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Abstract 22 

We present a performance assessment of the European Integrated Carbon Observing System 23 

(ICOS) atmospheric network for constraining European biogenic CO2 fluxes (hereafter Net 24 

Ecosystem Exchange, NEE). The performance of the network is assessed in terms of uncertainty 25 

in the fluxes using a state-of-the-art mesoscale variational atmospheric inversion system 26 

assimilating hourly averages of atmospheric data to solve for NEE at 6 hour and 0.5º resolution. 27 

The performance of the ICOS atmospheric network is also assessed in terms of uncertainty 28 

reduction compared to typical uncertainties in the flux estimates from ecosystem models that are 29 

used as prior information by the inversion. The uncertainty in inverted fluxes is computed for 30 

two typical periods representative of summer and winter conditions in July and in December 31 

2007, respectively. These computations are based on a Observing System Simulation Experiment 32 

framework. We analyze the uncertainty in two-week mean NEE as a function of the spatial scale, 33 

with a focus on the model native grid scale (0.5°), the country scale and the European scale 34 

(including western Russia and Turkey). Several network configurations, going from 23 to 66 35 

sites, and different configurations of the prior uncertainties and atmospheric model transport 36 

errors are tested in order to assess and compare the improvements that can be expected in the 37 

future from 1) the extension of the network, 2) improved prior information or 3) improved 38 

transport models. Assimilating data from 23 sites (a network comparable to present day 39 

capability) with the estimate of errors from the present prior information and transport models, 40 

the uncertainty reduction on two-week mean NEE should range between 20% and 50% for 0.5° 41 

resolution grid cells in the best sampled area encompassing eastern France and western 42 

Germany.  At the European scale, the prior uncertainty in two-week mean NEE is reduced by 43 

50% (66%), down to ~ 43 TgCmonth-1 (26 TgCmonth-1) in July (December).  Using a larger 44 

network of 66 stations, the prior uncertainty of NEE is reduced by the inversion by 64% (down 45 

to ~33 TgC month-1) in July and by 79% (down to ~15 TgC month-1) in December. When the 46 

results are integrated over the well-observed western European domain, the uncertainty reduction 47 
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shows no seasonal contrast. The effect of decreasing the correlation length of the prior 48 

uncertainty, or of reducing the transport model errors compared to their present configuration 49 

(when conducting real-data inversion cases) can be larger than that of the extension of the 50 

measurement network in areas where the 23 stations observation network is the densest. We 51 

show that with a configuration of the ICOS atmospheric network containing 66 sites that can be 52 

expected on the long-term, the uncertainties in two-week mean NEE will be reduced by up to 50-53 

80 % for countries like Finland, Germany, France and Spain, which could bring a significant 54 

improvement of (and at least a high complementarity to) our knowledge about NEE derived from 55 

biomass and soil carbon inventories at multi annual scales. 56 

 57 

1 Introduction 58 

Accurate information about the terrestrial biogenic CO2 fluxes (hereafter Net Ecosystem 59 

Exchange - NEE) is needed at the regional scale to understand the drivers of the carbon cycle. 60 

Accounting for the natural fluxes in political agreements regarding the reduction of the CO2 61 

emissions requires their accurate quantification over administrative areas, and in particular over 62 

countries and smaller regional scales at which land management decisions can be implemented.      63 

Atmospheric inversions, which exploit atmospheric CO2 mole fraction measurements to infer 64 

information about surface CO2 fluxes (Enting, 2002) are expected to deliver robust and objective 65 

quantification of NEE at high temporal and spatial resolution over continuous areas and time 66 

periods. Global atmospheric inversions have been widely used to document natural carbon 67 

sources and sinks (Gurney et al., 2002, Rodenbeck et al., 2003), although the spread of different 68 

studies, and thus, likely the uncertainty (which is confirmed when it is diagnosed by the 69 

inversion studies), remain large at the one month and continental scale (Peylin et al., 2013). Such 70 

large uncertainties are mainly due to the lack of observations over the continents or to the limited 71 

ability of global systems to account for dense observation networks in addition to errors in large-72 
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scale atmospheric transport models. However, with an increasing number of continuous 73 

atmospheric CO2 observations, primarily in North America and Europe, and with the 74 

development of regional inversion systems using high resolution mesoscale atmospheric 75 

transport models and solving for NEE at typical resolutions of 10 to 50 km (Lauvaux et al., 2008, 76 

2012, Schuh et al., 2010, Broquet et al., 2011, Meesters et al., 2012), there is an increasing 77 

ability to constrain NEE at continental to regional scales. 78 

This paper aims at studying the skill of a regional inversion in Europe, which is equipped with a 79 

relatively large number of ground-based atmospheric measurement stations, for estimating NEE 80 

at the continental and country scales, down to 0.5° resolution (which is the resolution of the 81 

transport model used in the inversion system). It also aims at assessing and comparing the 82 

benefits from the measurement network extensions and from future improvement in the 83 

inversion system. Such improvement can be anticipated either due to better atmospheric 84 

transport models or to the use of better flux estimates as the prior information that gets updated 85 

by the inversion based on the assimilation of atmospheric measurements.  86 

Europe is a difficult application area for atmospheric inversion because of the very 87 

heterogeneous distribution of vegetation types, land use, and agricultural and industrial activities 88 

inside a relatively small domain, and, consequently, because of the need for solving for fluxes at 89 

high resolution. Furthermore, its complex terrain also requires a high resolution of the 90 

topography when modeling the atmospheric transport (Ahmadov et al., 2009). However, the 91 

Integrated Carbon Observing System (ICOS) infrastructure is setting up a dense network of 92 

standardized, long-term, continuous and high precision atmospheric and flux measurements in 93 

Europe, with the aim of understanding the European carbon balance and monitoring the 94 

effectiveness of Greenhouse Gas (GHG) mitigation activities (http://www.icos-95 

infrastructure.eu/). The atmospheric network is expected to increase from an initial configuration 96 

of around 23 stations (most existing today, hereafter ICOS23) up to around 60 stations in the 97 
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near future (see ICOS Stakeholder handbook 2013 at https://icos-atc.lsce.ipsl.fr/?q=doc_public). 98 

In this context, the developers of the ICOS atmospheric network have encouraged network 99 

assessment studies such as the one conducted in this paper. 100 

Several inversion studies have focused on the estimate of European NEE based on actual 101 

measurements from the CarboEurope-IP atmospheric stations, most of which are planning to join 102 

the ICOS atmospheric network (Peters et al., 2010, Broquet et al., 2011). Broquet et al. (2013) 103 

have demonstrated, based on comparisons to independent flux tower measurements, that there is 104 

a high confidence in the Bayesian estimate of the European NEE and of its uncertainty at the 1-105 

month and continental scale based on their variational system which uses the CHIMERE 106 

mesoscale transport model run at 0.5° resolution. Indeed, the distributions of the misfits between 107 

1 month and continental scale averages of the flux measurements and of the NEE estimates 108 

sampled at the flux measurement locations revealed to be unbiased and consistent with the 109 

estimate of the uncertainties from the inversion system. This gives confidence in the 110 

configuration of this system, described in Broquet et al. (2011, 2013), and in the underlying 111 

assumptions (e.g. on the unbiased and Gaussian distribution of the uncertainties, or regarding the 112 

weak impact of the uncertainties in the CO2 modeling domain boundary conditions at the edges 113 

of Europe, or in the CO2 fossil fuel emissions) for the estimation of the performance of the ICOS 114 

network.  115 

Therefore, here, we apply the system of Broquet et al. (2011, 2013) to assess the potential of the 116 

near term and of realistic future configurations of the ICOS continuous measurements of CO2 117 

dry air mole fraction to improve NEE estimates at mesoscale across Europe. This assessment is 118 

based on a quantitative evaluation of the uncertainties in the inverted fluxes (also called posterior 119 

uncertainties) which are compared to the uncertainties in the prior information on NEE used by 120 

the inversion system. The Bayesian statistical framework chosen here provides estimates of the 121 

posterior uncertainties as a function of the prior uncertainties, of the atmospheric transport and of 122 
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the combination of statistical errors which are not controlled by the update of the prior NEE by 123 

the inversion (like the measurement errors and the atmospheric transport errors). Even though 124 

the prior uncertainty can potentially depend on the value of the prior NEE, the actual values of 125 

the prior NEE or of the measurement data to be assimilated are not formally involved in the 126 

estimation of the posterior uncertainty due to the linearity of the atmospheric transport of CO2. 127 

Therefore, the posterior uncertainty can be derived for hypothetical observation networks or for 128 

hypothetical uncertainties in the prior information or from the atmospheric transport model (i.e., 129 

for hypothetical improvements in the prior information or in the atmospheric transport model) 130 

using an Observing System Simulation Experiment (OSSE) framework, in which the results do 131 

not depend on a simulated truth. Due to the dimension of the problem, uncertainties are not 132 

derived analytically in this study and we use a Monte Carlo ensemble approach. Using synthetic 133 

data in an OSSE framework has been a common way to assess the utility of new GHG observing 134 

systems for the monitoring of the GHG sources and sinks at large scales based on global 135 

inversion systems with coarse resolution transport models (e.g., Rayner et al., 1996, Houweling 136 

et al., 2004, Chevallier et al., 2007, Kadygrov et al., 2009, Hungershoefer et al., 2010). This 137 

approach now plays a critical role in the recent emergence of regional inversion systems 138 

supporting strategies for the deployment of regional observation networks and assessing the 139 

potential of regional inversion for assessing the GHG fluxes at a relatively high resolution (Tolk 140 

et al., 2011, Ziehn et al., 2014). Such a use of OSSEs today is not specific to the GHG inversion 141 

community. OSSEs are increasingly used by the air quality community (e.g., Edwards et al., 142 

2009, Timmermans et al. 2009a, b, Claeyman et al., 2011) and they are still extensively used by 143 

the meteorological community (e.g., Masutani et al., 2010, Riishojgaard et al., 2012, Errico et al., 144 

2013, see also https://www.gmes-atmosphere.eu/events/osse_workshop/). In these fields, twin 145 

experiments are often used to derive a single realization of the uncertainties (Masutani et al., 146 

2010) while our Monte Carlo approach explores the uncertainty space much more extensively. 147 

Further, in common (linear) CO2 atmospheric inversions, since the results are independent of the 148 
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synthetic “true” data used for the OSSE, any simulation can be used to build this truth, while, 149 

when using fraternal twin experiments with nonlinear models in other application fields of data 150 

assimilation, it is critical to ensure that the truth is realistic enough (Halliwell et al., 2014). Still, 151 

the reliability of the OSSEs in CO2 atmospheric inversion critically depends on the realism of 152 

their input error statistics since their configuration in the inversion system is perfectly consistent 153 

with the sampling of synthetic errors that are used in these experiments. In this study, our 154 

confidence in the realism of the statistical modeling approach and of the input error statistics, 155 

and thus in the inversion set-up, is based on the statistical modeling studies of Chevallier et al. 156 

(2012) and Broquet et al. (2013) that were themselves based on real data. 157 

The manuscript first documents the potential for constraining NEE, through the use of a state-of-158 

the-art (i.e. which solves the NEE at high spatial and temporal resolution, and which has been 159 

submitted to a high level of evaluation) variational atmospheric inversion system, and of the 160 

ICOS23 network containing existing sites and other stations that could be installed on tall towers 161 

over Europe in the coming years. We also consider two longer-term ICOS configurations with 50 162 

(hereafter ICOS50) and 66 stations (hereafter ICOS66), respectively. For the time domain, we 163 

consider results for NEE aggregated at the two-week scale, for two different periods of the year 164 

(in July and in December). Shorter aggregation scales, like the day, result in a significant 165 

dependency of NEE to specific synoptic events. Longer scales imply computing resources that 166 

are beyond the scope of this study with this high-resolution inversion system. We pay special 167 

attention to the analysis of the results at different spatial scales, from the native transport model 168 

grid scale of about 50x50 km2 up to the national scale that is the most relevant for supporting 169 

environmental policy, and the full European domain considered in this study (which extends to 170 

western Russia and Turkey). We also present the sensitivity of our results to parameters 171 

characterizing the future developments of the mesoscale inversion systems:  the reduction of the 172 

transport model errors or of the prior flux errors.  173 



 

8 
 

The paper is organized as follows. Section 2 describes the mesoscale inversion experimental 174 

framework focusing on the Monte Carlo estimate of uncertainties. Section 3 analyses the scores 175 

of posterior uncertainties and the uncertainty reduction compared to the prior uncertainties in 176 

order to assess the potential of the near term framework and the one of future improvements of 177 

the network or of the inversion set-up. The last section synthesizes the results and discusses 178 

them. 179 

 180 

2 Materials and Methods 181 

2.1 The configurations of the ICOS atmospheric observation network 182 

We consider three successive phases of deployment of the ICOS atmospheric network. The 183 

initial state ICOS23 configuration includes 23 sites among which there are eight tall towers. This 184 

minimum network configuration is based on existing stations, most of them being operational in 185 

the CarboEurope-IP FP6 project. The ICOS network is expected to further expand during the 186 

next 5 years (according to the country declarations at the ICOS Interim Stakeholder Council and 187 

to the ICOS European Research Infrastructure Consortium 5 year financial plan). Using possible 188 

locations for the future stations, including sites that have already been discussed with the ICOS 189 

consortium during the ICOS preparatory phase FP7 project (European Union’s Seventh Research 190 

Framework Programme, grant agreement No. 211574), we derived two plausible ICOS 191 

configurations: ICOS50 with 50 sites including 24 tall towers and ICOS66 with 66 sites 192 

including 33 tall towers.  193 

The locations and details on the sites of the three configurations are summarized in Table A1 and 194 

in Fig. 1. Here, the existing and future ICOS CO2 observations are assumed to comply with the 195 

World Meteorological Organization (WMO) accuracy targets of 0.1 parts per million (ppm) 196 

measurement precision (WMO, 1981, Francey, 1998) so that the measurement error is negligible 197 
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in comparison to the other type of errors that have to be accounted for in the inversion 198 

framework such as the model transport and representation errors (see their typical estimate in 199 

Sect. 2.2.2).  200 

 201 

2.2 Mesoscale inversion system  202 

2.2.1 Method 203 

The estimate of uncertainties related to the different ICOS networks is based on an ensemble of 204 

inversions with the variational inversion system of Broquet et al. (2011), assimilating synthetic 205 

hourly averages of the atmospheric CO2 data from these networks (over restricted time windows 206 

everyday depending on the type of sites that are considered, see Sect. 2.2.2.). A regional 207 

atmospheric transport model (see its description below) is used to estimate the relationship 208 

between the CO2 fluxes and the CO2 mixing ratios. The inversion system solves for 6-hour mean 209 

NEE on each grid point of the 0.5º by 0.5º resolution grid used for the transport modeling. It also 210 

solves for 6-hour mean ocean fluxes at 0.5° spatial resolution in order to account for errors from 211 

air-sea fluxes when mapping fluxes into hourly mean mixing ratios. However, analyzing the 212 

uncertainty reduction for ocean fluxes is out of the scope of this paper. Peylin et al. (2011) 213 

indicate that uncertainties in anthropogenic fluxes yield errors when simulating CO2 mixing 214 

ratios at ICOS stations that are smaller than atmospheric model errors. Furthermore, the relative 215 

uncertainty in anthropogenic emissions is smaller than that in NEE, while on short timescales, 216 

the anthropogenic signal is generally smaller than the signature of the NEE at sites that are not 217 

very close (typically at less than 40km) to strong anthropogenic sources such as cities (see the 218 

analysis for the Trainou ICOS station near Orléans, in France by Bréon et al. 2015). Relying on 219 

such indications, we assume that the errors due to uncertainties in anthropogenic emissions are 220 

negligible compared to errors from NEE and atmospheric model errors. This is a fair assumption 221 

as long as most ICOS stations are relatively far from large urban areas, which should be the case 222 
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since the ICOS atmospheric station specification document (https://icos-223 

atc.lsce.ipsl.fr/?q=doc_public) recommends that the measurements sites are located at more than 224 

40km from the strong anthropogenic sources (such as the cities). Zhang et al. (2015) yield 225 

conclusions from their transport experiments at 1° resolution which contradict this assumption 226 

and this clearly raises an open debate. However, the evaluation of the inversion configuration 227 

from Broquet et al. (2013) supports our use of this assumption for our study. Therefore, in order 228 

to simulate the full amount of CO2 in the atmosphere, the inversion uses a fixed estimate of the 229 

fossil fuel emissions (see below) without attempting at correcting it nor at accounting for 230 

uncertainties in these fluxes. The inversion also uses a fixed estimate of the CO2 boundary 231 

conditions at the lateral and top boundaries of the regional modeling domain without attempting 232 

at correcting it or at accounting for uncertainties in these conditions. This follows the protocol 233 

from Broquet et al. (2011) which assumed that the error from the boundary conditions for the 234 

European domain is mainly a bias and which corrects for such a bias in a preliminary step that is 235 

independent to the subsequent application of the inversion.  Again such an assumption is 236 

supported by the evaluation of the inversion configuration by Broquet et al. (2013). The 237 

relatively weak impact of uncertainties in the boundary conditions in Europe (while studies in 238 

other regions such as that of Gockede et al. (2010) indicate a high influence of such 239 

uncertainties) can be explained by the fact that the spatial scale of the incoming CO2 patterns at 240 

the ICOS sites from remote sources and sinks outside the European domain boundaries is 241 

relatively large due to the atmospheric diffusion (especially under west wind conditions, when 242 

the air comes from the Atlantic ocean) compared to the typical distances between the ICOS sites. 243 

In principle, the inversion mainly exploits the smaller scale signal of the gradients between the 244 

sites to constrain the NEE, and it is thus weakly influenced by the large scale signature of the 245 

uncertainty in the boundary conditions. In this section we only summarize the main elements of 246 

the inversion system, starting with the theoretical framework, while the detailed description can 247 

be found in Broquet et al. (2011). 248 
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We define the control vector x of the atmospheric inversion as the 6-hour and 0.5°x0.5° mean 249 

NEE and ocean fluxes. The atmospheric inversion seeks the mean xa and covariance matrix A of 250 

the normal distribution N(xa, A) of the knowledge on x based on (i) the atmospheric transport 251 

model, (ii) the prior knowledge xb of x , (iii) the hourly mean atmospheric measurements y, (iv 252 

and v) the covariances B and R of the distributions of the prior uncertainty and of the 253 

observation error assuming that these uncertainties are normal and unbiased (i.e., equal to N(0, 254 

B) and N(0, R) respectively), and (vi) a Bayesian relationship between these distributions. The 255 

observation error is the combination of all sources of misfit between the atmospheric transport 256 

model and the concentration measurements other than the prior uncertainty, in particular the 257 

measurement errors, the model transport, aggregation and representation errors, and the errors 258 

from the model inputs that are not controlled by the inversion.  259 

With this theoretical framework, xa is the minimum of the quadratic cost function ܬሺ࢞ሻ (Rodgers, 260 

2000):  261 

ሻ࢞ሺܬ ൌ ଵ

ଶ
ሺ࢞ െ ࢞௕ሻ்۰ିଵሺ࢞ െ ௕ሻ࢞ ൅

ଵ

ଶ
ሺܪሺ࢞ሻ െ ሻ࢞ሺܪଵሺି܀ሻ்ܡ െ  ሻ            (1) 262࢟

where T denotes the transpose, and where H is the affine observation operator which maps the 6-263 

hour (00:00-06:00, 06:00-12:00, 12:00-18:00 and 18:00-24:00; UTC time is used hereafter) and 264 

0.5° × 0.5° mean NEE and ocean CO2 fluxes x to the observational space based on the linear 265 

CO2 atmospheric transport model with fixed open boundary conditions, and with fixed estimates 266 

of the anthropogenic fluxes and natural fluxes at resolutions higher than 6-hour and 0.5°; H: x -267 

>H(x) can be rewritten H: x -> Hx + yfixed where yfixed is the signature, through atmospheric 268 

transport, of the fluxes (in particular the anthropogenic emissions) and boundary conditions not 269 

controlled by the inversion. H is the combination of two linear operators: the first operator 270 

distributing 6-hour mean natural fluxes at the 1-hour resolution, and the second operator 271 

simulating the atmospheric transport from the 1-hour resolution fluxes at 0.5° resolution. 272 
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The inversion system derives an estimate of xa by performing an iterative minimization of ܬሺ࢞ሻ  273 

with the M1QN3 algorithm of Gilbert and Lemaréchal (1989). The gradient of J is derived using 274 

the adjoint operator of H thanks to the availability of the adjoint version of the CHIMERE code. 275 

The covariance of the posterior uncertainty in inverted NEE A, of main interest for this study, is 276 

given by the formula: 277 

A = (B-1 +HTR-1H)-1  (2) 278 

This equation demonstrates the point raised in the introduction for justifying the OSSE 279 

framework, that A does not depend on the observations or on the prior flux values themselves 280 

but only on their error covariance matrices, on the observation network density and stations 281 

location, and on the atmospheric transport operator. This allows assessing the performance of 282 

any observation system, whether existing or not. Of note is also that this calculation does not 283 

depend on yfixed, i.e., on the boundary conditions or on the anthropogenic fluxes in the domain so 284 

that such components can be ignored for the estimate of A.  285 

In this framework, a common performance indicator is the theoretical uncertainty reduction for 286 

specific budgets of the NEE estimates (averages over specified periods of time and over 287 

specified spatial domains), defined by: 288 

ߛ ൌ 1 െ ఙೌ
ఙ್

        (3) 289 

where ߪ௔ and ߪ௕ are the standard deviations of the posterior and prior uncertainties in the 290 

corresponding integrals in time and space (over the given periods of time and spatial domains) of 291 

the 6-hour and 0.5° resolution NEE field. If the observations perfectly constrain the inversion of 292 

a given budget of NEE, then γ = 1. On the opposite, if it does not bring any information to reduce 293 

the error from the prior, γ = 0. By definition, γ is a quantity relative to the uncertainty in the prior 294 

fluxes, which depends on the type of prior information on NEE that is expected to be used 295 

(estimates from a biosphere model in our case, see below Sect. 2.2.2). Of note is that the scores 296 
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of uncertainty and of uncertainty reduction given in this study refer to the standard deviation of 297 

the uncertainty in a specific budget of NEE, and that, hereafter, the term “standard deviation” is 298 

generally omitted.   299 

Due to the size of the observation and control vectors in this study, we could not afford the 300 

analytical computation of Eq. (2) based on the full computation of the H matrix (using a very 301 

large number of CHIMERE simulations; Hungershoefer et al., 2010). Instead we use the Monte 302 

Carlo approach of Chevallier et al. (2007) to compute A. In this approach, an ensemble of 303 

posterior fluxes xai is derived from an ensemble of inversions using synthetic prior flux xbi and 304 

data yi whose random errors (xbi-xtrue and yi-Hxtrue respectively) to a known truth (xtrue, whose 305 

value does not influence the results analyzed here, and which is thus ignored hereafter) sample 306 

the distributions N(0, B) and N(0, R). A is obtained as the statistics of the posterior errors xai-307 

xtrue. The practical size of the ensemble is described below and its determination follows the 308 

discussion by Broquet et al. (2011). The convergence of the estimate of the inverted NEE for 309 

each inversion and the convergence of the statistics of the ensemble are necessary to ensure that 310 

the A matrix computed with this method corresponds to the actual covariance of the posterior 311 

uncertainty given by Eq. (2). These convergences cannot be perfect with a limited number of 312 

iterations for the minimization algorithm and a limited number of inversion experiments in the 313 

Monte Carlo ensemble imposed by computational limitations. Therefore the estimate of A can 314 

depend on parameters other than H, B and R in practice, i.e., the numbers of iterations and of 315 

inversion experiments. However, it has been checked (see below Sect. 2.2.2) that the 316 

convergence is sufficient so that this dependence should not be significant for the quantities of 317 

interest. 318 

 319 

2.2.2 Practical set-up 320 

Atmospheric transport model 321 
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In this study, the operator H is based on the CHIMERE mesoscale atmospheric transport model 322 

(Schmidt et al., 2001) forced with ECMWF winds. We use a configuration with a 0.5ºx0.5º 323 

horizontal grid and with 25 σ-coordinate vertical levels starting from the surface and with a 324 

ceiling at ~500 hPa (such a ceiling being usual for regional transport modeling when focusing on 325 

mole fractions close to the ground, e.g. Marécal et al. 2015). The spatial extent of the 326 

corresponding domain is described below. CHIMERE is an off-line transport model. Hourly 327 

mass-fluxes are provided by the analyses of the European Centre for Medium-Range Weather 328 

Forecasts (ECMWF). The relatively high vertical and horizontal resolutions of CHIMERE allow 329 

a good vertical discretization of the Planetary Boundary Layer (PBL; the first 14 levels are below 330 

1500 meters) along with a good representation of the orography and dynamics to match high 331 

frequency observations better than with global configuration whose typical horizontal resolution 332 

is ~3° (Peylin et al. 2013). 333 

 334 

Spatial and temporal domains 335 

In this study, we use the European domain shown in Fig. 1a which covers most of the European 336 

Union and some of Eastern Europe, with a land surface area of 6.8x106 km2. Its southwest corner 337 

is at 35ºN and 15ºW, and its northeast corner is at 70ºN and 35ºE.  Two temporal windows are 338 

considered, from June 30, 2007 to July 20, 2007 and from 2 to 22 of December 2007 (of almost 339 

three weeks each).  The choice of those periods of three weeks is a tradeoff between widening 340 

the scope of the study and computational burden. The Monte Carlo-based flux uncertainty 341 

reduction calculations require large computing resources, while we test three different network 342 

configurations for two different months, and for different setups of the error covariance matrices. 343 

Three week experiments allow retrieving information about uncertainties at the two-week scale 344 

without being biased by edge effects, i.e., they allow accounting for the impact of uncertainties 345 

from the days before the 14 targeted days and for the impact of the assimilation of measurements 346 
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during the days after these 14 targeted days. Indeed, the advection of CO2 throughout Europe can 347 

last more than three days, but the atmospheric diffusion ensures that the signature at ICOS sites 348 

of the NEE during a 6-hour window is generally negligible after three days of transport (not 349 

shown). Thus, the windows 3-17 July and 5-19 December were chosen for analysis respectively. 350 

We consider the results for July and December to be representative for the summer and winter 351 

seasons, allowing an analysis of seasonal variations in the structure of the flux uncertainty 352 

reduction. Choosing year 2007 for the period of the inversion only impacts the meteorological 353 

conditions (i.e., the impact on the prior uncertainty whose local standard deviations are scaled 354 

using data from this specific year, as detailed below in this section, is negligible) and thus the 355 

atmospheric transport conditions in the OSSEs. We assume that these conditions are not 356 

impacted by a strong inter-annual anomaly in 2007 so that they can be expected to be 357 

representative of average conditions for summer and winter. Hereafter, the mention of the year 358 

2007 is thus often ignored and we assume that we retrieve typical estimates for July and 359 

December. 360 

 361 

Flux error covariance matrix 362 

The setup of the error covariance matrix B follows the methodology of Chevallier et al. (2007). 363 

It is chosen to represent the typical uncertainty in estimates from the biosphere models (for NEE) 364 

and from climatologies (for ocean fluxes) used by traditional atmospheric inversion systems. The 365 

statistics have been derived more specifically for estimates from the Organising Carbon and 366 

Hydrology In Dynamic Ecosystems (ORCHIDEE) vegetation model (Krinner et al., 2005) and 367 

the ocean climatology from Takahashi et al. (2009). The uncertainties in NEE are assumed to be 368 

autocorrelated in space and in time and are modeled using isotropic and exponentially decreasing 369 

functions with correlation lengths that do not depend on the time or location. A Kronecker 370 

product of the matrices of temporal and spatial correlations ensures the combination of these two 371 
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types of correlations. The e-folding spatial and temporal correlation lengths are set according to 372 

the estimation of Chevallier et al. (2012) based on comparison of the NEE derived by the 373 

ORCHIDEE model and eddy-covariance flux tower data, for our specific prior flux spatial and 374 

temporal resolution, i.e., to 30 days in time and 250 km in space over land. NEE uncertainties for 375 

different 6-hour windows of the day are not correlated, i.e., the temporal correlations only apply 376 

to a given 6-hour window of consecutive days. The standard deviations of the prior uncertainties 377 

in B are set proportionally to the heterotrophic respiration fluxes from the ORCHIDEE model (it 378 

is approximately twice this respiration at the daily and 0.5° scale). We apply time-dependent 379 

scaling factors to these fluxes so that the NEE uncertainties have lower values during the night 380 

than during the day, and during winter than during summer, summing up to typical values for 381 

grid-scale and daily errors ~ 2.5 gCm-2day-1 in summer (maximum value 3.4 gCm-2day-1) and ~ 2 382 

gCm-2day-1 in winter (maximum value 3.1 gCm-2day-1). Over the ocean, the prior uncertainty of 383 

air-sea fluxes has standard deviations at the 0.5° and 6-hour scale equal to 0.2 gCm-2day-1, an e-384 

folding spatial correlation length of 500 km and temporal correlations similar to that for the prior 385 

uncertainties over land. Prior ocean and land flux uncertainties are not correlated. 386 

 387 

Time selection of the data to be assimilated 388 

Broquet et al. (2011) analyzed the periods of time during which the CHIMERE European 389 

configuration bears transport biases which are too high so that measurements from ground based 390 

stations such as ICOS sites should not be assimilated to avoid projecting erroneously such biases 391 

into the corrections to the fluxes. In agreement with common practice, they concluded that 392 

observations at low altitude sites (approximately below 1000 meters above sea level (masl); see 393 

Broquet et al. (2011) for the exact definition of the different types of sites used for the time 394 

selection of the data and the configuration of the observation error) which include almost all of 395 

the ICOS tall towers, should be assimilated during daytime (12:00-20:00) only while the 396 
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observations at high altitude stations (approximately above 1000 masl) should be used during the 397 

night (00:00-06:00) only. This generally yields larger uncertainty reduction during daytime than 398 

during nighttime (Broquet et al. 2011). However, this does not raise a potential bias related to a 399 

better constrain on daytime inverted NEE (when the ecosystems are generally a sink of CO2) 400 

than on nighttime inverted NEE (when the ecosystems are generally a source of CO2) since 401 

uncertainties in both nighttime and daytime prior NEE, transport and measurements are assumed 402 

to be unbiased, as supported by the results from Broquet et al. (2013).  403 

 404 

Observation error covariance matrix 405 

The observational error covariance matrix R accounts for various sources of error when 406 

comparing the hourly data selected for assimilation and their simulation which are not controlled 407 

by the inversion: measurement error, aggregation error, atmospheric model representativeness 408 

and transport error (as explained previously, uncertainties in the anthropogenic emissions and in 409 

the boundary conditions are assumed to be negligible). The first two terms are negligible 410 

compared to the model representativeness and transport error due to the high measurement 411 

standard and to solving for the fluxes at 6-hour and 0.5° resolution during the inversion, 412 

respectively.  413 

Broquet et al. (2011) derived a quantitative estimation of the model error (depending on the 414 

station height) including transport and representativeness errors based on comparisons between 415 

simulations and measurements of CO2 and 222Rn. Broquet et al. (2013) resumed it to provide 416 

season-dependent estimates which are used here. The model error is much higher during the 417 

winter than that during the summer. It is given for each site in Table A1 for the two months 418 

(July, December) considered in this study. We assume that the errors for two different sites are 419 

independent and that they do not bear temporal autocorrelations. Thus, the observation error 420 

covariance matrix R is set diagonal. Indeed, there is no evidence that such autocorrelations could 421 
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be significant in the analysis of Broquet et al. (2011). The resulting budget of observation errors 422 

at daily to monthly resolution seems reliable (Broquet et al. 2011, 2013). It could be due either to 423 

a compensation of ignoring the temporal autocorrelations by an overestimate of errors for hourly 424 

data, or to the fact that the temporal auto-correlations of actual observation are negligible 425 

(Broquet et al. 2013). However, in both cases, the assumption that the temporal autocorrelations 426 

of the observation error are negligible does not seem to need to be balanced by an artificial 427 

increase of the observation errors for hourly averages.  428 

 429 

Minimization and number of members in the Monte Carlo ensembles 430 

We use 12 iterations of minimization for each variational inversion of the Monte Carlo ensemble 431 

experiments. This number is similar to that from Broquet et al. (2011) where they considered a 432 

longer time period for the inversions but far smaller observation networks and a smaller 433 

inversion domain, which reduces the dimensions of the minimization problem. However, here, 434 

12 iterations were still found to be sufficient for converging toward the theoretical minimum of 435 

the cost function, i.e., the number of assimilated data divided by two (Weaver et al., 2003), with 436 

less than 10% relative difference to this theoretical minimum except for few cases (for these 437 

cases, 18 iterations were used to reach a relative difference to the theoretical minimum that is 438 

smaller than 10%).   439 

Similarly to Broquet et al. (2011), 60 members are used in each Monte Carlo ensemble 440 

experiment (this is also the typical number of members that Bousserez et al. 2015 use for their 441 

Monte Carlo simulations).”    442 

. They found a satisfactory convergence of the estimate of the uncertainties in Europe and 1-443 

month average NEE, with such a size of the ensemble which is confirmed here (the estimates 444 

using 50 and more members are within 6% of the results with 60 members).  445 
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  446 

2.2.3 Sensitivity tests 447 

Three and five Monte Carlo ensembles of inversions are conducted for December and July 448 

respectively. For each season, 3 ensembles using the default set-up of B and R described above 449 

are conducted in order to give results for the 3 different ICOS network configurations and 450 

consequently the sensitivity to the network configuration. In July, two ensembles are also 451 

conducted with a change in R in one case and in B in the other case in order to test the sensitivity 452 

to these inversion parameters. Such sensitivity tests have been conducted in July only and using 453 

one configuration of the ICOS network only (ICOS50 and ICOS66 for the test of sensitivity to R 454 

and B respectively) since a more exhaustive set of tests of sensitivity for the two seasons and for 455 

each ICOS network configuration was not expected to bring new insights while raising 456 

significant additional computation costs. The set-up of the inversion for these two sensitivity 457 

tests is now described.   458 

 459 

Test of the sensitivity to the observation error  460 

There is a steady increase in the resolution of the atmospheric transport models used for 461 

atmospheric inversions, with corresponding improvements of the simulation precision (e.g., Law 462 

et al. 2008). In this test we simulate the effect of potential future transport model improvement 463 

on the posterior flux uncertainties by reducing the default observation error standard deviations 464 

in R by a factor of two. This factor roughly corresponds to the improvement of the misfits 465 

between the model and actual measurement at the site TRN (see Fig. 1 for its location), that was 466 

observed when bringing CHIMERE from the current 0.5° resolution down to a 2 km resolution 467 

using the configuration presented in Bréon et al. (2014). The underlying assumption would be 468 

that ~1km horizontal resolution atmospheric transport models could be used for inversions at the 469 
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European scale in the near future. Hereafter, we denote by Rref the reference configuration of R 470 

and by Rred the one corresponding to reduced standard deviations. 471 

 472 

Test of the sensitivity to the prior uncertainty 473 

The test of the sensitivity of the inversion system to the prior uncertainty is focused on that of the 474 

sensitivity to the spatial correlation length in B (Gerbig et. al. 2006) (which impacts the budget 475 

of uncertainty over large regions). The possible use of better prior flux fields based on the 476 

merging of both estimates from vegetation models and from large scale inventories (such as 477 

forest and agricultural inventories) can be expected to generate smaller-scale uncertainties than 478 

when using vegetation models while it is not obvious that local uncertainties would be decreased 479 

when adding information from inventories (since inventories only measure long term integrated 480 

NEE). Therefore, we tested the impact of reducing the spatial correlation length for the prior 481 

uncertainty in NEE from 250 km to 150 km, denoting hereafter the corresponding configurations 482 

for the B matrix: B250 and B150 respectively. 483 

 484 

3. Results and discussion 485 

3.1 Assessment of the performance of the actual network and system  486 

In this section, the performance of the inversion relying on the default configuration and on the 487 

ICOS23 initial state network (i.e., the reference inversion) is analyzed as a function of the spatial 488 

scale, highlighting the main patterns of the uncertainty reduction obtained at the pixel scale to 489 

the European scale. 490 

 491 

3.1.1 Analysis at the model grid scale 492 



 

21 
 

Figures 2a and 2b show the uncertainty reduction for estimates of two-week average NEE at 0.5º 493 

resolution in July and December, respectively. This grid-scale uncertainty reduction reaches 65% 494 

for areas in the vicinity of the ICOS sites and decreases smoothly with distance away from 495 

measurement sites. For most of the area around eastern France – western Germany, this grid –496 

scale uncertainty reduction ranges from 35 to 50% for July and from 20 to 40% for December. 497 

This stems from the combination of the dense observation network over that region, and from the 498 

250 km correlation scale for the prior uncertainties, which spreads the error reduction beyond the 499 

immediate vicinity of each station where near field fluxes have a large influence on the mixing 500 

ratio at this station (Bocquet, 2005). For other parts of Europe that are not well sampled by 501 

ICOS, significant uncertainty reductions are generally seen around each site but there are large 502 

areas where the inversion has no impact at the grid scale: Scandinavian countries, the eastern 503 

part of Germany, Poland, the south of the Iberian Peninsula and almost all of Eastern Europe. 504 

The spatial structure of the uncertainty reduction and the underlying spatial extrapolation from a 505 

site is a complex combination of transport influence and of the structure of the prior uncertainty. 506 

Due to varying transport conditions, standard deviation of the prior uncertainty at the grid scale 507 

(which is larger in summer, see below the comments on Fig. 3), and observation error (which is 508 

larger in winter), the spatial distribution of uncertainty reduction is found to vary from summer 509 

to winter. Because the prior uncertainties are larger and the observation errors are smaller in July 510 

than in December, there is generally a larger uncertainty reduction in July (especially in Western 511 

Europe). But variations in meteorology alter (limiting or enhancing) this general behavior. The 512 

lower vertical mixing (which strengthens the sensitivity of the near ground measurements to the 513 

local fluxes) partly balances the higher observation error in December and the range of local 514 

uncertainty reductions overlaps between July and December.  The observations from the Angus 515 

tall tower (tta site, Table A1) in Scotland or from Pallas (pal site, Table A1) in Finland 516 

contribute differently to the uncertainty reduction during July and December (using 517 

meteorological conditions from 2007), showing better performance at the grid scale during 518 
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summer. This also comes from the different weather regimes, with different dominant wind 519 

directions, different average wind speed and different vertical mixing in summer and winter. 520 

Regions lacking stations in ICOS23 have an uncertainty reduction which is more sensitive to the 521 

atmospheric transport than regions with a dense network. The uncertainty reduction in December 522 

is significantly larger in the east and in the southeast part of domain compared to July, due to 523 

more occurrences of winds from the east during December than during July. 524 

Complementing the uncertainty reduction, Fig. 3 shows prior and posterior uncertainty standard 525 

deviations at the grid scale in order to illustrate the precision of the estimates of NEE that should 526 

be achievable with the reference inversion using the ICOS23 network. As already stated, prior 527 

uncertainties are up to ~3 gCm-2day-1 (Fig. 3a) but the winter values are smaller than the summer 528 

ones (due to a weaker activity of the ecosystems; Fig. 3b). During both July and December, the 529 

uncertainties in two-week mean NEE in the regions that are best covered by observations (most 530 

of Western Europe) at 0.5° resolution are reduced by the inversion down to typical values of ~ 531 

1.5 gCm2day (Fig. 3c,d).  532 

 533 

3.1.2 Analysis at national scale 534 

Figures 4a and 4b show the uncertainty reduction for two-week-and country-mean NEE in July 535 

and December respectively. The countries and corresponding estimates of prior and posterior 536 

uncertainties are listed in Table A2. The results suggest the ability of the mesoscale inversion 537 

framework to derive estimates of the NEE at the national scales with relatively low uncertainties. 538 

The uncertainty reduction is particularly large for countries such as Germany, France and the UK 539 

e.g., more than 80% for France during July. It is larger than 50% for a large majority of the 540 

countries in Western Europe and Scandinavia both in July and December.  541 
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The smallest uncertainty reduction applies to southeastern European countries where it can be 542 

smaller than 10 % (e.g., for Greece in July) indicating that the presence of stations very close to 543 

or within a given country is a requisite for bringing significant improvement to the estimates of 544 

NEE in this country. In general, the differences of the inversion skill between July and December 545 

look consistent with what has been analyzed at the pixel scale. In particular the uncertainty 546 

reduction is higher in July for western countries but higher in December for eastern countries for 547 

the same reasons as that given when analyzing the same behavior at the pixel scale. 548 

  549 

3.1.3 Analysis at the European scale 550 

Table 1 shows that the uncertainty in two-week-mean NEE in July averaged over the full 551 

European domain (6.8 ×106 km2 of land surface) is reduced by the inversion by 50% down to a 552 

value of ~ 43 TgCmonth-1 (see Table 1 for details) using the default configuration. The 553 

uncertainty reduction for December is 66%, resulting in a posterior uncertainty of ~26 554 

TgCmonth-1. The uncertainty reduction for the whole European domain is thus higher in 555 

December than in July. More precisely, while easterly winds in December strongly favor this 556 

period in terms of uncertainty reduction in Eastern Europe, the uncertainty reduction for NEE 557 

averaged over the reduced western European domain defined in Fig. 1c does not vary 558 

significantly with the season (66% and 64% for July and December respectively). This lack of 559 

seasonal variation of the uncertainty reduction at the scale of the western European domain 560 

(where most of the ICOS23 stations are located) seems to contrast with the grid-scale and 561 

national scales estimations in this domain which indicated that the uncertainty reduction is 562 

generally significantly higher during summer than during winter. This contrast will be analyzed 563 

and interpreted in the following Sect. 3.1.4.  564 

 565 
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3.1.4 Analysis of the variations of the uncertainty as a function of the spatial aggregation of 566 

the NEE: interpretation of the results obtained at the national and European scales 567 

In order to examine here the dependency of the NEE uncertainty reduction to increasing spatial 568 

scales of aggregation for the analyses in July and December, we chose five locations at which we 569 

define centered areas with increasing size for which uncertainties in the average NEE are 570 

derived. These stations are located using the green circles in Fig. 1c. The five locations 571 

correspond to three observing sites of ICOS23: Trainou (TRN), Ochsenkopf (OXK), Plateau 572 

Rosa (PRS); one site of ICOS50: SMEAR II-ICOS Hyytiälä (HYY); and one point in Sweden 573 

which does not correspond to any site of the ICOS networks tested here, called SW1 hereafter 574 

(Fig. 1c). We compute the uncertainty reductions of the two-week mean NEE for July and 575 

December over 5 square (in degrees) domains centered around each site of 1.5ºx1.5º, 2.5ºx2.5º, 576 

3.5ºx3.5º, 4.5ºx4.5º and 10.5ºx10.5º size (which corresponds to surfaces of different size in terms 577 

of km2). Depending on their location and on their size, the corresponding domains expand over 578 

areas of Europe that are more or less constrained by the inversion at the pixel scale. But the 579 

variations of the uncertainty reduction when increasing the size of these domains are also 580 

strongly driven by the spatial correlations in the prior and posterior uncertainty. The results are 581 

displayed in Fig. 5. 582 

The five locations used for this analysis are representative of the diversity of the situation 583 

regarding the differences between grid scale uncertainty reduction in July and in December. 584 

While the uncertainty reduction is slightly larger in July than in December for TRN, much larger 585 

in July for PRS and HYY, it is slightly larger in December at OXK and much larger in December 586 

at SW1. Furthermore, the values for these grid scale uncertainty reductions range from 15% to 587 

50% in July and from 7% to 47% in December at these locations (Fig. 5). 588 

The maximum scores of uncertainty reduction occur for spatial scales of aggregation ranging 589 

from 105 km2 to 106 km2 when considering the sites located in Western Europe. These scales 590 



 

25 
 

approximately correspond to the range of the sizes of the European countries and it is larger than 591 

the typical area of correlation of the prior uncertainty (as defined by prior correlation lengths of 592 

250 km). Increasing the spatial resolution generally increases the uncertainty reduction since 593 

posterior uncertainties have generally smaller correlation lengths than prior uncertainties, due to 594 

the spatial attribution error when trying to link the measurement information to local fluxes 595 

despite the atmospheric mixing. This explains the increase of uncertainty reduction from the grid 596 

scale to the “national scales”. This also explains why, for a given regional density of the 597 

measurement network, larger countries bear larger uncertainty reductions (Fig. 4). However, 598 

above such national scales, the corresponding domains include parts of Eastern Europe being 599 

poorly sampled by the ICOS23 network which explains the decrease in uncertainty reduction. 600 

The convergence of the results around TRN, PRS and OXK to nearly 65% uncertainty reduction 601 

in both December and July for the western European domain, and of the results at all sites to 602 

53% in July and 66% in December for the whole Europe, when increasing the spatial averaging 603 

area, starts between the same 105km2 and 106km2 (national scale) averaging areas. For smaller 604 

areas, the differences between July and December or between different spatial locations stay 605 

similar to what is seen at the 0.5°x0.5° scale.  606 

The similarity of the results for the western European domain despite differences at the grid scale 607 

in July and December can be explained by differences of correlations between areas at scales 608 

similar or larger than the national scale in the posterior uncertainties (since the correlations of the 609 

prior uncertainties aggregated at the national scale or at larger scales are very close for July and 610 

December). Figure 6 illustrates the variations of such correlations of the posterior uncertainty at 611 

the national scale between July and December using the example of correlations between 612 

Germany and other countries.  These correlations are usually more negative in December, which 613 

indicates a larger difficulty in December than in July to distinguish in the information from the 614 

measurement network the separate contributions of the different neighboring countries (or of 615 
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different areas of larger size). This can be attributed to the stronger winds in December which 616 

increase the extent of the flux footprints of the concentration measurements. Such an increase of 617 

the footprints in December limit the ability to solve for the fluxes in the vicinity of the 618 

measurement sites but increase the ability to solve for the fluxes at large scales.   619 

  620 

3.2 Impact of the extension of the ICOS network 621 

The effect on local (grid scale) uncertainty reduction of assimilating data from new sites in the 622 

ICOS network  depends on the coverage of the area by the initial ICOS23 network, as illustrated 623 

by the comparison of the results using ICOS23, ICOS50 and ICOS66 and the reference 624 

configuration of the inversion (see Fig. 2 and 7).  For example, adding one new site in Sweden or 625 

Finland yields a stronger increase of the uncertainty reduction than adding one site in the central 626 

part of Western Europe, where the network is already rather dense. Since most of the new sites 627 

from ICOS23 to ICOS50 and then ICOS66 are located in Western Europe, the improvements due 628 

to adding 27 or 43 sites to ICOS23 do not thus appear to be as critical as what can been achieved 629 

using the 23 sites of ICOS23. Still, the changes from ICOS23 to ICOS50 significantly enhance 630 

the uncertainty reduction at 0.5° resolution even in Western Europe in July, e.g., with uncertainty 631 

reduction increased from ~40% using ICOS23 to ~60% using ICOS66 in Switzerland. The 632 

impact of adding new sites is larger in December than in July, and, consequently, results for 633 

western Germany and Benelux quite converge between July and December when increasing the 634 

network to ICOS66.   635 

The impact on the scores of uncertainty reduction of the increase of the ICOS network is also 636 

significant at the national (compare Fig. 4 and Fig. 8) and European scales (see Table 1 and Fig. 637 

9) when comparing results with ICOS50 or ICOS66 to those obtained with ICOS23. The 638 

ICOS66 network delivers uncertainty reductions as high as 80% for countries like France and 639 

Germany in July. For Europe, the uncertainty reduction when using ICOS66 reaches 79% down 640 
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to ~15 TgCmonth-1 posterior uncertainty in December, and 64% down to ~33 TgCmonth-1 641 

posterior uncertainty in July. However, the increase from ICOS50 to ICOS66 does not seem to 642 

impact much the uncertainty reduction at these scales, especially in July.  643 

Figure 9 illustrates the diversity (depending on the space locations) of the evolution of the impact 644 

of increasing the network as a function of the NEE averaging spatial scale. For a low altitude site 645 

already present in the dense part of ICOS23, the impact of adding new sites increases when 646 

increasing the spatial scale of the analysis up to areas where ICOS23 is less dense (mainly in 647 

Eastern Europe) and where new sites are included in ICOS50. The impact also increases for 648 

SW1 (which is located in the northeastern border of the domain) with increasing spatial 649 

aggregation scale since encompassing more and more of the new sites from ICOS23 to ICOS50 650 

when extending the averaging domain to the European western area. But on the opposite, the 651 

impact of the addition of new sites can decrease when increasing the NEE spatial aggregation 652 

scale, e.g., at HYY where a new site is specifically added in ICOS50. 653 

 654 

3.3 Sensitivity to the correlation length of the prior uncertainty 655 

The impact of reducing the correlation e-folding length (from 250 km to 150 km) of the prior 656 

uncertainty in the inversion configuration is tested using ICOS66 in July (compare Fig. 7b and 657 

10a, Fig. 8b and 11a, and the corresponding curves in Fig. 9). Such a change of correlation 658 

length strongly decreases the values of uncertainty reduction at all spatial scales. This is because 659 

it decreases the prior uncertainty at every scale while decreasing the ability of the inversion 660 

system to extrapolate in space the information from measurement sites based on the knowledge 661 

about spatial correlations of the prior uncertainties. At 0.5° resolution, the areas of high 662 

uncertainty reduction narrows around the measurement sites and the smaller overlap of the areas 663 

of influence of these sites limits the highest local values of uncertainty reduction to 40%-50% 664 

while typical values in Western Europe now range from 20% to 40% instead of 30% to 65% 665 
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when using B250 (see Sect. 2.2.2 for the definition of the B matrices). The uncertainty reduction 666 

for countries such as the UK, Germany and Spain decreases when the e-folding correlation 667 

length is lowered from 250 km to 150 km, from more than 75%-80% to less than 70%. For the 668 

full European domain, it decreases from 64% to 47%. 669 

Even though these decreases can be very large, it is critical to keep in mind that they refer to 670 

uncertainty reductions compared to a prior uncertainty which is decreased by the new 671 

configuration of B (as illustrated at the country scale in Fig. A1). The posterior uncertainty in the 672 

European and two-week mean NEE in July using ICOS66 is decreased from ~33 TgC month-1 to 673 

29 TgCmonth-1 when changing the configuration of B from B250 to B150 (Table 1). Similarly, the 674 

posterior uncertainty is generally smaller at the national scale when changing the configuration 675 

of B from B250 to B150 (Fig. A2). We thus have an expected situation for which improving the 676 

knowledge on the prior NEE improves that of the posterior NEE even if in our case, the 677 

improvement of the knowledge on the prior NEE which is tested here also decreases the ability 678 

to extrapolate in space the information from the atmospheric measurements. However, of note is 679 

that when changing the configuration of B from B250 to B150, we do not improve the knowledge 680 

on the prior NEE at the model grid 0.5° resolution (since modifying the correlations but not the 681 

standard deviations in B). Given the lower uncertainty reduction when using B150, the posterior 682 

uncertainties are higher at 0.5° resolution when changing the configuration of B from B250 to 683 

B150 (Fig. A3). 684 

 685 

3.4 Sensitivity to the observation error  686 

The impact of dividing the standard deviation of the observation error by two in the inversion 687 

configuration is tested using ICOS50 in July (compare Fig. 7a and 10b, Fig. 8a and 11b and the 688 

corresponding curves in Fig. 9). The decrease of observation error increases the weight of the 689 

measurements in the inversion and the resulting uncertainty reduction. This increase is visible at 690 
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all spatial scales for the aggregation of the NEE, and relatively constant as a function of these 691 

spatial scales except at the European scale for which it is quite smaller, from 64% to 67%. This 692 

provides the highest scores of uncertainty reduction of this study at any spatial scales, the impact 693 

of division of the observation error by two being larger than that of increasing the ICOS network 694 

configuration from ICOS50 to ICOS66. 695 

 696 

4 Synthesis and conclusions  697 

We assessed the potential of CO2 mole fraction measurements from three configurations of the 698 

ICOS atmospheric network to reduce uncertainties in two-week mean European NEE at various 699 

spatial scales in summer and in winter. This assessment is based on a regional variational inverse 700 

modeling system with parameters consistent with the knowledge on uncertainties in prior 701 

estimates of NEE from ecosystem models and in atmospheric transport models. The results 702 

obtained with the various experiments from this study indicate an uncertainty reduction which 703 

ranges between ~50% and 80% for the full European domain, between ~70% and 90% for large 704 

countries in Western Europe (such as France, Germany, Spain, UK), where the ICOS network 705 

are denser, but below 50% in much cases for eastern countries where there are few ICOS sites 706 

even with the ICOS66 configuration. At 0.5° resolution, if excluding results when using B150 (for 707 

which the uncertainty reduction is applied to a different prior uncertainty), uncertainty reductions 708 

range from 30% to 65% in the dense parts of the networks (between northern Spain and eastern 709 

Germany) while it is generally below 30% east of Germany and Italy when using ICOS23 or east 710 

of Poland and Hungary when using ICOS66. The very high values of uncertainty reduction 711 

obtained in areas where ICOS sites are distant by less than the typical length scale of the prior 712 

uncertainty (Western Europe when using ICOS23 and a larger area when using ICOS66) is 713 

highly promising. 714 
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Despite the absence of seasonal variation for the uncertainty in the average NEE over Western 715 

Europe (at least according to our results for the year 2007) significant seasonal variations at 716 

higher resolution or for the full European domain reveal the influence of the atmospheric 717 

transport on the scores of uncertainty reduction. Using ICOS66 instead of ICOS23 does not limit 718 

this behavior since few sites are added between ICOS23 and ICOS66 in Eastern Europe where 719 

the largest seasonal variations of the uncertainty reduction occur. The impact of the larger wind 720 

speed in December yielding similar uncertainty reduction in July and December for Western 721 

Europe also highlights the influence of the atmospheric transport on the scores of uncertainty 722 

reduction. It demonstrates that such scores and their sensitivity to the network extension are not 723 

fully intuitive and that their derivation requires such a complex application of an inversion 724 

system as in this study. 725 

These scores of uncertainty reduction result in posterior uncertainties lower than 1.8 gC m-2 day-1 726 

at 0.5° resolution in the areas where the ICOS network is dense. At the national scale, posterior 727 

uncertainties scales are compared to the typical estimates of the NEE from the ORCHIDEE 728 

model for the corresponding two-week period in July 2007 in Table A2. The relative posterior 729 

uncertainty could be less than 20% for the countries gathering the largest NEE such as France, 730 

Germany, Poland or UK (if using ICOS66 in the three last cases, otherwise it should be less than 731 

30% if using ICOS23), even though it would not be the case for Scandinavian countries with a 732 

high NEE too. For some Eastern European countries, the posterior uncertainty could be very 733 

close to the estimate of NEE from ORCHIDEE but the general tendency is to obtain posterior 734 

uncertainties much lower than the estimate of the NEE from ORCHIDEE even when using 735 

ICOS23. This tendency is reflected at the European scale (Table 1) for which the posterior 736 

uncertainty when using ICOS23 and the reference inversion configuration is ~20% and ~30% of 737 

the total NEE from ORCHIDEE in July and December respectively. These numbers can be 738 

compared to the uncertainty targets defined for the CarbonSat satellite mission (ESA, 2015):  0.5 739 

gC m-2 day-1 at the 500 km ×500 km and 1 month scale. Figures 12, A1 and A2 shows that at 740 
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the 2-week and national scale, the prior uncertainties are systematically well larger than this 741 

target, but that the posterior uncertainties in Western and Northern Europe are generally close or 742 

smaller than this target even when using ICOS23. Since the temporal correlations in the prior 743 

uncertainty have a 1 month timescale and since the temporal correlations in the posterior 744 

uncertainty should be smaller, these uncertainties at the 2-week scale can be considered to be 745 

equal or lower than the corresponding uncertainties at the 1 month scale. Therefore, this 746 

indicates that the inversion is required to reach the target from the CarbonSat report for mission 747 

selection. It also indicates that this target is likely not reached in a large part of South Eastern 748 

Europe even when using ICOS66 but that for countries like the Czech Republic and Poland, 749 

extending the network from ICOS23 to ICOS66 allows reaching it. Finally, it indicated that the 750 

ICOS23 network is sufficient to reach this target in Western Europe. 751 

The comparison of the sensitivity of the results in July to changes in the observation network, 752 

correlation lengths of the prior uncertainty and observation error (in the range of tests conducted 753 

in this study) indicates a different hierarchy of the impact of such changes depending on the 754 

spatial scales. Increasing the network from ICOS23 to ICOS50 yields the largest change in 755 

posterior uncertainty due to a significantly better monitoring of the eastern part of Europe. 756 

However, for western countries, at the grid to national scales, the impact of changing the 757 

inversion parameters is generally larger than that of the increase of the network. Given the range 758 

of spatial correlations in the prior uncertainty that are investigated here, the spacing of ICOS 759 

sites in Western Europe is already sufficiently narrow to ensure that this full domain is 760 

significantly constrained by the measurements from ICOS23. The weight of this constraint at 761 

grid to national scales in Western Europe is more directly modified by dividing by two the 762 

observation errors or shortening by nearly half the correlation length of the prior uncertainties 763 

than by doubling the number of monitoring sites.  764 
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The fact, in Western Europe, that notional targets for the posterior uncertainty in national scale 765 

NEE are already reached in Western Europe when using ICOS23, that the sensitivity of the 766 

posterior uncertainties at the national to 0.5° scale to increase in the network is relatively low, 767 

and the fact that results in Eastern Europe are highly impacted by the increase of the network 768 

encourage a spread of the ICOS network to poorly monitored areas rather than a densification of 769 

the core of this network in Western Europe. This recommendation sounds natural but this study 770 

would have rather supported a densification of the network in Western Europe if revealing that 771 

the density of the ICOS23 network was not high enough there, so that spreading the network in 772 

the East would have resulted in preventing from getting useful information about the NEE 773 

anywhere in Europe. These results also raise optimism regarding the benefits from improvements 774 

of the atmospheric transport modeling or from the improvement of the prior “bottom-up” (as 775 

opposed to the “top-down” information from atmospheric concentrations) knowledge on the 776 

fluxes. 777 

Some limitations of the calculations should be kept in mind when analyzing the results more 778 

precisely. The convergence of the calculations as a function of the number of minimization 779 

iterations during the inversion or as a function of the number of inversions in each Monte Carlo 780 

ensemble experiment, has been assessed based on average diagnostics. Locally, some results 781 

have not converged. Additionally, the use of ICOS50 or ICOS66 should require more 782 

minimization iterations to converge to the same extent as when using ICOS23 or ICOS50 783 

(respectively) due to the increase of the dimension of the inversion problem. As an example, this 784 

results in the diagnostic of very slight increases (which do not yield significant relative 785 

differences) of the posterior uncertainty for Sweden of for Europe when extending ICOS50 to 786 

ICOS66. Such problems seem very minor. They slightly alter the scores of uncertainty reduction 787 

for specific areas only, but they are not significant enough to impact the typical range of values 788 

analyzed and the subsequent conclusions in this study.  789 
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Another point is that the confidence in the reference configuration of the inversion has been built 790 

based on the diagnostics of the errors in NEE simulated with the ORCHIDEE model at the local 791 

scale from Chevallier et al. (2012) and at the monthly and Europe wide scale from Broquet et al. 792 

(2013). A simple model is used to represent the correlations of the prior uncertainty in NEE and 793 

thus the prior uncertainty in NEE at the intermediate scales. It may need to be refined to better 794 

account for the heterogeneity of the European ecosystems with potential impact on the results of 795 

posterior uncertainty at fine scales. Furthermore, the assumption that the uncertainties in CO2 796 

anthropogenic emissions do not have a significant signature at the ICOS sites is based on studies 797 

at relatively few monitoring sites corresponding to the coarse atmospheric network of the 798 

CarbonEurope-IP project (Schulze et al. 2010). When considering far denser networks with 799 

many sites close to urban areas (such as in and around the Netherlands when using ICOS66), this 800 

uncertainty should likely be accounted for. The assumption that uncertainties in the boundary 801 

conditions and in the anthropogenic emissions have a weak impact on the inversion is also 802 

supported on average by the results of Broquet et al. (2013). But when assessing results for 803 

specific areas such as in this study, this assumption may be weakened in highly industrialized 804 

countries or close to the model domain boundaries. Such considerations should lead to further 805 

investigation regarding the inversion configuration and thus potential refinement of the results.  806 

This study focuses on results for two-week mean fluxes while a critical target of the inversion 807 

should be related to annual mean fluxes. This and the strong influence of the variations of the 808 

meteorological conditions on the inversion results (which limits the ability to extrapolate the 809 

results to the annual scale) encourage the set-up of 1-year long experiments. However, this study 810 

already gives qualitative insights on such results and on their sensitivity to the observing network 811 

or to accuracy of the different components of the system which should support future network 812 

design studies in Europe. By demonstrating the capability for deriving scores of uncertainty 813 

reductions for NEE at 6-hour and 0.5° resolution, it supports the development of operational 814 
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inversion systems deriving the optimal location for new sites to be installed in the European 815 

network. 816 
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Table 1.  Uncertainty reduction in two-week and European mean NEE for July and December as 1105 

a function of the observation network and of the configuration of the inversion parameters (B250 1106 

or B150 for B and Rref or Rred for R). 1107 

  1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 Month B R 

Prior 

uncertainty 

(TgCmonth-1) 

Posterior 

uncertainty 

(TgCmonth-1) 

NEE from ORCHIDEE 

(TgCmonth-1) 

Uncertainty 

Reduction 

(%) 

ICOS23 
July B250 Rref 91.2 42.6 -201.6 53 

December B250 Rref 74.9 25.5 80.3 66 

ICOS50 

July B250 Rref 91.2 32.4 -201.6 64 

December B250 Rref 74.9 19.5 80.3 74 

July B250 Rred 91.2 30.4 -201.6 67 

ICOS66 

July B250 Rref 91.2 32.8 -201.6 64 

December B250 Rref 74.9 15.4 80.3 79 

July B150 Rref 55.0 29.2 -201.6 47 
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Table A1.  Atmospheric measurement sites for the different ICOS network configurations 1116 

considered in this study with associated observation errors in the reference configuration of the 1117 

inversion. Two values are given for the observation error at a given site for low altitude sites: 1118 

that for temporal window 12:00-18:00 (left) and window 18:00-20:00 (right), and one value for 1119 

window 00:00-06:00 at high altitude sites. Height corresponds to the vertical location of the site 1120 

above the ground level (magl) and elevation corresponds to the vertical location of the ground 1121 

above sea level at the site position. 1122 

 1123 

Network  Site  Country  Code  type  Lon  Lat 
Height 
magl 

Elevation 
masl 

Assim. 
Window 

Obs. Err. (ppm) 
July                 Dec 

ICOS23 

Bialystok  PL  bik  TT  23.01  53.23  300  480  12‐20  4.2‐7.2  10.2‐15.2 
Biscarrose  FR  bis  G  ‐1.23  44.38  47  120  12‐20  4.2‐7.2  10.2‐15.2 
Cabauw  NL  cbw  TT  4.93  51.97  200  200  12‐20  4.2‐7.2  10.2‐15.2 
Monte Cimone  IT  cmn  G  10.68  44.17  12  2177  00‐06  3.6  3.6 
Gif‐sur‐Yvette  FR  gif  G  2.15  48.71  7  167  12‐20  4.2‐7.2  10.2‐15.2 
Heidelberg  DE  hei  G  8.67  49.42  30  146  12‐20  4.2‐7.2  10.2‐15.2 
Hegyhatsal  HN  hun  TT  16.65  46.96  115  363  12‐20  4.2‐7.2  10.2‐15.2 
Jungfraujoch  CH  jfj  G  7.98  46.55  gl  3580  00‐06  3.6  3.6 
Kasprowy Wierch  PL  kas  G  19.98  49.23  gl  1987  00‐06  3.6  3.6 
Lampedusa  IT  lmp  G  12.63  35.52  8  58  12‐20  4.2‐7.2  10.2‐15.2 

La Muela  ES  lmu  TT  ‐1.1  41.59  79  649  12‐20  4.2‐7.2  10.2‐15.2 

Lutjewad  NL  lut  G  6.35  53.4  60  61  12‐20  4.2‐7.2  10.2‐15.2 

Mace Head  IR  mhd  G  ‐9.9  53.33  15  40  12‐20  4.2‐7.2  10.2‐15.2 

Ochsenkopf  DE  oxk  TT  11.81  50.03  163  1185  00‐06  3.6  3.6 

Pallas  FI  pal  G  24.12  67.97  5  565  12‐20  4.2‐7.2  10.2‐15.2 

Plateau Rosa  IT  prs  G  7.7  45.93  gl  3480  00‐06  3.6  3.6 

Puy de Dôme  FR  puy  G  2.97  45.77  10  1475  00‐06  3.6  3.6 

Schauinsland  DE  sch  G  7.92  47.9  gl  1205  00‐06  3.6  3.6 

Trainou  FR  trn  TT  2.11  47.96  180  311  12‐20  4.2‐7.2  10.2‐15.2 

Westerland    DE  wes  G  8.32  54.93  gl  12  12‐20  4.2‐7.2  10.2‐15.2 

Angus  UK  tta  TT  ‐2.98  56.56  220  520  12‐20  4.2‐7.2  10.2‐15.2 

Egham  UK  egh  G  ‐0.55  51.43  5  45  12‐20  4.2‐7.2  10.2‐15.2 

Norunda  SE  nor  TT  17.48  60.09  102  147  12‐20  4.2‐7.2  10.2‐15.2 

ICOS50 

Kresin u Pacova  CZ  kre  TT  15.08  49.57  250  790  12‐20  4.2‐7.2  10.2‐15.2 

Hohenpeißenberg  DE  hpb  TT  11.01  47.8  159  1106  00‐06  3.6  3.6 

Zugspitze  DE  zug  G  10.98  47.42  10  2660  00‐06  3.6  3.6 

Risø Meteorological 
Mast 

DK  ris  TT  12.09  55.65  125  130  12‐20  4.2‐7.2  10.2‐15.2 

Høvsøre Wind Test 
Station 

DK  hov  TT  8.15  56.44  116  116  12‐20  4.2‐7.2  10.2‐15.2 

Carnsore Point EMEP  
monitoring Station 

IR  crn  G  ‐6.33  52.06  3  3  12‐20  4.2‐7.2  10.2‐15.2 

Malin Head Synoptic  
Meteorological Station 

IR  mld  G  ‐7.37  55.38  3  13  12‐20  4.2‐7.2  10.2‐15.2 

Katowice Kosztowy  PL  kat  TT  19.12  50.19  355  655  12‐20  4.2‐7.2  10.2‐15.2 
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Piła Rusionow  PL  pil  TT  16.26  53.17  320  455  12‐20  4.2‐7.2  10.2‐15.2 

Jemiolow  PL  jem  TT  15.28  52.35  314  475  12‐20  4.2‐7.2  10.2‐15.2 

Hyltemossa  SE  hyl  TT  13.42  56.1  150  255  12‐20  4.2‐7.2  10.2‐15.2 

Observatoire  
Pérenne de 
l'Environnement 

FR  ope  TT  5.36  48.48  120  512  12‐20  4.2‐7.2  10.2‐15.2 

Observatoire  
de Haute Provence 

FR  ohp  TT  5.71  43.93  100  740  12‐20  4.2‐7.2  10.2‐15.2 

Pic du Midi  FR  pdm  G  0.14  42.94  10  2887  00‐06  3.6  3.6 

SMEAR II Hyytiälä  FI  hyy  TT  24.29  61.85  127  308  12‐20  4.2‐7.2  10.2‐15.2 

Puijo‐Koli  
ICOS eastern Finland 

FI  pui  TT  27.65  62.9  176  406  12‐20  4.2‐7.2  10.2‐15.2 

Utö ‐ Baltic sea  FI  uto  G  21.38  59.78  60  68  12‐20  4.2‐7.2  10.2‐15.2 

Finokalia  GR  fik  G  25.67  35.34  2  152  12‐20  4.2‐7.2  10.2‐15.2 

Birkenes Observatory  NO  bir  G  8.25  58.38  gl  190  12‐20  4.2‐7.2  10.2‐15.2 

Andøya Observatory  NO  and  G  16.01  69.27  gl  380  12‐20  4.2‐7.2  10.2‐15.2 

Svartberget  SE  sva  TT  19.78  64.26  150  385  12‐20  4.2‐7.2  10.2‐15.2 

Tacolneston (norfolk)  UK  tac  G  1.14  52.52  191  261  12‐20  4.2‐7.2  10.2‐15.2 

Ridge Hill  UK  rhi  G  ‐2.54  52  152  356  12‐20  4.2‐7.2  10.2‐15.2 

Delta Ebre  ES  dec  TT  0.79  40.74  11  16  12‐20  4.2‐7.2  10.2‐15.2 

Valderejo  ES  val  TT  ‐3.21  42.87  25  1100  00‐06  3.6  3.6 

Xures‐Invernadeiro  ES  xic  TT  ‐8.02  41.98  30  902  12‐20  4.2‐7.2  10.2‐15.2 

Ispra  IT  isp  G  8.63  45.81  40  230  12‐20  4.2‐7.2  10.2‐15.2 

ICOS66 

Lindenberg  DE  lin  TT  14.12  52.21  99  192  12‐20  4.2‐7.2  10.2‐15.2 

Mannheim  DE  man  TT  8.49  49.49  213  323  12‐20  4.2‐7.2  10.2‐15.2 

Gartow 2  DE  grt  TT  11.44  53.07  344  410  12‐20  4.2‐7.2  10.2‐15.2 

Messkirch/Rohrdorf  DE  msr  TT  9.12  48.02  240  892  12‐20  4.2‐7.2  10.2‐15.2 

Wesel  DE  wsl  TT  6.57  51.65  321  340  12‐20  4.2‐7.2  10.2‐15.2 

Helgoland  DE  hlg  G  7.9  54.18  10  40  12‐20  4.2‐7.2  10.2‐15.2 

Iznajar  ES  izn  TT  ‐4.38  37.28  5  555  12‐20  4.2‐7.2  10.2‐15.2 

Hengelo  NL  hen  G  6.75  52.34  70  80  12‐20  4.2‐7.2  10.2‐15.2 

Goes  NL  goe  G  3.78  51.48  70  70  12‐20  4.2‐7.2  10.2‐15.2 

Peel  NL  pee  G  5.98  51.37  70  80  12‐20  4.2‐7.2  10.2‐15.2 

Noordzee  NL  nse  G  4.73  54.85  50  50  12‐20  4.2‐7.2  10.2‐15.2 

Cap Corse  FR  cor  G  9.35  42.93  35  85  12‐20  4.2‐7.2  10.2‐15.2 

Roc Tredudon  FR  roc  G  ‐3.91  48.41  10  373  12‐20  4.2‐7.2  10.2‐15.2 

Alfabia  ES  alf  TT  2.72  39.74  gl  1069  00‐06  3.6  3.6 

Saissac  FR  sai  TT  2.1  43.39  300  800  00‐06  3.6  3.6 

NIO  FR  nio  TT  0.05  46.19  330  503  12‐20  4.2‐7.2  10.2‐15.2 

 1124 

 1125 

 1126 
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Table A2. NEE uncertainty budget for European countries for July 2007 estimated using the 1127 

reference inversion configuration and different atmospheric CO2 networks. Uncertainty 1128 

reduction values (UR) are shown in the last two columns. 1129 

  

Country 

NEE,  

TgCcountry-1month-1 

NEE prior unc. 

TgCcountry-1month-1 

NEE post. Unc. 

TgCcountry-1month-1 
UR (%) 

ICOS23 ICOS66 ICOS23 ICOS66 

Austria -3.95 4.60 1.49 1.56 68 66 

Belgium -1.05 1.88 0.69 0.69 63 63 

Bulgaria -1.22 5.72 5.43 4.06 5 29 

Croatia -1.64 2.27 1.17 1.13 48 50 

Cyprus 0.04 0.18 0.18 0.18 0 1 

Czech Republic -4.35 4.08 2.06 1.52 50 63 

Denmark -1.97 1.74 1.35 0.76 22 57 

Estonia -2.67 2.37 1.66 1.42 30 40 

Finland -8.37 11.56 5.92 3.14 49 73 

France -17.16 18.41 3.52 3.04 81 84 

Germany -16.00 14.20 4.73 2.73 67 81 

Greece 0.09 3.58 3.45 2.89 4 19 

Hungary -2.19 4.95 2.61 2.31 47 53 

Ireland -2.49 2.42 1.68 1.27 30 48 

Italy -4.44 9.83 4.24 3.82 57 61 

Latvia -3.61 3.32 2.33 2.22 30 33 

Lithuania -3.92 3.42 2.02 2.10 41 39 

Luxembourg -0.12 0.17 0.10 0.10 42 44 

Netherlands -0.97 1.99 0.65 0.50 68 75 

Norway -6.02 9.65 4.85 4.65 50 52 

Poland -21.10 13.26 5.02 4.24 62 68 
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Portugal -1.17 4.24 3.71 2.80 12 34 

Romania -7.14 10.79 9.14 8.34 15 23 

Slovakia -2.82 2.59 1.30 1.30 50 50 

Slovenia -1.17 1.04 0.48 0.43 54 58 

Spain -3.54 19.90 7.16 3.97 64 80 

Sweden -9.84 16.50 7.53 5.62 54 66 

Switzerland -1.72 2.61 1.03 0.68 60 74 

UK -8.52 7.56 2.11 1.59 72 79 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 
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 1137 

Figure 1. Site location for the different ICOS network configurations used in this study: (a) 1138 

ICOS23 (b) ICOS50 (c) ICOS66. Dark blue circles correspond to ICOS23 and the red circles are 1139 

the new sites for ICOS50 and ICOS66 compared to ICOS23. The European domain (~6.8 * 106 1140 

km2 of land surface) covered by these figures corresponds to the domain of the configuration of 1141 

the CHIMERE atmospheric transport model used in this study. The red rectangle in (c) 1142 
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corresponds to a western European domain (WE domain, ~3.5 * 106 km2 of land surface) which 1143 

is used for some of the present analysis because it is significantly better sampled by the ICOS 1144 

networks than other areas. Green circles in (c) are the station locations used for the study of the 1145 

uncertainty reduction as a function of the spatial scale of the aggregation around each station (in 1146 

Sect. 3.1.4). 1147 

 1148 

 1149 

 1150 

 1151 

 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 
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 1163 

Figure 2. Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1164 

NEE at 0.5° resolution in July (a) and in December (b) when using ICOS23 (red dots) and the 1165 
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reference inversion setup. Red/blue colors indicate relatively high/low uncertainty reduction 1166 

(with min = 0, max = 0.68 in the color scale). 1167 

 1168 

 1169 

 1170 

 1171 

 1172 

 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

 1179 

 1180 
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 1186 

Figure 3. Standard deviations (gCm-2day-1) of the prior (a,b) and posterior (c,d) uncertainties in 1187 

two-week mean NEE at 0.5° resolution for (a,c) July and (b,d) December. Posterior uncertainties 1188 

are given for inversions using ICOS23 (red dots) and the reference inversion setup. Red/blue 1189 

colors indicate relatively high/low uncertainties (with min = 0 gCm-2day-1, max = 3 gCm-2day-1 1190 

in the color scale). 1191 

 1192 
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 1194 

 1195 

 1196 

 1197 
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 1198 

Figure 4. Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1199 

NEE at the country scale for July (a) and December (b) when using ICOS23 and the reference 1200 
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inversion configuration. Red/blue colors indicate relatively high/low uncertainty reduction (with 1201 

min = 0, max = 0.95 in the color scale). 1202 

 1203 

 1204 

 1205 

 1206 
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 1221 

Figure 5. Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1222 

NEE in July and December 2007 using ICOS23 and the reference configuration of the inversion, 1223 

as a function of the size (logarithmic scale) of the spatial averaging area (in km2; for each curve 1224 

values are derived for 1.5ºx1.5º, 2.5ºx2.5º, 3.5ºx3.5º, 4.5ºx4.5º and 10.5ºx10.5º areas which 1225 

correspond to different values in terms of km2 depending on their location in Europe) around 1226 

each station TRN (red curves), PRS (blue curves), HYY (green curves), OXK (pink curves) and 1227 

SW1 (grey curves; see the locations in Fig. 1c). Solid and dash lines correspond to results for 1228 

July and December respectively (see the legend within the figure). The results of uncertainty 1229 

reduction for the whole European domain are included (red rectangle). The results for the 1230 

western European domain defined in Fig. 1c are included on curves corresponding to sites which 1231 

are located in this domain (TRN, PRS and OXK, see the green rectangle). 1232 

 1233 

 1234 

 1235 
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 1236 

Figure 6. Correlations of the posterior uncertainties in two-week mean NEE between Germany 1237 

and the other European countries in July (a) and December (b) from the reference inversions 1238 

with ICOS23. Germany is masked in white. Red/blue colors indicate relatively high 1239 

positive/negative correlations (with min= -0.45, max = 0.45 in the color scale).  1240 

 1241 
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 1252 

Figure 7. Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1253 

NEE at 0.5° resolution in July (a,b) and December (c,d) when using ICOS50 (a,c) and ICOS66 1254 

(b,d) and the reference inversion configuration.  Red dots corresponds to the ICOS23 (a,c) or 1255 

ICOS50 (b,d) sites while white dots correspond to the additional sites included in ICOS50 or 1256 

ICOS66 respectively. Red/blue colors indicate relatively high/low uncertainty reduction (with 1257 

min = 0, max = 0.68 in the color scale). 1258 

 1259 

 1260 

 1261 

 1262 

 1263 



 

56 
 

 1264 

Figure 8. Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1265 

NEE at the country scale in July (a,b) and December (c,d), when using ICOS50 (a,c) and 1266 

ICOS66 (b,d). Red/blue colors indicate relatively high/low uncertainty reduction (with min = 0, 1267 

max = 0.95 in the color scale).  1268 
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Figure 9. Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1277 

NEE for July 2007 as a function of the size (in logarithmic scale) of the spatial averaging area 1278 

centered on (a) SW1, (b) HYY, (c) TRN, (d) OXK, and (e) PRS. Red, orange, green lines: 1279 

results with the reference configuration of the inversion using ICOS23, ICOS50 and ICOS66 1280 

respectively; blue: results when using ICOS50 and the inversion configuration with R=Rred; 1281 

pink: results when using ICOS66 and the inversion configuration with B=B150. The results of 1282 

uncertainty reduction for the whole European domain are included systematically. The results for 1283 

the western European domain defined in Fig. 1c are included on curves corresponding to sites 1284 

which are located in this domain (TRN, PRS and OXK). 1285 
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 1298 

Figure 10.  Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1299 

NEE at 0.5º horizontal resolution in July when modifying the inversion configuration from the 1300 

reference one: using B150 instead of B250 and ICOS66 (a) using Rred instead of Rref and ICOS50 1301 

(b). Red dots corresponds to the ICOS23 (b) or ICOS50 (a) sites while white dots correspond to 1302 

the additional sites included in ICOS50 or ICOS66 respectively. Red/blue colors indicate 1303 

relatively high/low uncertainty reduction (with min = 0, max = 0.68 in the color scale). 1304 
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 1305 

Figure 11.  Uncertainty reduction (theoretically comprised between 0 and 1) for two-week mean 1306 

NEE at the country scale in July when modifying the inversion configuration from the reference 1307 

one by using B150 instead of B250 and ICOS66 (a) using Rred instead of Rref and ICOS50 (b). 1308 

Red/blue colors indicate relatively high/low uncertainty reduction (with min = 0, max = 0.95 in 1309 

the color scale). 1310 
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 1311 

Figure 12. Standard deviations (gCm-2day-1) of the prior (a) and posterior (b) flux uncertainties 1312 

at country scale. Posterior uncertainties are given for inversions using ICOS23 (red dots) and the 1313 

reference inversion setup. Red/blue colors indicate relatively high/low uncertainties (with min = 1314 

0 gCm-2day-1, max = 1.975 gCm-2day-1 in the color scale).  1315 

 1316 

 1317 

 1318 

 1319 
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 1320 

Figure A1. Standard deviations (gCm-2day-1) of the prior flux uncertainties at country scale for 1321 

July when considering B150. Red dots: ICOS66. Red/blue colors indicate relatively high/low 1322 

uncertainties (with min = 0 gCm-2day-1, max = 1.975 gCm-2day-1 in the color scale).  1323 

 1324 
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 1333 

Figure A2. Standard deviations (gCm-2day-1) of the posterior uncertainties at country scale for 1334 

July when using ICOS50 (a,c) and ICOS66 (b,d), the reference inversion configuration (a,b), 1335 

using B150 instead of B250 (d) using Rred instead of Rref (c). Red/blue colors indicate relatively 1336 

high/low uncertainties (with min = 0 gCm-2day-1, max = 1.975 gCm-2day-1 in the color scale). 1337 

 1338 

 1339 
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 1345 

Figure A3. Standard deviations (gCm-2day-1) of the posterior uncertainties in two-week mean 1346 

NEE at 0.5° resolution for July when using ICOS50 (a,c) and ICOS66 (b,d), the reference 1347 

inversion configuration (a,b), using B150 instead of B250 (d) using Rred instead of Rref (c). Red 1348 

dots corresponds to the ICOS23 (a,c) or ICOS50 (b,d) sites while white dots correspond to the 1349 

additional sites included in ICOS50 or ICOS66 respectively. Red/blue colors indicate relatively 1350 

high/low uncertainties (with min = 0 gCm-2day-1, max = 3 gCm-2day-1 in the color scale). 1351 


