Emissions of nitrogen oxides from U.S. urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005–2014

Zifeng Lu^{1,*}, David G. Streets¹, Benjamin de Foy², Lok N. Lamsal^{3,4}, Bryan N. Duncan⁴, and Jia Xing⁵

¹ Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, USA

² Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA

³ Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD 21046, USA

⁴ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁵ US Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Manuscript submitted to

Atmospheric Chemistry and Physics

September 1, 2015

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

^{*} Corresponding author: Tel: 630-252-9853; Fax: 630-252-8007; Email: zlu@anl.gov

Emissions of nitrogen oxides from U.S. urban areas:

2 estimation from Ozone Monitoring Instrument retrievals for

3 **2005–2014**

- 4
- Zifeng Lu¹, David G. Streets¹, Benjamin de Foy², Lok N. Lamsal^{3,4}, Bryan N.
 Duncan⁴, and Jia Xing⁵
- 7 [1] Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, USA
- 8 [2] Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO
 9 63108, USA
- 10 [3] Goddard Earth Sciences Technology and Research, Universities Space Research
- 11 Association, Columbia, MD 21046, USA
- 12 [4] NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- 13 [5] US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- 14

16

17 Abstract

Satellite remote sensing of tropospheric nitrogen dioxide (NO₂) can provide valuable 18 19 information for estimating surface nitrogen oxides (NO_x) emissions. Using an exponentially-20 modified Gaussian (EMG) method and taking into account the effect of wind on observed NO₂ distributions, we estimate three-year moving-average emissions of summertime NO_x 21 22 from 35 U.S. urban areas directly from NO₂ retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following conclusions of previous studies that the EMG method 23 provides robust and accurate emission estimates under strong-wind conditions, we derive top-24 25 down NO_x emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3-5 m s⁻¹. Meanwhile, we find that OMI NO₂ observations under 26 weak-wind conditions (i.e., $<3 \text{ m s}^{-1}$) are qualitatively better correlated to the surface NO_x 27 28 source strength in comparison to all-wind OMI maps; and therefore we use them to calculate

¹⁵ Correspondence to: Z. Lu (zlu@anl.gov)

the satellite-observed NO₂ burdens of urban areas and compare with NO_x emission estimates. 1 2 The EMG results show that OMI-derived NO_x emissions are highly correlated (R>0.93) with 3 weak-wind OMI NO₂ burdens as well as with bottom-up NO_x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under 4 weak-wind conditions. The simultaneous EMG-obtained effective NO₂ lifetimes (~3.5±1.3 h), 5 however, are biased low in comparison to the summertime NO₂ chemical lifetimes. In 6 general, isolated urban areas with NO_x emission intensities greater than ~ 2 Mg h⁻¹ produce 7 8 statistically significant weak-wind signals in three-year average OMI data. From 2005 to 9 2014, we estimate that total OMI-derived NO_x emissions over all selected U.S. urban areas decreased by 49%, consistent with reductions of 43%, 47%, 49%, and 44% in the total 10 bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind 11 OMI NO₂ burdens, and the averaged NO₂ concentrations, respectively, reflecting the success 12 13 of NO_x control programs for both mobile sources and power plants. The decrease rates of these NO_x-related quantities are found to be faster (i.e., -6.8 to -9.3% yr⁻¹) before 2010 and 14 slower (i.e., -3.4 to -4.9% yr⁻¹) after 2010. For individual urban areas, we calculate the R 15 16 values of pair-wise trends among the OMI-derived and bottom-up NO_x emissions, the weak-17 wind OMI NO₂ burdens, and ground-based NO₂ measurements, and high correlations are 18 found for all urban areas (median R=0.8), particularly large ones (R up to 0.97). The results of 19 the current work indicate that using the EMG method and considering the wind effect, the 20 OMI data allow for the estimation of NO_x emissions from urban areas and the direct 21 constraint of emission trends with reasonable accuracy.

22

23 1 Introduction

24 Nitrogen oxides (NO_x) , the sum of nitrogen dioxide (NO_2) and nitric oxide (NO), is one of the 25 six criteria pollutants identified by the U.S. Environmental Protection Agency (EPA) under the requirement of the Clean Air Act. NOx plays a crucial role in tropospheric chemistry 26 27 processes such as the formation of ground-level ozone and secondary inorganic and organic 28 aerosols; and thus it is also linked with other criteria pollutants including ozone, particulate 29 matter, carbon monoxide, and sulfur oxides. Therefore, NOx is not only harmful to human health, but also implicated in a number of environmental problems, such as acid rain, smog, 30 31 eutrophication, climate change, etc. NOx emissions come from both anthropogenic (e.g., man-32 made combustion of fossil fuels, biofuel, and biomass) and natural sources (e.g., lightning,

microbial processes in soils, and wildfires). Bottom-up inventories of NO_x emissions can be quite uncertain, because the emission factors of anthropogenic sources strongly depend on the fuel type, technology, and combustion condition, while natural sources are inherently difficult to quantify.

5 Due to the strong absorption of NO₂ molecules in the visible wavelength range of the spectrum, satellite instruments based on the principle of optical absorption spectroscopy serve 6 as powerful tools to detect NO₂ signals from space (Martin, 2008 and references therein). The 7 short lifetime of NO_x in the atmosphere leads to a close correlation between observed NO₂ 8 9 columns and surface NO_x emission sources, implying the potential of space-borne instruments 10 to aid in the estimation of NO_x emissions (Streets et al., 2013, 2014; and references therein). 11 In the past two decades, satellite remote sensing of tropospheric NO₂ columns has been 12 widely and successfully used to map the spatial distributions of NO2 at local, regional, and 13 global scales (e.g., Kim et al., 2009; Russell et al., 2010; Boersma et al., 2007, 2011; Martin 14 et al., 2003), identify intensive point and area NO_x emission sources (e.g., Duncan et al., 15 2013; Kim et al., 2006; Lu and Streets, 2012; Streets et al., 2014; Wang et al., 2010; Zhang et 16 al., 2009), and monitor diurnal/weekly/monthly/interannual variations of NO₂ (e.g., Hilboll et al., 2013; Hudman et al., 2010; Richter et al., 2005; Russell et al., 2012; Schneider et al., 17 18 2015; Tong et al., 2015; van der A et al., 2008) for both anthropogenic and natural sources.

19 In general, local, regional, and global NO_x emissions can be verified, estimated, and 20 optimized by using forward and inverse modeling of satellite NO₂ columns (e.g., Boersma et al., 2005; Jaeglé et al., 2005; Kim et al., 2009; Martin et al., 2003; Wang et al., 2012). 21 22 However, NO_x emissions and NO_2 lifetimes can also be determined directly by analyzing the 23 downwind patterns of the satellite-observed NO₂ columns near the sources. Leue et al. (2001) 24 used an exponential function to fit the downwind decay of GOME (Global Ozone Monitoring 25 Experiment)-observed NO_2 columns at the eastern shore of the U.S. and estimated the NO_2 26 lifetime by using the fitted *e*-folding distance and the averaged wind velocity. Kunhikrishnan 27 et al. (2004) conducted a similar analysis over the Arabian Sea outflow region to estimate the 28 regional NO_x lifetime for the Indian subcontinent. This method was revised by Beirle et al. 29 (2004), who fitted the GOME-observed NO₂ columns across the shipping lane between Sri 30 Lanka and Indonesia with an exponentially-modified Gaussian (EMG) function and derived 31 the mean NO_x lifetime and the corresponding ship emissions for 1996–2001. Hereinafter, we 32 call this approach the EMG method. By fitting the downwind line densities of the OMI

(Ozone Monitoring Instrument)-observed NO₂ separately for eight wind directions, Beirle et 1 2 al. (2011) further improved the EMG method and determined the average NO_x emissions and 3 lifetimes simultaneously for nine worldwide megacities during 2005–2009. Using a similar method, Ialongo et al. (2014) estimated the average summertime NO_x emissions and lifetimes 4 of three cities in the Baltic Sea region during 2005-2011. The EMG method and its variant 5 versions have also been applied to the satellite observations of SO₂ to constrain SO₂ lifetimes 6 and emissions from volcanoes (Beirle et al., 2014; Krotkov et al., 2010; Theys et al., 2013; 7 8 Carn et al., 2013) and large anthropogenic point sources (Fioletov et al., 2015).

9 Recently, several studies discussed the applicability and reliability of the EMG method. Valin 10 et al. (2013) suggested that the NO_x emissions and chemical lifetimes would be better 11 quantified when winds are fast because the downwind NO₂ decay under this condition is 12 dominated by chemical removal, not variability of the winds. Introducing the plume rotation technique, they inferred NOx emissions of Riyadh from the OMI measurements with fast 13 winds (>6.4 m s⁻¹) only and derived NO_x chemical lifetimes in slower wind conditions with 14 15 the mass balance method. Additionally, de Foy et al. (2014) evaluated the performance of the 16 EMG method using simulated column densities over a point source with known emissions 17 under three chemical lifetime cases. They found that the EMG method generally provided reliable emission estimates at fast wind-speed conditions (>3 m s⁻¹); however, the lifetime 18 19 estimates were biased low and quite sensitive to the selection of the wind speed cut-off and 20 the accuracy of the plume rotation. This implies that, in practice, the EMG-derived lifetimes 21 should not be treated as chemical lifetimes, but rather as "effective lifetimes" that include the 22 influences of chemical conversion, plume meandering, grid resolution, sampling issues, etc. 23 (see also Fioletov et al., 2015; Ialongo et al., 2014). Nevertheless, the EMG method can 24 provide quite accurate emission estimates if the issues of wind speed and direction are 25 appropriately treated.

In this study, we use OMI NO₂ retrievals and an EMG method to estimate NO_x emissions from 35 major U.S. urban areas during the OMI era of 2005-2014. Although there have been a number of studies reporting satellite observations of NO₂ over some U.S. cities, they mainly focused on the interannual trends and/or monthly/weekly variations of the satellite signals themselves (van der A et al., 2008; Hilboll et al., 2013; Schneider et al., 2015; Russell et al., 2012; Kim et al., 2009) or the comparison of satellite observations with pre-existing emissions and/or surface measurement datasets (Tong et al., 2015; Lamsal et al., 2015). In this

study, we use the EMG-method to estimate NO_x emissions of nearly all major U.S. cities 1 2 directly from satellite NO₂ observations and without using a chemical transport model. The 3 prime motivation of this work is not to demonstrate the well-known dramatic decrease of urban NO_2 across the country (although we do have new findings by taking into account the 4 wind effect), but to show the capability of the EMG method to provide direct and reliable 5 estimates of urban NO_x emissions. The current work also differs from previous EMG-related 6 7 studies (Beirle et al., 2004, 2011; de Foy et al., 2014, 2015; Ialongo et al., 2014; Valin et al., 8 2013), all of which used a multi-annual-averaged satellite NO₂ map in the EMG fit and thus 9 only obtained a long-term averaged emission estimate. This work, to our knowledge, is the first study to show that the EMG method can also provide estimates of emission trends with 10 reasonable accuracy. The rest of the paper is organized as follows: Sect. 2 documents the 11 12 methodology and data sets; Sect. 3 highlights the effect of wind on the OMI NO₂ observations 13 (Sect. 3.1), presents the relationship between the EMG-derived NO_x emissions and the OMI 14 NO₂ observations (Sect. 3.2), and compares the trends of various NO_x-related quantities (Sect. 15 3.3); Sect. 4 summarizes the major findings of this work.

16

17 2 Data and methodology

18 2.1 OMI NO₂ retrievals and processing

19 The OMI is an ultraviolet/visible nadir spectrometer onboard the National Aeronautics and 20 Space Administration (NASA)'s Aura satellite, which was launched in a sun-synchronous 21 ascending orbit at 705 km altitude in July 2004 (Levelt et al., 2006). It measures solar 22 irradiance and earthshine radiance in the wavelength range of 270 to 500 nm and has been 23 continuously providing aerosol and gaseous (including NO₂) column observations at 24 approximately 13:45 local equator-crossing time with nearly daily global coverage in the past 25 decade. In this work, we use the version 2.0 product of the Dutch OMI NO₂ (DOMINO) 26 tropospheric vertical column densities (TVCDs) developed at the Royal Netherlands 27 Meteorological Institute (KNMI) for the years from 2005 to 2014 (Boersma et al., 2007, 28 2011). This version of the product uses an improved OMI NO₂ retrieval algorithm on the 29 basis of better air mass factors, an *a posteriori* correction for across-track stripes, and high-30 resolution input profiles of the terrain height and the surface albedo climatology, and has been

reported to be in better agreement with independent measurements and model simulations in
 comparison to the previous version (Boersma et al., 2011).

3 To increase the amount of valid OMI data, the filter criteria of the level-2 swath data were relaxed somewhat. We removed the daily pixel retrievals with solar zenith angle >80 degrees, 4 5 cloud radiance fraction >0.5, or surface albedo >0.3. The largest five pixels at the swath edges (i.e., rows 1 to 5 and rows 56 to 60) were excluded to limit the across-track pixel width to <706 km. Since June 2007, some row anomalies (RAs) have developed on the OMI detectors and 7 affected the quality of a number of 8 data cross-track scenes 9 (http://www.knmi.nl/omi/research/product/rowanomaly-background.php). The RAs change 10 over time and we therefore dynamically removed the affected pixels based on the RA flags in 11 the DOMINO product. We only used the summer half-year data (i.e., April to September) 12 because the short NO_x lifetime in this period makes the relationship between NO_x emissions and satellite NO₂ observations more direct than in other months (e.g., Russell et al., 2012; 13 14 Wang et al., 2012; Lu and Streets, 2012). For the OMI NO_2 maps of the entire domain of the 15 continental U.S. (e.g., Fig. 1a), all the valid pixels were oversampled on a 2 km \times 2 km grid to 16 obtain detailed spatial distributions of NO₂ over hotspots (Lu et al., 2013; Russell et al., 2010; 17 Fioletov et al., 2011, 2013; de Foy et al., 2009).

18 **<u>Fig. 1</u>**

19 **2.2 Selection of urban areas**

20 Table 1 lists and Fig. 1a shows the locations of the urban areas selected in this work. We 21 examined the top 50 urban areas in the U.S. based on population size and the observed 22 satellite NO₂ signals (Fig. 1a). We combined adjacent urban areas that are so close as to share 23 the same NO₂ hotspot (e.g., Washington, DC, and Baltimore; and Los Angeles and Riverside) 24 and omitted some urban areas where the NO_2 signals are not isolated due to the influence of 25 large NO_x emitting sources nearby (e.g., Pittsburgh, Milwaukee, San Francisco). In total, 35 26 urban areas were selected for analysis, and they together accounted for $\sim 23\%$ of total NO_x 27 emissions and ~50% of total urban population in the U.S. during the period 2005–2014.

28 <u>Table 1</u>

1 2.3 Wind fields

2 Wind information (including speed and direction) is crucial in exploring its influence on the 3 $OMI NO_2$ observations and estimating the NO_x emissions with the exponentially-modified Gaussian (EMG) method described in Sect. 2.4. In this work, we use the gridded wind field 4 5 datasets of the ERA-interim reanalysis at the resolution of $0.5^{\circ} \times 0.5^{\circ}$ developed by the European Center for Medium-range Weather Forecast (ECMWF) (Dee et al., 2011). The 6 ERA-interim reanalysis provides global wind fields for 60 vertical levels at four time steps 7 per day (i.e., 0:00, 6:00, 12:00, 18:00 UTC) from 1979 to present on the N128 reduced 8 9 Gaussian grid. Valin et al. (2013) expected that the EMG results would be insensitive to the 10 choice of wind field datasets. This was confirmed by de Foy et al. (2015) who tested wind 11 fields of both the ERA-interim reanalysis and the North American Regional Reanalysis 12 (NARR) and obtained similar results in the EMG analysis. The NO_x emitted near the surface of the urban areas can undergo rapid vertical mixing, and we thus use the averaged wind 13 14 fields of the bottom eight levels (i.e., from the surface to \sim 500 m), similar to the treatment of 15 Beirle et al. (2011). We assume that the daily OMI NO₂ spatial pattern of a hotspot should not 16 reflect the wind strength and direction at the OMI overpass time of ~13:45 LT, but the 17 average wind fields a few hours before the satellite takes the measurement. For simplicity, we choose 12:00 LT as the time of the wind fields. The reasons are: first, the choice of 12:00 LT 18 19 of the ERA-interim reanalysis dataset has been proven to reproduce the observed spatial 20 transport pattern of the OMI NO₂ successfully at the daily level (Valin et al., 2013); second, if 21 the average wind over the last 6 hours is considered, the results have been reported to change 22 only $\sim 10\%$ (Beirle et al., 2011). Consequently, daily wind speed and wind direction maps 23 over the entire domain of the U.S. were interpolated temporally at 12:00 LT and spatially on a 24 $2 \text{ km} \times 2 \text{ km}$ grid in association with the oversampled OMI NO₂ maps.

25 **2.4 Exponentially-modified Gaussian method**

Beirle et al. (2011) presented a method using an EMG function to fit the downwind patterns of OMI NO₂ line densities separately for eight wind directions and simultaneously determined the NO_x emissions and lifetimes for nine megacities around the world. In this work, we follow a similar methodology but with a number of enhancements. For each urban area, we did not separate the OMI NO₂ measurements into different wind directions, but rotated and overlapped the daily OMI NO₂ maps in the range of 300 km around the urban center (see

1 Table 1 for the latitudes and longitudes) to align all the wind directions at the urban center in 2 the x-direction (Valin et al., 2013; de Foy et al., 2014, 2015). This process increases the 3 number of OMI samples, potentially increases the signal-to-noise ratio, and benefits the trend analysis using the EMG method. The wind-aligned OMI NO2 maps were further reduced to 4 one-dimensional line densities by integrating the NO2 data in the across-wind direction over a 5 6 maximum interval of ± 120 km (e.g., Chicago in Fig. 2). Depending on the size of the urban areas, smaller across-wind integration intervals down to ± 60 km were chosen for smaller NO₂ 7 8 hotpots to minimize interference from background NO₂ and neighboring NO_x sources. The 9 EMG model proposed by Beirle et al. (2011) was then used to fit the NO₂ line densities. As a 10 function of the distance from the urban center x, the EMG model is expressed as Eq. (1) to 11 (3):

12
$$\operatorname{OMI}_{\operatorname{NO}_2,\operatorname{line}}(x \mid \mu, \sigma, x_0, \alpha, B) = \alpha \cdot f(x \mid \mu, \sigma, x_0) + B = \alpha \cdot \left[e(x \mid x_0, \mu) \otimes G(x \mid \sigma)\right] + B$$
(1)

13
$$e(x \mid x_0, \mu) = \exp\left(-\frac{x-\mu}{x_0}\right)$$
 for $x \ge \mu$, otherwise $e(x \mid x_0, \mu) = 0$ (2)

14
$$G(x \mid \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$
(3)

The estimation problem is nonlinear with five parameters to be determined (i.e., μ , σ , x_0 , α , and *B*). Mathematically, Eq. (1) to (3) can be written as (Kalambet et al., 2011, and references therein):

18
$$\operatorname{OMI}_{\operatorname{NO}_{2},\operatorname{line}}(x \mid \mu, \sigma, x_{0}, \alpha, B) = \alpha \cdot \left[\frac{1}{x_{0}} \exp\left(\frac{\mu}{x_{0}} + \frac{\sigma^{2}}{2x_{0}^{2}} - \frac{x}{x_{0}}\right) \Phi\left(\frac{x - \mu}{\sigma} - \frac{\sigma}{x_{0}}\right)\right] + B$$
(4)

19 where x_0 in the exponential function e(x) is the *e*-folding distance downwind, representing the 20 length scale of the NO₂ decay; μ is the location of the apparent source relative to the city 21 center; σ is the standard deviation of the Gaussian function G(x), representing the Gaussian 22 smoothing length scale; Φ is the cumulative distribution function; B is the offset factor 23 representing the background NO₂; f(x) is the convolution of e(x) and G(x); and α is the scale 24 factor of f(x). Since the integration of f(x) equals one, the parameter α physically means the 25 total number of NO₂ molecules observed near the hotspot, excluding the effect of background 26 NO_2 . α can be converted to mass units, representing the observed OMI NO₂ burden over the urban areas. Using the mean zonal wind speed w of the NO₂ line density domain, the mean 27

- 1 effective NO₂ lifetime $\tau_{\text{effective}}$ and the mean NO_x emissions *E* can be calculated from the fitted
- 2 parameters x_0 and α as

3
$$\tau_{\text{effective}} = x_0 / W$$
 (5)

4
$$E = 1.32 \cdot \alpha / \tau_{\text{effective}} = 1.32 \cdot \alpha \cdot w / x_0$$
(6)

- 5 where the factor of 1.32 is the mean NO_x/NO_2 ratio suggested by Beirle et al. (2011).
- 6 **<u>Fig. 2</u>**

7 We made additional treatments to the OMI NO_2 data when using the EMG method. For urban 8 areas surrounded by significant NO_x emission sources, we discarded the OMI data with 9 certain wind directions in the plume rotation process to limit the influence of surrounding 10 sources on the wind-aligned OMI NO₂ line densities. For example, Washington, DC, is 11 located \sim 150 km southwest of Philadelphia. On the one hand, the NO₂ of Philadelphia can be 12 transported to Washington, DC, through northeasterly winds and affect the upwind pattern of 13 the OMI line densities of Washington, DC. On the other hand, southwesterly winds can bring 14 the NO_2 plume of Washington, DC, to Philadelphia and affect the downwind pattern of the 15 line densities. In this case, daily OMI NO2 maps with azimuths of 15° to 105° (i.e., northeasterlies) and 195° to 285° (i.e., southwesterlies) were excluded in the map rotation 16 17 process. As discussed in detail in Sect. 3.1 and 3.2, the EMG method provides more accurate 18 estimates of NO_x emissions for OMI NO₂ line densities obtained at stronger wind speed 19 conditions (de Foy et al., 2014; Valin et al., 2013; Ialongo et al., 2014), while OMI NO₂ 20 burdens under weak wind conditions correlate better with NO_x emissions. We therefore 21 divided the OMI observations into high and low wind-speed groups (e.g., Fig. 2a and b) and 22 applied the EMG method to both groups. For the high-speed winds group, the OMI-derived 23 NO_x emissions (E) and effective NO₂ lifetimes ($\tau_{\text{effective}}$) were estimated and the wind speeds were set to be above thresholds of 3 to 5 m s^{-1} depending on the wind fields of each urban 24 area. For the low-speed winds group, the criterion was set to be below 3 m $\rm s^{-1}$ for all 25 26 investigated urban areas, and the OMI NO₂ burdens (α) under the slow wind condition were 27 determined. To get reliable estimates through the EMG fit, we further combined all the valid 28 data in three consecutive years in the analysis. Therefore, most results shown in this work are 29 three-year averages or three-year moving trends. For simplicity, we add an asterisk to the middle year to represent the period of three years (e.g., 2006* denotes 2005 to 2007). Through 30 31 the above treatments, there are at least 30 (up to \sim 250) valid OMI observations covering the

1 line density domain of each urban area for both the high- and low-speed winds cases in any

2 three consecutive years during 2005–2014.

3 We follow the same method used by Beirle et al. (2011) to characterize the uncertainties of the estimates. Unless specified otherwise, the term "uncertainty" in this article refers to one 4 5 standard deviation (±1 SD) or the coefficient of variation (CV, SD divided by the mean) expressed as a percentage. Total uncertainties of estimated NO_x emissions are the quadrature 6 sum of the uncertainties in the NO_x/NO_2 ratio (10%), DOMINO v2.0 TVCDs (25%), EMG 7 fitted results, the selected across-wind integration intervals for the line densities (10%), and 8 9 the wind fields (30%) (Beirle et al., 2011; Boersma et al., 2011). The latter four terms are 10 taken into account for estimated NO₂ burdens, and the latter three are used in calculating the 11 uncertainties of the effective NO₂ lifetimes.

12 2.5 Bottom-up NO_x emissions and ground-based NO₂ measurements

13 The OMI-derived NO_x emissions, NO_2 burdens, and their trends for the major U.S. urban 14 areas are compared with both bottom-up NO_x emissions and ground-based NO₂ 15 measurements. The bottom-up NO_x emissions are based on the U.S. EPA's National Emission 16 Inventory (NEI, http://www.epa.gov/ttn/chief/eiinformation.html). For each urban area, we grouped the counties covering the major urban extent and the major OMI NO₂ plume and 17 18 treated the sum of NEI emissions of these counties as the bottom-up NO_x emissions of this 19 urban area. The counties grouped for each urban area are listed in detail in Table S1 of the 20 Supplement. NO_x emissions at the county level for years 2005, 2008, and 2011 were taken 21 from the NEI directly, and emissions in other years were scaled on the basis of the NEI annual 22 emission trends (http://www.epa.gov/ttn/chief/trends/index.html). We did not take into 23 account NO_x emissions of natural sources such as open biomass burning, soil, and lightning, 24 because they are negligible compared to anthropogenic emissions over urban areas in 25 summer.

26 The ground-based NO₂ measurements are from the U.S. EPA's Air Quality System (AQS) 27 database (Demerjian, 2000) acquired from the EPA's AirData website 28 (http://www.epa.gov/airdata/ad data.html). We only chose monitoring sites spatially located 29 in the NO₂ hotspots of the urban areas and temporally having continuous records in 30 April-September from 2005 to 2014. A total of 110 qualified sites in 35 urban areas were 31 selected and the detailed information is provided in Table S2 of the Supplement. Since the

OMI daily overpass time is at ~13:45 LT (local time), for consistent comparison with the OMI-derived results, we only use hourly NO₂ measurements at 13:00 LT and 14:00 LT in the analysis. The three-year average NO₂ concentration of an urban area is then determined from hourly measurements of all included sites.

5

6 3 Results and discussion

7 3.1 OMI NO₂ TVCDs over the continental U.S. and the wind effects

Figure 1a shows the spatial distribution of average summer OMI NO₂ TVCDs over the U.S. 8 9 during 2005–2014 with all valid OMI pixel data passing the criteria described in Sect. 2.1. 10 The average TVCDs for the periods of 2005–2007 (i.e., 2006*) and 2012–2014 (i.e., 2013*) 11 are shown in Fig. 3a and b, respectively. Obviously, the NO₂ signals of all selected urban 12 areas are identifiable in these maps because the short lifetime of NO_x in the lower atmosphere 13 makes the NO₂ TVCDs correlate closely with the surface NO_x emissions (e.g., Kim et al., 14 2006; Martin et al., 2003; Richter et al., 2005). In terms of the OMI-observed NO₂ trend during 2005-2014, a significant reduction in TVCDs up to 50% is observed in visible 15 hotspots and an increase of up to $\sim 0.3 \times 10^{15}$ molecules cm⁻² is observed in rural areas, 16 17 particularly in the central U.S (Fig. 3c). The hotspot reductions are caused by the technology 18 improvement in the vehicle fleet for the urban areas (Dallmann and Harley, 2010; McDonald 19 et al., 2012) and the mandatory implementation of emission control devices for power plants 20 (Duncan et al., 2013; Kim et al., 2006). The rural increases are believed to be associated with 21 the variations of soil NO_x emissions in recent years (Hudman et al., 2010; Russell et al., 22 2012). The above NO₂ trends over the U.S. have been more or less reported in a number of 23 previous studies (e.g., Kim et al., 2009; Russell et al., 2012; Tong et al., 2015), although we 24 extended our analysis to the most recent year (i.e., 2014). It should be noted that these 25 previous studies were all based on the satellite maps under all-wind conditions, while we will 26 mainly discuss how the winds affect the satellite-observed NO_2 signals and trends over the 27 urban areas in the following paragraphs.

28 **<u>Fig. 3</u>**

The effect of different wind speeds on the patterns of the OMI-observed NO_2 columns was first shown by Valin et al. (2013) for Riyadh, Saudi Arabia. Here, we take Chicago as an

example to demonstrate this effect. Figures 2a and b display the wind-aligned OMI NO₂ 1 TVCD maps of Chicago when wind speeds are slow (<3 m s⁻¹) and fast (>5 m s⁻¹), 2 respectively. The corresponding NO₂ line densities are shown in Fig. 2c. At low wind speeds, 3 NOx emissions accumulate and stagnate near the urban center, making the peak NO2 columns 4 5 about twice those observed at high wind speeds, once the background NO₂ is removed. In contrast, NO₂ plumes can be transported further in high wind-speed conditions, increasing the 6 downwind NO₂ columns at 250 km from the urban center by $\sim 0.9 \times 10^{15}$ molecules cm⁻². 7 These results clearly indicate that the presence of winds, especially high-speed winds, affects 8 9 the satellite NO₂ observations.

10 In practice, OMI NO₂ TVCD maps are averaged from valid pixel data with winds at different 11 speeds from different directions (e.g., Fig. 1a, Fig. 3a and b); and, consequently, NO₂ signals 12 near the NO_x emitting sources are smeared spatially. Figure 1b shows the summer mean NO₂ TVCDs over the U.S. during 2005–2014 at wind speeds $<3 \text{ m s}^{-1}$, and the maps for 13 14 2005–2007 and 2012–2014 are shown in Fig. 3d and e, respectively. Compared to NO₂ maps 15 under the all-wind condition, NO₂ signals at low wind speeds are obviously higher over the 16 urban areas (as well as in the big isolated power plant areas) and lower in surrounding rural 17 areas (Fig. 1c, Fig. 3g and h); and, consequently, more NO₂ hotspots are visible. In summary, 18 satellite NO₂ maps for low wind-speed conditions highlight the NO_x emission sources. This 19 was also demonstrated in a recent study by Ialongo et al. (2014), who used the OMI pixels with wind speeds $<5 \text{ m s}^{-1}$ to highlight the NO_x signals of three cities in the Baltic Sea region. 20

21 The effect of winds on satellite-observed NO₂ columns is not uniform, but depends on the 22 characteristics of the wind fields at each urban location. Figure 4 compares the OMI NO_2 23 TVCD maps for Chicago and Los Angeles under the all-wind and the weak-wind conditions. 24 Compared to the significant differences in NO₂ columns over Chicago, the discrepancies 25 between the weak-wind and the all-wind conditions over Los Angeles are nearly negligible. 26 This is because the wind fields in these two cities are quite different. According to the ERA-27 interim reanalysis, the average wind speed of Los Angeles in summer during 2005–2014 was 2.4 m s^{-1} and ~80% of the total valid OMI data were measured under wind speeds of <3 m $\,$ 28 s^{-1} . However, the average wind speed was 4.8 m s^{-1} for Chicago and the fraction of valid 29 pixel data with wind speeds $<3 \text{ m s}^{-1}$ was only $\sim 25\%$. Figure 4 also shows that the OMI NO₂ 30 31 signals observed at low wind speeds are better correlated with the NO_x emissions. Comparing 32 OMI maps under the all-wind condition (Fig. 4a vs. Fig. 4d), Chicago seems to have

significantly lower NO_x emissions than Los Angeles. However, on the basis of the NEI,
average NO_x emissions from Chicago were about three-quarters of those from Los Angeles
during 2005–2014 (Table 1). After removing the pixels with strong winds, the OMI NO₂
signals of Chicago and Los Angeles match the amounts of their NEI NO_x emissions much
better.

6 **<u>Fig. 4</u>**

7 For the reasons discussed above, in contrast to previous studies that use all-wind NO₂ maps, 8 we utilize the OMI data under weak-wind conditions to calculate the satellite-observed NO_2 9 columns, burdens, and trends in these quantities in this work. The threshold of the wind speed was chosen to be 3 m s⁻¹ for all the urban areas to ensure enough valid OMI samples (>30 in 10 three consecutive years). However, we do not discard the OMI data under the strong wind 11 12 conditions, but use them with the EMG method to obtain "top-down" NO_x emissions (see 13 Sect. 2.4 and the following sections). It should be noted that the presence of the strong winds 14 may also change the observed NO₂ trends. Figure 3i shows the differences in OMI NO₂ 15 changes over the U.S. between the weak-wind and the all-wind conditions. Greater NO_2 16 reductions from 2005* to 2013* are observed under the weak-wind condition than under the 17 all-wind condition over a number of cities, including Chicago, Minneapolis, New York, Las 18 Vegas, and Cincinnati. This is possibly related to the non-linearity of the NO_x chemistry. At 19 fast speed winds, the decreased NO₂ level over polluted urban areas may increase the NO_x 20 lifetime so that the same reduction in NO_x emissions would lead to a smaller reduction in 21 observed NO₂ columns compared to the slow wind-speed conditions. For this reason, it is 22 expected that we would derive a higher rate of decline in OMI NO₂ columns over U.S. urban 23 areas than previous studies that have used all-wind OMI data.

3.2 NO_x emissions of U.S. urban areas estimated from the OMI retrievals

As mentioned in Sect. 2.4, we use the EMG method to estimate NO_x emissions from U.S. urban areas. In the original EMG method presented by Beirle et al. (2011), an average wind speed of at least 2 m s⁻¹ was required for a target area to guarantee clear downwind outflow NO₂ patterns. However, Valin et al. (2013) pointed out that the variations of wind speed impact the nonlinear NO_x chemistry, and the NO₂ lifetime (and NO_x emissions) inferred from the average spatial pattern of the NO₂ plume is not necessarily equal to the average lifetime (and emissions). They restricted their analysis to OMI measurements made when winds were

fast (i.e., >6.4 m s⁻¹) because under this condition the downwind decay of NO₂ is dominated 1 by chemical removal, not variability of the winds. In fact, instead of using 6.4 m/s, the same 2 3 emission estimates would be obtained if they had used the OMI measurements with wind speed >5 m s⁻¹ (see Figure 4 of Valin et al., 2013). Recently, de Foy et al. (2014) evaluated 4 the EMG method using simulated column densities over an ideal point source with different 5 chemical lifetimes and wind speeds. They found that the EMG method provided fairly robust 6 and accurate emission estimates when wind speeds were $>3 \text{ m s}^{-1}$. Furthermore, the EMG-7 obtained emissions seemed to be more accurate when wind speeds were higher, especially for 8 9 case of the chemical lifetime <12 h (see Table 2 of de Foy et al., 2014). In this work, we therefore apply the EMG method to the OMI line densities under strong wind-speed 10 conditions to estimate NO_x emissions. The criterion for the wind speed was set to be >5 m s⁻¹ 11 and, if necessary, relaxed to 4 m s⁻¹ or 3 m s⁻¹ to ensure at least 30 valid OMI samples in 12 13 three consecutive years.

Again, we use the example of Chicago to demonstrate our analytical procedure. Figure 2b 14 shows the wind-aligned OMI NO₂ TVCDs at wind speeds >5 m s⁻¹ for Chicago during 15 2005–2007 (i.e., the year 2006*). The NO₂ line densities and the corresponding EMG fit are 16 17 shown in Fig. 2c. Clearly, the EMG fit reproduces the NO₂ pattern along the wind direction very well. The fitted *e*-folding distance x_0 , background *B*, and the burden α are 144 km, 18 9.83×10^3 mol km⁻¹, and 2.74×10^6 mol, respectively. The average wind speed w of valid OMI 19 pixels over the studied domain is 7.3 m s⁻¹, so that the effective NO₂ lifetime $\tau_{\text{effective}}$ and the 20 NO_x emissions E are determined to be 5.5 h and 30 Mg h^{-1} through Eq. (5) and (6), 21 respectively. We also use the EMG method to fit the NO₂ line densities at wind speeds <3 m 22 23 s^{-1} (see Fig. 2 and Sect. 3.1), and the OMI NO₂ burden under the weak-wind condition is estimated to be 98 Mg. The same analysis is conducted for all the three-consecutive-years 24 25 during 2005-2014 and the three-year moving NO₂ and NO_x trends are summarized in Fig. 5. 26 Results show that the four NO_x-related trends in Chicago correlate with each other very well 27 from 2006* to 2013* (R>0.89). The linear annual average decreasing rates (AADR) of the OMI-derived NO_x emissions, the OMI-observed NO₂ burdens at slow winds, the NEI NO_x 28 emission estimates, and the ground-based NO₂ measurements are -7.8% yr⁻¹, -5.7% yr⁻¹, 29 -6.6% yr⁻¹, and -6.8% yr⁻¹, respectively. The AADRs of the OMI-observed NO₂ burden is 30 greater than previously reported values of -3.9 to -5.4% yr⁻¹ that use the all-wind satellite 31 32 NO₂ maps (Lamsal et al., 2015; Hilboll et al., 2013; Schneider et al., 2015; Russell et al.,

2012) but close to those of the "top-down" and "bottom-up" emissions as well as surface
 measurements. This further implies that the presence of strong winds changes the observed
 NO₂ trends, and trends in NO₂ columns obtained at slow winds may better reflect the real
 bottom-up NO_x emission trends.

5 **<u>Fig. 5</u>**

6 The above analysis procedure was applied to all 35 selected U.S. urban areas and the average NO_x-related quantities and linear trends for the entire period of 2006*-2013* are summarized 7 8 in Table 1. We focus on the relationship between NO_x emissions and NO₂ burdens in this 9 section and discuss the trends in the next section. Figures 6a and b show the scatter plots of 10 both the NEI and the OMI-derived NO_x emissions against the OMI NO₂ burdens under slow-11 wind conditions. Each point in the scatter plots represents a three-year moving average for an 12 urban area. Clearly, there is good agreement between NO_x emissions and OMI NO₂ burdens 13 (R>0.95), implying a linear response of the OMI observations to the surface emissions under 14 the weak-wind condition. Generally, urban areas with NO_x emission intensities higher than ~ 2 Mg h⁻¹ produce statistically significant OMI burdens and can be analyzed using the method 15 16 described in this work.

17 **Fig. 6**

18 Figure 6c shows the comparison between the OMI-derived and the NEI NO_x emissions for all 19 the selected urban areas. Good agreement was also found between the top-down and the 20 bottom-up emission estimates (R=0.94). The slope of the linear fit indicates that the NEI 21 emissions are on average $\sim 6\%$ higher than the OMI-derived ones. Besides the uncertainties of 22 both estimates, any remaining discrepancies can probably be attributed to three factors. First, 23 the NEI NO_x emissions of an urban area are based on the sum of all emissions in counties 24 covering the major urban extent and the major OMI NO₂ plume. Since the outer boundary of 25 the urban area is often somewhat larger than its OMI signals, the NEI values may include 26 more emissions. Second, the OMI-derived NO_x emissions are for the summer half-year, while 27 we did not take into account the seasonality of the NEI emissions. Generally, NO_x emissions 28 of urban areas are lower in summer than in winter because of the relatively low vehicle 29 emissions on warm days and the higher rates of operation of NO_x control devices in some 30 power plants during the ozone season (e.g., Xing et al., 2013; Duncan et al., 2013). Third, a

1 typical NO_x -to- NO_2 ratio of 1.32 at noon was used in the determination of NO_x emissions, but 2 this scale factor may vary in urban areas depending on the local NO_x chemistry.

3 In addition to the NO_x emissions, the EMG fits for the OMI line densities at strong winds also yield instantaneous daytime (or, more precisely, 13:00-14:00 LT) lifetimes of NO₂ for 4 5 selected urban areas. The model evaluation by de Foy et al. (2014) showed that the EMG method provides accurate estimates of the chemical lifetimes ($\tau_{chemical}$) if the plumes are 6 uniformly transported at fast winds (i.e., 5 m s⁻¹). However, influenced by the inaccurate 7 plume rotation and the use of the satellite data at relatively slow wind speeds, they found the 8 9 resulting lifetimes were always biased low and could not be treated as the true τ_{chemical} . Here, 10 we call this term the effective lifetime ($\tau_{\text{effective}}$), which can be considered as a combination of 11 $\tau_{\rm chemical}$ and an extra lifetime term of $\tau_{\rm extra}$ related to the influences of plume meandering, grid 12 resolution, and sampling issues (i.e., lifetimes are combined inversely as shown in Eq. (7)) (de 13 Foy et al., 2014, 2015). As summarized in Table 1, the estimated $\tau_{\text{effective}}$ values were in the range of 1.2-6.8 h with a mean of ~3.5±1.3 h for all studied urban areas during 2005-2014. 14 They are biased low in comparison to the expected summertime NO₂ $\tau_{chemical}$ of ~7 h 15 16 estimated for a broader region in the Eastern United States (Lamsal et al., 2010), confirming 17 the findings by de Foy et al. (2014), but are consistent with previously reported summertime 18 NO₂ lifetimes of 1–7 h examined for plumes over urban areas (Beirle et al., 2011; Dommen et 19 al., 1999; Ialongo et al., 2014; Nunnermacker et al., 1998; Spicer, 1982), power plants 20 (Fioletov et al., 2015; Nunnermacker et al., 2000; Sillman, 2000), and open biomass burning 21 (Alvarado et al., 2010; Mebust et al., 2011).

It should be noted that the slopes of the regression lines of ~2.8 h in Fig. 6a and b are also a time term. It can be considered as an average time scale of the OMI-observed NO₂ residency over the emission sources under the slow wind condition. We therefore name it the residence lifetime $\tau_{\text{residence}}$ as suggested by de Foy et al. (2014). In addition to $\tau_{\text{effective}}$, $\tau_{\text{residence}}$ includes the influences of NO₂ physical dispersion in the atmosphere and can be calculated approximately as:

28
$$\frac{1}{\tau_{\text{residence}}} = \frac{1}{\tau_{\text{dispersion}}} + \frac{1}{\tau_{\text{effective}}} = \frac{1}{\tau_{\text{dispersion}}} + \frac{1}{\tau_{\text{chemical}}} + \frac{1}{\tau_{\text{extra}}}$$
(7)

where $\tau_{dispersion}$ is the physical dispersion time scale. For the slow wind speeds condition, the average dimension of the fitting domain downwind from the urban center was 150 km and the average wind speed was 2 m s⁻¹. Hence, $\tau_{dispersion}$ was about 21 h and the average $\tau_{residence}$ for all the urban areas was estimated to be ~3 h using Eq. (7), assuming that $\tau_{effective}$ did not change significantly with wind speed. This $\tau_{residence}$ estimation is close to the ones derived directly from Fig. 6a and b (i.e., 2.8 h).

5 3.3 NO₂ and NO_x trends of U.S. urban areas during 2005–2014

The linear trends of the NEI NO_x emissions, OMI-derived NO_x emissions, OMI burdens 6 under the weak-wind condition, and the AQS NO2 measurements for all 35 selected urban 7 areas from 2006* to 2013* are summarized in Table 1. We have calculated the correlation 8 9 coefficients of pair-wise trends among these four NO_x-related quantities for each area (see 10 Table 1) and plotted them against the average OMI-observed NO_2 burdens in Fig. 7. Significant reductions in NO2 and NOx have occurred in U.S. urban areas. The average 11 percentage reductions among all the studied urban areas from 2006* to 2013* were -34±12%, 12 13 $-46\pm13\%$, $-45\pm15\%$, and $-37\pm12\%$ for the NEI NO_x emissions, OMI-derived NO_x 14 emissions, OMI-observed NO2 burdens, and surface NO2 measurements, respectively. In 15 general, the time series of the four NO_x-related quantities correlate with each other very well 16 in most of the areas. As shown in Fig. 7 and the last column of Table 1, 20 out of the 35 urban 17 areas have an average correlation coefficient >0.8, and only six areas have an average 18 correlation coefficient <0.7. The NO_x-related trends are in better agreement with each other 19 for the larger OMI NO₂ hotspots such as New York, Los Angeles, Chicago, Philadelphia, and 20 Washington, DC (mean R>0.92). The poorest correlation among the four NO_x-related series is 21 observed in New Orleans (mean R=0.48), where NO_x emissions are close to the lowest detection limit of the EMG method we suggested in Sect. 3.2 (~2 Mg h^{-1}). 22

23 Fig. 7

24 The differences in trends of the four NO_x -related quantities in individual urban areas can be 25 attributed to the following reasons. For the OMI-derived NO₂ and NO_x emissions, we have discussed previously that the selection of the wind speed group and inaccuracy in the wind 26 27 rotation affects the observed NO2 trends and the EMG fitted results. Moreover, the EMG 28 method is best suited to point sources; however, urban NO_x emissions are area sources, and 29 the size and shape of the urban area may introduce additional uncertainty to the EMG results. 30 For the NEI emissions, although NO_x emissions from power plants are measured directly using the continuous emissions monitoring system (CEMS), emissions from other sources 31

(e.g., mobile emissions) are still estimated using bottom-up approaches, which have 1 2 significant uncertainties inherent in the emission factors and the emissions models that are 3 used (USEPA, 1996). For the AQS data, NO2 measurements at a limited number of monitoring sites can be readily influenced by nearby emission sources and thus may 4 sometimes reflect localized trends rather than urban-scale trends (e.g., Lamsal et al., 2015). 5 Last but not least, there are spatial and temporal mismatches among emissions, OMI 6 observations, and AQS data (e.g., Tong et al., 2015; Bechle et al., 2013). Spatially, OMI 7 8 provides measurements of tropospheric NO₂ column densities; AQS data are so-called "nose-9 level" NO2 concentrations; while emissions are NOx masses directly discharged into the atmosphere at a variety of heights above the surface. Temporally, the NEI emissions are 10 annual estimates; the OMI data were restricted to the summer half-year and have gone 11 12 through a series of filtering processes to remove unreliable pixels; and, although we restricted 13 our analysis to the hourly NO₂ measurements close to the OMI overpass time, all AQS 14 measurements at the chosen sites in April-September were used for the trend comparison.

15 Despite the trend discrepancies caused by these various factors in individual urban areas, we 16 expect the trends of the total (or averaged) NO_x emissions, columns, burdens, and concentrations across all areas to be robust and to reflect the urban NO_x situation at the 17 national level. Figure 8 shows the sum of three-year averaged OMI NO₂ columns under the 18 19 weak-wind speed condition for all urban areas as a function of the distance from the urban 20 centers. Clearly, the sum of OMI signals over the hotspot centers was continuously decreasing during 2006*-2013*. Based on the ratio of 2013* to 2006*, OMI NO₂ columns over U.S. 21 urban areas decreased by 40% with an AADR of -6.9% yr⁻¹. The three-year moving trends of 22 23 the total NEI NO_x emissions, OMI-derived NO_x emissions, OMI-observed NO₂ burdens under 24 slow wind-speed conditions, and the area-weighted average NO_2 concentrations for all areas 25 are shown in Fig. 9. The four NO_x or NO_2 trends are in excellent agreement with each other 26 (R>0.99). From 2006* to 2013*, total NEI NO_x emissions, OMI-derived NO_x emissions, 27 OMI-observed NO₂ burdens, and the average NO₂ concentrations decreased by 36%, 42%, 41%, and 37% with AADRs of -6.2% yr⁻¹, -7.4% yr⁻¹, -7.3% yr⁻¹, and -6.3% yr⁻¹, 28 29 respectively (Table 2). The satellite-observed NO₂ rates of decrease obtained in this work are 30 greater than previously reported values. For example, using the OMI BEHR (Berkeley High Resolution) retrievals, Russell et al. (2012) detected consistent decreases in NO2 columns 31 (AADR of -6.2% yr⁻¹) over 47 U.S. cities during 2005–2011; Tong et al. (2015) examined 32

the OMI NO₂ columns over eight large U.S. cities and found an average AADR of $-6.0\% \text{ yr}^{-1}$ 1 for 2005–2012; with the newly developed NASA OMI product (version 2.2), Lamsal et al. 2 3 (2015) quantified the average decreasing rate of NO₂ columns in 20 major U.S. cities from 2005 to 2013 to be -5.8% yr⁻¹; Schneider et al. (2015) used the data from the SCIAMACHY 4 (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) instrument 5 onboard the Envisat platform and observed decreasing tropospheric NO₂ columns on the order 6 of -5.8% yr⁻¹ over nine large urban agglomerations in the U.S. for the period of 2002–2012. 7 Although these previous studies differ in a number of aspects such as satellite data used (i.e., 8 9 instruments/retrievals/products), time period studied (i.e., summer months or all months), urban areas selected, domain size chosen for each area, trend calculation method used, etc., 10 they derived similar average NO₂ column decrease rates of -5.8% yr⁻¹ to -6.2% yr⁻¹ for U.S. 11 12 cities since ~ 2005 . This implies that the differences mentioned above may have minor 13 influence on the overall trend analysis results at the country or regional level. However, we obtain a significantly greater column decrease rate of -7.3% yr⁻¹ in this work. As discussed in 14 Sect. 3.1, the fact that all these previous studies used all-wind satellite NO₂ maps while we 15 16 used weak-wind OMI data is the major reason for such discrepancy.

17 Fig. 8 Fig. 9 Table 2

In previous studies such as Russell et al. (2012), Tong et al. (2015), and Lamsal et al. (2015), 18 OMI NO₂ reduction rates were observed to be moderate ($\sim -7\%$ yr⁻¹), larger ($\sim -9\%$ yr⁻¹), and 19 smaller ($\sim -3\%$ yr⁻¹) during the periods of 2005–2007, 2008–2009, and after 2010, 20 21 respectively, over the U.S. urban areas. The reason for these changes of pace of the reduction 22 was attributed in these previous studies to the combined effects of the gradually installed NO_x 23 control devices in power plants, transformation to a less-polluting vehicle fleet, the economic 24 recession that happened in 2008, and the slow recovery of the U.S. economy after 2008. In 25 this work, we found similar trends. As shown in Fig. 8 and Fig. 9, the sum of OMI columns, the total NEI NO_x emissions, OMI-derived NO_x emissions, OMI NO₂ burdens, and the 26 average NO₂ concentrations over selected urban areas decreased at rates of -6.8 to -9.3% yr⁻¹ 27 during 2006*-2010*, and -3.4 to -4.6% yr⁻¹ during 2010*-2013* (Table 2). We did not 28 29 observe a greater decreasing rate during the economic recession period, probably because we 30 used three-year moving trends which smooth the short-term changes. Extrapolating the trends 31 to the years of 2005 and 2014 with AADRs of earlier and later periods, respectively, we

estimate that the above five NO_x-related quantities decreased by approximately 47%, 43%,
 49%, 49%, and 44%, respectively, during the whole period of 2005–2014.

Although satellite NO₂ column changes cannot be translated to NO_x emission changes directly, due to the nonlinear feedback of NO_x emissions on NO_x chemistry (Lamsal et al., 2011; Lu and Streets, 2012), we indeed obtained similar reductions in total NO_x emissions and total OMI NO₂ observations over all the selected urban areas in the US. Lamsal et al. (2011) used a dimensionless factor of β to express the relationship between changes in NO_x emissions and changes in NO₂ TVCDs:

9
$$\beta = \frac{\Delta E / E}{\Delta T V C D / T V C D}$$
 (8)

10 Generally, β is greater than one in clean regions, because increased NO_x emissions under the low NO₂ condition promotes the generation of OH radicals and thus decreases the NO_x 11 12 lifetime, while β is less than one in polluted regions since an increase in NO_x emissions 13 consumes OH radicals and increases the NO_x lifetime. On the basis of the monthly global 14 gridded β calculated by Lamsal et al. (2011), the average β over the 35 selected urban areas 15 during April–September was 1.03 ± 0.21 (bounding values 0.74-1.52). This result partially explains why we observed similar trends in total NO_x emissions and total OMI NO₂ columns 16 in this work. It should be noted that we only discuss the overall atmospheric characteristics 17 18 over all urban areas here. Individual areas may have β values significantly greater or smaller 19 than one, reflecting the local sensitivity of changes in OMI NO₂ columns to NO_x emissions.

20

21 4 Summary and conclusions

22 In the present work, we use the satellite observations of NO₂ vertical columns from the OMI 23 instrument to quantify the summer half-year (i.e., April-September) NO_x emissions and 24 emission trends of 35 selected U.S. urban areas during 2005–2014. To refine the analysis, we 25 first explore the impact of winds on the satellite NO₂ observations. Significant differences are 26 found between the OMI NO₂ maps averaged from all valid data and those from data with slow 27 wind speeds only, and such differences are not uniform across all urban areas but depend on local meteorological conditions. Compared to NO₂ maps under all-wind conditions, the 28 satellite-observed NO₂ signals at wind speeds $\leq 3 \text{ m s}^{-1}$ are significantly higher over the urban 29 areas and lower in surrounding rural areas, and are better correlated to the amounts of surface 30

NO_x emissions. We observe greater NO₂ column reductions over a number of selected cities from 2006* (i.e., 2005–2007) to 2013* (i.e., 2012–2014) under the weak-wind condition than

under the all-wind condition, implying that the effect of winds should be taken into account
when comparing the trends of NO_x emissions and satellite NO₂ observations.

5 Noticing the importance of wind speed, we divide the OMI observations around each urban area into fast (>3 to 5 m s⁻¹) and slow (<3 m s⁻¹) wind-speed groups. Daily OMI NO₂ data of 6 each wind-speed group are rotated and oversampled to generate wind-aligned OMI NO2 maps, 7 the along-wind line densities of which are further fitted by an exponentially-modified 8 Gaussian (EMG) function. For each urban area in any three consecutive years during 9 10 2005-2014, we derive the corresponding NO_x emissions and effective NO₂ lifetimes from the 11 EMG fits of the fast wind-speed groups and the OMI NO₂ burdens from the slow wind-speed 12 groups. We find good linear agreement (R>0.93) among NEI NO_x emissions, OMI-derived NO_x emissions, and OMI NO₂ burdens, implying the possibility of using the satellite NO₂ 13 observations under the weak-wind condition to constrain the surface NO_x emissions directly. 14 15 The simultaneously obtained effective NO₂ lifetimes ($\sim 3.5 \pm 1.3$ h) are biased low in 16 comparison to the summertime NO₂ chemical lifetime of \sim 7 h, reflecting the influences of plume meandering and the coarse sampling resolution on the EMG fitted results. 17

18 Finally, we quantify the NO_x reductions in selected U.S. urban areas and compare the trends 19 of satellite observations with those of bottom-up emissions and ground-based measurements. 20 We find that the time series of the NO_x-related quantities correlate with each other very well 21 in most U.S. urban areas, especially for large cities. Due to the successful control of NO_x 22 emissions in both the power and transportation sectors, the total NEI NO_x emissions, the total 23 OMI-derived NO_x emissions, the sum of OMI NO_2 columns (under the weak winds 24 condition), the total OMI NO₂ burdens (under the weak winds condition), and the average 25 measured NO₂ concentrations for all U.S. urban areas decreased by 43%, 49%, 47%, 49%, and 44%, respectively, from 2005 to 2014. Reductions of these five NO_x-related quantities 26 were rapid, at rates of -6.8 to -9.3% yr⁻¹, before 2010 and slowed down to rates of -3.4 to 27 -4.9% yr⁻¹ in recent years. Generally, the annual average rates of decrease of OMI NO₂ 28 29 observations obtained in this work are greater than previously reported values derived from 30 the all-wind satellite maps, further demonstrating the importance of considering winds.

We have shown that using the EMG method, the OMI has the capability to estimate NO_x emissions from urban areas directly and constrain their trends with reasonable accuracy.

1 These OMI-derived emissions can provide independent and valuable information to policy 2 makers and researchers in verifying the bottom-up emission estimates and inspecting the 3 effectiveness of emission control measures, especially for areas without complete surface monitoring networks and lacking well-established emission inventories. We also show that a 4 comprehensive and integrated analysis of satellite observations, ground measurements, and 5 bottom-up emissions can provide a better understanding of the true NO_x situation in a given 6 area. Furthermore, the method described in this work can be applied to the near-future 7 8 satellite missions such as NASA's Tropospheric Emissions: Monitoring of Pollution 9 (TEMPO, Chance et al., 2013) and the European Space Agency's (ESA) Tropospheric Ozone 10 Monitoring Instrument (TROPOMI, Veefkind et al., 2012). With the improved temporal 11 and/or spatial resolution offered by these missions, the diurnal variations of NO_x emissions 12 and emissions from smaller sources are likely to be able to be inferred.

13

14 Supplementary material

15 Table S1 and Table S2

16

17 Acknowledgements

This work was sponsored by the National Aeronautics and Space Administration (NASA) as a part of the Air Quality Applied Sciences Team (AQAST) program, for which we are grateful to the NASA Project Officer John Haynes and the AQAST team leader Daniel Jacob. We acknowledge the free use of tropospheric NO₂ column data from the OMI sensor from www.temis.nl. Argonne National Laboratory is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy.

24

25 **References**

Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.
E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W.,
Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A.,
Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D.
D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., St Clair, J. M.,

1 2 3 4	Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, 2010.
5 6	Bechle, M. J., Millet, D. B., and Marshall, J. D.: Remote sensing of exposure to NO ₂ : satellite versus ground-based measurement in a large urban, Atmos. Environ., 69, 345-353, 2013.
7	Beirle, S., Platt, U., von Glasow, R., Wenig, M., and Wagner, T.: Estimate of nitrogen oxide
8	emissions from shipping by satellite remote sensing, Geophys. Res. Lett., 31, L18102,
9	doi:10.1029/2004gl020312, 2004.
10 11	Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737-1739, 2011.
12	Beirle, S., Hormann, C., de Vries, M. P., Dorner, S., Kern, C., and Wagner, T.: Estimating the
13	volcanic emission rate and atmospheric lifetime of SO ₂ from space: a case study for
14	Kilauea volcano, Hawai'i, Atmos. Chem. Phys., 14, 8309-8322, 2014.
15 16	Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NO _x production from GOME satellite observations, Atmos. Chem. Phys., 5, 2311-2331, 2005.
17	Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van
18	den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real
19	time retrieval of tropospheric NO ₂ from OMI, Atmos. Chem. Phys., 7, 2103-2118, 2007.
20 21 22 23	 Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitao, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905-1928, 2011.
24	Carn, S. A., Krotkov, N. A., Yang, K., and Krueger, A. J.: Measuring global volcanic
25	degassing with the Ozone Monitoring Instrument (OMI), in: Remote Sensing of
26	Volcanoes and Volcanic Processes: Integrating Observation and Modeling, edited by:
27	Pyle, D. M., Mather, T. A., and Biggs, J., Geological Society, Special Publications, 380,
28	London, 229-257, 2013.
29	Chance, K., Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J., and Janz, S. J.:
30	Tropospheric emissions: monitoring of pollution (TEMPO), in: Proc. SPIE 8866, Earth

1 2	Observing Systems XVIII, San Diego, California, USA, August 25, 2013, doi:10.1117/12.2024479, 2013.						
3 4	Dallmann, T. R., and Harley, R. A.: Evaluation of mobile source emission trends in the United States, J. Geophys. Res., 115, D14305, doi:10.1029/2010jd013862, 2010.						
5	de Foy, B., Krotkov, N. A., Bei, N., Herndon, S. C., Huey, L. G., Martinez, A. P., Ruiz-						
0 7	industrial and volcanic plumes in Mexico City with surface measurements and OMI SO ₂						
8	retrievals during the MILAGRO field campaign. Atmos. Chem. Phys., 9 9599-9617						
9	2009.						
10	de Foy, B., Wilkins, J. L., Lu, Z., Streets, D. G., and Duncan, B. N.: Model evaluation of						
11	methods for estimating surface emissions and chemical lifetimes from satellite data,						
12	Atmos. Environ., 98, 66-77, 2014.						
13	de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan, B. N.: Estimates of power plant						
14	NO _x emissions and lifetimes from OMI NO ₂ satellite retrievals, Atmos. Environ., 116, 1-						
15	11, 2015.						
16	Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,						
17	Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg,						
18	L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger,						
19	L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,						
20	Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey,						
21	C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The ERA-Interim						
22	reanalysis: configuration and performance of the data assimilation system, Q. J. Roy.						
23	Meteor. Soc., 137, 553-597, 2011.						
24	Demerjian, K. L.: A review of national monitoring networks in North America, Atmos.						
25	Environ., 34, 1861-1884, 2000.						
26	Dommen, J., Prevot, A. S. H., Hering, A. M., Staffelbach, T., Kok, G. L., and Schillawski, R.						
27	D.: Photochemical production and aging of an urban air mass, J. Geophys. Res., 104,						
28	5493-5506, 1999.						
29	Duncan, B. N., Yoshida, Y., de Foy, B., Lamsal, L. N., Streets, D. G., Lu, Z., Pickering, K.						

30 E., and Krotkov, N. A.: The observed response of Ozone Monitoring Instrument (OMI)

- NO₂ columns to NO_x emission controls on power plants in the United States: 2005-2011,
 Atmos. Environ., 81, 102-111, 2013.
- Fioletov, V. E., McLinden, C. A., Krotkov, N., Moran, M. D., and Yang, K.: Estimation of
 SO₂ emissions using OMI retrievals, Geophys. Res. Lett., 38, L21811,
 doi:10.1029/2011gl049402, 2011.
- Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola, D. G., Valks, P., Theys, N.,
 Van Roozendael, M., Nowlan, C. R., Chance, K., Liu, X., Lee, C., and Martin, R. V.:
 Application of OMI, SCIAMACHY, and GOME-2 satellite SO₂ retrievals for detection of
 large emission sources, J. Geophys. Res., 118, 11399-11418, 2013.
- Fioletov, V. E., McLinden, C. A., Krotkov, N., and Li, C.: Lifetimes and emissions of SO₂
 from point sources estimated from OMI, Geophys. Res. Lett., 42, 1969-1976, 2015.
- Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO₂ over
 megacities derived from multiple satellite instruments, Atmos. Chem. Phys., 13, 41454169, 2013.
- Hudman, R. C., Russell, A. R., Valin, L. C., and Cohen, R. C.: Interannual variability in soil
 nitric oxide emissions over the United States as viewed from space, Atmos. Chem. Phys.,
 10, 9943-9952, 2010.
- Ialongo, I., Hakkarainen, J., Hyttinen, N., Jalkanen, J. P., Johansson, L., Boersma, K. F.,
 Krotkov, N., and Tamminen, J.: Characterization of OMI tropospheric NO₂ over the Baltic
 Sea region, Atmos. Chem. Phys., 14, 7795-7805, 2014.
- Jaeglé, L., Steinberger, L., Martin, R. V., and Chance, K.: Global partitioning of NO_x sources
 using satellite observations: relative roles of fossil fuel combustion, biomass burning and
 soil emissions, Faraday Discuss., 130, 407-423, 2005.
- Kalambet, Y., Kozmin, Y., Mikhailova, K., Nagaev, I., and Tikhonov, P.: Reconstruction of
 chromatographic peaks using the exponentially modified Gaussian function, J.
 Chemometr., 25, 352-356, 2011.
- Kim, S. W., Heckel, A., McKeen, S. A., Frost, G. J., Hsie, E. Y., Trainer, M. K., Richter, A.,
 Burrows, J. P., Peckham, S. E., and Grell, G. A.: Satellite-observed US power plant NO_x
 emission reductions and their impact on air quality, Geophys. Res. Lett., 33, L22812,
 doi:10.1029/2006gl027749, 2006.

- Kim, S. W., Heckel, A., Frost, G. J., Richter, A., Gleason, J., Burrows, J. P., McKeen, S.,
 Hsie, E. Y., Granier, C., and Trainer, M.: NO₂ columns in the western United States
 observed from space and simulated by a regional chemistry model and their implications
 for NO_x emissions, J. Geophys. Res., 114, D11301, doi:10.1029/2008jd011343, 2009.
- Krotkov, N. A., Schoeberl, M. R., Morris, G. A., Carn, S., and Yang, K.: Dispersion and
 lifetime of the SO₂ cloud from the August 2008 Kasatochi eruption, J. Geophys. Res.,
 115, D00l20, doi:10.1029/2010jd013984, 2010.
- Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Richter, A., LadstatterWeissenmayer, A., and Burrows, J. P.: Analysis of tropospheric NO_x over Asia using the
 model of atmospheric transport and chemistry (MATCH-MPIC) and GOME-satellite
 observations, Atmos. Environ., 38, 581-596, 2004.
- Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K.
 F., Dirksen, R., Luo, C., and Wang, Y.: Indirect validation of tropospheric nitrogen
 dioxide retrieved from the OMI satellite instrument: insight into the seasonal variation of
 nitrogen oxides at northern midlatitudes, J. Geophys. Res., 115, D05302,
 doi:10.1029/2009jd013351, 2010.
- Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C. E.,
 Chance, K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite observations for
 timely updates to global anthropogenic NO_x emission inventories, Geophys. Res. Lett.,
 38, L05810, doi:10.1029/2010gl046476, 2011.
- Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G.,
 and Lu, Z.: U.S. NO₂ trends (2005-2013): EPA Air Quality System (AQS) data versus
 improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ.,
 110, 130-143, 2015.
- Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., and Jahne, B.: Quantitative analysis of
 NO_x emissions from Global Ozone Monitoring Experiment satellite image sequences, J.
 Geophys. Res., 106, 5493-5505, 2001.
- Levelt, P. F., Van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser, H., de Vries, J.,
 Stammes, P., Lundell, J. O. V., and Saari, H.: The Ozone Monitoring Instrument, IEEE T.
 Geosci. Remote, 44, 1093-1101, 2006.

1	Lu, Z., and Streets, D. G.: Increase in NO _x emissions from Indian thermal power plants during
2	1996-2010: unit-based inventories and multisatellite observations, Environ. Sci. Technol.,
3	46, 7463-7470, 2012.

- Lu, Z., Streets, D. G., de Foy, B., and Krotkov, N. A.: Ozone Monitoring Instrument
 observations of interannual increases in SO₂ emissions from Indian coal-fired power
 plants during 2005-2012, Environ. Sci. Technol., 47, 13993-14000, 2013.
- Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: Global
 inventory of nitrogen oxide emissions constrained by space-based observations of NO₂
 columns, J. Geophys. Res., 108, D17, 4537, doi:10.1029/2003jd003453, 2003.
- Martin, R. V.: Satellite remote sensing of surface air quality, Atmos. Environ., 42, 7823-7843,
 2008.
- McDonald, B. C., Dallmann, T. R., Martin, E. W., and Harley, R. A.: Long-term trends in
 nitrogen oxide emissions from motor vehicles at national, state, and air basin scales, J.
 Geophys. Res., 117, D00v18, doi:10.1029/2012jd018304, 2012.
- Mebust, A. K., Russell, A. R., Hudman, R. C., Valin, L. C., and Cohen, R. C.:
 Characterization of wildfire NO_x emissions using MODIS fire radiative power and OMI
 tropospheric NO₂ columns, Atmos. Chem. Phys., 11, 5839-5851, 2011.
- 18 Nunnermacker, L. J., Imre, D., Daum, P. H., Kleinman, L., Lee, Y. N., Lee, J. H., Springston,
- 19 S. R., Newman, L., Weinstein-Lloyd, J., Luke, W. T., Banta, R., Alvarez, R., Senff, C.,
- 20 Sillman, S., Holdren, M., Keigley, G. W., and Zhou, X.: Characterization of the Nashville
- 21 urban plume on July 3 and July 18, 1995, J. Geophys. Res., 103, 28129-28148, 1998.
- Nunnermacker, L. J., Kleinman, L. I., Imre, D., Daum, P. H., Lee, Y. N., Lee, J. H.,
 Springston, S. R., Newman, L., and Gillani, N.: NO_y lifetimes and O₃ production
 efficiencies in urban and power plant plumes: analysis of field data, J. Geophys. Res., 105,
 9165-9176, 2000.
- Richter, A., Burrows, J. P., Nuss, H., Granier, C., and Niemeier, U.: Increase in tropospheric
 nitrogen dioxide over China observed from space, Nature, 437, 129-132, 2005.
- Russell, A. R., Valin, L. C., Bucsela, E. J., Wenig, M. O., and Cohen, R. C.: Space-based
 constraints on spatial and temporal patterns of NO_x emissions in California, 2005-2008,
 Environ. Sci. Technol., 44, 3608-3615, 2010.

1	Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO2 observations over the				
2	United States: effects of emission control technology and the economic recession, Atmos.				
3	Chem. Phys., 12, 12197-12209, 2012.				
4	Schneider, P., Lahoz, W. A., and van der A, R.: Recent satellite-based trends of tropospheric				
5	nitrogen dioxide over large urban agglomerations worldwide, Atmos. Chem. Phys., 15,				
6	1205-1220, 2015.				
7	Sillman, S.: Ozone production efficiency and loss of NOx in power plant plumes:				
8	photochemical model and interpretation of measurements in Tennessee, J. Geophys. Res.,				
9	105, 9189-9202, 2000.				
10	Spicer, C. W.: Nitrogen-oxide reactions in the urban plume of Boston, Science, 215, 1095-				
11	1097, 1982.				
12	Streets, D. G., Canty, T., Carmichael, G. R., de Foy, B., Dickerson, R. R., Duncan, B. N.,				
13	Edwards, D. P., Haynes, J. A., Henze, D. K., Houyoux, M. R., Jacobi, D. J., Krotkov, N.				
14	A., Lamsal, L. N., Liu, Y., Lu, Z., Martini, R. V., Pfister, G. G., Pinder, R. W., Salawitch,				
15	R. J., and Wechti, K. J.: Emissions estimation from satellite retrievals: a review of current				
16	capability, Atmos. Environ., 77, 1011-1042, 2013.				
17	Streets, D. G., de Foy, B., Duncan, B. N., Lamsal, L. N., Li, C., and Lu, Z.: Using satellite				
18	observations to measure power plant emissions and their trends, EM Magazine, 64, 16-21,				
19	2014.				
20	Theys, N., Campion, R., Clarisse, L., Brenot, H., van Gent, J., Dils, B., Corradini, S.,				
21	Merucci, L., Coheur, P. F., Van Roozendael, M., Hurtmans, D., Clerbaux, C., Tait, S., and				
22	Ferrucci, F.: Volcanic SO ₂ fluxes derived from satellite data: a survey using OMI,				
23	GOME-2, IASI and MODIS, Atmos. Chem. Phys., 13, 5945-5968, 2013.				
24	Tong, D. Q., Lamsal, L. N., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K. E., and				
25	Stajner, I.: Long-term NO _x trends over large cities in the United States during the Great				
26	Recession: comparison of satellite retrievals, ground observations, and				
27	emissioninventories, Atmos. Environ., 107, 70-84, 2015.				
28	USEPA: Evaluating the uncertainty of emission estimates, Volume VI, Chapter 4, Research				
29	Triangle Park, North Carolina, USA, 1996.				

- Valin, L. C., Russell, A. R., and Cohen, R. C.: Variations of OH radical in an urban plume
 inferred from NO₂ column measurements, Geophys. Res. Lett., 40, 1856-1860, 2013.
- van der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., Van Roozendael, M., De
 Smedt, I., Peters, D. H. M. U., and Meijer, E. W.: Trends, seasonal variability and
 dominant NO_x source derived from a ten year record of NO₂ measured from space, J.
 Geophys. Res., 113, D04302, doi:10.1029/2007jd009021, 2008.
- Veefkind, J. P., Aben, I., McMullan, K., Forster, H., de Vries, J., Otter, G., Claas, J., Eskes,
 H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R.,
 Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H.,
 and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for
 global observations of the atmospheric composition for climate, air quality and ozone
 layer applications, Remote Sens. Environ., 120, 70-83, 2012.
- Wang, S. W., Streets, D. G., Zhang, Q. A., He, K. B., Chen, D., Kang, S. C., Lu, Z., and
 Wang, Y. X.: Satellite detection and model verification of NO_x emissions from power
 plants in Northern China, Environ. Res. Lett., 5, 044007, doi:10.1088/17489326/5/4/044007, 2010.
- Wang, S. W., Zhang, Q., Streets, D. G., He, K. B., Martin, R. V., Lamsal, L. N., Chen, D.,
 Lei, Y., and Lu, Z.: Growth in NO_x emissions from power plants in China: bottom-up
 estimates and satellite observations, Atmos. Chem. Phys., 12, 4429-4447, 2012.
- Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., and Wei, C.: Historical
 gaseous and primary aerosol emissions in the United States from 1990 to 2010, Atmos.
 Chem. Phys., 13, 7531-7549, 2013.
- Zhang, Q., Streets, D. G., and He, K. B.: Satellite observations of recent power plant
 construction in Inner Mongolia, China, Geophys. Res. Lett., 36, L15809,
 doi:10.1029/2009gl038984, 2009.
- 26

1 Figure captions

- Fig. 1. Average summer half-year (i.e., April to September) OMI NO₂ TVCDs over the continental U.S. during 2005–2014: (a) all valid data were used, (b) only valid data with wind speeds $<3 \text{ m s}^{-1}$ were used, and (c) the difference between (b) and (a). Squares in (a) indicate the urban areas selected in this work.
- 6 Fig. 2. Wind-aligned OMI NO₂ TVCD maps at wind speeds (a) $<3 \text{ m s}^{-1}$ and (b) $>5 \text{ m s}^{-1}$ 7 for Chicago in summer months (i.e., April to September) during 2005–2007. (c) 8 OMI NO₂ line densities of (a) and (b) and the corresponding EMG fits. Line 9 densities are from the integration of the NO₂ data in the across-wind direction.
- 10Fig. 3.Average summer half-year (i.e., April to September) OMI NO2 TVCDs over the11continental U.S. for (a, d) 2006* (i.e., 2005 to 2007) and (b, e) 2013* (i.e., 2012 to122014): (a, b) all valid data were used, (d, e) only valid data with wind speeds <3 m</td>13 s^{-1} were used. The right column shows the differences in maps between the middle14and the left column. The bottom row shows the differences in maps between the15middle and the top row.
- 16Fig. 4.Average summer half-year (i.e., April to September) OMI NO2 TVCDs over (a, b)17Chicago and (d, e) Los Angeles during 2005-2014: (a, d) all valid data were used,18(b, e) only valid data with wind speeds <3 m s⁻¹ were used, and (c, f) the difference19between the middle and the left column.
- Fig. 5. Interannual trends of NEI NO_x emissions, the OMI-derived summertime (April to September) NO_x emissions, the OMI-observed summertime NO₂ burdens at low (<3 m s⁻¹) speed winds condition, and the average summertime NO₂ concentrations at 13:00–14:00 LT in Chicago during 2006*–2013*. Error bars express the ±1 SD of the annually estimated results. *R* values shown are the correlation coefficients with the OMI-observed NO₂ burdens.
- Fig. 6. Scatter plots of (a) OMI-observed NO₂ burdens at low ($<3 \text{ m s}^{-1}$) speed winds condition against NEI NO_x emissions, (b) OMI-observed NO₂ burdens against OMI-derived NO_x emissions, and (c) OMI-derived NO_x emissions against NEI NO_x emissions for 35 selected U.S. urban areas during 2005–2014. Each point represents a three-year result for an urban area. Error bars express the ±1 SD

- 1 uncertainties. Uncertainties of NEI emissions are set to be 50% according to the 2 expert judgment. The inset figures are the zoomed views of points with emissions 3 $<20 \text{ Mg h}^{-1}$.
- Fig. 7. Correlation coefficients of pair-wise trends among the NEI NO_x emissions, the OMI-derived NO_x emissions, the OMI NO₂ burdens at wind speeds <3 m s⁻¹, and the AQS NO₂ measurements against the mean OMI NO₂ burdens under the weak-wind speed condition (<3 m s⁻¹) for all selected urban areas during 2006*-2013*. Each large gray circle represents the average of the six correlation coefficients for an urban area.
- Fig. 8. The sum of three-year averaged OMI NO₂ TVCDs under the weak-wind speed condition for 35 selected U.S. urban areas as a function of the distance from the urban centers during 2006* to 2013*. The background NO₂ of urban areas was removed. Error bars express the 95% confidence intervals of the mean. The ratios of 2007* to 2006*, 2010* to 2006*, and 2013* to 2006* are shown at the top.
- Fig. 9. Three-year moving trends of the total NEI NO_x emissions, the total OMI-derived NO_x emissions, the total OMI-observed NO₂ burdens under the weak-wind speed condition, and the area-weighted average AQS surface NO₂ measurements for all selected urban areas during $2006^{*}-2013^{*}$. Error bars express the ±1 SD of the estimates. *R* values shown are the correlation coefficients with the OMI-observed NO₂ burdens.
- 21

Fig. 1. Average summer half-year (i.e., April to September) OMI NO2 TVCDs over the continental U.S. during 2005–2014: (a) all valid data were used, (b) only valid data with wind speeds <3 m s⁻¹ were used, and (c) the difference between (b) and (a).
Squares in (a) indicate the urban areas selected in this work.

Fig. 2.

Wind-aligned OMI NO2 TVCD maps at wind speeds (a) $<3 \text{ m s}^{-1}$ and (b) $>5 \text{ m s}^{-1}$ for Chicago in summer months (i.e., April to September) during 2005–2007. (c) OMI NO2 line densities of (a) and (b) and the corresponding EMG fits. Line densities are from the integration of the NO2 data in the across-wind direction.

Fig. 3. Average summer half-year (i.e., April to September) OMI NO2 TVCDs over the continental U.S. for (a, d) 2006* (i.e., 2005 to 2007) and (b, e) 2013* (i.e., 2012 to 2014): (a, b) all valid data were used, (d, e) only valid data with wind speeds <3 m s⁻¹ were used. The right column shows the differences in maps between the middle and the left column. The bottom row shows the differences in maps between the middle and the top row.

8

Fig. 4. Average summer half-year (i.e., April to September) OMI NO2 TVCDs over (a, b)
Chicago and (d, e) Los Angeles during 2005–2014: (a, d) all valid data were used,
(b, e) only valid data with wind speeds <3 m s⁻¹ were used, and (c, f) the difference
between the middle and the left column.

Fig. 5. Interannual trends of NEI NOx emissions, the OMI-derived summertime (April to September) NOx emissions, the OMI-observed summertime NO2 burdens at low (<3 m s⁻¹) speed winds condition, and the average summertime NO2 concentrations at 13:00–14:00 LT in Chicago during 2006*–2013*. Error bars express the ±1 SD of the annually estimated results. *R* values shown are the correlation coefficients with the OMI-observed NO2 burdens.

Scatter plots of (a) OMI-observed NO2 burdens at low (<3 m s⁻¹) speed winds Fig. 6. 2 condition against NEI NOx emissions, (b) OMI-observed NO2 burdens against 3 4 OMI-derived NOx emissions, and (c) OMI-derived NOx emissions against NEI NOx emissions for 35 selected U.S. urban areas during 2005-2014. Each point 5 represents a three-year result for an urban area. Error bars express the ±1 SD 6 uncertainties. Uncertainties of NEI emissions are set to be 50% according to the 7 8 expert judgment. The inset figures are the zoomed views of points with emissions $<20 \text{ Mg h}^{-1.}$ 9

Fig. 7. Correlation coefficients of pair-wise trends among the NEI NOx emissions, the OMI-derived NOx emissions, the OMI NO2 burdens at wind speeds <3 m s⁻¹, and the AQS NO2 measurements against the mean OMI NO2 burdens under the weak-wind speed condition (<3 m s⁻¹) for all selected urban areas during 2006*-2013*. Each large gray circle represents the average of the six correlation coefficients for an urban area.

Fig. 8. The sum of three-year averaged OMI NO2 TVCDs under the weak-wind speed condition for 35 selected U.S. urban areas as a function of the distance from the urban centers during 2006* to 2013*. The background NO2 of urban areas was removed. Error bars express the 95% confidence intervals of the mean. The ratios of 2007* to 2006*, 2010* to 2006*, and 2013* to 2006* are shown at the top.

Fig. 9. Three-year moving trends of the total NEI NOx emissions, the total OMI-derived
NOx emissions, the total OMI-observed NO2 burdens under the weak-wind speed
condition, and the area-weighted average AQS surface NO2 measurements for all
selected urban areas during 2006*-2013*. Error bars express the ±1 SD of the
estimates. *R* values shown are the correlation coefficients with the OMI-observed
NO2 burdens.

Table 1. Summary of the average bottom-up NO_x emissions, OMI-derived NO_x results, ground-based NO_2 measurements, and their linear trends for 35 U.S. urban areas during the summer half-year (April to September) from 2006* to 2013*.^a

			NEI emissions	Results at high wind speeds (WS) Result			Results	esults at low WS Linear		r trends from 2006* to 2013* ($\% \text{ yr}^{-1}$)			Maan
Urban Areas	Latitude	Longitude	2005-2014	Mean WS	OMI-derived	Effective	Mean WS	OMI burden	NEI	OMI-derived	OMI burden	105	R ^b
			$(Mg h^{-1})$	$(m s^{-1})$	emissions (Mg h ⁻¹)	lifetime (h)	$(m s^{-1})$	(Mg)	emissions	emissions	at WS $<3 \text{ m s}^{-1}$	AQS	Λ
Atlanta, GA	33.74	-84.32	12.7	5.7	6.7±2.8	4.3±1.4	1.9	25.0±10.1	-7.9	-7.8±3.3	-15.3±6.2	-5.0	0.80
Boston, MA	42.38	-71.02	10.3	6.1	10.9±4.5	5.3±1.7	1.9	29.5±11.9	-6.1	-13.4±5.6	-8.1±3.3	-4.7	0.84
Charlotte, NC	35.34	-80.86	3.3	5.8	2.7±1.1	4.0±1.3	1.8	8.7±3.5	-1.3	-7.9±3.4	-12.9±5.2	-6.1	0.54
Chicago, IL	41.78	-87.68	30.7	7.4	23.3±9.7	6.1±1.9	2.1	86.3±34.8	-6.6	-7.8±3.3	-5.7±2.3	-6.8	0.95
Cincinnati, OH	39.12	-84.50	7.9	4.9	4.9±2.0	5.6±1.8	1.8	16.9±6.8	-3.9	-8.5 ± 3.6	-6.0 ± 2.5	-6.0	0.73
Dallas, TX	32.86	-96.96	14.8	7.4	8.1±3.4	3.3±1.1	2.0	26.8±10.8	-7.4	-12.2 ± 5.1	-5.3 ± 2.1	-7.3	0.86
Denver, CO	39.78	-105.04	10.0	6.0	12.1±5.0	3.5±1.1	1.8	21.7±8.8	-2.4	-9.8 ± 4.1	-9.4 ± 3.8	-2.1	0.78
Detroit, MI	42.26	-83.12	26.1	6.4	18.7±7.8	5.2±1.7	2.0	57.7±23.3	-6.6	-3.4±1.5	-5.8 ± 2.3	-5.3	0.76
El Paso, TX	31.74	-106.38	2.2	6.7	3.2±1.3	3.0±0.9	1.9	7.2±2.9	-3.3	-3.7 ± 1.6	-4.4 ± 1.8	-4.6	0.77
Houston, TX	29.82	-95.28	13.5	5.9	11.3±4.7	4.1±1.3	1.9	30.3±12.2	-7.9	-5.2 ± 2.3	-5.1±2.1	-4.8	0.79
Indianapolis, IN	39.80	-86.12	4.3	5.6	3.1±1.3	4.2±1.3	2.0	8.5±3.4	-3.2	-5.7±2.5	-6.5 ± 2.6	-7.8	0.86
Jacksonville, FL	30.40	-81.60	5.2	5.7	4.7±2.0	2.5±0.8	1.9	9.9±4.0	-9.5	-6.3 ± 2.8	-9.5 ± 3.8	-2.9	0.80
Kansas City, MO	39.10	-94.56	10.2	6.6	5.1±2.1	3.9±1.2	1.9	14.3±5.8	-4.4	-7.8±3.3	-13.4±5.4	-4.9	0.86
Las Vegas, NV	36.18	-115.14	6.1	6.4	6.7±2.8	2.0±0.7	1.9	11.2±4.5	-3.3	-10.3±4.4	-12.3 ± 5.0	-3.0	0.60
Los Angeles, CA	34.06	-117.92	40.1	3.7	40.0±16.6	3.6±1.2	2.0	124.4±50.2	-10.7	-7.0±2.9	-8.5 ± 3.4	-7.6	0.97
Louisville, KY	38.20	-85.74	6.3	5.6	2.5±1.0	3.5±1.1	1.9	8.1±3.3	-7.6	-9.0 ± 3.8	-11.3±4.6	-13.1	0.70
Memphis, TN	35.10	-90.04	4.4	5.9	1.5±0.6	3.2±1.0	1.9	3.4±1.4	-7.3	-25.9 ± 10.8	-10.2 ± 4.1	-2.7	0.83
Miami, FL	26.02	-80.34	13.4	5.4	5.6±2.3	5.0±1.6	1.9	28.7±11.6	-6.5	-10.2 ± 4.3	-4.5 ± 1.8	-9.3	0.80
Minneapolis, MN	44.96	-93.22	12.8	6.9	9.3±3.9	2.7±0.9	2.0	25.9±10.5	-8.6	-12.4±5.2	-11.3±4.6	-11.0	0.89
Nashville, TN	36.14	-86.62	2.9	5.6	2.0±0.8	2.8±0.9	1.8	4.0±1.6	-4.4	-13.8 ± 5.8	-14.9 ± 6.0	-6.9	0.78
New Orleans, LA	29.98	-90.22	7.2	5.3	3.6±1.5	3.2±1.0	1.8	6.0±2.5	-5.2	-7.3 ± 3.2	-1.8 ± 1.1	-5.4	0.48
New York, NY	40.72	-73.80	43.2	5.3	50.7±21.1	3.1±1.0	1.9	128.1±51.7	-6.3	-5.9 ± 2.5	-6.8 ± 2.8	-6.7	0.96
Philadelphia, PA	39.98	-75.16	17.8	5.2	23.3±9.8	3.2±1.0	1.9	53.0±21.4	-7.2	-9.1±4.0	-18.1±7.3	-7.2	0.93
Phoenix, AZ	33.54	-112.00	10.8	5.4	12.2±5.1	1.8±0.6	1.7	21.1±8.5	-4.7	-13.0±5.5	-6.4±2.6	-4.6	0.80
Portland, OR	45.44	-122.60	6.9	3.9	9.9±4.1	1.2 ± 0.4	2.1	15.8±6.4	-3.8	-5.0 ± 2.2	-11.6±4.7	-8.1	0.91
Richmond, VA	37.42	-77.30	3.6	4.9	1.8±0.7	3.5±1.1	2.0	5.1±2.1	-7.8	-5.7±2.7	-14.7 ± 5.9	-9.4	0.68
Salt Lake City, UT	40.72	-111.92	3.6	4.8	8.2±3.5	1.3±0.4	1.8	14.3±5.8	-3.7	-12.1±5.4	-9.3 ± 3.8	-10.8	0.89
San Antonio, TX	29.56	-98.44	5.4	5.7	3.2±1.4	2.1±0.7	2.0	7.9±3.2	-5.7	-10.2 ± 4.4	-8.2±3.4	-1.6	0.75
San Diego, CA	32.66	-116.86	6.0	4.0	8.8±3.7	3.1±1.0	2.0	21.7±8.8	-9.8	-6.3 ± 3.0	-4.2 ± 1.7	-7.8	0.91
Seattle, WA	47.42	-122.22	13.0	3.7	13.3±5.7	3.4±1.1	2.0	30.0±12.1	-4.8	-6.5 ± 3.3	-4.3±1.9	-5.6	0.80
St. Louis, MO	38.64	-90.32	11.0	5.2	4.9±2.0	6.8±2.1	1.9	15.8±6.4	-0.7	-10.9 ± 4.5	-8.9±3.6	-10.0	0.59
Tampa, FL	27.90	-82.42	8.5	5.6	6.9±2.9	2.7±0.9	1.8	14.3±5.8	-9.5	-6.6 ± 2.8	-9.1±3.7	-10.5	0.80
Tucson, AZ	32.24	-110.88	3.1	5.9	1.5±0.6	3.6±1.2	1.8	3.9±1.6	-6.0	-6.2 ± 2.7	-4.0±1.7	-7.4	0.59
Virginia Beach, VA	36.90	-76.32	6.1	6.2	4.6±1.9	1.4±0.4	2.0	7.3±2.9	-8.7	-8.9 ± 3.7	-8.7 ± 3.5	-6.1	0.79
Washington, DC	39.20	-76.58	18.5	5.0	13.0±5.5	4.7±1.5	1.9	48.5±19.6	-7.3	-10.2 ± 4.3	-6.9 ± 2.8	-6.2	0.92

^a 2006* and 2013* denote the three-year average of 2005–2007 and 2012–2014, respectively.

1

2

^b Average correlation coefficients (*R*) of pair-wise trends among the NEI NO_x emissions, the OMI-derived NO_x emissions, the OMI NO₂ burdens, and the AQS NO₂ measurements.

3 Table 2. Summary of NO_x-related trends over all selected U.S. urban areas during 2006*–2013* ^a.

	2006*-2013*	2006*-2010*	2010*-2013*
Sum of OMI NO ₂ columns under winds $<3 \text{ m s}^{-1}$	$-6.9\% \text{ yr}^{-1}$	$-9.0\% \text{ yr}^{-1}$	$-3.9\% \text{ yr}^{-1}$
Total NEI NO _x emissions	$-6.2\% \text{ yr}^{-1}$	$-6.8\% \text{ yr}^{-1}$	$-4.9\% \text{ yr}^{-1}$
Total OMI-derived NO _x emissions	$-7.4\% \text{ yr}^{-1}$	$-8.7\% \text{ yr}^{-1}$	$-3.4\% \text{ yr}^{-1}$
Total OMI NO ₂ burdens under winds $<3 \text{ m s}^{-1}$	$-7.3\% \text{ yr}^{-1}$	$-9.3\% \text{ yr}^{-1}$	$-4.6\% \text{ yr}^{-1}$
Average NO ₂ concentrations	$-6.3\% \text{ yr}^{-1}$	$-7.2\% \text{ yr}^{-1}$	$-4.6\% \text{ yr}^{-1}$

4 ^a 2006*, 2010*, and 2013* denote the three-year average of 2005–2007, 2009–2011, and 2012–2014, respectively.