in a future paper. In section 2, we describe the 

experimental procedure and model simulation. In section 3, we present the results of 

the base simulation and sensitivity tests and discuss the potential influence of wall and 

vapor losses on SOA formation. Section 4 summarizes the results and gives 20 

recommendations for future work. 

2 Methods 

2.1 Experimental description  

Smog-chamber experiments to investigate wood-smoke POA partitioning and wood-

smoke SOA formation were carried out during the FLAME III study at the USDA/USFS 25 

Fire Sciences Laboratory (FSL) in Missoula, Montana during September-October 2009 

(Hennigan et al., 2011; May et al., 2013b; May et al. 2014). Eighteen types of fuels were 

studied that represent North American vegetation that is typically burned in wild or 

prescribed fires. Fuel samples (0.3-1.0 kg) were arranged on a fuel bed in the FSL 

combustion chamber (12.4 m × 12.4 m × 19.6 m, 3014 m3, Table 1), ignited electrically, 30 

and combusted in open burning. After burn completion and subsequent mixing of 

emissions in the FSL combustion chamber for ~30 min, a smoke sample was withdrawn 

and introduced to the CMU smog chamber, a Teflon bag with a volume of ~7 m3, 

through a heated transfer line with an average 94% particle-transmission efficiency 

between 50-400 nm (Hennigan et al., 2011). Filling commenced until aerosol 35 

concentrations of ~50 µg m-3 were achieved, representing ~25x dilution from the 

conditions present in the FSL combustion chamber (dilution was a 2-step process, 

including roughly 7:1 dilution in Dekati ejector dilutors and bag filling for the remainder, 
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Hennigan et al., 2011). Sampling from the CMU smog chamber occurred through a 

thermodenuder (May et al., 2013a) that was upstream of an Aerodyne quadruple 

aerosol mass spectrometer (Q-AMS) and a scanning-mobility particle sizer (SMPS). 

Nonrefractory speciated submicron aerosol mass (OA, SO4
2-, NO3

-, NH4
+, and Cl-) was 

characterized by the Q-AMS, black carbon (BC) was determined by a 7-channel 5 

Aethalometer at 880 nm, and the number size distribution between diameters of 10.9 

and 478.3 nm was measured by the SMPS. In this paper, we define the total submicron 

aerosol mass (TA) as the sum of OA, SO4
2-, NO3

-, NH4
+, Cl-, and BC, and we define the 

organic fraction (OF) as the ratio of OA / TA. To reconcile the volume and mass 

measurements between SMPS and AMS, we compute an effective density (DeCarlo et 10 

al., 2004) of the particles for each burn by dividing the total AMS mass by the total 

SMPS volume. For this purpose, the SMPS size distribution was extrapolated to 1 µm, 

the upper size limit for the AMS, using a single lognormal fit of the SMPS volume 

distribution (Figure S1).  While the volume distribution appears lognormal up to 400 nm 

(upper limit of the SMPS), we do not know for sure if the distribution follows the fit 15 

lognormal curve at larger sizes. Therefore, these calculated effective densities 

represent the combined effect of non-unity collection efficiencies in the AMS, particle 

density, and particle shape, but contain uncertainties due to the size extrapolation.  We 

use the effective densities to translate modeled mass distributions to the measured 

values. Measurements of primary gas and particle concentrations were conducted for 20 

~75 min after smoke was well mixed in the smog chamber before UV lights were turned 

on for photo-oxidation. It is this period before photo-oxidation and after bag filling, during 

which the initial aerosol was characterized, that we study in this paper. Further, we use 

the term “POA” to describe the mass concentration of organic compounds observed in 

the particle phase at the start of this period, as measured by the Q-AMS (i.e., OA at 25 

time=0). 

2.2 Model simulations 

We use a zero-dimensional (box) version of the TwO-Moment Aerosol Sectional 

(TOMAS) microphysics model (Adams and Seinfeld, 2002; Pierce and Adams, 2009; 

Pierce et al., 2011) combined with particle and vapor wall loss estimates to simulate the 30 

organic species phase partitioning during the FLAME III smog-chamber characterization 

experiments. TOMAS in this work simulates 36 logarithmically spaced size sections that 

span dry diameters from 3 nm to 10 µm. Simulated aerosol species include black 

carbon, water, and 8 lumped organic aerosol species with logarithmically spaced 

effective saturation concentrations (C*) between 10-3 to 104 µg m-3 according to the 35 

volatility basis set (VBS, Donahue et al., 2006) based on aerosol partitioning theory 

(Pankow, 1994). The model simulates 8 vapor-phase species that are the vapor 

components of the 8 organic volatility basis set bins. Estimated molecular weights for 

these eight organic components followed the calculation method in Robinson et al. 
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(2007). The model represents the CMU smog chamber as a single, well-mixed box, 

which implicitly assumes that mixing within the chamber occurs on faster time scales 

than wall losses. This fast-mixing assumption is justified as the turbulent-mixing 

timescale is on the order of seconds (based on 1/ke derived from the Aerosol 

Parameterization Estimation, or APE model; see Table 1). The parameters used in our 5 

base-assumptions simulations are shown in Table 2. These parameters, as well as 

sensitivities of these parameters that we explore are discussed below. 

For our base-assumption simulations as well as the sensitivity tests with perturbed 

parameters, we simulate all 18 smog-chamber experiments described in Table 1 using 

the average chamber temperature recorded during experimentation by Hennigan et al. 10 

(2011). For each simulated experiment, the initial volatility distribution of the wood-

smoke POA is that proposed by May et al. (2013b) as shown in Figure 1a. May et al. 

(2013b) fit thermodenuder data in the 18 experiments during FLAME III mentioned 

above to find the optimal combination of partitioning parameters (fi, ΔHvap,i, and α) 

across the 18 experiments. In the fitting procedure, May et al. (2013b) characterized the 15 

particle number loss in the thermodenuder by measuring the generated ammonium 

sulfate size distributions using an upstream and downstream SMPS and then apply the 

loss to correct the measured particulate organic data. However, the evaporation of 

semi-volatile organics due to vapor-phase wall losses may have shifted the particle 

volatility to lower values with time in the chamber. Thus, the volatility distribution of 20 

biomass burning adopted from May et al. (2013b) may be weighted towards lower 

volatilities than those that entered the chamber, which means that vapor wall losses 

could be more important than calculated in this study. We test the model sensitivity to 

upper and lower bounds of their derived POA volatility distribution (representing the 

edges of the shaded region in Figure 6a from May et al. (2013b) and shown here in 25 

Figure 1). 

Additional sources of uncertainty in modelling gas-phase wall losses are the gas-particle 

accommodation and gas-wall accommodation coefficients, which are used to modulate 

mass transfer rates between the gases and particles/walls. Different studies exploring 

the mass transfer rates have derived different values of the accommodation coefficients 30 

(Greishop et al., 2007; Lee et al., 2011; Stanier et al., 2007; Saleh et al., 2013), and 

thus uncertainties in these accommodation coefficients need to be systematically 

explored in any study using models of gas-phase wall losses. In our base set of 

assumptions, we assume that the accommodation coefficient for mass transfer between 

the vapor and particle phases (αp) is 1 based on the May et al. (2013b) results (i.e., no 35 

mass transfer limitations; Table 2). We perform sensitivity simulations wherein we 

assume that αp is 0.01 and 0.001, as these values were found to be necessary to 

reproduce mass transfer in other studies (Grieshop et al., 2007; Stanier et al., 2007; Lee 

et al., 2011; Saleh et al., 2013; McVay et al., 2014). However, these lower “effective” 
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accommodation coefficients were used in the studies of SOA formation and may not be 

appropriate for the POA partitioning, because we are unaware of observed mass 

transfer limitations in fresh POA, but they provide a logical sensitivity test. Uncertainties 

in the accommodation coefficients between the vapors and the wall are discussed 

below. 5 

For each of the 18 experiments, we estimate the size dependent particle wall loss 

(kw,p(Dp)) by applying the APE model on SMPS measurements following the procedure 

described in Pierce et al. (2008). Briefly, the APE model determines the best fit of the 

time- and size-dependent particle-phase wall loss following Eqn. 1 

     (  )        
 √   
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 √   
)  

  

    
       Eqn. 1 10 

where ke (s
-1) is a function of the turbulent kinetic energy in the chamber (Crump and 

Seinfeld, 1981), D is the Brownian diffusivity of the particle of size Dp, R is the radius of 
the chamber, vs is the gravitational settling velocity of the particle, and kw,p0 is a size-
independent wall-loss rate that is used to represent the effect of electrostatic forces on 
the wall loss, which tends to make particle wall losses less size dependent than 15 
turbulent wall losses would predict (Pierce et al., 2008). D1 is the Debye function 
(Aramowitz and Stegun, 1964). We use non-linear least squares fitting optimization to 
best estimate the condensation/evaporation and wall-loss parameters in the APE model. 
The goal of fitting optimization is to minimize Х2 as follows: 
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            Eqn.2 20 

where i(a) is the set of total diameter moments (0, 1.5, 3). The chosen range of 

moments ensures the model fits both the total number (0th moment) and the total 

volume (proportional to the 3rd moment). The subscripts p and o indicate the predicted 

and observed moments, respectively. Derived kw0 and ke for 18 experiments are listed in 

Table 1. Calculated wall loss rates (kw, s-1) for the 18 experiments are generally 25 

consistent with each other as shown in Figure S2. For times when the SMPS is 

sampling from the thermodenuder (rather than directly from the bag), we linearly 

interpolated the concentration in each SMPS size bin in time between the previous and 

following measurement made directly from the bag.  Further, to reduce noise in the APE 

model, we smooth the concentration in each SMPS size section (both the direct 30 

measurements and interpolated data) using a 9-point moving time average. Table 1 lists 

the derived ke and kw,p0 for the 18 experiments.  

In the simulations, we assume vapor wall loss to be reversible. The rate coefficient for 

gross transfer of gas-phase species onto the walls is described as kw,on (McMurry and 

Grosjean, 1985; Zhang et al., 2014):  35 
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       Eqn. 3 

where A/V is the surface to volume ratio of the chamber, αw is the mass accommodation 

coefficient of vapors onto the chamber walls, c  (m s-1) is the mean thermal speed of the 

molecules (calculated using the molecular weights of each organic volatility bin), ke is a 

function of the turbulent kinetic energy in the chamber (derived from the APE model 5 

described above), and Dgas is the molecular diffusivity (m2 s-1).  As a base assumption 

for the accommodation coefficient αw, we assume 1×10-5, adopted from Matsunaga and 

Ziemann (2010), for all volatility bins. We perform sensitivity simulations where 1) we 

use alternate accommodation coefficient values that depend on volatility, based on 

Zhang et al. (2015) and as shown in Table 3 and 2) take constant values of 1×10-4, 10 

1×10-2 and 1, respectively, to explore the uncertainty in the accommodation coefficient. 

The gross evaporation rate coefficient from the wall is kw,off (Matsunaga and Ziemann, 

2010): 
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)       Eqn. 4 

where Kw is the gas-particle partitioning coefficient, Cw is the equivalent or effective 15 

organic mass concentration of the walls (in units of mass per chamber volume), C* is 

the saturation concentration (µg m-3), Mp and Mw are the average molecular weights of 

the organic species in the particles and in the Teflon film comprising the chamber (µg m-

3), and γw and γp are the activity coefficients of the organic species in the Teflon film and 

the particle, respectively. γp is assumed to be unity. Cw/Mwγw was measured to be 9, 20, 20 

50 and 120 µmole m-3 for n-alkanes, 1-alkenes, 2-alcohols, and 2-ketones, respectively 

(Matsunaga and Ziemann, 2010). Cw was also found to have positive correlation with 

volatility of organics, spanning 5 orders in Zhang et al. (2015). As our base assumption, 

we use 120 µmole m-3 for this parameter. We also perform sensitivity simulations where 

we assume the values of 9, 20, 50 µmole m-3 and Cw/Mwγw as a function of Ci* 25 

(following Zhang et al. 2015) in a series of sensitivity tests. The kw,off values for each 

volatility bin using 120, 9 µmole m-3 and varying Cw/Mwγw are shown in Table 3. Finally, 

in our base simulations, we assume that the modelled particles and vapors are in 

equilibrium at the start of the experiment in the CMU smog chamber.  However, as the 

CMU chamber was filled, smoke from the FSL burning chamber was diluted by ~25:1, 30 

which would make the vapor-phase organics sub-saturated with respect to the particle 

phase. As a sensitivity test, we assume that particles and vapor are in equilibrium in the 

FSL burning chamber, and that the CMU smog chamber is filled instantly as the FSL 

smoke is diluted by 25:1. It is not clear if this sensitivity study is a better assumption 

than our base assumption (particles and vapors start in equilibrium in the CMU chamber) 35 
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as the CMU smog chamber was actually filled over 30 minutes and thus particles and 

vapors will move towards equilibrium (and particles and vapors will also be lost to the 

walls) during these 30 minutes. However, since we do not know the actual vapor-phase 

concentrations at the time when the CMU chamber is full and particle-phase 

measurements start, we are left with these two assumptions for bounding our results. 5 

The parameters used in the TOMAS model for our base simulations are listed in Tables 

1 and 2, and the properties of the 8 organic volatility bins are shown in Table 3. The 

sensitivity simulations that we perform are summarized in Table 4.  

In addition, previous studies have assumed equilibrium between semi-volatile vapors 

and particles deposited to the walls in the chamber studies (e.g. Weitkamp et al., 2007; 10 

Hennigan et al., 2011), as mentioned in the Introduction section. We tested the 

influence of this equilibrium on the OA and vapor net loss after 1hr evolution. In the test, 

we assume that the equilibrium between semi-volatile vapors and wall-bound particle is 

similar to that between vapors and suspended particles in the chamber, independent of 

the effective wall mass/wall material. The condensation/evaporation of vapors to/from 15 

particles on the wall are treated as identical to suspended particles of the same size (i.e. 

we assume that the particles on the wall undergo identical gas-particle partitioning and 

mass transfer as the suspended particles). The test results show that the percent 

difference between the mean of basic assumption simulations and measurements 

across the 18 experiments is within 1%.  20 

The buildup of wall-deposited particles and vapor on the wall of the chamber that is 

retained between experiments might have impacted the observations we used to 

initialize and compare with our simulations. We therefore modeled this potential 

influence by retaining the wall-deposited particles and vapors and repeating the same  

flush / fill experiment 10 times, simulating 12 hours of “flushing” (the particle and vapor 25 

concentrations in the volume of the chamber set to 0) between experiments. In these 

10-repeat tests, the 10th experiment had an increase of 8.8% in OM in the suspended 

particle phase and 2.9% in the vapor phase due to the slow and thus incomplete 

evaporation of the wall-deposited compounds during the flushing process, and the 

resulting buildup of particles/vapor on the walls slowing vapor deposition to the walls in 30 

the subsequent “experiment” (Figure S3). These results suggest that after a number of 

experiments, the accumulated wall-deposited particles and vapor in the chamber could 

have some influence on the next set of experiments even after the chamber was flushed 

overnight. However, since we do not know the history of the bag outside of these 

FLAME III experiments, we do not attempt to account for these effects in this modeling 35 

study but suggest they may represent an important uncertainty in SOA formation 

studies and should be explored. 

3 Results and discussions 



10 
 

3.1 Base assumption simulations of particle and vapor wall loss 

Figure 2 shows the evolution of particle number, total aerosol mass, and OA mass 

concentrations for the simulations and measurements of the 18 experiments (symbols 

represent the mean values of the 18 experiments, and the error bars show the standard 

deviations of the variability across the 18 experiments) for the base model assumptions 5 

(Tables 1, 2 and 3). The top panels show the results for the 9 experiments with a higher 

initial organic mass fraction (OF, OF>0.8, shown in Table 1) and the bottom panels 

show the 9 experiments with a lower organic fraction (OF<0.8). The choice of OF of 0.8 

as a cutoff was simply to split the experiments evenly. Overall, the evolution of the 

mean trends and standard deviations of aerosol number, mass and OA mass 10 

concentrations are captured by the model when both the particle- and vapor-phase wall 

losses are simulated (blue lines). Because the total time of POA characterization 

differed in the 18 experiments, 1 hr is used as the cutoff time to evaluate the simulation 

results. The percent bias between the mean of these base-assumptions simulations and 

measurements after 1 hr of evolution is -1.4%, -3.1% and -4.8% for number, TA and OA, 15 

respectively, for the high-OF experiments and 0.94%, 6.6% and -0.12% for the low-OF 

experiments (Table 5). The percent bias between the standard deviations of these 

base-assumption simulations and measurements is 11%, 22% and 21% for number, TA 

and OA, respectively, for the high-OF experiments and 4.9%, 31% and 15% for the low-

OF experiments (Table 5). These biases show that the TOMAS model generally 20 

captures the number and mass loss for the high-OF and low-OF experiments. The 

measured TA concentration was calculated from OA measurements using the initial 

OA/TA ratio, assuming an unchanged OA/TA over the course of the experiments. This 

assumption may be the reason for a high bias in TA in the low-OF burns at the end of 

the simulations (panel e) because the final OA/TA ratio will be lower than the initial due 25 

to vapor losses and subsequent OA evaporation. Thus the “measured TA” for the low-

OF burns should be viewed as uncertain and likely biased low. 

Figure 3 shows the modeled evolution of organics between the particle phase, vapor 

phase and the wall for the mean and standard deviation of the 18 simulations (panel a) 

along with the overall mass budget and the budgets for specific processes, integrated 30 

over the simulation (panel b). Modeled organic vapor concentrations decrease rapidly, 

due to vapor loss to the walls, while mass lost due to particle deposition to the walls is 

much lower in our base simulations (Figure 3a).  We estimate that the organic vapor 

concentration decreases by 86±2.0% of the initial vapor concentration on average, 

driven by these losses to the walls and only partially compensated for by evaporation of 35 

particles, which decreases particulate-phase mass concentrations and replenishes 

some of the lost vapor. 41±4.8% of the total initial particulate-phase organic mass is lost, 

with 65% of this mass loss attributed to direct particle deposition to the walls, and 35% 

from particle evaporation driven by the wall loss of vapors (Figure 3b). The removal of 
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vapors to the walls perturbs the initial particle-gas equilibrium sub-saturating the vapor 

phase with respect to the particles and thus leads to evaporation from the particulate 

phase; thus particle-organic evaporation is estimated to play a relatively important role 

in the total loss of particle-phase organic mass during the experiments under our base 

assumptions.   5 

Note that as long as the vapors are supersaturated with respect to the walls (i.e., koff < 

kon), the uptake of vapors to the wall will continue to keep the vapors subsaturated with 

respect to the particles, and the particles will continue to evaporate (until they have 

entirely evaporated). This evaporation of the particles due to vapor uptake by the walls 

is analogous to the Bergeron-Findeisen process in mixed-phase clouds where liquid 10 

droplets evaporate and ice crystals grow: the vapor pressure of water with respect to ice 

is lower than the vapor pressure with respect to water, and in our experiments the 

organic vapor pressure with respect to the walls is lower than the respect to the 

particles. In our base-assumption calculations, koff << kon throughout the experiments, 

which highlights the large vapor-uptake capacity of walls as discussed in Yeh and 15 

Ziemann (2014).  

We perform additional tests where we turn particle and vapor losses off individually to 

evaluate the influence of the two mechanisms on each other (Figures 2 and 3b). When 

particle loss is turned off, mass loss of particles through evaporation increases by 10% 

over the course of the 60 min simulation, due to the higher particle surface area 20 

retained suspended in the chamber, which allows for faster evaporation. When vapor 

loss is turned off, 10% more mass is lost by particle wall loss than in the base simulation. 

Note that for the results shown in Figure 2, neither particle nor vapor wall losses alone 

can explain the OA or TA mass lost in the experiments using our base assumptions. On 

the other hand, particle wall losses alone account for the particle number concentration 25 

losses during the experiment, as expected. 

The mean (across the 18 experiments) changes in the volatility distributions of organic 

species for the base-assumptions simulations and for the scenarios with particle and 

vapor wall losses on/off are shown in Figure 4. In our simulations including vapor wall 

losses (Figs. 4b and 4c), the vapor-phase organic species are almost entirely removed 30 

to the walls. Furthermore, the remaining particle-phase species are shifted to those with 

lower volatilities due to evaporation of the higher-volatility compounds (C* of 102 

through 104). The strong loss of these semi-volatile vapors, if they are SOA precursors, 

suggests that SOA production as observed in these wood-smoke smog-chamber 

experiments may have been biased low, or may have proceeded only through certain 35 

precursors that were not strongly removed by these processes. We will explore these 

SOA-production biases in future work.   

3.2 Sensitivity tests on the model parameters 
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We perform a series of sensitivity tests for several model parameters to determine if the 

results for the base assumptions are robust to various uncertainties. As described 

above, our sensitivity parameters are the initial volatility distribution, the effective wall 

saturation concentration coefficients (Cw/Mwγw), the accommodation coefficients for 

vapor species absorbed into the walls and into particles, and the possible effects of 5 

dilution while filling the chamber (Table 4). 

3.2.1 Effect of volatility distribution bounds 

The upper and lower bounds of volatility distribution that we test were derived based on 

the experimental uncertainty in the study of May et al. (2013b). The lower- and upper-

bound volatility distributions are shown in Figures 1b and c. Figure 5 shows the 10 

comparison of the model to the measurements for these initial distributions. The percent 

bias between the mean OA of these simulations and measurements is -15%, -4.8% and 

2.2% for the higher-bound, base and lower-bound distributions, respectively, for high-

OF experiments and -12%, -0.12% and 5.1% for low-OF experiments (Table 5). Thus, 

the lower-bound distribution of May et al. (2013b) better estimates the high-OF 15 

experiments while the best-fit distribution provides the best results for the low-OF 

experiments (with all other parameters set to their base values). The final TA in high-

volatility simulations matches the measurements better than the other volatility 

assumptions for the low-OF experiments; however, as discussed earlier the final 

measured TA in the lower-OF experiments is likely biased high, and this is 20 

compensated by the bias caused by the higher-volatility distribution. Figure 6 shows the 

decrease in particle and vapor organics throughout the simulations. The lower bound 

volatility distribution simulations had more particle-phase organics with lower volatilities, 

which caused a decrease of 29% in the particle-phase organic mass loss by 

evaporation, relative to the base-case simulations. Conversely, the upper bound 25 

volatility distribution simulations have 18% more particle-phase organic mass lost 

relative to the base-assumption simulations (48% lost rather than 41%), due to more 

evaporation. While the relative importance of particle-phase wall loss versus vapor-

phase wall loss followed by particle evaporation for determining total accumulated 

particle-organic mass loss shifts somewhat depending on the volatility distribution, both 30 

pathways of particle-phase organic mass loss have non-trivial contributions regardless 

of the assumed volatility distribution (Figure 6). In addition, as mentioned before, since 

May et al. (2013b) did not consider vapor wall loss when deriving the volatility 

distribution, our calculations may underestimate the importance of vapor wall losses and 

the uncertainty attributable to the uncertainty in the volatility distribution may be larger 35 

than 18%.    

3.2.2 Effect of Cw/Mwγw 
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Cw/Mwγw, the parameters describing the saturation concentration of the vapor with 

respect to the wall, was measured to be 9, 20, 50 and 120 µmole m-3 for different 

organic species in Matsunaga and Ziemann (2010). Varying Cw/Mwγw over this range 

has no significant change on the simulation (Figure 7). The simulation using the lower 

bound of Cw/Mwγw (9 µmole m-3) causes a 26% lower total amount of vapor to be lost to 5 

the wall compared with the higher bound (Figure 8), because kw,off values are ~1 order 

of magnitude faster under the 9 µmole m-3 assumption (Table 3). Even though the net 

vapor loss is slowed somewhat, the mean particle-organic mass remaining at the end of 

the experiments is not significantly different (< 0.9% increase) from the 120 µmole m-3 

assumption. In the study of Zhang et al. (2015), Cw was found to be highly dependent 10 

on the volatility and solubility in Teflon polymer. Use of adapted varying Cw/Mwγw values 

(Table 3) in our model shows a high bias in the final predicted OA (6.3% for high-OF 

experiments and 7.6% for low-OF experiments) and a decrease of 65% in the net vapor 

loss relative to the base-assumption simulation. The contribution of the evaporative OA 

lost to the wall also decreases from 35% to 21% of the total OA loss. These findings 15 

resulted because the adapted Cw/Mwγw values (1.30 × 10-5 – 11.1 µmole m-3, Table 3) 

for C* bins from 10-3 to 104 from Zhang et al. (2015) are generally smaller than in the 

base case (9-120 µmole m-3), which increases koff and thus lowers the net vapor uptake 

to the wall. Our simulations demonstrate that Cw or Cw/Mwγw is an important parameter 

in the model, especially for vapor wall loss estimation, and use of Cw/Mwγw in the range 20 

of  9-120 µmole m-3 captures the OA evolution in the wood-smoke chamber (when other 

parameters are set to their base assumptions), although this range of Cw/Mwγw was 

measured for relatively higher volatility organic species (e.g. n-alkane, C5-C16 with C* 

bins of 105-109 µg m-3, exceeding our simulated volatility range) and it may not be 

appropriate to use a single value for all C* bins. To improve the model simulation and 25 

reduce the uncertainty in vapor loss estimation, more work is needed to develop 

accurate Cw or Cw/Mwγw values for organic species present in wood smoke and relevant 

to the chamber materials used in SOA experiments. 

3.2.3 Effect of accommodation coefficients for vapor with the wall and particles 

In our base-assumptions simulations, particle mass is lost in similar amounts via particle 30 

deposition and via evaporation (driven by vapor wall losses). This result suggests that 

assumptions regarding the accommodation coefficients for condensation onto the wall 

and/or onto particles (αw, αp), may influence the particle-organic mass loss via 

evaporation. Figures 9, 10 and 11 show how modifying the accommodation coefficients 

alter our simulations. In our base simulation, we assumed values of 10-5 and 1 for αw 35 

and αp, respectively as used in Matsunaga and Ziemann (2010) and May et al. (2013b).  

To test the effects of uncertainty in αw, we perform sensitivity studies where (1) αw is 

calculated as a function of C*i with a range from 10-8 to 10-6 as proposed by Zhang et al. 

(2015) and shown in Table 3, and (2) w is set to a constant value of 10-4, 10-2, and 1, 
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respectively, and αp is set to unity. Figure 11 shows that applying the lower αw as a 

function of C*i, from Zhang et al. (2015) causes only a 3.9% decrease in vapor-organics 

concentrations, and the vapor evaporation from particles is almost entirely suppressed 

because kw,on for C*i dependent αw is several orders of magnitude lower than in the 

base-assumptions simulation (αw of 10-5, Table 3) and thus leads to negligible vapor 5 

wall loss on the 1 hr experimental timescale, compared with more substantial particle 

wall losses. These results are very similar to our simulations with no vapor loss, and 

thus they lead to a high bias in final OA (12 and 14% for high- and low-OF simulations, 

Table 5) relative to the measurements, showing that these lower αw values may be 

unrealistic. For the simulations using higher αw (10-4, 10-2, and 1), we find when αw 10 

increases above 1×10-4, accommodation of vapors to the wall no longer limits the vapor 

wall-loss rate and exerts limited influence on OA loss, as shown in Figure 11. The total 

OA loss increases from 41% to 47% of initial particle-phase organic mass if αw 

increases from 10-5 to 10-4, causing a lower bias in the final OA (-14% and -9.5% for 

high- and low-OF simulations, Table 5). The proportion of OA wall loss via particle wall 15 

loss versus particle evaporation changes from 65%:35% to 52%:48%, due to increased 

vapor wall losses. In summary, αw is an important factor in our calculations although its 

effect saturates for αw larger than 10-4.  

We also test non-unity values of αp (0.01 and 0.001). While these non-unity αp values 

have been suggested for both biogenic and anthropogenic SOA studies (Zhang et al., 20 

2014 and McVay et al., 2014), it is not clear if these values are applicable to primary 

wood-smoke aerosol. αp of 0.01 and 0.001 decreases the particle-organic mass loss by 

evaporation by 51% and 85% of the base-assumptions simulations, respectively, 

(Figure 11) because the reduced αp increases the time-scale for particle evaporation 

and less vapor is consequently transferred to the gas-phase. As a result, the final OA 25 

concentrations are biased high by 0.44% and 8.3% for αp of 0.01 and 0.001 for the high-

OF simulations and by 6.3% and 12% for the low-OF simulations (Table 5), which 

shows that αp of 0.01 may be still applicable to our study but  αp of 0.001 may be less 

likely than our base assumption of unity. Thus, changing the accommodation 

coefficients may significantly alter the particle mass loss by increasing the evaporation 30 

timescales; however, the changes in the accommodation coefficients from our base 

values may worsen the comparisons to measurements (Figures 9 and 10), depending 

on the combination of other parameters used in the model.   

3.2.4 Effect of the dilution  

In our base case simulations, we assume that the particles and vapors are in 35 

equilibrium at the time when the measurements started in the smog chamber. As 

discussed earlier, in the FLAME III experiments, the POA was diluted by ~25:1 as it was 

moved from the burn chamber to the smog chamber. Thus, it is possible that the vapor 

and particles were not in equilibrium at the start of the measurements. To test the 
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sensitivity of our findings to the assumption that the particles and vapor were in 

equilibrium at the start of the measurements, we perform alternate simulations where 

we assume that the particles and vapor are in equilibrium prior to dilution, and the smog 

chamber is filled instantly with the simulation starting at this point, and thus the particles 

and vapor are out of equilibrium at the start of the simulation. Note that the initial total 5 

particle concentrations are still the same; however, the vapor concentrations and 

particle composition have changed compared to the start of the base case. As 

discussed earlier, it is not clear if these instant-dilution simulations are a better 

assumption than our base assumption of initial equilibrium because the CMU chambers 

were filled by the diluted air gradually over 30 minutes, and thus the system would have 10 

some time to equilibrate (and/or for particles and vapors to be lost to the walls) before 

the experiment started. However, we treat the instant-dilution assumption as a bounding 

sensitivity test to our initial-equilibrium assumption. 

Figures 11 and 12 show the results of these simulations. The dilution of gas and aerosol 

by 25 times in the smog chamber drives the particles to evaporate. The dilution exerts 15 

no significant influence on the number loss (Figures 12 and 13). The particle-organic 

mass lost to the walls increases by 33% relative to our base-assumptions simulations 

due to the additional evaporation from particles caused by dilution into clean air. 

Particle-phase wall loss decreased by 20% and mass loss as vapor increased by 131% 

in instantaneous dilution simulation compared with the base simulation (Figure 13). 20 

Thus, whether the particles reach equilibrium after dilution into the smog chamber is an 

important consideration. However, the instant dilution causes OA losses to be 

significantly larger than the observed decreases (Figure 12), thus this assumption is 

likely unrealistic for these experiments with slow dilution. On the other hand, considering 

that some sensitivity simulations for the accommodation coefficients (αp and αw) and 25 

wall saturation coefficients (Cw/Mwγw) showed hindered evaporation relative to the base 

assumptions, it is possible that the evaporation driven by dilution is dampened by lower 

accommodation coefficients (not shown). Thus, while our base assumptions provided 

the best comparison to the measurements of the simulations tested, it is plausible that 

some combination of parameters may also provide simulation results that match the 30 

measurements. 

3.2.5 Discussion on potential SOA-formation effects 

The study of SOA formation in FLAME III was performed for 3-4.5 hours after POA 

measurement by turning on UV light or sunlight (Hennigan et al., 2011). The light was 

turned on after the particles had typically been in the chamber for ~75 minutes. SOA is 35 

usually formed from the oxidation of the gaseous semi-volatile or intermediate-volatility 

species (Nakao et al. 2011 and Yee et al., 2013). During the period prior to photo-

oxidation, the concentrations of these vapors may drop by over 90% within an hour 

under our base assumption (Figure 3b). Thus, vapor wall loss may have significant 
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influence on SOA production. In addition, SOA is subject to the same particle- and 

vapor-phase loss mechanisms as is POA during the experiments. However, due to the 

reversible nature of vapors on the wall, vapors may be released from the wall if 

significant precursor vapors are consumed by photo-oxidation. To properly estimate the 

SOA production in wood-smoke plumes in the atmosphere, one must correct the 5 

fraction of precursor vapors in the smoke that were lost to the wall and not available for 

photo-oxidation, and thus the uncorrected estimates of SOA production in Hennigan et 

al. (2011) may be an underestimate. In this work, we only simulated species with 

saturation concentrations 104 µg m-3 and lower, while precursor vapors may also be at 

higher saturation concentrations. Given the relationships between saturation 10 

concentration and wall uptake that we use in the sensitivity test (Zhang et al., 2015), 

higher volatility vapors may not be lost to the walls as efficiently as those in the volatility 

range tested here. To perform the wall-loss correction for wood-smoke SOA, we must 

also know which vapors (or which volatility bins) contain the precursors for SOA 

formation, and thus we leave the losses of these higher volatility vapors and the 15 

simulation of SOA formation for future work. 

4. Conclusions 

We systematically investigate particle and vapor wall losses in controlled wood-smoke 

smog-chamber experiments. The semi-volatile nature of biomass-burning primary 

organic aerosol means that both particles and vapors may be lost to Teflon smog 20 

chamber walls. Vapor loss to the walls may lead to evaporation of the particles, and 

may lead to a reduction in the concentration of SOA precursors in the wood-smoke 

experiments.  

We use the TOMAS microphysics box model coupled with particle and vapor wall-loss 

formulations to estimate particle and vapor wall loss in 18 wood-smoke smog-chamber 25 

chamber experiments. The TOMAS model generally captures the number and mass 

loss (SMPS and AMS data) across the 18 wood-smoke chamber experiments under our 

base assumptions for several uncertain parameters. The percent bias between average 

base-assumption simulations and measurements after 1 hr of evolution is -1.4%, 3.1% 

and -4.8% for number, TA (total aerosol) and OA (organic aerosol), respectively, for the 30 

high-OF (organic fraction) experiments and 0.94%, 6.6% and 0.12% for the low-OF 

experiments. The percent bias between the standard deviations of these base-

assumption simulations and measurements is 11%, 22% and 21% for number, TA and 

OA, respectively, for the high-OF experiments and 4.9%, 31% and 15% for the low-OF 

experiments. Under the simulations with our best-guess parameters, the model 35 

estimates that the particle-organic mass loss by direct particle wall loss and organic 

evaporation driven by vapor wall loss are roughly equally important contributing 65% 

and 35% of the total loss (average across the 18 experiments), respectively. The vapor 

concentration drops by 86% of its initial value due to vapor wall loss. As a result, the 
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volatility distribution of the remaining mass in the chamber shifts to lower volatilities by 

the end of the experiment. 

We conducted sensitivity tests by parameter perturbation to explore uncertainties in 

several model inputs: the volatility distribution, the effect of assumed saturation 

concentrations for the wall (Cw/Mwγw), and the accommodation coefficients of the vapor 5 

phase organics with particles (αp) and the wall (αw). The model uncertainties of final OA 

concentration estimated using volatility distribution bounds provided in May et al. (2013) 

is ~18% of the value relative to the base assumption simulations. The total organic 

mass loss is generally insensitive to Cw/Mwγw for the range of values provided by 

Matsunaga and Ziemann (2010) (i.e. 9-120 µmole m-3), but the vapor uptake to the 10 

walls and evaporation of particles is greatly dampened if the volatility dependent values 

suggested by Zhang et al. (2015) are used. αp and αw are demonstrated to be important 

parameters in the model simulation. Comparison between measurements and our 

simulations suggests that αw of 10-5 and αp of 1 or 0.01 are applicable in our wood 

smoke chamber simulations when other parameters were set to their base assumptions. 15 

Finally, the dilution between the source aerosol and the smog chamber can cause an 

increase of 33% in the total particulate organic mass loss to the chamber walls, due to 

an increase in organic particle evaporation driven by the dilution into clean air. 

While our base assumptions of the uncertain parameters provided the best comparison 

to measurements in the simulations tested here, it is plausible that another combination 20 

of parameters (e.g. vapors initially subsaturated with lower accommodation coefficients) 

may also provide agreement with the measurements. Unfortunately, without direct 

measurements of the semi-volatile vapors it is not possible to entirely constrain the loss 

processes in the chamber, so we are left to test values suggested in previous work.   

As SOA from wood smoke is suspected to be formed from photo-oxidation of semi-25 

volatile and/or intermediate-volatility species, our studies indicate that most of the SOA 

precursor vapors may be lost to the smog chamber walls during controlled wood-smoke 

SOA experiments. These vapor losses could cause a potentially large underestimation 

of the SOA that may be produced in the atmosphere from oxidation of wood-smoke 

emissions. However, further investigation as to how wall losses affect SOA production 30 

in smog chamber studies awaits new data on the identities and volatilities of the key 

precursor species. 
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Table 1. Data for 18 wood smoke samples introduced to the smog chamber, including fuel types, initial number 
concentration measured by scanning mobility particle sizer (SMPS) and corresponding size distribution parameters 
(median diameter in nm and standard deviation, σ), initial total aerosol nonrefractory mass concentration as measured by 
the Aerodyne quadruple aerosol mass spectrometer (Q-AMS), the organic mass fraction in the aerosol phase, derived 
turbulence rate (ke, s-1) and size-independent particle wall-loss coefficient (kw,p0, s-1) used in the Aerosol Parameters 
Estimation (APE) model. The Burn ID refers to the schedule of burns in FLAME III, as reported in Hennigan et al. (2011). 
The initial time is taken as the end of the chamber filling period, equivalent to the start of the 75 minute mixing and 
characterization period, as described in the text. 

Burn 
ID 

Fuel type Temp (K) 

Initial particle 
number 

concentration 
(cm-3) 

Num. size dist. Initial total 
mass 

concentration1 
(µg m-3) 

Organic 
mass 

fraction2 
kw,p0 (s

-1) ke (s
-1) Median 

diameter 
(nm) 

σ 

37 Lodgepole Pine 292.9 5843 157 1.73 44.96 0.943 8.03×10-5 1.07 

38 Lodgepole Pine 286.8 7612 127 1.67 40.96 0.896 6.27×10-5 1.41 

40 Ponderosa Pine 279.5 6505 160 1.84 63.73 0.954 8.67×10-5 0.69 

42 Wire Grass 277.0 8107 123 1.55 19.63 0.484 1.07×10-4 0.77 

43 Saw Grass 284.2 5406 123 1.73 18.16 0.347 1.07×10-4 0.52 

45 Turkey Oak 286.3 6334 106 1.63 16.80 0.506 8.11×10-5 0.99 

47 Gallberry 286.7 8265 123 1.61 39.16 0.881 7.37×10-5 0.19 

49 Sage 285.0 5486 127 1.71 17.76 0.321 8.84×10-5 0.84 

51 Alaskan Duff 282.5 4175 88 1.83 20.38 0.898 7.00×10-5 0.32 

53 Sage 287.2 5619 132 1.76 16.09 0.348 8.43×10-5 0.91 

55 White Spruce 281.6 4641 115 1.83 27.73 0.761 8.13×10-5 0.31 

57 Ponderosa Pine 277.9 6624 161 1.81 72.83 0.935 8.43×10-5 0.96 

59 Chamise 281.9 7173 148 1.79 24.89 0.221 7.58×10-5 0.83 

61 Lodgepole Pine 283.1 6059 153 1.79 63.03 0.944 6.30×10-5 0.29 

63 Pocosin 277.9 7463 112 1.65 26.20 0.603 8.46×10-5 0.37 

65 Gallberry 275.3 7763 159 1.68 85.98 0.899 1.43×10-4 0.62 

66 Black Spruce 279.0 9828 96 1.66 35.21 0.852 1.02×10-4 0.36 

67 Wire Grass 274.5 11580 129 1.52 36.51 0.619 5.78×10-5 0.28 
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1
total mass = [OA] + [SO4

2-
] + [NO3

-
] + [NH4

+
] + [Cl

-
] + [BC] 

2
organic fraction = [OA]  / ([OA] + [SO4

2-
] + [NO3

-
] + [NH4

+
] + [Cl

-
] + [BC])
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Table 2. Parameters used in the base-assumption simulations. 

Parameter definition value 

αp 
accommodation coefficient of vapor 

species on particle 
1 

A/V 
surface-area-to-volume ratio of the 

chamber (m-1), assuming the bag chamber 
to be cubic 

3.14 

αw 
accommodation coefficient of vapor 

species on the wall 
1.0×10-5 

Ci
* saturation concentration range (µg m-3) [10-3 10-2 10-1 100 101 102 103 104] 

ΔHvap,i heat of vaporization (kJ mol-1) 85-4×logCi
*,1 

Mi species molecular weight (g mol-1) 434-45×log10Ci
*,2 

T Temperature (K) 
Varied, according to the 

measurement in each burn (Table 1) 
1
May, et al. (2013b) 

Robinson, et al. (2007), the detailed values are shown in Table 3 
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Table 3. Molecular weight (g mol-1) associated with each vapor pressure bin, computed for a temperature of 298K 
followed the calculation equation in Table 2, varying Cw/Mwγw as a function of vapor pressure bins, wall loss rates (s-1, kw, 

on and kw, off for 120, 9 µmole m-3 and varying Cw/Mwγw) and accommodation coefficients between gas and wall (α
w
) for 

each volatility bin in the base-assumptions simulation and the sensitivity tests. 

Ci* (µg m-3) 10-3 10-2 10-1 100 101 102 103 104 

Molecular 
weight (g 

mol-1) 
569 524 479 434 389 344 299 254 

varying 
Cw/Mwγw

1 
1.30×10-6 9.16×10-5 6.44×10-4 4.53×10-3 3.18×10-2 2.24×10-1 1.57 11.1 

α
w, base 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5 

α
w, sens

4
 1.80×10-6 1.16×10-6 7.45×10-7 4.79×10-7 3.08×10-7 1.98×10-7 1.27×10-7 8.17×10-8 

k
w,on(base, s-

1) 
7.33×10-4 7.58×10-4 7.86×10-4 8.18×10-4 8.54×10-4 8.97×10-4 9.47×10-4 1.01×10-3 

k
w,off (s

-1,120 
µmol m-3)2 1.07×10-11 1.21×10-10 1.37×10-9 1.57×10-8 1.83×10-7 2.17×10-6 2.64×10-5 3.31×10-4 

k
w,off(s

-1,9 
µmol m-3)3 7.01×10-11 8.09×10-10 9.44×10-9 1.11×10-7 1.33×10-6 1.62×10-5 2.02×10-4 2.59×10-3 

kw,off(s
-1, 

varying 
Cw/Mwγw)1

 

3.95×10
-4 

6.31×10
-4 

1.02×10
-3 

1.67×10
-3 

2.76×10
-3 

4.66×10
-3 

8.04×10
-3 

1.43×10
-2 

k
w,on (s

-

1,αw,sens)
4 

1.55×10
-4 1.05×10

-4 7.15×10
-5 4.86×10

-5 3.31×10
-5 2.27×10

-5 1.56×10
-5 1.09×10

-5 
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k
w,off(s

-

1,αw,sens)
4 

2.27×10
-12 1.68×10

-12 1.24×10
-11 9.32×10

-10 7.09×10
-9 5.50×10

-8 4.36×10
-7 3.59×10

-6 

k
w,on (s

-1
,αw, of 1× 10

-

4
) 

2.77×10
-3

 2.81×10
-3

 2.85×10
-3

 2.89×10
-3

 2.94×10
-3

 2.99×10
-3

 3.05×10
-3

 3.12×10
-3

 

k
w,off(s

-1
,αw  of 1× 10

-

4
,) 

4.06×10
-11

 4.47×10
-10

 4.96×10
-9

 5.55×10
-8

 6.30×10
-7

 7.25×10
-6

 8.51×10
-5

 1.02×10
-3

 

k
w,on (s

-1
,αw, of 1× 10

-

2
) 

3.99×10
-3

 4.00×10
-3

 4.01×10
-3

 4.01×10
-3

 4.02×10
-3

 4.03×10
-3

 4.04×10
-3

 4.06×10
-3

 

k
w,off(s

-1
,αw  of 1× 10

-

2
,) 

5.85×10
-11

 6.36×10
-10

 6.97×10
-9

 7.70×10
-8

 8.61×10
-7

 9.76×10
-6

 1.13×10
-4

 1.33×10
-3

 

k
w,on (s

-1
,αw, of 1) 4.01×10

-3
 4.02×10

-3
 4.02×10

-3
 4.03×10

-3
 4.03×10

-3
 4.04×10

-3
 4.06×10

-3
 4.07×10

-3
 

k
w,off(s

-1
,αw  of 1)

 5.88×10
-11

 6.39×10
-10

 7.00×10
-9

 7.73×10
-8

 8.64×10
-7

 9.80×10
-6

 1.13×10
-4

 1.34×10
-3

 

1
Cw/Mwγw as a function of saturation concentration adapted from Zhang et al. (2015)

 

2
Upper bound and 

3
lower bound of Cw/Mwγw derived from Matsunaga and Ziemann (2010) 

4
Accommodation coefficients adopted from Zhang et al. (2015). 
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Table 4. Sensitivity tests varying the input parameters. 

Parameter Range of observations 

a. Volatility distribution 
May et al. (2013b) best fit; upper and lower envelopes (see 
Figure 2 for details) 

b. Effective wall saturation 
concentration (Cw/Mwγw, µmole 
m-3) 

9, 20, 50, and 120 for n-alkanes, 1-alkenes, 2-alcohols, and 
2-ketones, respectively, after Matsunaga and Ziemann 
(2010) 
As a function of saturation concentration (Ci*) (adapted from 
Zhang et al., 2015) 

c. Accommodation coefficient 
for vapor with the wall (αw) and 
particles (αp) 

Proposed as a function of saturation concentration (Ci*) 
(Zhang et al., 2015)  
0.01 and 0.001 as suggested by McVay et al. (2014) 

d. Dilution process 

Particles and vapor assumed in equilibrium before being 
diluted by 25:1 when filling the smog chamber.  (In other 
simulations, the particles and vapor were assumed to be in 
equilibrium immediately after dilution.)  

 

 



31 
 

Table 5. The percent bias between the mean and the standard deviations of these simulations (including base-
assumptions simulation and other sensitivity tests) and measurements after 1 hr of evolution. 

 
High-OF experiments  Low-OF experiments 

 
Number Conc. 

Total Aerosol 
Mass Conc. 

Organic 
Aerosol Mass 

Conc. 
 Number Conc. 

Total Aerosol 
Mass Conc. 

Organic 
Aerosol Mass 

Conc. 

Base-
assumptions 
simulation 

-1.4%±11% -3.1%±22% -4.8%±21%  0.94%±4.9% 6.6%±31% -0.12%±15% 

Simulation with 
lower bound of 
volatility 
distribution 

-1.4%±11% 3.3%±13% 2.2%±11%  0.90%±4.8% 9.1%±38% 5.1%±23% 

Simulation with 
higher bound of 
volatility 
distribution 

-1.6%±12% -13%±28% -15%±27%  0.94%±4.8% 0.91%±25% -12%±6.1% 

Simulation using 
Cw/Mwγw of 50 
µmole m-3 

-1.4%±11% -3.0%±22% -4.6%±21%  0.93%±4.9% 6.6%±31% -0.06%±15% 

Simulation using 
Cw/Mwγw of 20 
µmole m-3 

-1.4%±11% -2.6%±21% -4.2%±20%  0.94%±4.8% 6.7%±32% -0.09%±15% 

Simulation using 
Cw/Mwγw of 9 
µmole m-3 

-1.4%±11% -2.0%±20% -3.6%±19%  0.94%±4.8% 6.8%±32% 0.34%±15% 

Simulation using 
varying Cw/Mwγw 

-1.4%±11% 9.7%±9.5% 9.2%±7.4%  0.91%±4.8% 12%±38% 10.4%±24.5% 

Simulation using 
varying αw 

-1.3%±11% 12%±4.0% 12%±1.9%  0.96%±4.9% 12%±44% 14%±31% 

Simulation using αw of 
10

-4 -1.7%±12% -11%±29% -13%±28%  0.96%±4.9% 2.7%±25% -8.3%±7.4% 

Simulation using αw of 
10

-2 -1.7%±12% -12%±30% -14%±29%  0.91%±5.0% 2.0%±24% -9.7%±6.2% 

Simulation using αw of 
1 -1.7%±12% -12%±30% -14%±29%  0.90%±5.0% 2.0%±24% -9.7%±6.2% 

Simulation using -1.4%±11% 1.3%±16% 0.44%±15%  0.92%±4.9% 8.0%±38% 6.3%±22% 
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αp of 0.01 

Simulation using 
αp of 0.001 

-1.4%±11% 8.5%±8.1% 8.3%±6.3%  0.94%±4.9% 10%±41% 12%±28% 

Simulation with 
instantaneous 
dilution 

-2.1%±12% -24%±40% -27%±40%  0.69%±5.2% -4.6%±6.7% -23%±15% 



33 
 

  

Figure 1. a) Best fit volatility distribution, b) lower bound of volatility distribution and c) upper bound of volatility distribution 
as reported in May et al. (2013) for a total initial average organic aerosol mass concentration of 42.7 µg m -3 over the 18 
experiments. The shaded areas represent the organic mass in each volatility bin that is predicted to be in the aerosol 
phase, for average OC concentration 



34 
 

 

Figure 2. Comparison between the average of the measurements and the average of the model simulations of the 18 
experiments for a) particle number concentration (cm-3), b) total submicron aerosol mass concentration (TA, µg m-3) and c) 
organic aerosol mass concentration (OA, µg m-3) for the burns with high aerosol organic mass fraction, OF>0.8; d) as in 
(a)-(c), but for the burns with low aerosol organic mass fraction, OF<0.8. Burns with OF>0.8 included burns 37, 38, 40, 47, 
51, 57, 61, 65 and 66; the low OF experiments were burns 42, 43, 45, 49, 53, 55, 59, 63, and 67. The error bars and 
shaded areas represent one standard deviation in the measurements and the model simulations, respectively, and 
represent variations between the various experiments rather than uncertainties.  
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Figure 3. a) Time evolution of organic mass (OM) in the particle and vapor phases, and 
vapor- and particle-phase losses to the chamber walls averaged over the 18 simulations 
with base assumptions (in units of µg m-3, the mass of particles and vapor on the wall 
has been normalized by the volume of the bag); b) Organic species budgets for the 
base simulation and two sensitivity studies. The vertical bars show the fraction of the 
initial assumed total organic aerosol (OA) that is removed from the chamber volume 
during the 75 min simulation period (blue); lost to the walls via depositional removal of 
particles (light blue); transferred from the particle phase to the vapor phase (blue 
hatched). The blue bars have been normalized by the initial particulate organic mass. 
The purple bars show the total fractional organic vapor that is removed from the 
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chamber during the simulation period. The error bars represent one standard deviation 
in the simulations of the 18 burns and represent burn-to-burn variability. 
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 Figure 4. The total organic mass concentration, distributed into its volatility bins, at a) 
initial time, i.e., the distribution recommended in May et al. (2013b), for a total initial 
average organic aerosol mass concentration of 42.7 µg m-3 over the 18 experiments; 
and at the end of the 1h simulation for b) the base-assumptions simulations; c) the 
simulation in which particle losses to the walls were turned off; d) the simulation in 
which vapor losses to the walls were turned off. Height of bars represents the total mass 
expected for that volatility bin. Solid regions in the bars represent the organic mass 
present in the particle phase and open regions represent the mass in the vapor phase.  
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Figure 5. Similar to Figure 2 but comparing simulations with bounding initial volatilities derived from May et al. (2013b).  
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Figure 6. The organic species mass budgets for the base-assumptions simulations and two sensitivity studies using 
bounding volatility distributions. All other variables as in Figure 3b. 
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Figure 7. Similar to Figure 2 except using different Cw/Mwγw of 120 (base-assumptions simulation), 50, 20, 9 µmole m-3 

and varying Cw/Mwγw (adapted from Zhang et al. 2015).  
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Figure 8. The organic species mass budgets for the base-assumptions simulations (Cw/Mwγw of 120 µmole m-3)  and three 
other sensitivity simulations using lower wall saturation concentration (Cw/Mwγw of 50, 20 and 9 µmole m-3) and varying 
Cw/Mwγw (adapted from Zhang et al. 2015). All other variables as in Figure 3b. 



42 
 

 

Figure 9. Similar to Figure 2 except for the simulations with different accommodation coefficients of vapor with walls, αw, 
computed as a function of Ci* (Zhang et al., 2015) and taking the values of 1×10-4, 1×10-2 and 1. 

 



43 
 

 

 

Figure 10. Similar to Figure 2 except for the simulations with different accommodation coefficients of vapor with particles 
(αp) of 0.01 and 0.001.  
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Figure 11. The organic species mass budgets for the base-assumptions simulations (accommodation coefficient of vapor 
with wall (αw) of 1×10-5 and accommodation coefficient of vapor with particle (αp) of 1 and the sensitivity studies on αw (as 
the function of Ci* and of the values 1×10-4, 1×10-2, and 1) and αp (of 0.01 and 0.001). All other variables as in Figure 3b.  
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Figure 12. Similar to Figure 2 but for the simulation with instantaneous dilution by 25:1.  
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Figure 13. The organic species mass budgets and total number net loss for the base-assumptions simulations and 

instant-dilution simulations. See Figure 3b for a full description. 

 

 


