Following the reviewers' thoughtful comments and suggestions, we have carefully revised
the manuscript. Compared to the earlier version, the main changes are as follows:

1) We have re-run the entire assimilation using improved segmentation methods. In the
previous version, we did split the period into segments of 14 months with a 2-month overlap
between adjacent years in order to save computational time. We thought that this approach
would not influence the inverted flux trends under the assumption that the initial conditions
for each segment are properly optimized by the system with just 2 months of overlap, a
spin-up time that is about the lifetime of CO in the atmosphere. Under closer scrutiny, it
appears that this segmentation actually generates a small discontinuity in the concentration
time series that affects some regional signals. Therefore, we have re-run the inversion with
only three segments and with an overlap of 4 months between adjacent segments with
initial conditions optimized upstream. Figures are systematically updated and parts of the
results are revised, but the main conclusions are not affected.

2) Following reviewers’ suggestion, we added one table to summarize regional CO
concentration trends in the total column and surface boundary layer from observations and
corresponding prior/posterior modelling (Table 2). We also added one table to summarize
the model misfit to CH4 and MCF observations that are assimilated jointly in the system
(Table 3). In addition, we converted the units for MOPITT column retrievals from molec cm™
to ppb. Thus there are considerable edits in terms of numbers and units in Section 3, but the
main results are not changed.

3) We added one figure to show the horizontal and vertical distribution of the two OH fields:
TransCom and INCA (Fig. 3 in the updated version). In the meantime, we removed one figure
- the old Fig. 4 showing the latitudinal mean bias of prior/posterior CO concentration
compared to surface in-situ measurements, because this information is now summarized in
Table 2.

Detailed responses to each question and comment from the reviewers are attached below.
The manuscript with all editing tracked is also attached after the response.

The co-authors
27/10/2015

Reply to Referee #1

We thank the reviewer for his/her thoughtful comments and valuable suggestions. We have
addressed all the issues raised in the review. The full review is copied hereafter in blue and
our responses are inserted where appropriate.



Anonymous Referee #1

This paper uses as data-assimilation framework to infer CO emissions from satellite
observations. The CO inversion system is coupled to CH20, CH4, and MCF, which provide
constraints on the sources and sinks of CO. The target period of the study is a full decade
(2002-2011). The study has the aim to provide a consistent analysis of the drivers of the
observed decline in CO total columns from MOPITT (figure 3). Although the paper is
relative convincing in some aspects, some inconsistencies are also apparent, which need
to be better explained or analyzed. Below, these are listed under major issues.

We thank the reviewer for pointing out some elements that we did not articulate well
enough in the previous version of the manuscript. We hope that this reply clarifies these
issues.

Major issues

1. Is the system well balanced?

The focus of this paper is on CO, but also CH4 and MCF measurements are assimilated.
One of the burning questions around today is the role of OH, and a possible trend in OH,
in the observed CH4 growth rate changes, exactly in the analyzed period. | was therefore
a bit disappointed to find only one sentence: “Similarly for CH4 and MCF, the inversion
fits the assimilated data fairly well, but these results are not shown, as they are not the
main focus in this study”. This casts doubts on the added value of the CH4 and MCF
assimilation.

We added a table (Table 3) in the revised paper, which presents the mean model-data bias
and the residual root mean squares (RMS) before and after optimization for CH4 and MCF.

Table 3. Fitness of CH, and MCF observations assimilated in the inversion.

Region OH-type CH4 (ppb) MCEF (ppt)
Mean bias RMS Mean bias RMS
prior posterior prior posterior prior posterior prior posterior
TransCom 20.6 2.4 749.6 22.2 1.02 -0.02 1.14 0.05
NH(30-90)
INCA -21.0 2.5 658.1 20.1 0.44 -0.09 0.28 0.07
TransCom 15.8 1.5 452.6 19.1 0.90 -0.20 0.91 0.16
NH(0-30)
INCA -21.1 -0.1 564.9 13.9 0.40 -0.20 0.21 0.11
TransCom 10.9 -2.4 222.1 20.1 1.19 0.09 1.61 0.13
SH(0-30)
INCA -14.3 -4.0 264.9 29.5 0.88 0.23 0.94 0.15
TransCom 14.4 0.2 308.3 4.7 0.88 -0.24 0.90 0.17
SH(30-90)
INCA -7.9 -0.4 96.6 5.7 0.60 -0.06 0.46 0.07




The substantial decrease of both the mean bias and RMS reveals the system’s ability to draw

information from the CH4 and MCF observations.

| presume that the cost function consist of a term related to model-data mismatch of
MOPITT observations, a background term (emissions of CO, MCF, and CH4 that deviate
significant from the prior), and terms related to CH4 and MCF misfits at the stations. If
such a system is not well balanced, it might be that little of no information is drawn
from the MICF and CH4 misfits. Since the authors claim that they infer no trend in OH
they have to verify if their system is adequately set up to detect a possible OH trend.
Stating that the inversion fits the MCF observations fairly well is certainly not enough.

Estimating whether the system (or the cost function) is balanced among species is far from
trivial. For the prior error covariance matrix B and observation error covariance matrix R, we
assign the error terms separately based on our best knowledge of their uncertainty in the
“physical” world based on bottom-up inventories and previous model studies. This is
consistent with the Bayesian approach where each information piece brings its own
probability density function independent from the other ones: we do not tune the error

statistics to artificially balance the weight of each species.

In terms of observation numbers of different species included in the assimilation, which
could influence their relative shares in the cost function, MOPITT CO retrievals have higher
spatial coverage over the globe so CO has implicitly more observations than CH; and MCF.
Furthermore, model-data biases could also contribute a potentially large portion of the
initial cost function (in our case the model bias is larger for CO than for other species) and
we do not think that there is a necessity to “balance among species” in terms of a misfit

correction.

Moreover, it would be interesting to present some analysis of the cost function, showing
how the optimization changes the cost function, and how CH4 and MCF observations
are used to inform the CO budget in terms of sources and sinks (e.g. by neglecting

couplings).

For the reasons stated above, we think that balancing the absolute share of the cost function
from each species is not appropriate for the study. Instead, we have analyzed the relative
contribution of the three species in the observation term of the cost function during the

iterative minimization.
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Fig. Relative decrease of Jo for each species for each year during iteration. CO are shown in
red, methane in green and MCF in blue.
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In this figure, each line represents the relative decrease in Jo for one species for a year
during each iteration. It shows an efficient decrease compared to the initial cost for all
species. For methane (in green) and MCF (in blue) observations at surface station, which are
more difficult to represent by the model than satellite CO column retrievals averaged at
model resolution (in red), the relative decreases are smaller in some occasions.
Nevertheless, the inversion system appears robust at minimizing the cost function.

2. Are the results realistic?

A large fraction of the atmospheric CO comes from the oxidation of NMHCs. Yet, figure
6 shows that large seasonal biases exist with independent satellite observations of
CH20. This implies that the atmospheric CO sources are also seasonally biased, and
these biases will be projected on CO emissions.

We agree that assimilating CH,0 observations could further improve the estimation of CO
emissions, in particular to improve the seasonal cycle. It is actually one of our perspectives in
this paper. However, the observational data of CH,0 is not fully available for the decade that
we study; thus, for the sake of consistency we do not assimilate CH,0. Instead, the OMI
CH,0 retrievals are used as independent evaluation. Fig. 6 of the paper shows, on the one
hand, the overall agreement of satellite CH,0 column retrievals with modelled CH,0
concentrations for latitudinal means. On the other hand, it shows that no significant
large-scale trends are found in the CH,0 column to contribute to the decrease of CO
concentrations that are observed over many regions.

Even more worrying are the large regional emission increments that are presented in



figure 9. For instance, in the region SHSA the emissions are calculated to increase from
roughly 50 Tg/yr in 2002 to almost 200 Tg/yr.

We agree that the relatively large increments in South Hemisphere South America (SHSA)
and Australia have large uncertainties due to CH20 production, OH sink and other factors
concerning transport and vertical mixing. However, our study here focuses on the trends of
CO emissions, and the uncertainties in terms of regional increments are more systematic
than time dependent given the information we gain from OMI CH20 observations.
Therefore, regional increments from the prior to posterior as well as their relative
uncertainties are not specifically discussed. Further investigation of this point for a different
study will be very interesting.

In later years calculated increments are smaller but the recently described biomass
burning year 2007 (Bloom et al., GRL, 2015) visible in the prior seems to disappear in the
posterior. Over Australia and Africa also some large increments are calculated. Likely,
the two issues are related since CH20 from isoprene is a major source of CO over SHSA
(Stravakou et al., ACPD, 2015).

We thank the reviewer for pointing this out. We traced the problem back to an artefact
caused by the way we processed the whole decade in the initial paper. Indeed, for practical
reasons, we did split the period into segments of 14 months with a 2-month overlap
between adjacent years. We thought that this approach would not influence the inverted
flux trends under the assumption that the initial conditions for each segment are properly
optimized by the system with just 2 months of overlap, a spin-up time that is about the
lifetime of CO in the atmosphere. Under closer scrutiny, it appears that it actually generates
a small discontinuity in the concentration time series that affects some regional signals. We
have re-run the inversion with only three segments and with an overlap of 4 months
between adjacent segments with initial conditions optimized upstream. The main
conclusions are not affected, but all figures have been updated.

The updated Fig. 10 is inserted below. High emissions in regions south hemisphere South
America (SHSA) and Indonesia (INDO) in the year 2007 are very visible now in the posterior,
consistent with the prior and other bottom-up studies.



Fig. 10. Regional annual CO emissions from 2002 to 2011. The prior emissions are shown in
blue and the posteriors are shown in red. Dark-red represents posterior with TransCom-OH
and pink-red represents posterior with INCA-OH. Linear fit is shown when statistically
significant, and slopes are denoted with corresponding colour. * denotes significant at 95%
confidence level, and ** denotes significant at 99% confidence level. The notations for the
sub-regions are listed below, and the extent of each region is shown in Fig. A1. BOAS - Boreal
Asia, BONA - Boreal North America, USA - USA, WSEU — West Europe, ESEU — East Europe,
MIDE — Middle East, SCAS — South Central Asia, SEAS — South East Asia, INDO- Indonesia,
AUST — Australia, NHSA- North Hemisphere South America, SHSA - South Hemisphere South
America, NHAF - North Hemisphere Africa, SHAF — South Hemisphere Africa, OCEAN — all

ocean emissions.
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Finally, only the results for the TRANSCOM-OH are shown. These fields have a NH/SH OH
ratio closer to 1 and this will surely influence the NH/SH CO emissions (Patra et al.,
Science, 2014). On the global scale the CO budget might not be influenced too much by
the OH field, but given the importance of OH as CO sink, some analysis and discussion

about this issue is also needed.

As shown in the updated Fig. 10 above, for the time series of regional annual emissions we
now present both the posterior using TransCom and posterior using INCA OH field. Indeed,
the distribution of OH field has a considerable impact on the regional budgets. TransCom OH
has lower concentration in the NH compared to INCA, thus the inverted emissions using
TransCom OH in the NH are generally lower compared to the one using INCA. On the
contrary, in the SH where TransCom OH concentration is higher than INCA, the inverted
emissions using TransCom OH generates higher CO emissions than INCA. The differences of

the two posterior using contrasting OH fields are of a smaller magnitude than the



differences between the posterior and the prior. It is noted that the trends in the posterior
emissions are very consistent, irrespective of the OH fields used as shown in the figure
below (updated Fig. 9).

Fig. 9. Trend distributions of CO surface emissions from 2002 to 2011 (a) in the prior, (b) in
the posterior with TransCom-OH and (c) in the posterior with INCA-OH.
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Minor issues:

14507, 23: TES is probably not referring to the “Technology Experiment Satellite”, but to
the Tropospheric Emission Spectrometer.

Thanks for point it out. We have corrected it.



14508, 1: “The interpretation : : :”: sentence reads awkward, rewrite.

Done. We have revised it as “Comparing modelled and observed trends is complicated by
the common biases of atmospheric chemistry-transport models (CTMs) forced with current
emission inventories.”

14508, 8: “Understanding this model-data misfit is all the more so challenging that
surface emissions and chemical production each account for about a half of the total CO

”| o«

sources Understanding this model-data misfit is challenging because surface

emissions and chemical production each account for about half of the total CO source”.
Thanks for the edits. It has been implemented as suggested.

14508, 11: can contribute ! could have contributed
We have made the change.

14508, 20: information piece ! piece of information
We have made the change.

14508, 27: to infer the origin of the observed CO concentration decrease in the past
decade ! to infer the most likely origin of the observed CO concentration decrease over
the past decade

Thanks. We agree it is more accurate stating it in the way as suggested.
14509, 2: remove “at once”

We have made the change.
14509, 4: “chemically connected to hydrocarbons”? unclear

We have replaced this part of the sentence by “a species that only reacts with OH and
therefore informs about it”.

14509, 13: “The algorithm has undergone continuous improvements and several
reprocessings of the archive have been made (Streets et al., 2013).” The algorithm has
undergone continuous improvements and the archive has been reprocessed several
times (Streets et al., 2013)” By the way: is the Streets et al reference correct? It is not in
the list, like the Cressot (2014) reference. Please check all references!

We have made the change in the text as suggested. Thanks for spotting this mistake in the
reference. The corresponding reference should be Deeter et al., 2013. In addtion, we have
double-checked all the references.

14511, 6: this requires some explanation. If you use a "fixed OH field", it is important in
know how this has been obtained, and possibly what was the role of NOx in obtaining
these fields.

The description was a bit confusing in the old text and we have edited the sentence. The
prior OH field is modeled with full chemistry models with NOx and many other processes
considered. The corresponding references for INCA OH is Folberth et al., 2006; and the one
for TransCom is Patra et al., 2011 and references therein. In the optimization process, we
optimize OH scale over big regions assimilating MCF, CH4 and CO, during which the effect of



NOx is not relevant.
14511, 14: pressure weighted concentration? Is that not simply a mixing ratio?
Yes. The text has been simplified following the suggestion.

14511, 17: CH20 has also direct source from biomass burning (Stravakou et al., ACPD,
2015). How do you account for surface emissions in this procedure?

There are direct CH20 emissions (as shown in Figure 1) in our model both from biogenic and
biomass burning emissions in addition to the CH20 chemical productions from VOC
oxidation. The surface emissions are optimized together with the total quantity VOC
emissions that will turn into CH20 (there is a single scaling factor for both).

14511, 27: as described below
We have added the preposition “as” as suggested.
14512, 18: the Cressot reference is not in the list.
It has been added.
14513, 12: Leeuwen ! van Leeuwen
Thanks for pointing it out. It has been added.
14513, 13/16: m2 I m-2
It has been changed.
14513, 23: month? The period is 8 days, right?

For our optimization, the period is 8 days; for the prior emission, we use 8-day resolution
when the datasets are available. However, the prior emission datasets do not necessarily
have such high temporal resolution, in particular for anthropogenic (fuel combustion)
emissions. For biomass burning emissions whose daily emissions are available from
GFEDv3.1, we calculate weekly mean emissions from the daily emission data. We assume
the temporal variability is larger for biomass burning emissions for both CO and CH,. But for

other emission sectors, monthly mean emissions are used as the prior.

14515, 25: what about observational errors? Probably smaller than model errors, bur

still good to mention.

In the revised text, we have added the global mean measurement error for all the species.
“The global mean measurement error for Xco is around 6.4%2.9 ppb, which is approximately
8.2+1.9 % of corresponding Xco observations. The measurement errors are set as 3 ppb for
CH4 and 1.2 ppt for MCF if not explicitly provided by the surface observation datasets.”

14515, 26: how is the yearly mean of the synoptical variability defined? DO you apply

the same filter as for the 3-sigma filtering?
No. The variability of synoptic variability was calculated upstream.
14517, 8: whatever ! irrespective

This has been changed as suggested.



14518, 8: | suggest to add something like: “when for instance the vertical mixing in the
model is too conservative, this could lead to a positive bias at the surface, because the
sources are adjusted to fit the satellite data.”

Thanks for the suggestion. This example has been added in the text.
14518, 16: Negative ! A negative
We have made the change.

14519, 1: A logical discussion here would be: what are the trends in the direct prior CO
emissions from anthropogenic activities and from biomass burning? | see this discussion
later...so please point forward to that discussion.

Section 3 focuses on the concentrations, so the underlying attribution from anthropogenic
or biomass burning is not yet discussed.

14519, 2: To compare the trend in columns to trends at the surface, please convert the
column in a mean mixing ratio.

It is done in the new version. We have converted all the column data from molec cm™ into
volume mixing ratio (ppb).

14520, 7: | find this not very convincing. To my eye, for at least some stations, it seems
the prior simulation reproduces observed trends better than the posterior simulation. So,
why not provide the information in a table? (e.g. average improvement of trend).

The trends are now summarized in the following table (Table 2) with information on both
the mean bias and the trends.

10



Table 2. Summary of CO model-data comparison and trend analysis for MOPITT satellite retrievals, surface station observations and corresponding

prior/posterior modelling. Trends for each region (in the unit of ppb yr™) are the mean values for all the grids whose trends are significant at 95%

confidence level. The percentages of

significant trends are also given per model grid for positive (+) and negative (-) respectively.

NHSA
SHSA
NHAF
SHAF
WSEU
ESEU
BOAS
MIDE
SCAS
SEAS
AUST
INDO
OCEAN

MOPITT Surface
Prior Post Prior Post
Bias  Bias Bias Bias
(ppb) N

-141 0.7 -20.8 20.5 210
-16.7 -3.1 -204 20.1 108
-10.0 -3.0 74
-142 0.2 160
-15.0 -2.0 -200 6.8 211
-16.5 05 -1.5 136 96
-16.1 03 -36.7 18.7 106
-16.8 04 108
-17.3 1.0 227
-16.5 -2.9 64
-12.0 -0.3 80
-20.1 -3.6 -30.6 226 129
-155 -1.7 -6.4 154 105
-3.8 0.2 64
-119 -0.2 -15.1 9.6 3092

Observation

Trend
-0.84
-0.82
-0.61
-0.59
-0.45
-0.57
-1.00
-0.77
-0.92
-0.57
-0.65
-1.23
-0.62
-1.20
-0.72

+

%

%
99
97
84
58
55
75
100
100
99
100
63
97
100
98
96

Prior mod
+
Trend %
-0.46
-0.41
-0.19 8
038 41
-0.38
0.07 27
-0.49
-0.40
-0.51
-0.30
-0.30 4
0.13 19
017 28
-0.84
-0.07 22

MOPITT column trends

85
11
100
100
92
100
38
24

28
25

Posterior mod

Trend
-0.88
-1.08
-0.68
-0.56
-0.73
-0.64
-1.12
-0.93
-1.02
-0.88
-0.92
-1.35
-0.78
-1.03
-0.67

+

%

%
99
100
100
67
95
96
100
100
99
100
100
99
100
98
97

O W W O O O O O kR kR © O W N 2

N
N

Surface station trends

Observation

Trend
-2.51
-1.67

-0.90
-0.78
-2.73

-1.76
-0.34

-1.23

+ -
% %
100
67

100
100
100

100
67

4 89

Prior mod

Trend
-1.46
-1.13

-0.73

0.42

-2.05

-1.83

-1.00

+

%

100

%
100
100

100

100

100

59

Posterior mod

Trend
-2.96
-3.30

-1.04
-0.48
-3.51

-3.78
-1.18

-1.46

+ -

% %
100
100

100
100
100

100
67

89
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14520, 17: fairly agree ! agree fairly well
We have made the change.

14520, 20: trend ! a trend
We have made the change.

14521, 7: “INCA-OH has higher than TransCom OH concentrations in the NH during
summer OH maximum, but lower than TransCOm OH concentrations in the SH Tropic” !
INCA has higher OH concentrations than Transcom in the NH during summer, but lower
OH concentrations in the SH Tropics”

We have made the change.

14521, 19: A trend of roughly half a percent per year should have an influence on the CO
trend (which are typically 0-2.5 %/year). The sink term read -k.CO.OH and trends in CO
and OH should be equally important. In figure 8 the posterior trend in the "sink"
(k.OH.CO) is also steeper than the posterior trend in the "source", which indicates some
role of OH trends (but indeed rather small).

We have rephrased this part as “Such small trends are considered of very small effect on the
CO trends.”

14521, 20: considered of minor effect on the CO trends ! to be of minor importance for
the CO trends

We have made the change.

14522, 5: Please check all units in the paper. For instance, emission maps now have the
label “Tg/year”, which misses a unit area. In figure 8, the unit should be Tg CO/months,
and the trend should also have a unit.

All units for the emission maps are noted as Tg/year, which indeed will be clarified as
Tg/year/grid (2.5 degreex3.75 degree). This is the case for both Fig. 2 and Fig. 9. In Fig. 8, the
unit should be specified as Tg CO/year (instead of Tg CO), because we have calculated the
yearly sum.

14522, 7: SD? You have only two realizations.

The figure has been updated showing the posterior with both OH fields.
14523, 1: more negative ! steeper negative

We have made the change.

14523, 9: no significant trend in the OH concentrations IS found by the inversion: : :.but:
when the burden of CO decreases, one would expect OH to go up, because one of the
most important sinks goes down. In that respect, the absence of an OH-trend is
surprising, and | think your results point to a small positive OH trend.

A small positive trend is noticed for the SH (+0.2% yr™* with TransCom-OH and +0.7% yr™* with
INCA-OH) and a small negative trend in the SH mid-high latitudes (-0.4% yr-1 in
TransCom-OH and -0.3% yr-1 in INCA-OH) (14521, 16—-20). However, they are really small.
We changed the text slightly to be more conservative.
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14523, 14: | think that this argument does not make sense. MICF lives 5 years, so a trend
in OH anywhere on the globe would be reflected in the MCF mixing ratios also on
remote stations.

The signal could be really small in the remote stations if it is not a change through large
scales. Meanwhile, different regions could have contrasting changes, but we optimized over
big regions. Moreover, the concentration of MCF has been decreasing and is progressively
less informative.

14523, 21: This is also incorrect. The Montzka (2011) study only addresses variability,
and not trends, since all data were de-trended.

Thanks for pointing this out. We misunderstood the “interannual variability (IAV)” stated in
this paper, taking it as normalized values (not de-trended). This was corrected in the revised

paper.

14523, 26: unclear why the positive dots appear over oceans. Legend does not explain
this.

The reason is that the values over ocean are really small, while the trends are significant. The
information has been added in the figure caption.

14523, 28: “estimated by the prior”?? Do you mean: “in the prior emissions”?
Yes. It has been changed.

14524, 28: changing rate ! growth rate?
We have made the change.

14526, 11: “Such decreasing: : :observations”. This is not a conclusion of this paper.
We have deleted this point from the conclusion.

14527, 15: OH: like above, invalid argument.

We have modified this argument as “Assimilating observations of CH,0 and other chemically
related species could inform more about regional CO budgets, in particular the chemical
sources and sinks, and therefore could further improve the top-down estimation of CO
budgets for each region.”

Figure 2: Units Tg per year per unit area (gridbox?)

Yes, it is now specified as TgCO/grid.

Reply to Referee #2

We thank the reviewer's appreciation of our work and the thoughtful comments. We have
made corresponding efforts to revise the manuscript. The full review is copied hereafter and
our responses are inserted where appropriate.
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Anonymous Referee #2

Yin et al. use MOPITT version 6 CO retrievals along with surface measurements of
methyl-chloroform and methane to perform an atmospheric inversion over 2002-2011.
They then use results from the inversion to analyze trend in CO emissions and burdens

globally and regionally.

This paper provides an important contribution to atmospheric composition science and
should be published in ACP. The methods used are well thought-out, and the paper is
generally well written. | have only minor concerns, presented below.

General Comments

1. There are a LOT of numbers in the text, especially in Sect. 3.2 and 5.1. It’s very hard to
keep track of these and to compare their importance. | think the paper would be well
served by including a table with global and regional trends from MOPITT,

surface stations and the model sampled like each of these (Sect. 3.2) and another that
gives the modeled changes to budget terms (Sect. 5.1). Also, it would be nice to add
prior emission (& chemical source/sink) trends to Table 1, since these are perhaps more

relevant that the mean amounts and provide context.

Thanks for the suggestion. The text was indeed a bit heavy, we have revised Sect. 3.2 in two
ways: adding one table (Table 2, in page 11) to summarize the trends in different regions,
and changing the unit for MOPITT retrievals from molec/cm2 into mole fractions with
numbers more friendly. The entire paragraph is revised accordingly.

For the budgets (Set. 5.1), we updated both Fig. 8 (inserted below) for the global budgets
and Fig. 10 (on page 6) for regional emissions in a way that the trends in the prior and
posterior are more clearly denoted when the trends are statistically significant. These two
revised figures are inserted below.
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Fig. 8. Time series of global mean annual CO budget changes from 2002 to 2011. Each
component is shown in a different colour. Solid lines indicate the prior (mean values of the
two OH fields are shown for the prior chemical CO production and sink). Dash-dot lines
represent posterior with TransCom-OH and dotted lines represent posterior with INCA-OH. If
the trend is statistically significant, a linear slope is denoted beside each line. With the order
from left to right, the numbers represent slopes for the prior, the posterior with
TransCom-OH and the posterior with INCA-OH successively. * denotes significant at 95%

confidence level, and ** denotes significant at 99% confidence level.
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2. There is a large discussion around regional trends, but many of the trends discussed in the
text are not in fact significant according to the figures (some are highlighted in the next
section). This needs to be made clearer in the text, and | would suggest spending more time
on the trends that are in fact significant. For example, one region that is not really discussed
but appears interesting is AUST: the prior suggests no trend, but the posterior suggests a
very strong negative trend. AUST is referenced briefly in the section on BB, but from
comparing Figs. 2b and 9, it looks like the trend is partly driven by locations where BB doesn’t
dominate. More discussion would be worthwhile.

This confusion carries through to the figures. For example, Fig. 10 includes a lot of trend
lines for trends that are highly insignificant, and these are misleading. | would suggest
that Figs. 8 and 10 should only show trend lines when the trends are signif- icant. It may
also be worth highlighting these by e.g. making the s & p values bold for significant
trends, or adding an asterisk. Another option is to put all the values in a table, including

their significance, and only include on the figure slopes where the trend is significant.

We thank the reviewer for pointing this out. We have revised this issue in two aspects. First,
we have re-run the entire assimilation using improved segmentation methods. In the
previous version, in order to save computational time, we did split the period into segments
of 14 months with a 2-month overlap between adjacent years. We thought that this
approach would not influence the inverted flux trends under the assumption that the initial
conditions for each segment are properly optimized by the system with just 2 months of
overlap, a spin-up time that is about the lifetime of CO in the atmosphere. Under closer
scrutiny, it appears that this segmentation actually generates a small discontinuity in the
concentration time series that affects some regional signals. Therefore, we have re-run the
inversion with only three segments and with an overlap of 4 months between adjacent
segments with initial conditions optimized upstream. The main conclusions are not affected,
but all figures will be updated. Some regional trends are slightly changed as shown in Fig. 9

(in page 7).

Second, we have improved the notation of regression slope and significance for Fig. 8 (in
page 15) and Fig. 10 (in page 6) as shown above. The discussions about trends are more
focused on the significant ones according to the updated results. The negative trend in the
posterior emission in SEAS is in fact significant, and we added discussion on the trends in
AUST, which is probably explained by the change in burned area as indicated by the newly
released GFED4s dataset.

3. Most of the figures are not colorblind-friendly. Figures 3, 4, 6, 7, 8 and 9 all use red
and green to contrast two different simulations, which many people cannot inter- pret
(see e.g. http://www.somersault1824.com/tips-for-designing-scientific-figures-for-
color-blind-readers/). An easy solution would be to change all use of green in these
figures to blue.
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Thanks very much for this reminder. We have updated all the figures systematically with
color schemes of red and blue.

Specific Comments (page, line)

14506, 24-28: This discussion centers around one of the insignificant trends; given this
I’'m not sure it belongs in the abstract (at least not without explicitly stating that it
is insignificant).

In the previous version, China was mentioned particularly in the abstract (for which the
trend was significant), but the regional emission was shown for the entire SEAS in Fig. 10,
which was a bit misleading. Nevertheless, in the revised results, in which the trends are
more robust with the improved segmentation method, the trends in SEAS are indeed
significant, so are the trends cover China as shown in Fig. 9. Therefore, we are actually
discussing a significant trend.

14507, 22-25: Warner et al. 2013 (doi:10.5194/acp-13-12469-20134A”1) also evaluated
CO trends from satellite, and should be cited here.

Thanks for mentioning this study. In the previous version, we cited only the Worden et al.
2013 paper, which synthesized 4 satellite retrievals, and was therefore considered
representative of recent trends in satellite observations. The Warner et al. 2013 paper has
been added in the revised paper.

14511, 14-18: | am confused by the treatment of CH20 here. What happens to surface
emissions of CH20? Are these included in the CH20 production term? Please clarify.

There are direct CH,0 emissions (as shown in Figure 1) in our model both from biogenic and
biomass burning emissions in addition to the CH20 chemical productions from VOC
oxidation. The surface emissions are optimized together with the total quantity VOC
emissions that will turn into CH,O (there is a single scaling factor for both). We have added
this description in the paper.

14511, 18-23: | would like to see more justification for splitting OH longitudinally only in
the NH. | would expect the active biogenic VOC chemistry in the SH (e.g. the Amazon) to
have a large impact on OH that is not longitudinally homogeneous. Is this split neglected
because of a lack of SH data constraints, or for some other reason?

Yes, further splitting of the other three latitudinal bands is limited by the number of surface
stations. We have added this information in the text.

14512-14513: It would be nice to see a figure showing both OH fields to clarify this
discussion. Altitude-latitude zonal mean cross sections would be ideal.

We have added one figure showing both OH fields as well as differences between the two.
Fig. 3 in the new version is inserted below.
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Fig. 3. Spatial and vertical distribution of OH concentration in TransCom, INCA and
differences between the two. The TransCom OH is interpolated from its original 60 pressure
levels into the LMDz 19 eta-pressure levels.
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14513, 25-26: Does the uncertainty on CH20 production also include uncertainty on its
emission?

Yes. As stated above for 14511, 14-18, the surface CH,0 emissions and chemical productions
of CH,0 from VOC emissions are optimized together. There is a single scaling factor for both,
so are the uncertainty statistics.

14513, 26: Where are these “initial concentrations” from?

They are simulated from LMDz-INCA full chemistry model and optimized upstream in the
revised version. We have added this information in the text.

14515, 4-7: Are there any references for suggesting that some of these observations
“may be of lower quality or more difficult to measure?” It would be nice to back this
statement up if possible.

The reference is added. Fortems-Cheiney et al., 2011 has explained the observation
selection in details.

14515, 25-28: It’s not clear to me what is meant by “yearly means of synoptic
variability” — how was this calculated?

It is calculated as the standard deviation of the residual of the detrended and
deseasonalized data. We have added this information in the revised paper.

14516, 6-14: Is this a gridded OMI product? If so, what resolution? Do you use the
vertical columns here, and are these provided in the product or calculated from slant
columns?

We used the OMI CH,0 gridded data with pixel size between 13x24 km? at nadir and 26x135
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km? at the swath edges, providing daily global coverage. We used the vertical columns
(provided by the product) without convolution of averaging kernel (not provided by the
product). This dataset is available from the following site:
http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/index.shtml. We have added those
details in the revised version.

14516, 18: Most of the calculated values shown later include error bars, and trends

include significance. This would be a good place to explain how those are calculated.

It follows the widely used statistical approach in estimating the uncertainties of the linear
regressions slope. Here we used the stat.linregress function in the scipy package in
python2.7. We did not give the details in the method section, as it is not some method
unique to our study.

14517, 18-21: It would be nice to include a statistical measure of goodness of fit,
especially for the CH4 and MCF which aren’t shown and therefore makes me wonder
how accurate the claim that they fit “fairly well” is.

Thanks for this suggestion. We have added a table to show the goodness of fit as Table 2
inserted below. The substantial decrease of both the mean bias and root mean squares
(RMS) reveals the system ability to draw information from the CH4 and MCF observations.

Table 2. Fitness of CH, and MCF observations assimilated in the inversion.

Region OH-type CH4 (ppb) MCEF (ppt)
Mean bias RMS Mean bias RMS
prior posterior prior posterior prior posterior prior posterior
TransCom 20.6 2.4 749.6 22.2 1.02 -0.02 1.14 0.05
NH(30-90)
INCA -21.0 2.5 658.1 20.1 0.44 -0.09 0.28 0.07
TransCom 15.8 1.5 452.6 19.1 0.90 -0.20 0.91 0.16
NH(0-30)
INCA -21.1 -0.1 564.9 13.9 0.40 -0.20 0.21 0.11
TransCom 10.9 -2.4 222.1 20.1 1.19 0.09 1.61 0.13
SH(0-30)
INCA -14.3 -4.0 264.9 29.5 0.88 0.23 0.94 0.15
TransCom 14.4 0.2 308.3 4.7 0.88 -0.24 0.90 0.17
SH(30-90)
-7.9 -04 96.6 5.7 0.60 -0.06 0.46 0.07

14518, 3-9: Could there be any influence from different amount of land vs. ocean in
NH/SH, and different sensitivities of MOPITT over these surfaces? Warner et al. (2013)
discuss hemispheric ocean/land differences in AIRS.

We did not test the sensitivity of MOPITT over land vs. ocean, it is not the main focus of this

study and we cannot cover every aspect without diverging too much.

14518, 9: Fisher et al. 2015 (doi:10.5194/acp-15-3217-2015) also discuss problems in
simulating CO vertical profiles in CTMs, specifically in the SH, and could be cited here.

Thanks for the suggestion; we have added the reference here in the revised paper.

14518, 27: Are these exceptions significant? It’s impossible to tell from the small figure.
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We have updated the figures and plot only significant trends as shown above in Fig. 10. If
significant, the slopes are denoted beside the liner fit with * indicating confidence level of
95% and ** for 99%.

14519, 5: Again, a statistical measure of fit would be nice — it looks like the inversion
gets worse relative to the surface stations, but | think that’s just because there are some

non-representative large values that draw the eye.

Thanks for the comments; we have added one table to present some statistics of the fitness
as shown in Table 3 on page 2 of this reply. The text has also been revised accordingly.

14520, 16: Surely chemistry would play as much or more of a role than NMVOC emis-
sions for CH20. There are some recent publications looking at this in the SH (Fisher et al.,
doi:10.5194/acp-15-3217-2015; Zeng et al., doi:10.5194/acpd-15-2615-2015).

The production of CH,0 is not our main focus in this study. We used the OMI CH,0 column
from 2005-2011 to rule out the possibility of large-scale trends in it. At the same time, we
acknowledge that our model does not model the CH,0 column perfectly, and further study
assimilation OMI CH,0 column would gain some significant benefits.

14520-14521: It doesn’t make any sense for a trend over East Asia to “cancel out” a
trend over the Amazon in a latitudinal mean; these would not be in the same latitude

bands. Please rephrase this section.

Thanks for pointing it out. We have rephrased this section as “the latitudinal mean however
does not bear a significant trend and is thus considered not strong enough to influence the
global CO budget.”

14522, 4-7: Are the lines in the figure the means of the 2 OH simulations? Please clarify

in the text and/or figure caption.

We have updated Fig. 8 inserted above on page 3, and in the new version we kept both
values for TransCom and INCA OH. The relative differences are also addressed.

14524, 2-6: Boreal trends are not significant in prior or posterior.

Thanks for pointing this out; we have emphasized this point in the text. “the same sign of
the trends in CO emissions is mostly kept between the prior and the posterior, however, the

trends are not statistically significant.”

14524, 13+: Trends in SEAS are not significant in priori or posterior, and in SCAS they are
only significant in prior. The discussion that follows is interesting, and still potentially
relevant but this needs to be reframed in the context that the optimized simulation
shows virtually no trend (highly insignificant with p=0.5).

As explained in the previous reply, this part has been revised thoroughly. The trends are
significant according to the updated assimilation. Associated Figure 10 has also been

updated (shown in page 4).
14525, 1: ESEU trend is not significant.
For the sum of ESEU emission, the trend is not significant. However, as shown in the trend

distribution, the northern part of ESEU, the positive trends are significant. We have
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addressed this information more carefully in the revised text.

14525, 13+: African trends not really significant. It’s also potentially worth noting in the
following discussion that the posterior seems to overestimate amounts and trends in
most of Africa (Figs. 3 & 5).

Thanks for pointing this out. The trends are only significant at some grids in the Sahel region
and in parts of the South Africa. For the regional sum, the trends in the SHAF is not
significant, but the trends in the NHAF is positive since 2006 onward. We will discuss these
trends more carefully in the paper revision.

14526, 17: “global annual emission” — is this the mean over all years?
It means the global emission in a certain year.

14526, 22: and South America, from Fig. 9!
This part has been added.

Fig. 6: Which shading is model & which is observations?

The shadings are overlaying and the color differentiation is not so clear. Therefore, we have
removed the shading to represent spatial variation in the revised version.

Fig. 7: The change in color scheme for this figure is very confusing. Stick with the same
as before (colors show posterior vs. prior, line style shows different OH).

Thanks. We have updated the Fig.7 as suggested here. Use color to show posterior vs. prior
and line styles to show different OH.

Fig. 7. Regional volume-weighted monthly mean OH concentrations in the prior and
posterior. The results are shown for the 6 big regions in which OH is optimized.

20 NH-NA 20 NH-EU 20 NH-Asia

N’,E‘ 1.5
o
(&}
<
g 1.0
=)
g 0.5
0.0
SH-Tropics SH (30-90 S)
2.0 2.0
Ay
W/ b b R
— e R R
& 15 o A on A I A 1.5 ‘ NN .15
E A A ART AR ANYARVANY AN N A [ \ INI/AY
~
o RV VA VRV VA VIR VARV AV
2 VR AV AV VLV A VPl VPV \ 1 i
2 10 1.0 Yy \l\,\l\‘\, AR/ 1.0 \
s Y N L 720 I S I I
o
g 0.5 0.5 0.5
\
0.0 0.0 0.0
S S L S o S S RN Gt S SR L o
Prior-TRANS — — Prior-INCA
Posterior-TRANS — — Posterior-INCA

21



Technical corrections

14508, 6: change “a wrong” to “an incorrect”
Done.

14508, 8: change “more so challenging that” to “more challenging in that”
Done.

14508, 9: change “about a half” to “about half”
Done.

14515, 23: reference to Sect. 2.3.2 must be wrong because this is Sect. 2.3.2, but I’m not
sure what section this should be.

Thanks for spotting this. We have revised the consistency in the structure of the manuscript.
14520, 10: change Section 4.1 heading from “concentrations” to “columns”
Done.
14524, 6: change “so are” to “as are”
Done.
14525, 17: change “so are” to “as are”
Done.
Table 1: reference for ocean emissions is different here than the one in the text

It is changed, the Belattaf reference was a French master thesis, we removed it as it is not
publicly accessible.

Fig. 4: can you add “n=XX" to each plot to show the number of surface stations aver-
aged in each band?

We have removed this figure, as its content is now summarized in Table 3.

Fig. 5: plots in (a) are too small to see the significance marks; this might work better as 2
columns x 3 rows rather than the way it is now.

We have removed the lower panel to present the distribution of CO.

Fig. 7: “SH (>30S)” is confusing. | suggest “SH (30-90S)”. Fig. 8: add units for the trend
values (on figure or in caption). Fig. 10: change “Fig. S1” to “Fig. A1” in caption.

Done.
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Decadal trends in global CO emissions as seen by MOPITT

Yi Yin', Fréderic Chevallier', Philippe Ciais', Grégoire Broquet!, Audrey Fortems-Cheiney?”,

Isabelle Pison', Marielle Saunois'

! Laboratoire des Sciences du Climat et de I’Environnement, CEA-CNRS-UVSQ, UMRS8212,
Gif-sur-Yvette, France

?Laboratoire Interuniversitaire des Systémes Atmosphériques, CNRS/INSU, UMR7583,
Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil,

France,

Abstract

Negative trends of carbon monoxide (CO) concentrations are observed in the recent decade
by both surface measurements and satellite retrievals over many regions of the globe, but
they are not well explained by current emission inventories. Here, we attribute the observed
CO concentration decline with an atmospheric inversion that simultaneously optimizes the
two main CO sources (surface emissions and atmospheric hydrocarbon oxidations) and the
main CO sink (atmospheric hydroxyl radical OH oxidation) by assimilating observations of
CO and of chemically related tracers. Satellite CO column retrievals from Measurements of
Pollution in the Troposphere (MOPITT), version 6, and surface observations of methane and
methyl-chloroform mole fractions are assimilated jointly for the period covering 2002-2011.
Compared to the model simulation prescribed with prior emission inventories, frends in the

optimized CO concentrations show better agreement with that of independent surface in-situ
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measurements, At the global scale, the atmospheric inversion primarily interprets the CO
concentration decline as a decrease in the CO emissions (-2.3% yr'), more than twice the
negative trend estimated by the prior emission inventories (-1.0% vyr'). The spatial
distribution of the inferred decrease of CO emissions indicates contributions from West

Europe (-4.0% yr'"), United States (-4.6% yr') and East Asia (-1.2% yr') where

anthropogenic fuel combustion generally dominates the overall CO emissions, and also from

Australia (-5.3% yr'"), the Indo-China Peninsula (-5.6% yr"), Indonesia (-6.7% yr"), and

South America (-3% yr') where CO emissions are mostly due to biomass burning, Jn
contradiction with the bottom-up inventories that report an increase of 2% yr' over China

during the study period, a significant emission decrease of 1.1% yr' is inferred by the

inversion. A large decrease in CO emission factors due to technology improvements would

outweigh the increase of carbon fuel combustions and may explain this decrease. Independent
satellite formaldehyde (CH,O) column retrievals confirm the absence of large-scale trends in

the atmospheric source of CO. However, the CH,O retrievals are not assimilated and OH

concentrations are optimized at very large scale in this study. Future studies could investigate

potential sub-regional trends in the atmospheric sources of CO or in the OH concentrations,

and thus further refine the estimation of regional CO emissions and associated trends.
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1 Introduction

Carbon monoxide (CO) is an air pollutant that leads to the formation of tropospheric ozone
(O3) and carbon dioxide (CO,) (Jacob, 1999). It is the major sink of the tropospheric oxidant
hydroxyl radical (OH), and hence influences concentrations of methane (CH4) and non-
methane volatile organic compounds (NMVOCs) (Logan et al., 1981). It contributes to an
indirect positive radiative forcing of 0.23+0.07 Wm > at the global scale (Stocker et al.,
2013). Atmospheric CO has two main sources: (i) direct surface CO emissions from fuel
combustion and biomass burning, estimated to be ~500-600 TgCO yr' and ~300-600 TgCO
yr !, respectively, by emission inventories (Granier ef al., 2011 and references herein), and
(i1) secondary chemical oxidation of hydrocarbons in the troposphere, estimated to be a
source of ~1200-1650 TgCO yr' with considerable differences among studies (Holloway et
al., 2000; Pétron ef al., 2004; Shindell ef al., 2006; Duncan and Logan, 2008). The sink of
CO is mainly through oxidation by OH (Logan et al., 1981), which defines an average
lifetime of 2 months for CO in the atmosphere.

Surface in-situ measurements in Europe (Zellweger et al., 2009; Angelbratt et al., 2011), over
the USA (Novelli et al., 2003; EPA, 2011), in some large cities in China (Li and Liu, 2011),
and in many other places (Yoon and Pozzer, 2014) indicate that CO concentrations have been
decreasing for more than ten years. Negative trends have also been observed by various
satellite sensors (MOPITT, Tropospheric Emission Spectrometer - TES, and Atmospheric
Infrared Sounder - AIRS) over most of the world (Warner et al., 2013; Worden et al., 2013).
In particular, strong CO concentration decreases are seen from these satellite retrievals over
East China and India (Worden et al., 2013), where bottom-up inventories report increasing

emissions (Granier et al., 2011; Kurokawa et al., 2013).
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Atmospheric chemistry-transport models (ACTMs) prescribed with emission inventories are
commonly used to analyze the role of emissions on the atmospheric concentration. Most of
these simulations tend to underestimate CO concentrations in the mid to high latitudes of the
northern hemisphere (NH), whereas they overestimate them over emission hotspots (Shindell
et al., 2006; Duncan et al., 2007; Naik et al., 2013; Stein et al., 2014; Yoon and Pozzer,
2014). This bias reveals an incorrect balance between CO sources, at the surface and in the
atmosphere, and CO sinks (Naik et al., 2013). Understanding this model-data misfit is

challenging because surface emissions and chemical production each account for about half

of the total CO sources, and because the sink term removes an amount of CO equivalent to all
the sources within a few weeks. Changes in each source and sink term could have, contributed
to the observed CO concentration decrease, even though only CO emission trends are usually
discussed (Khalil and Rasmussen, 1988; Novelli ef a/., 2003; Duncan and Logan, 2008).

In principle, the attribution of the mean balance between sources and sinks and of their trends
can be made with Bayesian inversion systems that infer the CO budget terms based on (i)
measurements of CO and species related to the CO sources and sinks, (ii) some prior
information about the budget terms and spatial distributions, (iii) a CTM model to link
emissions and chemistry to concentrations, and (iv) a description of the uncertainty in each
piece of information, Various inversion studies have estimated regional or global CO budgets
using CO surface observations (Bergamaschi et al., 2000; Pétron, 2002; Butler et al., 2005)
or satellites retrievals (Arellano ef al., 2004; Pétron et al., 2004; Stavrakou and Miiller, 2006;
Chevallier et al., 2009; Fortems-Cheiney et al., 2009, 2011, 2012; Kopacz et al., 2010;
Hooghiemstra et al., 2012a; Jiang et al., 2013). Here, we use the inversion system Python
Variational — Simplified Atmospheric Chemistry (PYVAR-SACS) of Pison et al. (2009),
Chevallier et al. (2009) and Fortems-Cheiney et al. (2009, 2011, 2012) to infer the most

likely origin of the observed CO concentration decrease over the past decade (2002-2011).
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In contrast to most CO inversion systems cited above, which focused on a single species,
PYVAR-SACS simultaneously assimilates observations of the main species in the chemical
oxidation chain of CH4-CH,O-CO and methyl chloroform (MCF), a species that only reacts
with OH and therefore informs about its concentration, The PYVAR-SACS system optimizes
the interconnected sources and sinks of the four species in a statistically and physically
consistent way at the model resolution of 3.75°x2.5° (longitude, latitude) on an 8-day basis,
therefore being suitable for addressing the above-described attribution problem of the CO
variations within the limit of the observation information content.

The primary data source about CO in this study is MOPITT, a multi-channel thermal infrared
(TIR) and near infrared (NIR) instrument on board the EOS-Terra satellite (Deeter, 2003).
MOPITT provides the longest consistent time series of satellite CO retrievals to date. The
algorithm has undergone continuous improvements and the archive has been reprocessed

several times (Deeter et al., 2013). Most of the above-cited satellite-based inversion studies

used version 4 or earlier versions of the MOPITT CO retrievals, in which a noticeable
instrumental drift was reported (Deeter et al., 2010). In version 5, this drift has been corrected
together with other improvements (Deeter et al., 2013; Worden et al., 2013). Here, we use the
further improved version 6, that has no noticeable bias in the trends of the CO total column
(Deeter et al., 2014), to attribute the CO concentration decline by assimilation in our
atmospheric inversion system.

The structure of the paper is as follows. Section 2 describes the inversion system and the
datasets. Section 3 presents the inversion results on CO concentrations and associated trends.
We show a brief evaluation of the inversion ability to fit the assimilated data and we cross
evaluate the optimized surface CO concentrations against independent station measurements.
Then, we compare the CO concentration trend in the MOPITT retrievals, in the surface

measurements, and in corresponding modelling results before and after the inversion. Section
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4 shows the trend analysis of the prior and the posterior simulated CH,O and OH
concentrations. CH,O concentrations are representative of the chemical CO sources and we
evaluate the model values against retrievals of its dry air column (Xcu20) made from
observations of Ozone Monitoring Instrument (OMI) aboard EOS Aura. OH regulates CO
sinks, but is an extremely short-lived compound whose concentrations are difficult to
measure (Mao et al., 2012). Lacking direct global observation data, we discuss its
uncertainties with two contrasting prior OH fields. Section 5 presents the inverted CO budget,
including atmospheric burden, emission, chemical production and chemical loss. Section 6
summarizes this work, discusses the sources of uncertainties and provides some perspectives

for future works.

2 Method and data

2.1 Inversion system

The PYVAR Bayesian inversion system, initially introduced by Chevallier et al. (2005), aims
at adjusting a series of target variables (jointly called x), so that they become consistent with
both the atmospheric observations (y) and a priori state (x") given their respective
uncertainties, represented by error covariance matrices R and B. By iteratively minimizing

the following cost function J, PYVAR finds the optimal solution for x in a statistical sense:
1 byTR-1 b 1 TR-1
JG) =5 &x-x)' B (x—x°) + 5 (H®) —y) R HEX —y)

where H is the combination of a CTM and of an interpolation operator that includes the

combination with the retrieval prior CO profiles and averaging kernels (AKs) for MOPITT.
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Our CTM is the general circulation model of Laboratoire de Météorologie Dynamique
(LMDz) version 4 (Hourdin et al., 2006), nudged towards winds analysed by the European
Centre for Medium-Range Weather Forecasts, run in an off-line mode with precomputed
atmospheric mass fluxes, and coupled with the chemistry module SACS (Pison et al., 2009).
SACS is a simplification of the full chemistry model Interaction with Chemistry and Aerosols
(INCA, Hauglustaine, 2004).

The chemical chain is shown in Fig. 1. It includes surface emissions of CO, CH4, CH,O and
MCF. The 3D contribution of NMVOCs oxidation to CH>O production has been pre-
calculated by the full chemistry transport model LMDz-INCA (Folberth et al., 2006). OH
links all the species together. Reaction kinetic and photolysis rates, as well as fields of
species that are not represented as tracers in PYVAR-SACS (e.g. 01D, O,, Cl) are based on
the LMDz-INCA simulation. The initial states are produced by LMDz-INCA. The CTM in
PYVAR-SACS has a time step of 15 minutes for the dynamics (advection) and of 30 minutes
for the physics (convection, boundary layer turbulence) and chemistry, a horizontal resolution
of 3.75°x2.5° (longitude, latitude), and a vertical resolution of 19 eta-pressure levels from the
surface to the top of the atmosphere.

The state vector x contains the following variables as shown in the grey boxes in Fig. 1: (1)
grid-point scaling factors for the initial mixing ratios of the four trace gas species (CO, CHa,
CH,0, MCF); (2) grid-point 8-day mean surface emissions of CO, CHy4, and MCF; (3) grid-
point 8-day scaling factors to adjust the sum of CH-,O surface emissions and CH,O
production from NMVOC oxidation; (4) 8-day scaling factors to adjust the column-mean OH
concentrations over 6 big boxes of the atmosphere over the globe: 3 latitudinal boxes (90°S-
30°S, 30°S-0°, 0°-30°N) and 3 longitudinal boxes north of 30°N (North America:180°W-
45°W, Europe; 45°W-60°E, Asia: 60°E-180°E). The longitudinal division of the band north

of 30°N is an improvement compared to previous PYVAR studies with 4 latitudinal bands in
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total to optimize OH, As there are available surface stations with long-term MCF
observations within each of the sub-regions, thus allows adjusting separately continental

differences of OH.

2.2 A priori information

Previous configurations of PYVAR-SACS have been described by Chevallier ef al. (2009)

and Fortems-Cheiney ef al. (2011). We have improved the configuration as described below.

2.2.1 Prior sources and sinks

For prior anthropogenic fossil fuel and biofuel CO emissions, we use the monthly MACCity
emission inventory of Lamarque ef al. (2010) that arguably underestimates emissions less
than other global inventories (Granier ef al., 2011; Stein ef al. 2014). For biomass burning,
we updated the version of Global Fire Emissions (GFED) from version 2 (van der Werf ef al.,
2006) to version 3.1 (Van der Werf et al., 2010). The latter has various improvements
including the definition of different fire types, with specific consideration for deforestation
and peatland fires. We also increased the temporal resolution of biomass burning emissions
from monthly to weekly (aggregated from GFEDv3.1 daily emissions, Mu et al., 2011).
Additionally, we consider in this study biochemical CO emissions from oceans, that were
neglected before, based on an ocean biogeochemical model simulation (Aumont and Bopp,
2006). These monthly ocean CO fluxes add up to a global annual sum of 54 TgCO yr’
without inter-annual variability. We still consider neither biogenic CO emissions over land,
nor surface CO deposition, because these two terms are relatively small and are of a similar
order of magnitude (Duncan ef al., 2007). The prior CO emissions are summarised in Table 1
and the distribution of the mean annual prior CO surface emissions is shown in Fig. 2a. The

relative contribution of biomass burning is shown in Fig. 2b.
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The prior CH4 and MCF emissions have also been updated compared to Fortems-Cheiney et
al. (2012) and are similar to that of Cressot et al., (2014). 3D HCHO production prior fields
have been pre-calculated by LMDz-INCA (Folberth et al., 2006), with prescribed NMVOC
emission datasets detailed in Fortems-Cheiney et al. (2012). The prior distribution of mean
annual CO chemical sources in the troposphere from the oxidation of both CH, and
NMVOCs are shown vertically integrated in Fig. 2c.

Previous PYVAR-SACS studies used prior OH information from a multi-year simulation by
LMDz-INCA (Hauglustaine, 2004). Here, we use another field that was prepared for the
international TransCom-CH4 experiment of Patra et al., (2011). The annual mean horizontal
and vertical distribution of OH concentrations for both OH fields and their differences are
shown in Fig. 3. Compared to the INCA-OH, the TransCom OH has a lower OH
concentration in the NH, and a lower concentration over the Tropics and SH. Thus the

TransCom-OH has a north-south inter-hemisphere ratio around, 1, whereas the INCA-OH has

a ratio of 1.2. There are also vertical differences between these two OH-fields: in general,

TransCom-OH has higher OH concentrations, in the mid-troposphere over the Tropics and, in

the top layers above 100 hPa, whereas INCA-OH has higher OH concentrations in the lower

troposphere below 700 hPa. The prior distribution of the CO sinks simulated with TransCom-

OH is shown vertically integrated in Fig. 2d.

2.2.2  Prior error statistics

The prior flux uncertainty, defined by the standard deviation (SD) of each grid-point 8-day
flux, is described below. For CO emission uncertainties, we define the SD for each year
based on the maximum value of the emission time series during the corresponding year for
each grid point (noted as finax), in order to account for the uncertainty of the fire timing. Then,

to account for (i) the possibility of undetected small fires that can contribute to as much as
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35% of the global biomass burning carbon emissions (Randerson et al., 2012), and (ii)
potentially higher CO emission factors during small fires that were not specifically
considered in current fire emission inventories (van Leeuwen et al., 2013), we define a fire

emission threshold of 1.0-10™"° kg CO m™ s°'. If the prior emission is less than the threshold

(no fire a priori, but there could be one in reality), the SD is set as 100% of fi,ax; Otherwise
(fire a priori, but possibly of a too small magnitude), the SD is set as the maximum value

between 1.0-10° kg CO m? s and 50% of fyay. In such a way, we allow the system to relax

the constraint on the prior emission to account for undetected small emissions, but we keep
the global uncertainty (~180 TgCO yr') consistent with current bottom-up inventories
(Granier et al., 2011; Van der Werf et al., 2010). For simplicity, this error setting also serves
for anthropogenic fuel consumption.

The prior CH4 emission uncertainty is defined as 100% of the maximum value of the prior
emissions in the grid cell and its eight neighbours in the corresponding month. The MCF
prior emission uncertainty is set at £10% of the flux, as its emissions are supposed to be well
known. The uncertainty of CH,O production is assumed to be 100% of its concurrent prior
CH,O production. The uncertainties of initial concentration scaling factors are set at 10% for
the four species (CO, CH4, CH,0, MCF). Errors on OH 8-day scaling factors are set at £10%.
The spatial error correlations of the a priori are assigned to all variables following Chevallier
et al. (2007), defined by an e-folding length of 500 km over the land and 1000 km over the
ocean. Temporal error correlations are defined by an e-folding length of 8 weeks for MCF
and 2 weeks for the other species including OH. No inter-species flux error correlations are

considered.

2.3 Observations for assimilation
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2.3.1 Datasets

We assimilate three data streams: (i) MOPITTv6 satellite CO total column retrievals (noted
as Xco hereafter) and surface in-situ measurements of (ii) CHy4 and (iii) MCF.

MOPITT retrievals are available since March 2000, but the instrument experienced a cooler
failure from May 2001 to August 2001, which artificially changed the retrieval mean level
(Deeter et al., 2010). An instrument anomaly also led to a 2-month lack of data in 2009 from
the end of July until September, without any significant change in the retrieval mean level.
For the sake of consistency, given our focus on trends, we select the measurements for the
decade from 2002 to 2011, during which both the MOPITT retrievals and the prior emission
inventories are homogeneous (GFEDv3.1 has not been publicly updated for the years after
2011).

We use the level 2 “multispectral” near and thermal infrared (NIR/TIR) CO retrievals of
MOPITTv6 that offer the best description of CO in the lower troposphere among the
MOPITT products (Deeter et al., 2014). The MOPITT vertical profiles (prior and retrieved
CO profiles and associated AKs) are defined on ten vertical pressure levels. Given the limited
vertical resolution of the retrievals and the focus on surface emissions, it has been common
practice in previous inversion studies starting from Pétron et al. (2004) to assimilate the 700-
hPa pressure level retrievals only, as a good compromise between proximity to the surface
and limited noise. However, Deeter ef al. (2014) noted that the retrievals at some individual
vertical levels still suffered from small bias drifts while such drifts were not seen in the
retrieved integrated columns. Furthermore, the interpretation of vertically-integrated columns
in the inversion is less hampered by flaws in CTM vertical mixing and vertical sink
distribution than for level retrievals (Rayner and O’Brien, 2001). For these two reasons, we

assimilate the column retrievals rather than level retrievals. Night-time observations,
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observations with solar zenith angle larger than 70 degrees, with latitudes within 25 degrees
from the poles, or with surface pressures less than 900 hPa are excluded, since they may be of
lower quality or more difficult to model (Fortems-Cheiney et al., 2011). We average the
22x22 km? retrievals at the 3.75°x2.5° model resolution within 30-minute time steps. The
model Xco retrievals are calculated in a consistent way as in the MOPITT X retrievals with
their original prior CO profiles and AKs averaged for each model grid.

Surface measurements of CH4 and MCF from various networks are assimilated together with
MOPITT Xco. The datasets are downloaded from the World Data Centre for Greenhouse
Gases (WDCGG, http://ds.data.jma.go.jp/gmd/wdcgg/). Stations that recorded more than 6
years of data without gaps larger than 1 year are included. The list of stations is given in
Tables S1 and S2. For the surface measurements, a data filtering process is conducted in
order to remove outliers that the global model may not be able to capture. We exclude (i)
observations exceeding 3¢ of the de-trended and de-seasonalized daily time series and (ii)
observations whose misfit against the prior simulation exceeds 3¢ of the de-trended and de-

seasonalized misfit between observations and forward modelling values.

2.3.2 Observation error statistics

The observation error covariance matrix R is diagonal in order to simplify calculations.
Observation errors are combinations of measurement errors (quantified by the data
providers), representativeness errors and CTM errors. For Xco, as we have averaged a large
amount of observations in each grid-box (see Section 2.3.1), the representativeness error is
effectively much reduced and is not considered specifically. The CTM error is set at 30%
(SD) of the modelled values for Xco. For CHs and MCF, synoptic variability (estimated from
the residues of de-trended and de-seasonalized data) is used as a proxy for the CTM and

representativeness errors, which largely dominate the observation error. The global mean
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measurement error for Xco is around 6.4+2.9 ppb, which is approximately 8.2+1.9 % of
corresponding Xco observations. The measurement errors are set as 3 ppb for CH4 and 1.2

ppt for MCEF if not explicitly provided by the surface observation datasets.

2.4 Observations for cross evaluation

We use two datasets for independent evaluation of the inversion results.

The first one is made of CO surface observations archived at the WDCGG. The same site
selection and data filtering process as for CH4 and MCF surface measurements are applied
(see the list of stations in Table S3).

The second evaluation dataset gathers CH,O total columns retrieved from OMI by the
Smithsonian Astrophysical Observatory (SAO). We use version 3, release 2, of this product
(Gonzalez Abad et al., 2015). Since this data is not available before mid-2004, it does not
cover our study period completely: for the sake of consistency, we do not assimilate it (in
contrast to Fortems-Cheiney et al. 2012) and we keep it for evaluation. We select
observations that are tagged as “good” by the provider’s quality flag, which have a solar
zenith angle less than 70 degrees, a cloud cover below 20%, and are not affected by the “row

anomaly”.

2.5 Trend analysis

The long-term trend in this study is estimated by least-square curve fitting of the following
function, which includes a constant, a linear component, and seasonal variations represented

by four harmonics:

f(t) = ap +a;t+ ) cyfsin (2nmt + @y,)]

4
=1

n

If not particularly specified, all the trends mentioned in this paper refer to a;.
13
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3 CO concentrations and associated trends

3.1 Evaluation of the inversion framework’s ability to fit the data

Fig. 4a shows the time series of global mean mole fraction of the MOPITT X, retrievals

(black). the prior (blue) and the posterior (red) Xco retrievals (calculated from model

simulations with the MOPITT prior profiles and averaging kernels), Compared to the
MOPITT Xco, the prior Xco simulation is on average 15% lower when modelled with
TransCom-OH and 17% lower when modelled with INCA-OH. The global mean posterior

Xco fits the observation jrrespective of the OH field used.

The spatial distribution of the multiyear mean Xco observed by MOPITT (2002-2011) shows

a latitudinal gradient from north to south, with some high values over East Asia, Africa and

central South America (Fig. 4b). The regional mean bias of X in the prior and the posterior

modelling compared to the MOPITT data are summarized in Table 2. The prior simulation is

generally lower than the observations except in parts of Indonesia and India (Fig. 4¢). This
negative bias agrees with previous studies (Arellano et al., 2004; Fortems-Cheiney et al.,
2011; Hooghiemstra et al., 2012a, Naik et al., 2013; Shindell et al., 2006), and thus calls
attention to understanding and correcting it appropriately (Stein et al., 2014). The optimized

CO concentrations fit the measurements quite well (Fig. 4d), illustrating the inversion’s

ability to fit the data.
Similarly for CH4 and MCF, Table 3 summarizes the mean biases and residual root mean

squares (RMS) of the prior and posterior modelling values compared to the station

observations that are assimilated in the system over four latitudinal bands. The inversion fits
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the assimilated data fairly well, with a considerable decrease in both the mean biases and the

RMS (Table 3).,

The mean biases of the prior and posterior simulations compared to independent surface in-

situ CO measurements, are also summarized for each region in [Table, 2, For the oceanic

background stations (over 27 model grid cells), the magnitude of the model-data misfits

decreased considerably after inversion. Over land, the changes in model-data misfit after

inversion are more heterogeneous. The prior bias is in general negative, whereas the sign

changed from negative to positive for the posterior. The magnitude of the posterior bias (also

the RMS, not shown in the table) decreased significantly in West Europe (WSEU), South

East Asia (SEAS) and North Hemisphere Africa (NHAF), and they are of similar magnitudes

in Boreal North America (BONA) and the USA. However, the mean bias and RMSs

increased in South Hemisphere Africa (SHAF) and Australia (AUST).

This seemingly deterioration of the modelled surface concentrations could be explained by

several reasons: First, surface station measurements and model grids (2.5x3.75 degree) have

different spatial representativeness. In fact, at most background oceanic stations, the model-

data misfit suggests an overall improvement after inversion. Second,, the vertical sensitivities

are different between satellite column retrievals and surface observations, (Hooghiemstra et

al., 2012). Over regions where fire emission injection heights are sometimes above the

boundary layer (Cammas et al., 2009) or where chemical CO sources in the mid-troposphere

contributes significantly to the CO column (Fisher et al, 2015), the surface CO

concentrations are less influenced by these sources, but the model may not capture this

vertical distribution of sources. [Third, there might be a model bias in modelling, the vertical

CO profiles in the CTM (Jiang ef al., 2013), for instance, when the vertical mixing in the

model is too conservative, it could lead to a positive bias at the surface, because the sources

are adjusted to fit the satellite data. Nevertheless, such discrepancies between Xco column
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and surface concentration do not seem to bear a significant trend. For instance, significant

trends in the prior misfits were found in the NH (0.67+0.24 ppb yr'"), NH-Tropics (0.77+0.16, »

ppb yr'l) and SH-Tropics (-0.42+0.14 ppb yr™), and they are corrected in the posterior misfits

to non-significant after assimilation,,

3.2 Distribution of trends in CO concentrations

The spatial distributions of trends in the, MOPITT X and in the prior and the posterior Xco,

over the period from 2002 to 2011 are shown successively in Fig. 5. Regional mean trends in

both the Xco and surface CO concentrations are summarized in Table 2.,
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MOPITT Xco retrievals show negative trends in most regions of the world except for the
Sahel region in Africa and some areas of central South America and India (Fig. 5a). n the

MOPITT retrievals, fhe negative trends are particularly large over Indonesia (~1.20 ppbyr™),

South East Asia (-1.23 ppb yr'l) and the Northern Pacific and Atlantic Ocean (-1.15 ppb_yr'l).

The global average trend in the MOPITT Xco is -0.67 ppb yr’]Laccounting for a decrease of ||

around 0.91% yr'over the globe, and the trends in the prior and posterior Xco retrievals are -

0.12 ppb yr' (-0.28% yr') and -0.70 ppb yr' (-0.93% yr') respectively. The spatial

correlations between the trends of the MOPITT Xco and the prior/posterior Xco are 0.55 and

0.81 respectively, showing considerable improvements after inversion.

In general, negative trends in the prior Xco are underestimated (Fig. 5b and Table 2), and

positive trends are simulated over Southeast Asia (19%), South Hemisphere South America

(41%), South Africa (27%), Australia (28%), with percentages of model grid cells that have

significant positive trends noted in the brackets. In addition, 22% of the oceanic grid cells are

modelled with positive trends in the prior simulation, but none is noticed in the MOPITT
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column retrievals (Deeter et al., 2014). Trends in the posterior Xco generally agree with the

MOPITT Xco and the positive trends in the prior Xco are corrected (Fig. 5¢ and Table 2).

Surface in-situ measurements, also show a general negative trend in CO concentration (Table

2). The negative trends from in-situ CO stations have, the largest magnitude in the NH mid-
latitudes over West Europe (-2.7:£1.7 ppb yr') and the USA (-1.6£0.9 ppb yr'). Smaller
trends are found in the SH in-situ sites (-0.32£0.14 ppb yr''). The trends over Asia indicate
large spatial heterogeneity (-1.6+1.3 ppb yr'') and the trends over the Tropics show a small
but insignificant increase (0.3£1.6 ppb yr'"), but these regions are represented by a limited
number of stations,

Compared to these surface in-situ measurements, the prior simulation generally tends to

underestimate the magnitude of the negative ones, and the posterior slightly overestimate

them. The global mean trends are -1.3 ppb yr! (-1.1% vyr'}) in the observation, -0.87 ppb yr

(-0.75% yr'") in the prior simulations, and -1.9 ppb yr' (-1.2% yr") in the posterior

simulations. However, it is noted that the global mean trends are only represented by 72

stations that are not evenly distributed over the globe. Positive trends in the prior simulated

surface CO are Jess visible compared to the total column as shown in Fig 5b and Table 2. It

could be explained by the respective vertical weighting of these two observation types, but
the difference may also be enhanced by changes in the MOPITT AKs if the retrieval prior is

biased (Yoon et al., 2013). However, this comparison is limited by the representativeness of a

few sites,

4 Concentrations of CH,0O and OH

41 CH,O gcolumns
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The mean time series of CH,O total columns for four latitudinal zones are shown in Fig. 6.
Xcmo retrievals were not assimilated (contrary to the CHs and MCF surface measurements
that affect the sources and sinks of CH,O in the inversion), and the inversion actually does
not change Xcmo much. This suggests that the differences between simulated and satellite-
retrieved Xcmzo are mainly caused by the prior NMVOC emissions used in the full chemistry
run of LMDz-INCA. The latitudinal mean values of prior/posterior modelled Xcmo agree
fairly well with the OMI retrievals without any obvious bias, but the seasonal cycle is
different especially in the Northern mid-high latitudes both in phase and in amplitude (Fig.
6a). The OMI Xcmuao retrievals, the prior and the posterior simulations all agree about the
absence of a significant trend in the latitudinal average of Xcm2o for the period from 2005 to
2011, which is consistent with the hypothesis that the equilibrium between the oxidation of
hydrocarbons into CH,O and the sink of CH,O into CO has not significantly changed, at least
at continental scales. We note that the OMI Xcmo retrievals describe some trends at smaller
scales, like positive trends of 3+0.8 % yr' over East Asia (De Smedt ef al., 2010) and
negative trends of -1.9£0.6 % yr"' over the Amazon, but they are not significant for the mean
values of large latitudinal bands, and are thus considered not large enough to influence the

global CO budget.

4.2 OH concentrations

Fig. 7 shows the latitudinal average of the prior (blue) and posterior, (yed) OH concentrations
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during summer, but lower OH concentrations in the SH Tropics all year long and slightly

lower concentrations in the SH mid-high latitudes (South of 30S) during summer peaks.

In general, larger corrections are applied by the inversion to INCA-OH than to TransCom-
OH. The inversion system adjusts the INCA-OH concentrations towards TransCom-OH by
downscaling the OH concentrations in the NH during summers, especially over Asia, where
INCA-OH is considerably higher than the TransCom-OH (Fig. 3). A small reduction of the
TransCom-OH concentrations is also seen in the SH.

The two inversions do not produce significant trends in OH during the study period for most
regions, except for a very small positive trend in the SH Tropics (+0.2% yr' with TransCom-
OH and +0.7% yr"' with INCA-OH) and a small negative trend in the SH mid-high latitudes
(-0.4% yr'l in TransCom-OH and -0.3% yr'l in INCA-OH). Such small and insignificant
trends are considered to be of minor importance for the CO trends. The OH scaling is

addressed more in details in section 5.1 when discussing CO sinks.

5 Optimized sources and sinks of CO

After having documented the prior and the posterior misfits with MOPITTv6 and with cross
validation data for the latitudinal mean values and for the trends, which lends support to the
consistency of the inversion results with these data-streams, we now turn to the implications

for CO sources and sinks.

5.1 Inverted CO budget

The global annual CO atmospheric burden, surface emissions, chemical production, and
chemical loss of the prior and the posteriors with the two OH experiments from 2002 to 2011

are shown in Fig. 8. Averaging over the 10 years, a considerable increase of the mean CO
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atmospheric burden (+23%, in dark green) is seen in the posterior compared to the prior
simulation. Accordingly, increases of CO emissions (+,50%, in red) and chemical sinks with
OH (+23%, in purple) are produced in the posterior, whereas only a very small change is

noticed for the CO chemical sources (+,1%, in blue). The magnitude of the increment in the

global CO emissions is larger compared to previous studies that assimilate the 700 hPa

retrieval levels of MOPITT using a similar inversion set up (Fortems-Cheiney et al., 2011,

2012). The cross evaluation against surface station measurements also shows a considerable

positive bias in the posterior CO concentration (section 3.1), which implies a potential bias in

the modelling of vertical CO profiles. Nevertheless, for our study here focusing on trends,

such systematic model error do not seem to harm the robustness of the trends as shown in

section 3 and 4. The chemical sink of CO is a function of both CO and OH. Given the results
for OH adjustments shown in section 4.2 (generally small reduction from the prior OH), the
increase of the CO sink in the posterior is thus mainly due to the increase of CO
concentrations after assimilation.

The inversion produces a negative trend of around 10% per decade jn the global atmospheric

burden of CO (-5.1£0.9 TeCO yr! with TransCom-OH and -4.6+0.8 TeCO vyr! with INCA-

OH), which is twice the negative trend of CO atmospheric burden produced by the prior
emissions (-1.60.6 TgCO yr', i.e. a decrease of 5% per decade in the simulated CO burden).,

For CO sources, the trend of prior CO emissions is of -11.1x4,4 TgCO yr' (equivalent to a

decrease of 10% per decade). This is mostly contributed by the negative trend in biomass
burning emissions in GFEDv3.1 (-10.6+3.7 TgCO yr') and by a very small decrease in
anthropogenic emissions in MACCity (-0.68+0.4 TgCO yr'') from 2002 to 2011, Compared

to the prior emissions, a two-fold steeper negative trend in terms of percentages is found in

the posterior CO emissions, 24% per decade with TransCom-OH (-40+£7,2, TgCO yr' ) and |

22% per decade with INCA-OH (-37+7.1 TgCO yr'). A small positive trend (2.8+7.1 TgCO
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yr', equivalent to an increase of 2% per decade) is produced in, the prior CO chemical

production, mostly contributed by the increase of methane oxidation. ,The posterior CO

chemical production, shows a small negative trend. Yet, as CH,O concentrations are not

constrained by observations, this small trend may result from the system’s inability to
differentiate the two CO sources between surface emissions and chemical oxidations.

For the CO sink, a larger trend in the posterior (-46.3£8.3 TgCO yr', 16% per decade with

TransCom-OH and (-39.3£8.0 TgCO yr', 13% per decade with INCA-OH) is found, while
there is no significant trend in the prior chemical sink, This negative trend in the posterior is
mostly due to the decrease of CO concentrations in the atmosphere that change the amount of

CO oxidized by OH, and only very small trends jn the OH concentrations are found by the

inversion. Such small trends are considered of very small effect on the CO trends. The OH
concentrations are optimized for 6 big regions over the globe and the MCF concentrations are
monitored at background sites only, which allows a coarse zonal estimate of OH but leaves
spatially heterogeneous land areas unconstrained, e.g. polluted areas near cities
(Hofzumahaus et al., 2009), forests with high NMVOC emissions (Lelieveld et al., 2008) or
biomass burning plumes (Folkins ef al., 1997; Rohrer et al., 2014). Therefore, sub-regional
trends in OH, if they exist, are not necessarily captured in this study. In addition, with the
exponential decrease of MCF concentrations in recent years (only a few parts per trillion, ppt,
at the current level), the constraining strength of MCF on OH in the inversion system may not
be even from 2002 to 2011, even though the same sites and a similar number of observations
were assimilated. Nevertheless, the zonal trend of OH should still be constrained throughout
most of the period and previous studies suggest that the inter-annual change of global OH

concentration is within 5% (Montzka ef al., 2011).

5.2 Regional distribution of trends in CO emissions
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The distributions of trends in CO emissions after optimization are very consistent using either

TransCom-OH or INCA-OH (Fig. 9); therefore, only frends of TransCom-OH experiments

are discussed here. The relative contribution of biomass burning to the total land surface
emissions estimated in,the prior emission is shown in Fig. 2b. The time series of the prior and
the two posterior annual CO emissions using two different OH fields are shown for each sub-

region in Fig. 10. The division in sub-regions is illustrated in Fig. Al. As shown in Fig. 10,

the choice of prior OH concentrations could potentially have a large impact on the regional
CO emission estimates; nevertheless, the inverted emission trends are quite robust and we do
not discuss further in this paper the regional emission increments and the sensitivities of
inverted fluxes to prior OH or chemical CO productions.

For the boreal regions where CO emissions are mainly due to biomass burning (Boreal Asia -
BOAS and Boreal North America - BONA), the same sign of the trends in CO emissions is
mostly kept between the prior and the posterior, but the amplitude of the trends are updated
into larger values, as, are the emission amounts. [t should be noted that MOPITT CO
retrievals over high latitudes beyound 65° are not included in the assimilation.

For the NH mid-latitudes where CO emissions are mainly due to fossil fuel and biofuel
burning emissions (USA, West Europe - WSEU, East Europe - ESEU, Middle East - MIDE,
South Central Asia - SCAS, South East Asia - SEAS), consistencies between the trends in the
prior and the posterior CO emissions are found in the developed countries (Fig. 9). For
example in the USA and WSEU regions, decreasing trends produced by the emission
inventories generally agree with the atmospheric signals (Lamarque et al., 2010). On the
contrary, the inversion changes the sign of the CO trend over SEAS (including China) and
SCAS (including India), where the prior emissions suggested a significant jncrease.
Consistent with our posterior emissions, a gradual decrease of CO emissions in China after

the year 2005 was actually deduced from CH4/CO; and CO/CO, correlations observed off the
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coast of East Asia from 1999-2010 (Tohjima et al., 2014). A decrease of the emission factors
of other co-emitted species of CO during fossil fuel or biofuel combustion has also been
noted: for instance, a decrease of black carbon emission factors in China and India was
reported by Wang et al. (2014), and a decrease in the relative ratio of NOx to CO, from 2003
to 2011 was observed from satellite retrievals over East Asia (Reuter ef al., 2014). These
studies and our results suggest that combustion technology improvements in East Asia
resulted in emission factor reduction to an extent that outweighs the impact of increasing
fossil fuel burning. In this scenario, emission inventories would well report the latter but not
the former that is more difficult to quantify. In addition, trends of fossil fuel emissions are
updated (Lamarque et al., 2010) but not trends of biofuel burning, especially for traditional
biofuels (Yevich and Logan, 2003). A small difference in the frend of CO emissions in East

Europe (ESEU) is also noticed (not significant though), an emission peak, in the year 2010 js

inferred from the inversion.

For the tropical and sub-tropical regions, where CO emissions are mainly attributed to,
biomass burning, the inversion does not change the sign of trends over Indonesia (INDO).
The positive trends of the prior emissions over the Indo-China Peninsula (2% yr') are
updated into negative ones (-5.6% yr') by the inversion. Negative trends over Australia
except for the central area (on average -5.3% yr’'), and over SHSA (-3% yr. but not
significant for the regional mean) are largely enhanced compared to the prior trends (Fig. 9).
The spatial distribution of this negative trend is consistent with the new version of GFEDv4
burned area (not used in this study) (Giglio et al., 2013), which accounts for small fires that
were not explicitly included in GFEDv3.1 used here as the prior. In Australia, the decrease of
CO emissions might be explained by decreased fire emissions (Poulter et al., 2014). The

decrease in SHSA could be attributed to a decrease of deforestation fires in recent years,
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especially after 2005 (Meyfroidt and Lambin, 2011), although there are uncertainties in the
overall deforestation rates (Kim et al., 2015).

The change in trends between the prior and the posterior CO emissions is jnore
heterogeneous over Africa (Northern Hemisphere Africa - NHAF and Southern Hemisphere
Africa - SHAF). Decreases in the burned area have been observed over the NHAF Sahel
region, as are decreases in the prior CO emissions, which are explained by changes in both
precipitation and the conversion of savannah into cropland (Andela and van der Werf, 2014).
But positive trends in CO emissions are inferred by the atmospheric inversion especially

since 2006, except for some small areas. The different signs of the trend in burned area (or

the prior CO emissions) and the posterior CO emissions may be explained by the change in
CO emission factors that could vary a lot with the conversion of fire type from savannah fire
to agricultural burning and also with precipitation change (van Leeuwen et al., 2013). In
addition, increases of anthropogenic fossil fuel and biofuel emission in the NHAF region
could also contribute to some of the differences (Al-mulali and Binti Che Sab, 2012).
Differences between the prior and the posterior CO emissions are also noticed for the central
part of the SHAF. The increase in the GFED4 burned area is explained by the increase of
precipitation that allows more fuel accumulation, as driven by the El Nifio/Southern
Oscillation (ENSO) changes from El Nifio to La Nifla dominance over the recent decade
(Andela and van der Werf, 2014). The opposite negative trend of CO emissions in the
posterior could be explained by a decrease in CO emission factors when the fuel load and
combustion completeness are high so that less carbon is emitted in the form of CO; but the
dynamics of emission factors are not modelled in the bottom-up estimation (van Leeuwen et
al., 2013). In addition, small fires that are not considered in our prior biomass emissions

could also contribute to such differences (Randerson et al., 2012).
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6 Conclusion

CO concentrations observed by both MOPITTv6 satellite Xco retrievals and surface in-situ
measurements show significant negative trends over most of the world from 2002 to 2011.
The CO concentration trends in the forward CTM simulations prescribed with CO emission
inventories show considerable inconsistency with the observed MOPITT Xco from 2002 to
2011. By assimilating MOPITTv6 Xco and surface measurements of CHs and MCF, the
inversion system suggests that the decrease in the atmospheric CO concentrations is mainly
attributable to a decrease of 23% in surface emissions during the study period at the global
scale. The trends in the prior and the posterior CO emissions agree well with each other over
the USA and Western Europe. The largest differences between the prior and the posterior CO
emission trends are noticed for South East Asia, Australia and parts of South America and

Africa. Decreases of CO emissions are found in Central China, while the prior emission

inventories suggest, increases. This emission decrease is probably caused by a large decrease
of emission factors due to technology improvements that outweigh the increase of emission
activities. CO emissions from biomass burning decreased considerably in Indonesia and
Australia. For Africa, the contrasts of trends between the prior and the posterior Jikely reflect
different trends between satellite-detected burned area and CO emissions due to changes in
combustion completeness, CO emission factors, and the relative contribution of small fires.
The amplitude of the trends also differs in many other regions, illustrating the original
information brought by atmospheric inversions about CO emissions.

No significant trend is found in the latitudinal-mean OH concentrations, and a sensitivity test
made with two different OH fields suggests consistent results in the OH trend. It is however
noted that we optimized OH over six big-regions globally, and sub-regional trends in the OH

concentrations, if they exist, are not accounted for in this study, We also acknowledge the
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limited information content of MCF to constrain OH in recent years over the study period.
For chemical CH,O production from NMVOC oxidation, the system has the potential to
generate regional increments, but CH,O is not assimilated here due to limited temporal
coverage of the OMI data from 2005 to 2011. Assimilating observations of CH,O and pther
chemically connected species could inform more about regional CO budgets, in particular the
chemical sources and sinks, and therefore could further improve the top-down estimation of

CO budgets for each region in future studies.
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Tables

Table 1. Prior datasets for the sources and sinks of CO. Mean annual sums are calculated for the

period from 2002 to 2011. The global annual prior error budgets are reported and TransCom-OH field

is used.
Mean Annual Dataset/
Sectors Sum References
-1 Model
(Tgyr™)

Sources:
Biomass burning 327 GFEDv3.1 Van der Werfet al., 2010
Anthropogenic Emissions 588 MACCity Lamarque et al., 2010
Ocean 54 PISCES Updated from Aumont,et al. 2006,
Sum of surface emissions 969+180 @

co Oxidation from NMVOC 335443 ®  LMDzINCA  Folberth et al. 2006

Oxidation from CH, 885+92 @
Sum of chemical sources 1220

Sinks:
Oxidation by OH 2197 TransCom-OH  Patra et al. 2011

(1) The uncertainty represents the SD of the global annual error budgets in the prior CO emissions in the inversion

configuration.

(2) The SD is calculated into the equivalent CO amount from global annual error budgets of the pre-calculated CH,O

production fields.

(3) The SD is calculated into the equivalent CO amount from global annual error budgets of the prior CH4 emissions

assuming they are all oxidized into CO in a single step. The prior CH, emission (506 TgCO yr'') datasets are detailed in

Cressot et al. (2014).
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Table 2. Summary of CO model-data comparison and trend analysis for MOPITT satellite retrievals, surface station observations and

corresponding prior/posterior modelling. Trends for each region (in the unit of ppb yr'l) are the mean values for all the grids whose trends are significant

at 95% confidence level. The percentages of significant trends are also given per model grid for positive (+) and negative (-) respectively.

MOPITT Surface MOPITT column trends Surface station trends

2 Prior Post Prior Post Observation Prior mod Posterior mod Observation Prior mod Posterior mod
2 Bias  Bias Bias  Bias

Q@ N + - + - + - + - + - + -
= — T Trend % % Tend % % Tend % % — Tend % % Trend % % Trend % %
BONA  -141 0.7 -208 205 210 -0.84 99 -0.46 95 -0.88 99 2 -251 100 -1.46 100 -2.96 100
USA -16.7 -3.1 -20.4 201 108 -0.82 97 -041 96 -1.08 100 3 -1.67 67 -1.13 100 -3.30 100
NHSA ~ -10.0 -3.0 74 -0.61 84 015 8 53 -0.68 100 0

SHSA  -142 0.2 160  -0.59 58 038 41 -0.56 67 0

NHAF  -150 -2.0 -200 68 211 -045 7 55 -038 8 073 9% 1 -090 100 -0.73 100  -1.04 100
SHAF  -165 05 -15 136 96 -0.57 75 007 27 11 -0.64 % 1 078 100 0.42 100 -0.48 100
WSEU  -16.1 03 -36.7 187 106 -1.00 100 -0.49 100 -1.12 100 6 -2.73 100  -2.05 100  -3.51 100
ESEU  -16.8 0.4 108  -0.77 100 -0.40 100 -0.93 100 0

BOAS -17.3 1.0 227 -0.92 99 -0.51 92 -1.02 99 0

MIDE -16.5 -2.9 64 -0.57 100 -0.30 100 -0.88 100 0O

SCASs  -120 -03 80  -0.65 63 -030 4 38 -092 100 0

SEAS  -201 -3.6 -306 226 129 -1.23 97 013 19 24 -135 99 3 -176 100 -1.83 100  -3.78 100
AUST  -155 -1.7 -64 154 105 -0.62 100 0.17 28 -0.78 100 3 -034 67 - -1.18 67
INDO  -38 0.2 64  -1.20 98 -0.84 28  -1.03 98 0

OCEAN -119 -0.2 -151 9.6 3092 -0.72 9 -0.07 22 25 -0.67 97 27 -123 4 89 -1.00 7 59 -1.46 89




Table 3. Fitness of CH; and MCF observations assimilated in the inversion.

Region OH-type CH4 (ppb) MCEF (ppt

Mean bias Residual square Mean bias Residual square

prior  posterior rior posterior  prior  posterior prior posterior

TransCom  20.6 24 749.6 222 1.02 -0.02 1.14 0.05
NH(30-90)
INCA -21.0 2.5 658.1 20.1 0.44 -0.09 0.28 0.07
TransCom  15.8 1.5 452.6 19.1 0.90 -0.20 0.91 0.16
NH(0-30)
INCA -21.1 -0.1 564.9 139 0.40 -0.20 0.21 0.11
TransCom  10.9 -2.4 222.1 20.1 1.19 0.09 1.61 0.13
SH(0-30)
INCA -14.3 -4.0 264.9 29.5 0.88 0.23 0.94 0.15
TransCom  14.4 0.2 308.3 4.7 0.88 -0.24 0.90 0.17
SH(30-90)
INCA -7.9 -0.4 96.6 5.7 0.60 -0.06 0.46 0.07




Figures

Fig. 1. Schematics of the input information provided to the inversion and of the inversion state
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Fig. 2. Distribution of prior budget terms for CO. Annual jmean values per model grid (2.5°

latitude > 3.75° longitude) from 2002 to 2011 are shown. (a) Surface CO emissions, (b) Relative

percentages of CO emissions from biomass burning over land, (¢) Atmospheric CO productions from
CH4 and NMVOCs, (d) Atmopsheric CO chemical sinks. The chemical productions and sinks are

calculated with TransCom-OH.
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Fig. 3. Spatial and vertical distribution of OH concentrations in TransCom and INCA and

their relative differences. The TransCom OH is interpolated from its original 60 pressure levels

into

the LMDz 19 eta- pressure levels.
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Fig. 4, Time series and spatial distributions of CO total column (Xco). (a) Time series of global E

monthly mean mole fraction in CO column, The black line represents satellite observation of [DEIEtEd: Xco j

50

55

MOPITTV6 Xco, the blue (red) lines represent the prior (posterior) simulations. Solid lines represent
the control version with TransCom-OH, and doted lines represent the test with INCA-OH. (b)
Distribution of multi-year mean annual Xco of MOPITTv6 retrieval. (¢) Mean annual difference
between the prior simulation and MOPITT. (d) Mean annual difference between the posterior
simulation and MOPITT. Simulations shown in ¢ and d used TransCom-OH. The results with INCA-

OH show similar spatial distributions and are not shown here.
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JFig. 5. Distribution of CO column mixing ratio trends from 2002 to 2011 in (a) MOPITTv6

retrievals, (b) the prior simulation and (c) the posterior simulation. Black crosses indicate significance

at 95% confidence level.
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Fig. 6. Time series of CH,O total column averaged by latitudinal bands. The black lines indicate
the CH,O total column from SAO OMI retrievals, green lines indicate prior simulations, and red lines

indicate posterior simulations.
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Fig. 7. Column mean OH concentrations in the prior and posterior. The results are shown for the
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Fig. 8. Time series of global mean annual CO budget changes from 2002 to 2011. Each

component is shown in a different colour. Solid lines indicate the prior values (mean values of the two

OH fields are shown for the prior chemical CO production and sink). Dash-dot lines indicate posterior

with TransCom OH and dotted lines represent posterior with INCA-OH. With the order from left to

right, the linear slopes of the prior, the posterior with TransCom-OH and the posterior of INCA-OH

are denotes successively if the trend is statistically significant. * denotes 95% confidence level and **

denotes 99% confidence level.
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Fig. 9. Trends distributions of CO surface emissions in the prior and in the posterior from 2002

to 2011.
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Fig. 10. Annual prior (blue) and posterior (red) CO emissions in each sub-region from 2002 to
2011. The dash lines represent linear regressions, beside which s denotes the linear slope and p

125  denotes the p-value for the regression. The notation for the sub-regions are listed as follows and the

extent of each region is shown in Fig. A 1. BOAS - Boreal Asia, BONA - Boreal North America, USA [Deleted: S }

- USA, WSEU — West Europe, ESEU — East Europe, MIDE — Middle East, SCAS — South Central
Asia, SEAS — South East Asia, INDO- Indonesia, AUST — Australia, NHSA- North Hemisphere

South America, SHSA - South Hemisphere South America, NHAF - North Hemisphere Africa, SHAF

130 - South Hemisphere Africa, OCEAN — all ocean emissions both biogenic and anthropogenic
emissions.
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140  Appendix:

Fig. Al. Sub-region extent. [Deleted: S
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