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Abstract

High concentrations of fine particles (PM; s5) are frequently observed during all seasons in
Beijing, China, leading to severe air pollution and human health problems in this
megacity. In this study, we conducted real-time measurements of non-refractory
submicron aerosol (NR-PM;) species (sulfate, nitrate, ammonium, chloride, and organics)
in Beijing using an Aerodyne Aerosol Chemical Speciation Monitor for 1 year, from July
2011 to June 2012. This is the first long-term, highly time-resolved (~15 min)
measurement of fine particle composition in China. The seasonal average (£1c) mass
concentration of NR-PM; ranged from 52 (+ 49) ug m ° in the spring season to 62 ( 49)
pg m > in the summer season, with organics being the major fraction (40-51%), followed
by nitrate (17-25%) and sulfate (12—17%). Organics and chloride showed pronounced
seasonal variations, with much higher concentrations in winter than in the other seasons,
due to enhanced coal combustion emissions. Although the seasonal variations of
secondary inorganic aerosol (SIA = sulfate + nitrate + ammonium) concentrations were
not significant, higher contributions of SIA were observed in summer (57-61%) than in
winter (43-46%), indicating that secondary aerosol production is a more important
process than primary emissions in summer. Organics presented pronounced diurnal
cycles that were similar among all seasons, whereas the diurnal variations of nitrate were
mainly due to the competition between photochemical production and gas—particle
partitioning. Our data also indicate that high concentrations of NR-PM; (> 60 ug m ) are
usually associated with high ambient relative humidity (RH) (> 50%) and that severe
particulate pollution is characterized by different aerosol composition in different
seasons. All NR-PM; species showed evident concentration gradients as a function of
wind direction, generally with higher values associated with wind from the south,
southeast or east. This was consistent with their higher potential as source areas, as
determined by potential source contribution function analysis. A common high potential
source area, located to the southwest of Beijing along the Taihang Mountains, was
observed during all seasons except winter, when smaller source areas were found. These
results demonstrate a high potential impact of regional transport from surrounding

regions on the formation of severe haze pollution in Beijing.
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1 Introduction

Severe haze pollution episodes, characterized by high concentrations of fine particles
(PM3.5), occur frequently during all seasons in China (Sun et al., 2013b; Guo et al., 2014;
Zheng et al., 2015), not only reducing visibility significantly, but also exerting harmful
effects on public health (Cao et al., 2012). The mass concentrations of PM; 5 often far
exceed the China National Ambient Air Quality Standard (NAAQS; 75 pg m " as a 24-
hour average), particularly in the economically developed regions of Beijing—Tianjin—
Hebei and Yangtze River Delta (YRD). According to Beijing Environmental Statements,
the annual average mass concentration of PM, s was 89.5 and 85.9 g m™ in 2013 and
2014, respectively, 2.5 times the NAAQS (35 ug m ° as an annual average), indicating
that Beijing is still facing severe fine particle pollution. While extensive studies have
been conducted in recent years to characterize severe haze pollution (e.g., Guo et al.,
2014; Huang et al., 2014; Sun et al., 2014; Zheng et al., 2015), most were carried out in a
particular season. In reality, the very different compositions, sources, and evolution
processes of severe haze pollution among the different seasons mean that a longer-term

approach is needed to meet the challenge of mitigating fine particle pollution in Beijing.

A number of long-term measurements and source analyses have been conducted in
Beijing during the last decade. Zhao et al. (2009) reported pronounced seasonal variations
of PM, s, with higher concentrations in winter than summer. Similarly, Yang et al. (2011)
conducted a long-term study of carbonaceous aerosol from 2005 to 2008 in urban
Beijing. Both organic carbon (OC) and elemental carbon (EC) showed pronounced
seasonal variations, with the highest concentrations occurring in winter and the lowest
values in summer. A more detailed investigation of the chemical composition and sources
of PM; s in urban Beijing can be found in Zhang et al. (2013a). Sources of fine particles
also vary greatly among the different seasons; for instance, coal combustion during
periods requiring more domestic heating, biomass burning in harvest seasons, and dust
storms in spring (Zheng et al., 2005; Zhang et al., 2013a). Despite this, most previous
long-term studies either focused on limited aerosol species, relied upon weekly filter
samples, or used one month’s worth of data to represent an entire season (Zhang et al.,
2013a; Zhang et al., 2013b). Therefore, our understanding of the full spectrum of

seasonal variations of aerosol species and sources remains quite poor.
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The Aerodyne Aerosol Mass Spectrometer (AMS) is unique in its ability to provide
real-time, online measurements of size-resolved submicron aerosol composition (Jayne et
al., 2000; Canagaratna et al., 2007). While the AMS has been widely used in China in
recent years (Xu et al., 2014a and references therein), real-time, long-term measurements
of aerosol particle composition are still rare. Zhang et al. (2013b) conducted a four-month
measurement campaign of submicron aerosol composition and size distributions using a
quadrupole AMS in urban Beijing. Their results showed higher concentration of organics
during wintertime and secondary inorganic species in summer. Furthermore, positive
matrix factorization (PMF) analysis of organic aerosol (OA) showed higher primary OA
(POA) in winter and secondary OA (SOA) in summer. However, measurements over
only one month or even less were conducted for each season, due to the high cost and
maintenance of the AMS. The recently developed Aerosol Chemical Speciation Monitor
(ACSM) is specially designed for long-term routine measurements of submicron aerosol
composition (Ng et al., 2011). The ACSM has been proven reliable by several recent
long-term field measurements, e.g., in Paris (Petit et al., 2015), north-central Oklahoma
(Parworth et al., 2015), and Santiago de Chile (Carbone et al., 2013). Although the
ACSM has been deployed at various sites in China (Sun et al., 2012; Sun et al., 2013b;

Zhang et al., 2015), long-term measurements have yet to be reported.

In this study, the first of its kind, we conducted long-term, real-time measurements of
non-refractory submicron aerosol (NR-PM;) composition with an ACSM in Beijing,
China, from July 2011 to June 2012. The seasonal variations of mass concentration and
composition of submicron aerosol were characterized, and the diurnal cycles of aerosol
species during the four seasons elucidated. The effects of meteorological parameters,
particularly relative humidity and temperature, on aerosol composition and formation
mechanisms were investigated. Finally, the potential source areas leading to high
concentrations of aerosol species during the four seasons were investigated via potential

source contribution function (PSCF) analysis.
2 Experimental methods
2.1 Sampling site

The ACSM was deployed on the roof of a two-story building (~8 m) at the Institute of
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Atmospheric Physics (IAP), Chinese Academy of Sciences (39°58°28°°N, 116°22’16”E,
Fig. 1a) from July 2011 to June 2012. The sampling site is located between the north
third and fourth ring road in Beijing, which is a typical urban site with influences from
local traffic and cooking sources (Sun et al., 2012). The wind rose plots (Fig. 1b) show
that southwesterly winds dominate all seasons except winter, when northwesterly and
northerly winds prevail. The spring and fall seasons are also characterized by high
frequencies of northwesterly and northerly winds. Also note that the prevailing winds

with high wind speeds are more frequent during winter and spring than summer.

The meteorological parameters, including wind speed (WS), wind direction, relative
humidity (RH), and temperature (7) were obtained from a 325 m meteorological tower at
the same location. The parameters of pressure (P), solar radiation (SR), and precipitation
were obtained from a ground meteorological station located nearby. The monthly
variations of these meteorological parameters are presented in Fig. 2. Pronounced
seasonal variations were observed for all meteorological parameters except WS. RH
averaged at >~60% in summer and presented its minimum value (< 30%) in February.
Temperature and solar radiation showed similar seasonal cycles, with high values in
summer and low values in winter. The monthly variations of WS were relatively flat, yet
slightly higher values in spring were observed. In addition, a considerable amount of

precipitation was observed from June to August, yet it was negligible during wintertime.
2.2 Aerosol and gas measurements

The submicron aerosol particle composition including organics, sulfate, nitrate,
ammonium, and chloride was measured in-sifu by the ACSM at a time resolution of ~15
min. The ACSM, built upon previous AMSs (Jayne et al., 2000; Drewnick et al., 2005;
DeCarlo et al., 2006), is specially designed for long-term routine measurements of fine
particle composition (Ng et al., 2011). The ACSM has been successfully deployed at
various sites for chemical characterization of submicron aerosol (Ng et al., 2011;
Budisulistiorini et al., 2013; Carbone et al., 2013; Sun et al., 2013b; Parworth et al.,
2015). In this study, ambient aerosol particles were delivered to the sampling room
through a stainless steel tubing (outer diameter: 1.27 cm) with a flow rate of ~3 L min ™',

out of which ~84 cc min! was sampled into the ACSM. A PM; s URG cyclone (URG-
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2000-30ED) was installed in front of the sampling line to remove coarse particles (> 2.5
um). To reduce the uncertainties of collection efficiency (CE), a silica gel diffusion dryer
was set up in the front of the ACSM to ensure that the aerosol particles sampled were dry
(<40%). The ACSM was calibrated routinely with pure ammonium nitrate particles for
the response factor following the procedures detailed in Ng et al. (2011). A more detailed
description of the ACSM calibration is alse-given in Sun et al. (2012). It should be noted
that we dida’t not calibrate the ACSM with (NH4),SO4 to determine the relative
ionization efficiency (RIE) of sulfate since such an approach was only proposed recently.
Using the method suggested by Budisulistiorini et al. (2014), the RIE of sulfate was
estimated to be 1.1 — 1.6 during four seasons, leading to a highest uncertainty of 35% in
sulfate quantification. Considering that aerosol particle acidity may vary largely between
different seasons, the method of Budisulistiorini et al. (2014) may introduce additional
uncertainties in sulfate quantification. Therefore, we kept the default RIE of sulfate for

the data analysis in this study.
2.3 ACSM data analysis

The ACSM data were analyzed for the mass concentrations of NR-PM; species
including organics, sulfate, nitrate, ammonium, and chloride using ACSM standard data
analysis software. The RH in the sampling line, aerosol particle acidity and the fraction of
ammonium nitrate (fan) in NR-PM;, are three major factors affecting the uncertainties of
CE (Huffman et al., 2005; Matthew et al., 2008; Middlebrook et al., 2012). Because
aerosol particles were dry and overall neutralized for most of the time, except some
periods when the ratio of measured NH," to predicted NH," (=2x SO /96 x 18 +
NO;3 /62 x 18+ Cl /35.5 x18) (Zhang et al., 2007) was less than 0.8, the composition
dependent CE recommended by Middlebrook et al. (2012), which is CE = max(0.45,
0.0833 +0.9167 x fan), was used in this study. The validity of the ACSM data using
variable CE in summer and winter was reported previously in Sun et al. (2012) and Sun
et al. (2013b) by comparing the NR-PM; with PM; 5 mass concentration measured by a
TEOM system. The correlation between NR-PM; and PM, s for the entire year is shown
in Fig. S1. The measured NR-PM;, overall tracked well with that of PM; 5, and yet
showed different slopes in different seasons. The average ratio of NR-PM,/PM; 5 for the
entire year was 0.77 (#* = 0.66). It should be noted that the PM, s was measured by a
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heated TEOM (50°C), which might have caused significant losses of semi-volatile
species, e.g., ammonium nitrate and semi-volatile organics. For example, Docherty et al.
(2011) found an average loss of ~44% PM; s mass through use of the heated TEOM
compared to that measured with a filter dynamics measurement system. Assuming that
the average loss of PM; s mass by the heated TEOM is 30—50%, the NR-PM,/PM, s ratio
for the entire study would be ~0.5-0.6, which is close to that reported in Zhang et al.
(2013Db). Figure S1 also shows large variations of NR-PM,/PM, s ratios in the different
seasons. The reasons for the variations include: 1) the ACSM cannot detect refractory
black carbon, mineral dust, and metals. For example, low ratios of NR-PM/PM, s (< 0.3)
were observed during dust storm periods, when mineral dust is the dominant component
of fine particles; 2) the contribution of semi-volatile species to PM, s varied greatly
among the different seasons; and 3) the contribution of particles in the range of 1-2.5 pm

to the total PM; s might also be different among different pollution episodes.
2.4 PSCF analysis

The 72 hr back trajectories arriving at the IAP study site at a height of 300 m were
calculated every 3 hr for the entire study period using the National Oceanic and
Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory
model, version 4.8 (Draxler and Rolph, 2003). Each trajectory contained a series of
latitude-longitude coordinates every 1 h backward in time for 72 hr. If a trajectory end
point falls into a grid cell (i, j), the trajectory is assumed to collect material emitted in the
cell (Polissar et al., 1999). The number of end points falling into a single grid cell is n;;.
Some of these trajectory end points are associated with the data with the concentration of
aerosol species higher than a threshold value. The number of these points is m;;. The
potential source contribution function (PSCF) is then calculated as the ratio of the
number of points with concentration higher than a threshold value (m;) to the total
number of points (7;) in the ij-th grid cell. Higher PSCF values indicate higher potential
source contributions to the receptor site. In this study, the domain for the PSCF was set in
the range of (34—44°N, 110-124°E). The 75" percentile for each aerosol species during
the four seasons (Table S1) was used as the threshold value to calculate m;;. To reduce the

uncertainties of m;;/n;; for those grid cells with a limited number of points, a weighting
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function (wj) recommended by Polissar et al. (1999) was applied to the PSCF in each
season.
(1.00 80 < ny; \
J 0.70 20 <n;; <80
Wi =

I0.42 10 <n; < 20I

3 Results and discussion

3.1 Mass concentration and chemical composition

The average mass concentration of NR-PM,; was 62 pg m° in summer (Fig. 3),
which is higher than the 50 pg m for July—August 2011 reported in Sun et al. (2012)
due to the biomass burning impacts in June 2012 (Fig. S2). The summer NR-PM; level is
close to that measured by a High Resolution Aerosol Mass Spectrometer during the
Beijing 2008 Olympic Games (Huang et al., 2010), but ~20% lower than that determined
in summer 2006 (Sun et al., 2010). The average NR-PM; mass concentrations were
relatively similar during the other three seasons, varying from 52 to 59 pg m > and with
slightly higher concentration during wintertime (Fig. 3). The NR-PM; measured in urban
Beijing is overall higher than those previously reported in the Yangtze River Delta
(YRD) region (27-43 ug m ) (Huang et al., 2012; Huang et al., 2013; Zhang et al., 2015)
and Pearl River Delta (PRD) region (31-48 pg m ) (He et al., 2011; Huang et al., 2011;
Gong et al., 2012), indicating more severe submicron aerosol pollution in Beijing
compared to other places in China. Indeed, the annual average NR-PM, concentration (57
pg m ) was much higher than the China NAAQS of PM, 5 (35 ug m " as an annual
average). Assuming a similar PM, 5 level as that (89.5 pg m™>) in Beijing in 2013, NR-
PM, on average accounted for 64% of PM, s, which is overall consistent with the results

reported in previous studies (Sun et al., 2012; Sun et al., 2013b; Zhang et al., 2013D).

As indicated in Fig. 4, the summer season showed the highest frequency with NR-
PM, loading in the range of 3060 pg m™ (36% of the time), while the winter season
presented the highest frequency of low mass loadings (< 20 pg m >, 34% of the time) due
to the prevailing northwesterly winds (Fig. 1b). However, high NR-PM; loading (> 90 pg

m ) occurred 31% of the time during the winter season, substantially more than during
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any of the other seasons (25%, 25% and 21% during summer, fall and spring,
respectively), indicating that heavy pollution occurred more frequently during winter than
the other seasons. The fall and spring seasons showed similar variations of frequencies,
which overall decreased monotonically as a function of NR-PM; loadings. Note that
heavily polluted events, with NR-PM; mass concentrations larger than 150 pg m >,
occurred during all seasons, on average accounting for 3—7% of the total time. Such
heavily polluted events were mainly caused by agricultural burning in summer and fall,
and coal combustion in winter, particularly under stagnant meteorological conditions

(Sun et al., 2013b; Cheng et al., 2014).

The NR-PM; species varied dramatically and differently during the four seasons (Fig.
3). Overall, organics dominated NR-PM; during all seasons, accounting for 40—51% on
average. The dominance of organics in NR-PM; has been widely observed at various
sites in China, e.g., 31-52% in the YRD region (Huang et al., 2012; Huang et al., 2013;
Zhang et al., 2015), 36-46% in the PRD region (He et al., 2011; Huang et al., 2011; Gong
et al., 2012), and 47% in northwest China (Xu et al., 2014a). Organics showed the largest
contribution to NR-PM; in winter due to a large amount of carbonaceous aerosol emitted
from coal combustion (Chen et al., 2005; Zhang et al., 2008). This is also consistent with
the highest contribution of chloride, with coal combustion being a major source in winter
(Zhang et al., 2012). High concentrations of organics were also observed during late June
and early October, due to the impacts of agricultural burning in these two months.
Secondary inorganic aerosol (SIA = sulfate + nitrate + ammonium) contributed the
largest fraction of NR-PM; during the summer season (59%) and the lowest fraction
during the winter season (44%). Such seasonal differences in PM composition reflect the
different roles played by primary emissions and secondary formation. While
photochemical production of secondary aerosol associated with higher O3 and stronger
solar radiation (Fig. 2) plays a dominant role in affecting aerosol composition in summer,
primary emissions play enhanced roles in winter when photochemical processing is
weaker (Sun et al., 2013b). It is interesting to note that nitrate, on average, showed a
higher contribution than sulfate during the four seasons. Compared to previous AMS
measurements in Beijing (Huang et al., 2010; Sun et al., 2010), the nitrate contribution to

NR-PM, appears to show an increasing trend. The ratio of NO; /SO,”” varied from 1.3—
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1.8 in this study, which is overall higher than those (0.8—1.5) observed during the four
seasons in 2008 (Zhang et al., 2013b). This result likely indicates a response of secondary
inorganic aerosol composition to the variations of precursors of NOy and SO, in recent
years. For instance, a continuous effort to reduce SO, emissions is accompanied with a
gradual increase in NOy emissions (Wang et al., 2014b), which results in an increasingly
more important role played by nitrate in PM pollution in Beijing. Indeed, a recent model
analysis of the response of SIA to their precursors from 2000-2015 showed that the
increase of nitrate would exceed the reduction of sulfate in northern China, assuming no
change to NHj3 emissions (Wang et al., 2013). A higher concentration of nitrate than
sulfate has also been frequently observed at urban and rural sites in China in recent years,
e.g., Nanjing, in the YRD region (Zhang et al., 2015), and Changdao Island (Hu et al.,
2013).

3.2 Seasonal variations

The monthly average NR-PM, mass concentration stayed relatively constant
throughout the year, with the average value ranging from 46 to 60 ug m °, except in June
2012 (Fig. 5). The month of June presented the highest NR-PM, (89 pg m™) due to the
impact of agricultural burning. Consistently, a higher concentration of NR-PM; was
observed in the summer of 2008 (5 June — 3 July) than the other seasons in Beijing
(Zhang et al., 2013b). Zhao et al. (2009) also observed the highest concentration of PM 5
in June 2007, due to the influences of agricultural burning. These results indicate that
agricultural burning is a large source of PM pollution in Beijing in summer. The lowest
concentration of NR-PM; in this-stadyysummer occurred in July, mainly due to the
abundant precipitation and high temperatures, which facilitated wet scavenging and
convection of PM, respectively (Fig. 2). Similarly lower concentrations of PM; s in
summer than in the other seasons were also observed previously at an urban site in

Beijing (Zhao et al., 2009).

Among the NR aerosol species, organics and chloride presented pronounced seasonal
variations, showing higher concentrations in winter than in the other seasons (Fig. 5). The
concentration of organics increased from 17 pg m™ in July to ~30 pg m™> in October, and

then remained relatively stable across the whole of wintertime. The concentration of

10



289  organics reached a minimum in April (17 pg m ), and then rapidly increased to 37 pg
290 m in June. Correspondingly, the contribution of organics to NR-PM; increased from
291 ~40% in summer to above 50% during wintertime (Fig. 6). A higher concentration of
292  carbonaceous aerosol in winter, compared to the other three seasons, was also observed
293  in Beijing (Zhang et al., 2013a; Zhao et al., 2013). The seasonal variation of organics is
294  primarily driven by emissions from various sources and secondary production. While the
295  POA, particularly from coal combustion emissions, is significantly elevated during

296  wintertime, the photochemically processed SOA dominates OA in summer (Sun et al.,
297  2012; Sun et al., 2013b). In the present study, chloride showed a similar seasonal

298  variation to that of organics. The chloride concentration during wintertime (2.8-3.3 ug
299 m ) was approximately six times that (0.5 pg m ) in summer. The contribution of
300 chloride to NR-PM; showed a similar seasonal trend, with the lowest contribution in
301  summer (~1%) and the highest in winter (~5-6%) (Fig. 6). High concentrations of

302  chloride in winter are associated with enhanced coal combustion emissions (Sun et al.,
303  2013b), but also with low ambient temperature, which facilitates the formation of

304  particle-phase ammonium chloride. Also note that chloride showed a twice as high

305  concentration and contribution in June than the other two months in summer because
306  agricultural burning is also a large source of chloride (Viana et al., 2008; Cheng et al.,

307 2014).

308 The seasonal variation of sulfate is different from organics and chloride. The sulfate
309  concentration gradually decreased from 10.1 pg m™ in August to 4.9 pg m™ in

310 November, which was associated with a synchronous decrease in solar radiation and O3
311 (Fig. 2). The contribution of sulfate to NR-PM, showed a corresponding decrease from
312 19% to 10%. The sulfate concentration then increased to 8.3-8.8 ug m > in December
313  and January, likely due to a significant increase of precursor SO, associated with an

314  increased demand for domestic heating during the winter season, which can be oxidized
315  to form sulfate via either gas-phase oxidation or aqueous-phase processing (Xu et al.,
316  2014b). Sulfate showed the highest concentration in June (13.5 pg m ) due to secondary
317  production, but possibly the impact of biomass burning as well. Indeed, a recent study in
318  the YRD region also found a large enhancement of sulfate in biomass burning plumes in

319  summer (Zhang et al., 2015). Nitrate showed minor seasonal variation, with the monthly

11



320
321
322
323
324
325
326
327
328
329
330
331
332

333

334
335
336
337
338
339
340
341
342
343
344
345

346
347
348
349

average concentration ranging from 8 to 15 pg m >, except in June (23 pg m ). It is
interesting that a higher concentration of nitrate was observed in summer and spring than
in winter. On average, nitrate accounted for ~25% of NR-PM; during summertime, but
decreased to ~15% during wintertime (Fig. 6). Although high temperatures in summer
favor the dissociation of ammonium nitrate particles to gas-phase ammonia and nitric
acid, the correspondingly high RH and excess gaseous ammonia facilitate the
transformation of nitric acid to aqueous NH4NOs particles (Meng et al., 2011; Sun et al.,
2012). The lowest concentration of nitrate during wintertime might be primarily caused
by the weak photochemical production associated with low solar radiation and oxidants
(e.g., O3). In addition, the higher particle acidity in winter (Liu, 2012) and lower mixing
ratio of gaseous ammonia may also suppress the formation of ammonium nitrate particles
(Zhang et al., 2007). The seasonal variation of ammonium is similar to that of sulfate and

nitrate because ammonium primarily exists in the form of NH4NO3 and (NH4),SOs4.
3.3 Diurnal variations

As demonstrated in Fig. 7, the diurnal cycles of organics during the four seasons were
overall similar, characterized by two pronounced peaks occurring at noon and during the
evening time. PMF analysis of OA suggested that the noon peak was primarily caused by
cooking emissions, while the evening peak was driven by different primary emissions
(e.g., cooking, traffic, and coal combustion emissions) among the different seasons (Sun
et al., 2012; Sun et al., 2013b). It should be noted that the noon peaks in summer were
was more significant than these-in fall and winter. Indeed, the cooking emissions,
determined by subtracting the background (10:00-11:00) from the noon peak (12:00—
13:00), were ~1.5-2 ug m > from September to the following March, which were lower
than the ~3.5 ug m calculated for June and July. This seasonal trend agreed with that of
temperature, indicating that cooking emissions are temperature dependent, probably

because of increased cooking activity in hot summers than cold winters.

Relatively flat diurnal cycles were observed for sulfate during most months,
indicating the regional characteristics of sulfate. In fact, multi-day build-up of sulfate was
frequently observed during all seasons (Fig. 3), supporting the notion of regional

influences on sulfate in Beijing. It should be noted that the daytime photochemical

12
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production of sulfate from gas-phase oxidation of SO, might be masked by an elevated
planetary boundary layer (PBL). Considering the dilution effect of the PBL, Sun et al.
(2012) found that sulfate increased gradually from morning to late afternoon,
demonstrating the daytime photochemical production of sulfate. In this study, sulfate in
May, June and October showed an evident daytime increase until late afternoon,
indicating an important role played by gas-phase photochemical processing in driving the

sulfate diurnal cycle.

Nitrate showed substantially different diurnal cycles among different months. A clear
daytime increase starting from about 8:00 to 19:00 was found in the five months of
January, February, March, November and December, indicating that such a diurnal
pattern is more significant during wintertime compared to the fall and spring seasons.
Figure 2 shows that the temperature during these five months was generally low (<
10°C), under which the partitioning of NH4NOs into gaseous NH; and HNO3z would not
be significant. As a result, photochemical production would be the primary factor driving
the diurnal variations. The photochemical production rate calculated from the daytime
increase was 0.6-0.8 pg m > hr ' during winter and ~0.2-0.3 pg m > hr ' in November
and March. Nitrate presented pronounced diurnal cycles in summer (June, July and
August), with the concentrations gradually decreasing during daytime and reaching a
minimum at ~16:00. Similar diurnal cycles have been observed on many occasions in
summer in Beijing (Huang et al., 2010; Sun et al., 2012; Zhang et al., 2015). The
evaporative loss of NH4NOjs associated with high temperatures, which overcomes the
amount of photochemical production, plays the major role in driving such diurnal cycles.
The rising PBL plays an additional role in the low concentrations of nitrate during
daytime (Sun et al., 2012). The diurnal cycle of nitrate in May and September was also
significant, characterized by a pronounced morning peak occurring at ~10:00, when
photochemical production dominated over the gas—particle partitioning of NH4NO;.
Nitrate showed a relatively flat diurnal cycle in April, indicating a combined effect of

various nitrate formation mechanisms.

Chloride in this study was primarily detected as ammonium chloride because ACSM
is insensitive to refractory NaCl and/or KCl at its vaporizer temperature of 600°C-. As

shown in Fig. 7, two different diurnal cycles were observed throughout different months.
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For the months of July, August, September, April and May, chloride presented a morning
peak when both temperatures and the PBL were at their lowest, and then rapidly
decreased to a low ambient level at ~18:00. Such a diurnal cycle was likely primarily
driven by temperature dependent gas—particle partitioning (Hu et al., 2008). The diurnal
cycles of chloride during the remaining months were also significant, all of which were
characterized by high concentrations at night. Coincidentally, these months fell during
the season of high domestic-heating demand, which usually starts on 15 November and
ends on 15 March. Coal combustion has been found to be a large source of chloride
(Zhang et al., 2012; Sun et al., 2013b). Therefore, the diurnal cycle of chloride is likely
dominantly driven by coal combustion emissions that are intensified at night for domestic

heating.
3.4 Weekend effects

Because the switch between clean periods and pollution episodes arising from
different source areas happens frequently in Beijing (Sun et al., 2013b; Guo et al., 2014),
the diurnal cycles of aerosol species can vary greatly due to the influences of different
occurrences of clean periods between weekdays and weekends (Sun et al., 2013b).
Therefore, periods with low aerosol loadings (NR-PM; < 20 ug m ) were excluded from
the results (Fig. 8) for a better investigation of the weekend effects (for the average
diurnal cycles with clean periods included, see Fig. S3). As shown in Fig. 8, there were
no clear weekend effects in the summer, except for slightly lower concentrations of
organics, sulfate and nitrate in the late afternoon at-on weekends. This suggests that there
are no significant differences in anthropogenic activity between weekdays and weekends
in summer. Although some enhanced traffic emissions between 00:00 and 06:00 at-on
weekends might have occurred, as indicated by the higher concentration of NO (Fig. S4),
they appeared to have negligible impacts on secondary sulfate and nitrate. While the
diurnal variations of organics and chloride were similar between weekdays and weekends
during the fall season, sulfate and nitrate showed pronounced weekend effects, with
persistently higher concentrations at weekends throughout the day. An explanation for
this is the stronger photochemical production of secondary species associated with higher
O; and solar radiation at-on weekends (Fig. S4). Consistently, SOA showed similar

weekend effects as those of secondary inorganic species, while POA did not (Sun et al.,
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in preparation). Because of the regional characteristics of secondary aerosols, further
analysis is needed to address the impacts of regional transport on the weekend effects of
secondary species. Winter showed the most pronounced weekend effects for all aerosol
species. All aerosol species showed much lower concentrations at-on weekends than on
weekdays across the entire day, which was consistent with those of NO, SO,, and CO
(Fig. S4). These results clearly indicate much reduced anthropogenic activity at-on
weekends during wintertime because of low ambient temperature (—4°C to —3°C).
Further evidence is provided by the diurnal cycles of organics, which presented
pronounced noon peaks at-on weekends during all seasons except winter. This
observation was consistent with much reduced cooking activity at-on weekends during
wintertime. Similar to summer, no evident weekend effects were observed in spring. The
weekend effects of aerosol species in this study are overall consistent with those observed
by Han et al. (2009), in which similar diurnal cycles of primary elemental carbon, CO,
and CO, between weekdays and weekends under weak wind conditions were observed

during the three seasons other than winter.
3.5 Meteorological effects

Figure 9 shows the RH and T dependent distributions of NR-PM; and WS for the
entire year. The distribution of NR-PM; showed an obvious concentration gradient as a
function of RH. NR-PM;, showed the lowest mass loading, generally less than 20 pg m >
at RH < 20%, and had no clear dependence on T. This can be explained by the high WS
(often larger than 5 m s '; Fig. 9b) at low RH levels associated with clean air masses
from the north and/or northwest. Previous studies have also found a strong association
between low aerosol loading and high WS in Beijing (Han et al., 2009; Sun et al., 2013Db).
NR-PM; showed moderately high concentrations (~20-40 ug m ) at low RH (20-40%),
which rapidly increased to a high concentration level (> 60 pg m ) at RH > 50%. These
results indicate that severe haze episodes in Beijing mostly occur under high humidity
conditions, when WS is low as well. Two different regions with high concentrations of
NR-PM, are apparent in Fig. 9a: one in the top-right region with high temperature
(>~15°C), and another in the bottom-right region with low ambient temperature (<~6°C).

Such a difference in distribution illustrates the severity of PM pollution in different
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seasons. Note that low concentrations of NR-PM; sometimes occurred at RH > 90%,

likely due to the scavenging of particles by rain or winter snow.

The RH- and 7-dependent distributions of major aerosol species (Fig. 10) allow us to
further investigate the RH/T impacts on the formation of aerosol species. While all
aerosol species showed similar concentration gradients as a function of RH to that of NR-
PM,, the T-dependent patterns varied greatly. Organics generally showed the highest
concentrations under low 7' (< 6°C) and high humidity conditions — very similar to the
behavior of chloride, which is mainly derived from combustion sources, e.g., coal
combustion or biomass burning (Zhang et al., 2012; Cheng et al., 2014). The results
suggest that high concentrations of organics during wintertime are primarily caused by
coal combustion emissions during the domestic-heating season, particularly from
residential coal combustion (Zhang et al., 2008). In fact, a previous study by our group
found that nearly one-third of OA during wintertime is primary coal combustion OA
(CCOA) (Sun et al., 2013b). In contrast, organics showed much lower concentrations
under the conditions of higher RH and higher 7, for which one of the reasons was
probably far fewer coal combustion emissions during summertime (Zheng et al., 2005;
Zhang et al., 2013a). Consistently, CCOA has not yet been resolved from PMF analyses
of AMS OA in summer in Beijing (Huang et al., 2010; Sun et al., 2010). Note that the
region with a high concentration of organics corresponded to a high concentration of NR-
PM;. In this region, organics accounted for the largest fraction of NR-PM;
(approximately 40—50%), indicating that severe PM pollution under low temperature and
high humidity conditions is dominantly contributed to by organics. The mass fraction of
organics, however, showed an opposite distribution to that of mass loading. As shown in
Fig. 10, organics presents the highest contribution to NR-PM; (~ > 50%) in the left-hand
region with low RH, indicating the dominance of organics during periods with low NR-
PM; mass loadings. Such a distribution is independent of temperature, suggesting a

ubiquitously organics-dominant composition during clean days in all seasons.

The RH/T dependence of secondary inorganic species showed somewhat different
behaviors from that of organics. Sulfate presented two high concentration regions, with
the highest values occurring during wintertime when 7 was below 0°C and RH was

above 70%. Aqueous-phase oxidation, mostly fog processing, has been found to play a
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dominant role in sulfate formation under such meteorological conditions (Sun et al.,
2013a). Surprisingly, the semi-volatile nitrate showed a relatively homogeneous
distribution across different temperatures at RH > 40%. Despite high temperature in
summer, high humidity facilitates the transformation of gaseous species into aqueous-
phase nitrate particles (Sun et al., 2012), particularly in the presence of high abundance of
gaseous ammonia (lanniello et al., 2010). In fact, nitrate showed the highest contribution
(>~25%) to NR-PM, mass under high 7 and high RH conditions, which were also the
conditions under which high concentrations of NR-PM; were observed. The fact that
nitrate contributed more than sulfate (~15-20%) to NR-PM; mass during these conditions
suggests an important role played by nitrate in summer haze formation. While the
concentration of nitrate at various temperatures was elosesimilar, its contribution to NR-
PM, was generally lower at low temperatures due to the greater enhancement of organics
during wintertime. Also note that the two semi-volatile species, i.e., nitrate and chloride,
show the lowest contributions to NR-PM; in the top-left region with the highest 7"and
lowest RH. This illustrates the evaporative loss process of ammonium nitrate and
ammonium chloride under high temperatures in summertime. However, sulfate shows a
relatively higher contribution in this region since ammonium sulfate is less volatile than

ammonium nitrate and chloride (Huffman et al., 2009).
3.6 Source analysis

In summer, all NR-PM; species showed evident wind sector gradients, with higher
concentrations in association with winds from the east (E) and southeast (SE), and lower
concentrations with northwest (NW) wind (Fig. 11). The average NR-PM, concentration
from the SE was 89.5 pg m >, which was more than twice that (39.4 pg m™>) from the
NW. All aerosol species increased as wind sectors changed along the N-NE-E—-SE
gradient, and then decreased along the SE-S—SW-W gradient. Such wind sector
dependence of aerosol composition is remarkably consistent with the spatial distribution
of fine particles in Beijing in 2013 (Beijing Environmental Statement 2013). These
results suggest an inhomogeneous distribution of air pollution around the IAP sampling
site in summer. Organics dominated NR-PM; across different sectors (37-43%), followed
by nitrate (21-28%), sulfate (15-20%), and ammonium (15-17%). While chloride

contributed a small fraction of NR-PM; (0.7-1.8%), the mass concentration showed the
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largest difference between SE and NW. The fall season showed a similar aerosol
composition dependence as that in summer, with higher concentrations from the E, SE,
and S. However, the gradients of wind sectors appeared to be smaller. For example, the
average NR-PM; concentration ranged from 46.3 to 72.7 ug m " in all eight sectors
except NW. Organics showed a similar dominance in NR-PM;, accounting for 47-55%,
and the contribution was ubiquitously higher than in summer for all wind sectors. It
should be noted that the NW sector showed the largest difference between mean and
median values for all species. The much lower median values suggest a dominance of
clean days for most of the time in this sector. In contrast, the summer season showed
higher median concentrations from the NW, indicating a higher regional background
during this season. The winter season showed consistently high concentrations of PM
across the different wind sectors, except for NW, where the mass concentrations were
approximately half of those in the other sectors. The average NR-PM;, ranged from 55.0
to 84.4 ug m >, with organics being the major fraction, accounting for 46-54%. The
spring season showed a similar wind sector dependence on aerosol composition as the
fall season. The average NR-PM, ranged from 49.0 to 74.4 ug m™° for all of the wind
sectors except the N (38.5 pg m ) and NW (24.7 pg m™>), which had much lower mass
concentrations. Similar to other seasons, organics dominated NR-PM; throughout the

different sectors (36—53%), followed by nitrate (19-27%) and sulfate (11-16%).

As Fig. 12 shows, the potential source areas for aerosol species varied among the four
seasons. In summer, high potential source areas were mainly located to the south,
southwest and southeast of Beijing. Organics had a relatively small high potential source
region in the south of Beijing (< 100 km) and a small source region located around
Baoding — one of the most polluted cities in Hebei Province. A narrow and visible source
area to the southeast of Beijing, including Tianjin and the Bohai Sea, was also observed.
Nitrate and chloride showed similar source areas to organics. The high potential source
area to the southeast of Beijing was mainly caused by open agricultural burning in June
in northern China. Sulfate showed a distinct source region characterized by a narrow high
PSCF band along Hengshui—Baoding—Langfang—Beijing. Such a pollution band agrees
well with the topography of the North China Plain, with the Taihang Mountains to the
west and Yan Mountains to the north. The wide area of high PSCF for sulfate also
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indicates a regional characteristic of sulfate that is formed from gas-phase oxidation or
cloud processing of precursor SO,, which is particularly high in Hebei Province (Ji et al.,
2014). Secondary nitrate showed a similar, yet much smaller, PSCF region compared to
sulfate. One reason for this might be due-te-the evaporative loss of ammonium nitrate

during the long-range transport in summer.

All aerosol species showed similar PSCF spatial distributions during the fall season,
with high potential source regions located in a narrow area from Hengshui, Baoding to
Beijing. These results suggest that regional transport from the southwest plays a
dominant role in formation of severe haze pollution in fall. The wintertime results
showed largely different PSCF distributions from the other seasons. High PSCF values
were mainly located in a small region (< 50 km) in the south and southeast of Beijing.
Although Hebei Province often has worse air pollution than Beijing during wintertime (Ji
et al., 2014), the cities far away from Beijing appear not to be a very important source of
wintertime air pollution in Beijing. One explanation for this is that stagnant
meteorological conditions occur more frequently in winter due to low WS and T
inversions. Thus, local emissions and transport from nearby regions would play a more
significant role in affecting the pollution level in Beijing. While the spring season showed
similarly small high potential source regions to those during wintertime, an obvious high
potential source area in Hebei Province was also observed. The transport of air pollution
from the SW to the NE along the Taihang Mountains in northern China has been
observed many times in previous studies (Wang et al., 2014a; Wang et al., 2014c). Given
that many cities located on this pathway are often highly polluted, such as
Shijiangzhuang, Baoding, and Hengshui, regional transport from these areas would have

a potentially high impact on the formation of severe haze pollution in Beijing.
4 Conclusion

This paper presents the results from a year-long, real-time measurement study of
submicron aerosol particle composition using an ACSM, conducted at an urban site in
Beijing from July 2011 to June 2012. The mass concentration of NR-PM; varied
dramatically, with the seasonal average concentration ranging from 52 to 62 ug m .

Organics comprised a major fraction of NR-PM; during all seasons, accounting for 40—
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51% on average. The average contribution of nitrate to NR-PM; (17-25%) exceeded that
of sulfate (12—17%) during all seasons, suggesting an enhanced role of nitrate in PM
pollution in recent years. Organics and chloride were two species showing pronounced
seasonal variations in both mass concentrations and mass fractions. The higher
concentrations of organics and chloride in winter than summer were largely due to
enhanced coal combustion emissions. We also observed high concentrations of organics
and chloride in June and October — two months with strong agricultural burning impacts.
The seasonal variations of secondary sulfate and nitrate were not significant because of
the large variations of precursor concentrations, photochemical production, and also
meteorological effects in different seasons. However, higher contributions of SIA in
summer (57-61%) than in winter (43—46%) were still observed, indicating a more
significant role of secondary production in summer. The diurnal cycles of organics were
similar during all seasons, all characterized by two pronounced peaks. While the diurnal
cycles of secondary sulfate were overall relatively flat during most months of the year,
those of nitrate varied greatly in different seasons. It was evident that the diurnal cycles
of nitrate are driven by gas-particle partitioning and daytime photochemical production in
summer and winter, respectively. The winter season showed substantially different
concentrations of aerosol species between weekdays and weekends, with much lower
concentrations on weekends. However, no significant weekend effects were observed

during the other seasons.

Meteorological conditions play important roles in the formation of severe PM
pollution in Beijing. In this study, we illustrate the influences of RH and 7 on aerosol
loading and chemistry in different seasons. All aerosol species increased significantly
under stagnant meteorological conditions associated with high RH and low WS. NR-
PM, showed two high concentration regions (> 60 ug m°) at RH > 60%. While organics
comprised a major fraction of NR-PM; in these two regions, the abundances of sulfate
and nitrate and air temperature were largely different, suggesting they play different roles
in causing PM pollution during different seasons. Under drier conditions (RH < 30%), the
NR-PM; concentration was generally low and organics contributed more than 50% of its
mass, indicating the importance of organics during clean periods. The semi-volatile

nitrate presented the largest contribution under high RH and high 7, highlighting the
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importance of nitrate formation via aqueous-phase processing in summer. All NR-PM,
species showed obvious dependence on wind direction, with higher concentrations
commonly associated with winds from the S, E and SE. This was consistent with the
results from PSCF analysis, which showed that the high potential source areas were
mainly located to the S and SW of Beijing. The high potential source areas varied
differently during the four seasons. A common high potential source area to the SW of

Beijing, along the Taihang Mountains, was observed during all seasons except winter,

demonstrating the potentially high impact of regional transport on severe PM pollution in

Beijing. The winter season showed a much smaller source region compared to the other

seasons, indicating that local and regional transport over a smaller regional scale are more

important. High potential source areas to the SE of Beijing were also observed for

organics, nitrate and chloride in summer, likely due to agricultural burning.
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Tables

Table 1. Summary of mass concentrations of NR-PM, species, gaseous pollutants and

meteorological parameters during the four seasons and entire study period.

Entire study Summer Fall Winter Spring

mean s.d. mean  s.d. mean  s.d. mean  s.d. mean  s.d.
org (ug m™) 257 221 245 207 26.8 247 296 248 217  16.0
S0,” (ug m™) 8.1 8.3 10.6 8.2 6.5 75 7.7 9.2 7.3 7.6
NO;™ (ug m™) 12.6 12.8 156 14.4 114  12.7 103 9.5 131 134
NH," (ug m™) 8.5 7.9 102 82 69 7.3 81 7.4 88 81
cr (pgm™) 1.8 2.5 0.8 1.5 17 27 30 3.0 1.5 1.9
NR-PM; (ug mfa) 56.6 48.2 61.6 48.8 53.3 49.7 58.7 50.5 52.3 42.7
SO, (ppb) 16.2 14.0 5.4 0.8 253 16.0 11.5 8.3
CO (ppm) 1.5 13 1.8 1.3 1.7 1.6 1.2 1.0
NO (ppb) 30.0 43.0 7.8 10.8 41.9 51.2 50.9 50.9 19.8 30.0
NO, (ppb) 64.0 55.5 35.6 17.9 77.8 63.1 89.1 66.6 54.0 433
O3 (ppb) 21.2 23.8 333 29.1 20.3 24.4 7.9 8.5 20.8 19.3
RH (%) 47.0 23.4 62.7 18.9 52.7 20.0 35.6 20.3 36.5 22.5
T(°C) 13.3 11.6 26.3 3.6 14.1 7.0 -1.3 3.4 14.6 8.4
ws,8m(ms’) 12 08 1.0 05 09 07 14 10 14 0.5{ Formatted: Superscript
IWS, 240 m (m s'l) 4.4 3.0 3.5 2.3 4.1 2.7 4.6 3.4 5.3 3.3
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Figure captions:

Fig. 1. (a) Map of the sampling site (IAP). (b) Wind rose plots, color coded by wind
speed for each season. The frequencies are set to the same scales for all seasons.

Fig. 2. Monthly variation of (a) gaseous O3 and NOy, (b) precipitation (Precip.) and solar
radiation (SR), (c¢) wind speed (WS) and pressure (P), and (d) relative humidity (RH) and
temperature (7). The WS at the heights of 8 m (solid gray circles) and 240 m (solid black
circles) are shown in (c).

Fig. 3. Time series of NR-PM; species for the entire year. The pie charts show the
average chemical composition of NR-PM; during the four seasons (summer, fall, winter
and spring).

Fig. 4. Frequency of NR-PM, mass loadings during the four seasons: (a) summer; (b) fall;
(c) winter; (d) spring. Note that the frequency was calculated with 15 min average data.

Fig. 5. Seasonal variation of non-refractory submicron aerosol species. The bars represent
the 25" and 75™ percentiles, and the solid circles are mean values.

Fig. 6. Monthly variation of (a) mass concentrations and (b) mass fractions of NR-PM,
species.

Fig. 7. Monthly average diurnal cycle of (a) organics, (b) sulfate, (c) nitrate, and (d)
chloride during the four seasons.

Fig. 8. Comparison of the average diurnal cycles of (a) organics, (b) SO4*", (¢c) NOs , and
(d) CI' between weekdays and weekends during the four seasons. Note that the periods
with NR-PM; < 20 pg m* are excluded.

Fig. 9. RH/T dependence of (a) NR-PM, mass concentration and (b) WS for a whole
year. The data are grouped into grids with increments of RH and 7 being 5% and 3°C,
respectively. Grids cells with the number of data points fewer than 10 are excluded.

Fig. 10. RH/T dependence of mass concentrations and mass fractions of aerosol species
for a whole year: (a) organics; (b) sulfate; (c) nitrate; (d) chloride. The data are grouped
into grids with increments of RH and 7 being 5% and 3°C, respectively. Grids cells with
the number of data points fewer than 10 are excluded.

Fig. 11. Box plots of mass concentrations of (a) organics, (b) SO4”", (¢) NOs~, and (d) CI”
as a function of wind directions sectors. All the data were segregated into eight wind
sectors representing north (N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), and northwest (NW). The mean (cross), median (horizontal
line), 25th and 75th percentiles (lower and upper box), and 10th and 90th percentiles
(lower and upper whiskers) are shown.

Fig. 12. PSCF of NR-PM; species during four seasons: (a) organics; (b) sulfate; (c)
nitrate; (d) chloride. The cities marked in each panel are Beijing (BJ), Tianjing (TJ),
Langfang (LF), Baoding (BD), Shijiazhuang (SJZ), and Hengshui (HS). The color scales
indicate the values of PSCF.
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Fig. 11. Box plots of mass concentrations of (a) organics, (b) SO4*, (¢) NOs", and (d) CI”
as a function of wind directions sectors. All the data were segregated into eight wind
sectors representing north (N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), and northwest (NW). The mean (cross), median (horizontal
line), 25th and 75th percentiles (lower and upper box), and 10th and 90th percentiles
(lower and upper whiskers) are shown.
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Fig. 12. PSCF of NR-PM; species during four seasons: (a) organics; (b) sulfate; (c)
nitrate; (d) chloride. The cities marked in each panel are Beijing (BJ), Tianjing (TJ),
Langfang (LF), Baoding (BD), Shijiazhuang (SJZ), and Hengshui (HS). The color scales
indicate the values of PSCF.
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