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Abstract. In the scope of the AQMEII Phase 1 project the GEM-AQ model was run over Europe

for the year 2006. The modelling domain was defined using a global variable resolution grid with

a rotated equator and uniform resolution of 0.2◦ × 0.2◦ over the European continent. Spatial distri-

bution and temporal variability of the GEM-AQ model results were analysed for surface ozone and

PM10 concentrations. Model results were compared with measurements available in the ENSEM-5

BLE database. Statistical measures were used to evaluate performance of the GEM-AQ model. The

mean bias error, the mean absolute gross error and the Pearson correlation coefficient were calculated

for the maximum 8 h running average ozone concentrations and daily mean PM10 concentrations.

The GEM-AQ model performance was characterised for station types, European climatic regions,

and seasons. The best performance for ozone was obtained at suburban stations and the worst per-10

formance was obtained for rural stations where the model tends to underestimate. The best results

for PM10 were calculated for urban stations, while over most of Europe concentrations at rural sites

were too high. Discrepancies between modelled and observed concentrations were discussed in the

context of emission data uncertainty as well as the impact of large scale dynamics and circulation

of air masses. Presented analyses suggest that interpretation of modelling results is enhanced when15

regional climate characteristics are taken into consideration.

1 Introduction

The Air Quality Model Evaluation International Initiative (AQMEII; Galmarini et al, 2012) is a col-

laborative project aimed at improving our understanding of uncertainties and limitations of regional-

scale air quality models. During Phase 1 of AQMEII, air quality simulations encompassing two20
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domains, Europe and North America, were carried out for 2006. Several results of this initiative

have already been published. Solazzo et al (2012a) reported operational evaluation (Dennis et al,

2010) of particulate matter predictions by 10 models; this paper may serve as a general reference for

the intercomparison methodology, data used and the participating models; evaluation of ozone pre-

dictions was presented by Solazzo et al (2012b). Appel et al (2012) presented and discussed results25

obtained with the Community Multiscale Air Quality (CMAQ) model using different boundary con-

ditions. Brandt et al (2012) reported modelling results with the Danish Eulerian Hemispheric Model

(DEHM). Pirovano et al (2012) discussed differences in simulations with the Comprehensive Air

Quality Model with Extensions (CAMx) and the CHIMERE model. CAMx predictions were dis-

cussed by Nopmongcol et al (2012), while CMAQ simulations were done and analysed by Tagaris30

et al (2013).

As a part of Phase 1 of the AQMEII project, a simulation of air quality in Europe was conducted

using the Global Environmental Multiscale – Air Quality (GEM-AQ, Kaminski et al, 2008). This

model differs from other Phase 1 participating models in two aspects. First, it is a multiscale model

that can cover the entire globe using a uniformly spaced latitude/longitude grid, a global variable35

resolution grid or a limited-area extent. Second, the atmospheric chemistry model is implemented

on-line within the meteorological model, sharing the advection and subgrid transport schemes. As

the GEM-AQ model was used in its global variable-resolution mode, this simulation required nei-

ther externally supplied meteorological fields nor lateral boundary conditions. The annual simulation

presented here consisted of a series of daily runs, each initialized with a global meteorological ob-40

jective analysis (Gauthier et al, 1999) done using the 3D-Var assimilation method, and utilizing air

quality results from the previous day as initial conditions for the air quality module. Results from

the GEM-AQ model simulations were already used by Solazzo et al (2013) to address diversity in

multi-model ensembles.

In this paper we present a comprehensive operational evaluation of the GEM-AQ model. Concen-45

trations of ozone and PM10 are compared with surface measurements.

The database of the AQMEII project contained hourly measurements of pollutant concentrations

taken at rural, suburban and urban sites. Ozone concentrations were available from 472 rural, 391

suburban and 527 urban stations. For PM10 there were 119, 110 and 263 stations, correspondingly.

To address the possible representativeness issues pertinent to the spatial resolution adopted in the50

project, we shall present the results stratified according to the station types.

2 Model description

As the GEM-AQ model used in this study has been extensively documented elsewhere (Côté et al,

1998a; Côté et al, 1998b; Mailhot et al, 2006; Kaminski et al, 2008; Gong et al, 2012), we shall

focus on the model configuration choices used in this study. The meteorological component of the55
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system, the GEM model, is a medium-range operational weather forecast model of the Canadian

Meteorological Centre.

2.1 Model formulation

The GEM model used in this study solves the hydrostatic primitive equations cast in spherical co-

ordinates (with a rotated equator plane in order to minimize distortions over the uniform resolution60

area), with a terrain following, hybrid pressure-type vertical coordinate comprising 28 levels, of

which 8 may fall into a well-developed boundary layer. The top of the model domain is located

at 10 hPa whereas the height of the lowest atmospheric level is approximately 40m. The model

uses a semi-Lagrangian time discretization with a semi-implicit approximation of terms that give

rise to fast gravitational modes (Robert, 1985) – a feature crucial for its multiscale applications as65

well as for integration using variable-resolution meshes. This scheme permits using time steps sev-

eral times longer than in, for instance, a split-explicit method. With a few exceptions, choices of

physical parameterizations made for this study follow the 15-km version of the Canadian Regional

Forecast System as documented by Mailhot et al (2006). The turbulence parameterization is based

on a turbulent kinetic energy budget with inclusion of statistical subgrid-scale cloudiness (Bélair et70

al, 2005) and the Bougeault–Lacarrere specification of the length scale (Bougeault and Lacarrere,

1989); surface energy budget is modelled with the force-restore equation (Deardorff, 1978). Gravity

wave drag effects are taken into account using a modified McFarlane parameterization (McFarlane,

1987; McLandress and McFarlane, 1993). Condensation processes are handled with the Kain-Fritsch

deep convection scheme (Kain and Fritsch, 1990, 1993), the so-called Kuo Transient shallow con-75

vection parameterization (see Bélair et al, 2005), and the Sundqvist (Sundqvist, 1978) scheme for

non-convective clouds. Solar and infrared radiation is modelled using Fouquart and Bonnel (1980)

and Garand (1983) schemes, fully interactive with clouds.

The gas-phase chemistry package of GEM-AQ (Kaminski et al, 2008) describes 116 chemical and

19 photolysis reactions among 50 species or groups of species, and is based on the second version80

of the Acid Deposition and Oxidation Model (Venkatram et al, 1988; Lurmann, 1986) with exten-

sions for free tropospheric chemistry. For a complete list of species and reactions, see Kaminski

et al (2008). A simplified aqueous-phase reaction module allows for oxidation of SO2 to sulphate.

Aerosols are modelled with a sectional module CAM (Canadian Aerosol Module, Gong et al, 2003)

with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust, size-segregated85

into 12 logarithmically spaced bins. The aerosol module includes parameterizations of nucleation,

condensation, coagulation, sedimentation and dry deposition, in-cloud oxidation of SO2 and scav-

enging, and below-cloud scavenging of aerosol species by rain and snow.
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2.2 Model configuration

For this study the GEM-AQ model was run on the global variable grid with rotated equator and with90

the resolution of 0.2◦×0.2◦ over the European continent. Number of grid points was set on the globe

to 288×264 and 197×190 in the core part (Fig. 1). In the vertical, 28 sigma-hybrid layers extending

to 10hPa were used. The simulation was performed from 1 January to 31 December 2006, as a set

of 30 h forecasts with a 6 h overlap. The integration time step of 600 s was used.

Emission data were prepared for the experiment by TNO (TNO, Utrecht, the Netherlands) using95

MACC (Monitoring Atmospheric Composition and Climate) methodology (Pouliot et al., 2012). An-

thropogenic emissions included primary gaseous pollutants such as O2, NOx, CO, NMVOC, NH3,

CH4 and particle pollution of the fine and coarse mode for individual SNAP (Standardized Nomen-

clature for Air Pollutants) sectors. Hourly biogenic emissions provided by the AQMEII project were

used. Emissions outside the area provided by AQMEII were compiled using EDGAR 2.0 (Emis-100

sion Database for Global Atmospheric Research, for 1990 base inventory year) and GEIA (Global

Emissions Inventory Activity) global inventories (Olivier et al., 1999; Olivier and Berdowski, 2001).

Anthropogenic emissions were distributed within the four lowest model layers (up to ∼ 630m) with

different injection height profiles for each of the SNAP sectors. Temporal profiles modulating annual

and diurnal variation of emission fluxes for each SNAP were used. Surface anthropogenic and bio-105

genic emission fluxes were applied as a bottom boundary condition in the vertical diffusion equation.

3 Modelling results

Following the methodology used in previous publications describing the AQMEII Phase 1 results,

the evaluation was undertaken with respect to station type (Hogrefe et al, 2013; Nopmongcol et al,

2012; Pirovano et al, 2012) and with respect to climatic differences between geographical regions110

in Europe (Solazzo et al, 2012a, b; Pirovano et al, 2012; Putaud et al, 2010). However, in contrast

to previous publications, in our analysis four different climatic regions were chosen. The selected

regions follow the Koeppen climate classifications for Europe (Fig. 2). Region I – Northern Europe,

the Scandinavian Peninsula and Finland, reflects boreal continental climate. Region II – Western

Europe, reflects maritime climate with the influence of an inflow from over the Atlantic Ocean.115

Region III – Central and Eastern Europe, is characterized mainly by transitional and warm summer

continental climate (some countries were not included, as observations were not available in the

database used). Region IV covers regions with the Mediterranean climate.

The following statistical measures were used to evaluate performance of the GEM-AQ model:

mean bias error (MBE); mean absolute gross error (MAGE) and Pearson correlation coefficient.120
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3.1 Ozone

Analysis of ozone concentrations variability was based on daily maximum 8 h running average. Eval-

uation of the GEM-AQ model performance was done for 1386 stations available in the ENSEMBLE

database (Galmarini et al, 2001, 2004).

3.1.1 Spatial distribution of ozone concentrations125

Spatial and temporal variability of the modelled ozone concentrations as well as the mean bias error

with respect to the type of station (rural/suburban/urban) were assessed on a seasonal basis.

Spatial distribution of model data and model performance statistics for maximum 8-h running

average ozone concentrations during winter months (DJF) and mean bias error for three types of

stations is shown in Fig. 3. The calculated ozone concentration over most of Europe is in the range130

40–50 µgm−3. Over the North Sea and the Baltic Sea concentrations are lower (30–40 µgm−3).

Lowest ozone levels (below 30 µgm−3) were calculated over regions characterized with high NOx

emission (i.e. Benelux, the Po Valley, London, Paris). Concentrations higher than 50 µgm−3 are

modelled in Southern Europe, with the maximum (up to 70 µgm−3) in mountain regions (the Alps,

eastern part of the Carpathian Mountains, Pyrenees, and the Balkan Mountains).135

During the winter (DJF) MBE for most of the rural stations varies in the range −10÷ 10µgm−3.

Over Scandinavia and the British Isles the underestimation is higher, up to −20µgm−3. Measure-

ments at rural stations located in the Alps are higher than modelled results. Suburban stations (avail-

able for the analysis) are located mainly in Western Europe. For most of these stations the bias is

small and positive, in the range 0 to 10 µgm−3. However, in the mountain regions the bias is up to140

30 µgm−3. Spatial coverage is most complete in Western Europe for urban stations. At most of the

sites the bias is positive and small, in the range of 0–10 µgm−3. The model underestimated ozone

concentrations for a few stations located in Scandinavia. Overestimation of up to 30–40 µgm−3 was

over industrial regions in Europe (i.e. Southern Italy, South-Eastern and Northern France, the Ruhr

region, Silesia and the Moravian Gate). In Northern Spain, in the same region the model underesti-145

mated ozone concentration levels for rural sites and overestimated for urban stations.

Spatial distribution of ozone concentrations and MBE for the spring (MAM) are shown in Fig. 4.

Over most of Europe the maximum 8 h running average ozone concentrations were in the range of 80

to 100 µgm−3. Over Scandinavia and the British Isles ozone concentrations were below 70 µgm−3.

Ozone concentrations higher than 100 µgm−3 were calculated in mountain regions in South-Eastern150

Europe (the Apennine Mountains) and in the Alps. In Western and Central Europe elevated ozone

concentrations were over industrial areas (i.e. Silesia and the Moravian Gate). MBE at rural stations

is generally smaller than in winter months. For most sites the error is in the range −10÷10µgm−3.

In Central Europe and the British Isles the discrepancies were reduced as compared to the winter

months, while in Scandinavia the underestimation is larger, especially near the Baltic Sea coast. In155
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the Alps the overestimation is smaller than in the winter months. For suburban stations the model

performance is good. The underestimation of modelled results is mainly in coastal areas. In most

of the urban sites the model overestimates ozone levels up to 20 µgm−3 while the underestimation

occurred at the costal stations.

Summer (JJA) modelled ozone concentrations (Fig. 5) show uniform distribution in the range160

of 90 to 100 µgm−3 in Western and Eastern Europe. Lower concentrations over Scandinavia are

due to lower solar irradiance, lower temperature and lower emissions of ozone precursors. Over

the south-eastern part of the British Isles concentrations over 80 µgm−3 were calculated. Highest

concentrations (over 120 µgm−3) were calculated over the Po Valley and the Iberian Peninsula.

Ozone concentration over the Atlantic Ocean is lower than in spring months, with values below165

60 µgm−3.

During summer months (JJA) the distribution of MBE for rural stations shows underestimation

over the British Isles and the Iberian Peninsula larger than in spring months (−20 to −10µgm−3).

In Scandinavia and Central Europe modelled concentrations better agree with observed values. In

South-Eastern Europe the model tends to overestimate observed concentrations. The model tends170

to overestimate ozone concentrations as compared to observation at suburban stations. In Western

and Central Europe MBE is in the range of −10 to 10µgm−3, with highest values over the Benelux

and industrial regions on the border of France and Germany. Over the Iberian Peninsula the model

underestimates ozone concentrations. MBE calculated for urban stations is in most cases positive.

However, MBE is significantly reduced as compared to winter and spring months.175

The distribution of ozone concentrations in the fall is shown in Fig. 6. Over most of Europe

the ozone concentrations exceed 60 µgm−3. Lower concentrations were calculated near the British

Isles, the North Sea, Scandinavia and Eastern Europe. Highest concentrations over 80 µgm−3 are

modelled in mountain regions in the southern part of the continent. Ozone concentrations below

40 µgm−3 were calculated in South-Eastern Europe.180

In autumn (SON) for most rural stations MBE is positive, in the range of 0 to 10 µgm−3. Un-

derestimation up to −10 µgm−3 was over Scandinavia and the British Isles and over the Iberian

Peninsula. Significant overestimation was in the Alps (up to 30 µgm3). Positive bias in the range of

10 to 20 µgm−3 was over the industrial regions along the border of Germany and France and over

the Netherlands. For urban and suburban stations the spatial distribution of MBE is similar. Bias is185

positive in the range of 0 to 20 µgm−3. Highest error values were calculated in the Alps.

3.1.2 Temporal variability of ozone concentrations

In order to study the model performance on a daily basis, maximum 8 h running average concen-

trations were calculated and averaged over stations in four regions of the European continent char-

acterized with different climatological conditions: Western Europe, Northern Europe, Central and190

Eastern Europe and Southern Europe (Fig. 7–14).

6



In Northern Europe there were only 45 stations available for the comparison. Model shows sys-

tematic underestimation during the autumn, winter and spring; MBE is −16.8 µgm−3 and MAGE is

20.7 µgm−3. The differences between modelled and observed concentration values are much smaller

from June to September (Fig. 7). In contrast to other regions where highest concentrations were ob-195

served from May to July, in this region the period with highest concentrations exceeding 100 µgm−3

was observed at the end of April and the beginning of May, while during the summer months there

were two high concentration episodes. In spite of the systematic bias, the correlation coefficient is

0.83, which shows good agreement in terms of changes related to exchange of air masses. Scatterplot

representing concentrations averaged over days (Fig. 8) shows that levels in the range 60–80 were200

reproduced the best.

In Western Europe the agreement between model and observations was analysed for 791 stations.

Temporal variability of the maximum 8 h running average ozone concentrations was captured very

well. MBE is low −0.4 µgm−3 and MAGE 16.5 µgm−3. Small overestimation was in January,

March, September and October. High concentrations were observed in June and July (Fig. 9). Three205

high concentration episodes can be distinguished. During episodes the model underestimated peak

values by ∼ 20µgm−3.

Short term variability is reproduced correctly and the correlation coefficient is 0.91. Scatter-

plots show that major discrepancies are for the highest concentrations during summer episodes

(> 100µgm−3) (Fig. 10).210

Analysis of the ozone concentrations variability in Central Europe was undertaken for 251 sta-

tions. The model underestimated concentrations in March and April and during summer episodes

(Fig. 11). MBE was −1.5 µgm−3 and MAGE 17.6 µgm−3. First period with exceptionally high

concentrations was in the beginning of May and was not reproduced by the model. Rapid increase

of ozone concentrations in Central and Eastern Europe was connected with the inflow of aerosols215

from biomass fires in Eastern Europe, which plausibly contributed to changes of photodissociation

rates. Other periods with high concentrations were caused by meteorological conditions favouring

ozone production, and the increased ozone levels were captured by the model although modelled

peak values were lower than observed. The value of the correlation coefficient is 0.89. The scatter

plots show slightly larger variation than over Western Europe. Model tends to under-predict con-220

centrations lower than 60 µgm−3 and higher than 100 µgm−3, while concentrations in the range

80–100 µgm−3 are in general over-predicted (Fig. 12).

In Southern Europe measurements from 303 stations were available for the comparison. The short

term variability is reproduced well and the correlation coefficient is 0.96. During most of the year,

modelled ozone levels show low negative bias −1.4 µgm−3 that is due to under-estimation of ozone225

concentrations in June, July and August (Fig. 13). Although concentration increase during episodes

was consistent with observed variability, maximum values were 20–40 µgm−3 lower than observed.

Even though MAGE is 19.9 µgm−3, scatterplot for stations located in Southern Europe shows best
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linear fit (Fig. 14). Scatterplot presenting annual average concentrations indicate that for observation

at sites characterized with highest concentrations (above 100 µgm−3), the model underestimated230

ozone levels.

3.2 PM10

The analysis of model performance was undertaken for 492 stations available in the ENSEMBLE

database for PM10 concentration. The 24 h averages were calculated based on hourly measurements

and model results.235

3.2.1 Spatial distribution of PM10 concentrations

The pattern of modelled daily averaged PM10 concentrations during winter months (DJF) and spatial

distribution of the mean bias error for different types of stations is shown in Fig. 15. The calculated

PM10 concentrations over Central and South-Eastern Europe are in the range 40–60 µgm−3. Over

the rest of the continent concentrations are lower – below 30 µgm−3. Highest PM10 concentrations240

above 60 µgm−3 are modelled over Romania and the eastern part of Germany, with maximum up to

70 µgm−3.

MBE for most rural stations is positive and high – up to 30 µgm−3. However, it should be noted

that the rural stations available for the comparison are located mainly in Germany, the Czech Re-

public and Benelux. The overestimation was in Germany and the Czech Republic, while in Benelux,245

British Isles and Spain the model performs quite well. The highest overestimation is modelled over

the eastern part of Germany for suburban stations. In Central and Western Europe the model per-

forms well, while in Spain PM10 levels were underestimated up to 20 µgm−3. Spatial coverage of

urban monitoring sites is more complete. For stations located in Germany and the Czech Republic

the model overestimated PM10 levels. However, in Central and Southern Europe the model results250

are lower than the observed concentrations.

Spatial distribution of daily average PM10 concentrations and MBE for the spring (MAM) is

shown in Fig. 16. Over most of Europe the maximum 24 h PM10 concentrations were low – in the

range of 15–30 µgm−3. Highest concentrations were calculated over Central Europe, with maximum

values over Poland and the eastern part of Germany. PM10 concentrations lower than 10 µgm−3255

were modelled over Scandinavia and over the south-western part of the continent.

The distribution of MBE at rural stations shows good agreement over most of Europe, in spite of

overestimations over the Czech Republic and Germany. For most of the suburban monitoring sites

MBE was lower than 10 µgm−3, except for Eastern Germany where the model tends to overestimate,

and for some stations in Spain, where modelled PM10 concentrations were lower than observed. For260

urban stations the pattern of MBE spatial distribution was similar to MBE calculated at suburban

stations. MBE varies in a range −10 to 10 µgm−3.
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Summer (JJA) PM10 concentrations (Fig. 17) show uniform distribution in the range of 20–

30 µgm−3 in Western and Eastern Europe. Lower concentrations (below 20 µgm3) were calculated

over Scotland, Scandinavia and North-Eastern Europe. Highest concentrations above 30 µgm−3265

were calculated over Central Europe, with the maximum over the eastern part of Germany. MBE

distribution for all types of stations shows a similar pattern. Over Germany the model overestimates

PM10 levels, while over Spain the model underestimated mainly for suburban sites. Over the rest of

the continent the modelled and observed PM10 concentrations agree well, with small positive bias

lower than 10 µgm−3.270

The distribution of PM10 concentrations in autumn (SON) is shown in Fig. 18. The maximum

24 h averaged PM10 concentrations were in the range of 20 to 40 µgm−3 over most of Europe. As

in other periods, highest concentrations were calculated over Central Europe, with maximum values

exceeding 60 µgm−3 over the eastern part of Germany. The lowest modelled PM10 concentrations

(lower than 20 µgm−3) occur over Scandinavia and over the south-western part of the continent.275

MBE distribution is similar to that in winter. MBE for rural stations is positive and shows highest

discrepancies over the eastern part of Germany. For urban and suburban stations the overestimation

of PM10 levels occurs over Germany, Czech and industrial regions in Poland. In Western Europe

the agreement is better, with MBE below 10 µgm−3. MBE over the Iberian Peninsula varies in the

range −20 to 10 µgm−3.280

3.2.2 Temporal variability of PM10

A detailed analysis of the temporal variability was undertaken for four climatological regions in

Europe. In Northern Europe (for 19 stations) the model overestimated concentrations in January,

while in February and March the agreement between model and observations was good. In April

and the beginning of May there was an episode of elevated PM10 concentrations which was not285

captured by the model. Till mid-August observed and modelled PM10 levels agree well. In autumn

the model tends to overestimate on average 5–10 µgm−3. Although the modelled concentrations

reflect observed values with MBE 0.6 µgm−3 and MAGE 10.3 µgm−3, the short and mid term

variability was reproduced only during some months and the correlation coefficient is 0.32.

In Western Europe the agreement between model and observations was analysed for 251 sta-290

tions. Temporal variability of 24 h average PM10 concentrations was captured very well, with the

correlation coefficient of 0.73. However, the model tends to overestimate PM10 concentrations for

all seasons – MBE is 8.9 µgm−3 and MAGE 16.7 µgm−3. Highest overestimation was modelled

during autumn and winter months: January, February, October and December. Best agreement be-

tween modelled and observed PM10 concentrations was in spring months, while in summer there295

was a small systematic overestimation ∼ 10µgm−3.

In Central Europe 129 stations were available for the comparison. The model underestimated con-

centrations during severe episodes in January and the beginning of February. In spring observed
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PM10 concentrations are reproduced correctly by the model. From June there is a small systematic

overestimation averaging 10 to 15 µgm−3. During the last quarter of the year the model overesti-300

mated PM10 concentrations, MBE was 5.9 µgm−3, MAGE 24.2 µgm−3 and the correlation coeffi-

cient was 0.72. Overall variability of PM10 levels was captured. However, the model overestimated

up to 30 µgm−3 during three periods in October, November and December that were not supported

by observations.

In Southern Europe analysis was undertaken for 93 stations. The temporal variability is not re-305

produced by the model. However, some incidental agreement leads to the correlation coefficient

of 0.56. Negative bias −9.4 µgm−3 is due to the underestimation of PM10 levels (Fig. 22), with

MAGE 16.2 µgm−3. Overall modelled PM10 levels are lower than observed. Model overestimated

only during a singe episode at the end of May.

4 Discussion310

Spatial and temporal averaging is a common methodology used in model performance analysis for

long-term simulations. However, it is clear that the averaging leads to error compensation and does

not reflect the model’s ability to reproduce specific features of concentrations distribution. The

choice of the averaging period (e.g. month, seasonal, annual) impacts the value of the bias error.

Also, similar “average performance” might be obtained for cases with small systematic errors and315

large positive and negative errors.

4.1 Ozone

For rural background stations (472 sites) the GEM-AQ model underestimated ozone concentrations

during the cold season (January to mid March and November–December). During the summer un-

derestimation of peak values ranges from 30 to 40 µgm−3. Although the correlation coefficient is320

high (0.92), MBE is −7 µgm−3 and MAGE is 18 µgm−3 (Table 1). For suburban (391 sites) and

urban stations (527 sites), the characteristics of variability range and agreement with measurement

is comparable. In January, March, September and October the model slightly overestimated ozone

concentrations. In June and July during pollution episodes modelled concentrations are lower than

observed by 10 to 20 µgm−3. Results for other months show very good agreement in terms of325

average concentration levels and short term variability, which is confirmed with very high correla-

tion coefficient – 0.93 for both types of stations. MBE is positive 1.9 µgm−3 for suburban stations

and 2.5 µgm−3 for urban stations, with MAGE 17.2 and 17.4 µgm−3, respectively. In contrast to

Hogrefe et al (2013) that reported higher correlation coefficient for ozone concentrations for rural

sites than for “locally influenced sites” the GEM-AQ model performance in terms of the Pearson330

correlation coefficient was almost at the same level for all types of stations (0.92 – rural sites, 0.93 –

suburban and urban sites).
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The evaluation results reported by Pirovano et al (2012) for CAMx and CHIMERE models showed

that for both models, ozone concentrations at rural stations are reproduced not as well as at suburban

and urban stations. This has been confirmed by the GEM-AQ model results. While MAGE is rela-335

tively constant (18.2 – rural, 17.2 and 17.4 – suburban and urban respectively), there are significant

differences in MBE values for different types of stations.

Analysis of seasonal variability of model performance was undertaken by Nopmongcol et al

(2012) using results from the CAMx model for January and July. Modelled ozone concentrations

were systematically underpredicted. CAMx performance was the worst at urban stations in January340

while in July the bias was lower. Also, Pirovano et al (2012) reported strong underestimation of

ozone concentrations during the first part of the year for CAMx and CHIMERE models. CMAQ re-

sults, described in Appel et al (2012), indicate that model performance for the daytime ozone varied

seasonally. In the winter CMAQ overestimated ozone concentration by 8 % and in the spring and

summer ozone levels were underestimated on average ∼ 4 and 2 %, respectively. In the fall model345

performance was worst, with significant overestimation by 30 %. Results from the GEM-AQ model

also show seasonality in MBE and the Pearson correlation coefficient. However, MAGE is relatively

constant for all seasons – on average 17.5± 0.8µgm−3. For winter and autumn the model slightly

overestimated, with MBE 0.93 and 0.09 µgm−3, respectively. Although, MAGE and MBE are small-

est in autumn, the correlation coefficient is lower than in winter (0.78 in autumn, 0.87 in winter). In350

the spring and summer the model tends to underestimate. However, with nearly the same MAGE,

model results for summer are noticeably better with MBE of 1.4 µgm−3 and correlation coefficient

0.92 while in spring the bias is larger −3.2 µgm−3 and correlation coefficient is lower 0.75.

Analysis of model performance for different regions showed differences between models. Best

performance for CAMx and CHIMERE models (Pirovano et al, 2012) was for Southern Europe,355

while North-Western and Eastern Europe were characterized with a negative bias in the range 10–

30 %, especially in winter. In terms of correlation coefficient, the CHIMERE model performed well

in Southern, North-Western and Eastern Europe, while CAMx showed better results in Eastern Eu-

rope. The CMAQ model (Appel et al, 2012) overestimated daytime ozone concentrations in the

south-western part of the domain and underestimated the north-eastern part including British Isles360

in winter. Largest overestimation occurred over Northern Italy (Po Valley), while largest underesti-

mation was in the Czech Republic and Poland.

The GEM-AQ model underestimated daytime ozone concentrations with the highest values in

Northern Europe (MBE −16.8 µgm−3) especially during the cold part of the year. One possible

reason relates to uncertainties of NOx emissions in Scandinavia, but also over British Isles and365

the north-western part of Europe, which may contribute to overestimated titration processes in the

model. Another source of possible underestimation is too weak transport of ozone from upper tropo-

sphere in high latitudes. However, such analysis is beyond the scope of the presented study, which
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is focused on surface air quality and does not include the analysis of the vertical structure of the

atmosphere.370

For the rest of the domain the agreement between modelled and observed ozone concentrations

is good. However, summer episodes are underestimated. During winter and spring months the MBE

distribution shows significant overestimation of ozone concentrations over the Alps, which indicates

too intensive downward mixing in the mountain regions, where in the cold part of the year con-

centrations are highest. In spring and autumn there is a systematic overestimation for suburban and375

urban stations in Benelux, Germany and France that results in positive MBE 0.4 for Region II, while

for other regions MBE is negative. In general, best model performance was achieved in the summer.

In winter and autumn topography plays a very important role in the distribution of higher ozone

concentration levels, although modelled concentrations seem to be overestimated. Higher concen-

trations are over the southern part of Europe (with the exception of the Po Valley) and the Mediter-380

ranean Sea. In spring concentrations are significantly higher in Southern, Central and Eastern Eu-

rope, while in Western Europe and the British Isles the increase is not that significant due to the

inflow of relatively clean Atlantic air masses. In summer there is further increase of ozone concen-

trations over land, with the maximum over Region IV. Elevated ozone concentrations are also over

the Mediterranean Sea and the Black Sea. In contrast to ozone distribution patterns in spring ozone385

concentrations are lower over North-Eastern and Eastern Europe. The reason for this effect might

confirm the hypothesis of advective nature of ozone episodes in Eastern Europe and the role of high

pressure system blocks during summer months (Struzewska and Kaminski, 2008). However, due to

the lack of measurements, model results cannot be evaluated in this region. In autumn concentrations

decrease with lowest values in the north-eastern part of Europe.390

4.2 PM10

Surface PM10 concentrations at rural background stations (119 sites) were systematically over-

estimated in all season. In January and February the model captured quite well periods with

high PM10 concentrations, but peak values were overestimated. Best model performance was

from mid-February to May. From June to September the systematic bias was relatively constant395

∼ 10−15µgm−3. In autumn MBE is largest and the model overestimated significantly for all periods

with observed higher concentrations. The correlation coefficient is high (0.72), MBE is 10.8 µgm−3

and MAGE is 18.2 µgm−3 (Table 2).

At suburban stations (110 sites) model performance is very good with MBE 4.7 µgm−3 and

MAGE 18.4 µgm−3. From January to April the agreement of modelled and observed time series,400

averaged over all suburban stations in the domain, is good except for a short winter episode. At

the beginning of May the model underestimated PM10 concentrations by about 10 to 20 µgm−3.

From June to September modelled and observed concentrations at suburban stations averaged over

the domain vary in the range 20–40 µgm−3. There is a small systematic overestimation of modelled
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PM10 – on average 5 µgm−3. As in the case of rural stations, starting in October the discrepancies405

between model and measurements increase. Model generated three PM10 episodes from October to

December, which were not observed. In spite of discrepancies, the correlation coefficient is relatively

high (0.75), which confirms good agreement in terms of average concentration level and short term

variability.

For urban stations (263 sites) the agreement between modelled and observed PM10 concentra-410

tion levels is good. MAGE is comparable to the value obtained for suburban stations (18.3 µgm−3),

MBE is small (1.3 µgm−3) and the correlation coefficient is 0.72. The model underestimates ob-

served PM10 concentration during two severe pollution episodes at urban stations in January and at

the beginning of February. From the second week of February concentration decrease and the agree-

ment between modelled and observed daily average PM10 levels was good. In May the model did415

not capture an increase of PM10 concentrations. From June to September the model tends to over-

estimate PM10 levels by 5 to 10 µgm−3. In October and December the model showed significant

overestimation, while in November the agreement was good.

Daily mean PM10 concentrations averaged over suburban and urban stations show good agree-

ment of the modelled and observed concentrations averaged over the domain for values below420

40 µgm−3. At suburban stations, modelled PM10 concentrations in the range of 60 to 100 µgm−3

were overestimated, while for urban stations highest concentrations, above 60 µgm−3, were under-

estimated.

In contrast to the GEM-AQ model results, Solazzo et al (2012a) reported that most models used in

their analyses had difficulties in reproducing elevated PM concentrations during winter. Most models425

underestimated PM10 levels over Europe, although during summer the performance was better. In

the Mediterranean region highest concentrations was in summer months. Results from the CAMx

model (Nopmongcol et al, 2012) were substantially underestimated and performance was poor for

both January and July, with similar magnitude of error statistics. Also, the DEHM model (Brandt

et al., 2012) underestimated PM10 concentrations.430

The GEM-AQ model tends to overestimate PM10 daily mean concentrations. The model perfor-

mance is clearly better for urban stations. With nearly the same MAGE 18.3± 8µgm−3 highest

overestimation was for rural background stations 10.8 µgm−3. For suburban and urban stations the

performance is better – 4.7 and 1.3 µgm−3 and the correlation coefficient is 0.72 and 0.75, respec-

tively.435

The work by Pirovano et al (2012) shows that best performance of CAMx and CHIMERE models

in terms of PM10 concentrations was in North-Western Europe for rural-background stations. In

Southern and Eastern Europe model results were underestimated. Appel et al (2012) reported that

in winter the domain averaged MBE is −21.5 µgm−3 for the CMAQ model. For other seasons the

underestimation is lower – in the range of −11÷−16µgm−3. The smallest bias was in Northern440
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France. In spring and summer the bias spatial pattern was similar to the winter case and the bias

tends to improve in autumn.

In Southern Europe modelled concentrations were systematically underestimated for all seasons

with the bias −9.41 µgm−3. However, for other regions GEM-AQ tends to overestimate PM10 daily

mean concentrations. In winter in Northern and Western Europe the model overestimates, while445

in Central and Eastern Europe there was a strong underestimation. These lead to error compen-

sation in terms of averaged MBE (0.3 µgm−3) for winter months and relatively high MAGE of

22.5 µgm−3. In the spring model performance is the best in terms of MBE (1.9 µgm−3) and MAGE

(14.8 µgm−3), but the correlation coefficient is lower than in other seasons (0.51). In autumn, the

model overestimated over all regions but the correlation coefficient is relatively high (0.79). The450

worst performance in terms of correlation coefficient was over Northern Europe (0.32) and Southern

Europe (0.56).

The distribution of MBE errors for PM10 clearly shows that anthropogenic emission data were

overestimated over Germany and the Czech Republic. MBE in this region (especially over the eastern

part of Germany) was positive for all types of stations and for all seasons. This impacted the average455

model bias in Region II. In Region III modelled PM10 concentrations were underestimated during

severe winter pollution episodes in January and February 2006. During this period low temperatures

were observed and differences between modelled and observed PM10 levels might be caused by too

low emission estimates that did not account for household heating. In addition, as the lowest model

layer height is at ∼ 27m, the structure of the stable boundary layer over urban regions might not460

be fully reproduced. Underestimation of PM10 in Southern Europe is most probably due to under-

estimated mineral dust emissions and transport from North Africa. However, this does not relate to

AQMEII emission estimates but to an on-line dust emission module (Marticorena et al, 1995) in

the GEM-AQ model. Further work will be undertaken to revise geophysical fields describing soil

properties that are used for dust uptake. Highest error was for rural stations, which clearly indicates465

that emissions in remote regions were overestimated. For urban stations in January, February and

March the model systematically underestimated PM10 concentrations. The temporal variability of

MBE for different types of stations is similar.

Seasonal variability of PM10 concentrations is dominated by the distribution and intensity of an-

thropogenic and natural sources. In winter PM10 concentrations are highest over Central-Eastern470

Europe, although the model tends to overestimate over Germany. Also, elevated concentrations are

present over the Northern Atlantic due to sea salt generation during winter storms. In spring, the

winter maximum over the Atlantic dissipates and concentration over Northern Africa and Southern

Europe is increasing. Highest concentrations remain over Central Europe. Similar pattern was calcu-

lated for summer months, with lower maximum values but for higher background. In autumn, PM10475

concentrations over the Atlantic Ocean and over the North Sea increase and over Southern Europe –

decrease. In Eastern Europe PM10 background is also higher than in spring and summer months.
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5 Summary and Conclusions

In the scope of the AQMEII Phase 1, the GEM-AQ model was run over Europe for the year 2006.

Modelling domain was defined using a global variable resolution grid with a rotated equator. The480

uniform part of the domain with resolution of 0.2◦ × 0.2◦ was positioned over the European conti-

nent.

Modelled concentrations for ozone maximum 8 h running average and daily mean PM10 were

analysed in terms of spatial distribution and temporal variability. Model results were evaluated

against measurements available in the ENSEMBLE database. For better understanding of the model485

performance in terms of station representativeness, emission estimates and climate characteristics,

the concentration data were averaged for:

– all stations in the domain for the whole year and for each season (DJF/MAM/JJA/SON)

– different types of stations (rural/suburban/urban)

– four climatic regions of Europe490

In summary:

1. For ozone values of the mean absolute gross error and the Pearson correlation coefficient

are similar for all station types. However, differences in the mean bias error are significant.

The best performance (MBE 1.9 µg m−3) for ozone was obtained for suburban locations and

slightly higher overestimation (MBE 2.5 µg m−3) was calculated for urban sites. The worst495

performance was obtained for rural stations where the model tends to underestimate (MBE

−7.0 µg m−3).

2. For PM10 values of the mean absolute gross error and the Pearson correlation coefficient are

similar for all station types. However, differences in the mean bias error are significant. The

best results were modelled for urban stations (MBE 1.3 µg m−3), while over most of Europe500

concentrations at rural sites were overestimated (MBE 10.8 µg m−3) by the model.

3. Although the representativeness of urban stations for model results at the resolution of 20 km

may seem questionable, the model performance was worst for rural stations for both analysed

species. This may indicate that the emission estimates in rural areas are less accurate smaller

than in cities. Perhaps emission accuracy influences model performance more significantly505

than the sub-grid local features of the emission field.

4. A possible explanation for the systematic underestimation of ozone concentrations over Scan-

dinavia and the Baltic Sea could be an insufficient transport of ozone from the upper tropo-

sphere or errors in emission estimates over the Baltic Sea and the North Sea. These hypotheses

require further investigation.510
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5. Largest systematic differences between the GEM-AQ model performances for different types

of stations were from January to March and in December, when ozone levels depend to a large

extent on dynamical factors. During the summer months, when photochemical production

dominates, the model performance for different types of stations is comparable.

6. In regions where the monitoring network is sufficiently dense, errors in emission inventories515

can be linked to errors in modelling results with greater confidence. Systematic overestimation

of PM10 concentrations indicates that over Germany and the Czech Republic anthropogenic

emissions are overestimated. Limited availability of PM10 measurements in Scandinavia and

lack of data for France, Italy and the Eastern European countries does not allow evaluation

of emission uncertainties in these regions. The overestimation of ozone concentrations in in-520

dustrial regions of Western Europe in spring and autumn indicates high uncertainty of NOx

emission estimation in this region, at least in terms of annual temporal variability.

7. Seasonal differences between distribution patterns of the concentration fields relate to large

scale dynamics. Elevated ozone concentrations during autumn and winter are calculated for

mountain regions as a result of the transport from the upper troposphere in the model. In spring525

and summer photochemical production dominates and highest concentrations are calculated

over regions characterized with highest emissions. PM10 concentration patterns correspond to

the distribution of anthropogenic emissions. Also, changes in the wind field that drive natural

emissions (sea salt, dust) play an important role.

8. Highest discrepancies between modelled and observed concentrations are for periods charac-530

terized with highest concentration levels (ozone – summer, PM10 – winter).

9. Modelled ozone distribution patterns over North-Eastern and Eastern Europe show lower con-

centrations in the summer than in the spring. The reason for this effect might confirm the

hypothesis of advective nature of ozone episodes in Eastern Europe and the role of high pres-

sure system blocks during summer months535

In conclusion, spatial distribution and seasonal variability of air pollution species depend on regional

climate and are strongly modulated by anthropogenic emission fluxes. Although “climatology of air

pollution species” may not coincide with climate classifications for Europe, the presented analyses

confirm that interpretation of modelling results is enhanced when regional climate characteristics

are taken into consideration. Thus, data stratification should be recommended for model analysis540

and evaluation methodology.
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Table 1: Error statistics for GEM-AQ model performance – maximum 8h-running average of ozone

concentrations in µgm−3.

MBE MAGE Correlation

All stations −0.9 17.6 0.93

Seasonal:

Winter −0.8 17.6 0.71

Spring 0.3 18.0 0.66

Summer −6.7 17.7 0.96

Autumn 3.6 17.1 0.93

Station type

Rural −7.0 18.2 0.92

Suburban 1.9 17.2 0.93

Urban 2.5 17.4 0.93

Regions

Region I −16.8 20.7 0.83

Region II 0.4 16.5 0.91

Region III −1.5 17.6 0.89

Region IV −1.4 19.9 0.96

Table 2: Error statistics for GEM-AQ model performance – 24 h-running average of PM10 concen-

trations in µgm−3.

MBE MAGE Correlation

All stations 4.3 18.3 0.74

Seasonal:

Winter 3.4 24.4 0.74

Spring 0.2 15.0 0.71

Summer 6.3 15.7 0.81

Autumn 7.4 18.3 0.8

Station type

Rural 10.8 18.2 0.72

Suburban 4.7 18.4 0.75

Urban 1.3 18.3 0.72

Regions

Region I 0.6 10.3 0.32

Region II 8.9 16.7 0.73

Region III 5.9 24.2 0.72

Region IV −9.4 16.2 0.56
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Figure 1: GEM-AQ computational domain configuration. Global variable grid with rotated equator

(red line). Thicker black line borders the central region with the resolution of 0.2◦ × 0.2◦.
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Figure 2: Regions selected for analysis of the GEM-AQ model results.
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Figure 3: Winter (DJF) maximum 8 h running average ozone concentration in µgm−3 (a), MBE at

rural stations (b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 4: Spring (MAM) maximum 8 h running average ozone concentration in µgm−3 (a), MBE at

rural stations (b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 5: Summer (JJA) maximum 8 h running average ozone concentration in µgm−3 (a), MBE at

rural stations (b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 6: Autumn (SON) maximum 8 h running average ozone concentration in µgm−3 (a), MBE

at rural stations (b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 7: Time series of observed and modelled maximum 8 h running averaged ozone concentration

(a) averaged for all stations in Northern Europe, (b) MBE.

28



Figure 8: Scatterplot of maximum 8 h running average ozone concentration in Northern Europe.
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Figure 9: Time series of observed and modelled maximum 8 h running averaged ozone concentration

(a) averaged for all stations in Western Europe, (b) MBE.
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Figure 10: Scatterplot of maximum 8 h running average ozone concentration in Western Europe.
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Figure 11: Time series of observed and modelled maximum 8 h running averaged ozone concentra-

tion (a) averaged for all stations in Central Europe, (b) MBE.
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Figure 12: Scatterplot of maximum 8 h running average ozone concentration in Central Europe.
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Figure 13: Time series of observed and modelled maximum 8 h running averaged ozone concentra-

tion (a) averaged for all stations in Southern Europe, (b) MBE.
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Figure 14: Scatterplot of maximum 8 h running average ozone concentration in Central Europe.
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Figure 15: Winter (DJF) 24 h average PM10 concentrations in µgm−3 (a), MBE at rural stations (b),

MBE at suburban stations (c) MBE at urban stations (d).
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Figure 16: Spring (MAM) 24 h average PM10 concentrations in µgm−3 (a), MBE at rural stations

(b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 17: Summer (JJA) 24 h average PM10 concentrations in µgm−3 (a), MBE at rural stations

(b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 18: Autumn (SON) 24 h average PM10 concentrations in µgm−3 (a), MBE at rural stations

(b), MBE at suburban stations (c) MBE at urban stations (d).
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Figure 19: Time series of observed and modelled PM10 24 h concentration averaged for all stations

in Northern Europe and MBE.
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Figure 20: Time series of observed and modelled PM10 24 h concentration averaged for all stations

in Western Europe and MBE.
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Figure 21: Time series of observed and modelled PM10 24 h concentration (a) averaged for all

stations in Central Europe, (b) MBE.

42



Figure 22: Time series of observed and modelled PM10 24 h concentration (a) averaged for all

stations in Southern Europe, (b) MBE.
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