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Abstract

Air pollution variability is strongly dependent on meteorology. However, quantifying the
impacts of changes in regional climatology on pollution extremes can be difficult due to
the many non-linear and competing meteorological influences on the production, trans-
port, and removal of pollutant species. Furthermore, observed pollutant levels at many5

sites show sensitivities at the extremes that differ from those of the overall mean, in-
dicating relationships that would be poorly characterized by simple linear regressions.
To address this challenge, we apply quantile regression to observed daily ozone (O3)
and fine particulate matter (PM2.5) levels and reanalysis meteorological fields in the
United States over the past decade to specifically identify the meteorological sensitiv-10

ities of higher pollutant levels. From an initial set of over 1700 possible meteorological
indicators (including 28 meteorological variables with 63 different temporal options) we
generate reduced sets of O3 and PM2.5 indicators for both summer and winter months,
analyzing pollutant sensitivities to each for response quantiles ranging from 2–98 %.
Primary drivers of high-quantile O3 levels include temperature and relative humidity15

in the summer, while winter O3 levels are most commonly associated with incoming
radiation flux. Drivers of summer PM2.5 include temperature, wind speed, and tropo-
spheric stability at many locations, while stability, humidity, and planetary boundary
layer height are the key drivers most frequently associated with winter PM2.5. We find
key differences in driver sensitivities across regions and quantiles. For example, we find20

nationally averaged sensitivities of 95th percentile summer O3 to changes in maximum
daily temperature of approximately 0.9 ppb ◦C−1, while the sensitivity of 50th percentile
summer O3 (the annual median) is only 0.6 ppb ◦C−1. This gap points to differing sen-
sitivities within various percentiles of the pollutant distribution, highlighting the need
for statistical tools capable of identifying meteorological impacts across the entire re-25

sponse spectrum.
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1 Introduction

Poor air quality is projected to become the most important environmental cause of
premature human mortality by 2030 (WHO, 2014). Long-term exposure to high levels
of ozone (O3) has been linked to increased risk of respiratory illness, while chronic
exposure to elevated fine particulate matter (PM2.5) is associated with lung cancer,5

respiratory, and cardiovascular disease (e.g. Dockery et al., 1993; Jerrett et al., 2009;
Krewski et al., 2009; Pope III et al., 2009). In addition to these consistently documented
risks of chronic exposure, there is some evidence that acute exposures to pollution
may themselves carry risks to human health above and beyond those of the long-term
mean exposures (Bell et al., 2005). Thus, high pollution events may be responsible10

for a larger fraction of annual acute mortality. In addition, particularly extreme events
may hinder day-to-day activities, and require the implementation of drastic tactical air
pollution control measures (e.g. widespread reduction in vehicle usage and industrial
activity during the Beijing Olympics). Despite the lack of an observed threshold con-
centration for detrimental impacts of air pollution (e.g. Dockery et al., 1993), ambient15

air quality regulations are typically implemented as thresholds, with penalties for ex-
ceedances. For example, in the United Stated, pollution standards for O3 and PM2.5
include limits on not only mean annual values (in the case of PM2.5), but also thresh-
olds for high annual values (equivalent to the averaged 98th or 99th percentiles for
PM2.5 and O3, respectively). Thus, predicting and understanding potential changes in20

extreme air pollution episodes is central to both air pollution policy and human health
concerns.

A changing climate may modulate air quality, with implications for human health. Pol-
lutant formation, transport, lifetime, and even emissions all depend, to a certain degree,
on local meteorological factors (Jacob and Winner, 2009; Tai et al., 2010), meaning that25

changes in the behaviors of these factors will often lead to changes in pollutant levels
and exposure risks. Understanding the relationships between meteorological variabil-
ity and observed pollutant levels will be critical to the development of robust pollution
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projections, as well as sound pollution control strategies. However, while straightfor-
ward sensitivity analyses using long-term averages and simple linear regressions pro-
vide valuable information on mean pollutant behavior, they are insufficient for analyses
of extreme behaviors. Drivers and sensitivities characteristic of average pollutant re-
sponses will not necessarily be reflected throughout the entire pollutant distribution. To5

evaluate these relationships statistically, alternative methodologies must be used.
Previous studies examining the impact of meteorology on pollution levels have ad-

dressed the problem using a variety of tools. Modeling sensitivity studies offer a direct
means of comparing the impacts of large-scale scenarios or individually adjusted pa-
rameters, allowing for a degree of comparison and replication that is impossible using10

only observations (e.g. Hogrefe et al., 2004; Mickley et al., 2004; Murazaki and Hess,
2006; Steiner et al., 2006; Heald et al., 2008). From such output, pollutant levels under
multiple conditions or scenarios can be evaluated more or less in the same way that
observed levels are, including the examination of global burdens, regional patterns, or
even local exceedance frequencies as a function of meteorological changes. However,15

while these tools are powerful, it can be difficult to verify and understand projected
changes due to the high degree of complexity of these models. On the other hand,
observation-based examinations (e.g. Bloomer et al., 2009; Rasmussen et al., 2012)
are tied closely to the actual underlying physical processes producing changes in pol-
lutant levels, but are naturally limited in terms of identifying and quantifying the impacts20

of individual drivers – it is difficult to separate the impacts of different meteorological
factors without the benefit of multiple sensitivity comparisons afforded by models.

Ordinary least-squares (OLS) regressions are effective tools for identifying trends
and sensitivities in the distribution of pollution levels as a whole, especially for well-
behaved data showing uniform sensitivities. Previous studies have analyzed the im-25

pacts of changes in specific meteorological conditions on O3 and PM2.5 levels (e.g.
Brasseur et al., 2006; Liao et al., 2006), finding connections between weather pat-
terns and mean pollutant response. In particular, the sensitivity of surface O3 levels to
changes in climate – the so-called “climate change penalty” (Wu et al., 2008) – has
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been examined in multiple studies worldwide (e.g. Bloomer et al., 2009), but previous
examinations of individual meteorological sensitivities have typically produced single,
monovariate estimates for changes in O3 given changes in each driver (e.g. temper-
ature). However, when the variability of a given response is itself a function of the
independent variable (i.e. the distribution “fans out”), the information provided by such5

regressions is less valuable for describing the specific response across the distribution
– especially the extremes (Fig. 1a). If the sensitivities of O3 extremes to temperature
tend to be higher than those of median to low O3 days (as is the case at many pol-
luted locations), a single sensitivity value would underestimate the increase in extreme
O3 event frequencies and magnitudes, given rising temperatures. This kind of behav-10

ior can be more effectively characterized through the use of more advanced statistical
tools, such as quantile regression (Koenker and Bassett Jr., 1978). By linearizing and
weighting the cost function of OLS regression, quantile regression (QR) allows for the
quantification of sensitivity across the entire distribution of response levels, with the
higher quantile regression slopes showing the behavior of the response variable’s high15

values and the lower quantiles showing the behavior of the low values as a function
of any given indicator variable (Fig. 1b). Here, we apply multivariate QR to an analysis
of meteorological drivers of O3 and PM2.5, with the goal of identifying the drivers most
responsible for changes in peak pollutant levels throughout the United States, and how
these differ from the median response. Such a statistical examination of historical ob-20

servations can provide a valuable reference point for the evaluation of model-predicted
extremes, as well as a platform for short-term pollutant projections.

2 Methodology

2.1 Inputs

We use O3 and PM2.5 measurements from the US Environmental Protection Agency’s25

(EPA) Air Quality System (AQS) network, including daily peak 8 h average measure-
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ments of O3 and daily mean PM2.5 levels. All stations with at least 150 valid maximum
daily 8 h averages between 2004 and 2012 are included in this study, totaling 1347
stations for summer O3, 675 stations for winter O3, 647 stations for summer PM2.5, and
636 stations for winter PM2.5 (locations and 95th percentile concentrations shown in
Fig. 2).5

Meteorological variables are taken from the NCEP North American Regional Reanal-
ysis (NARR) product (Mesinger et al., 2006). With a spatial resolution of 32 km and 8
output fields per day (representing 3 hourly averages), NARR output provides a rea-
sonable spatial and temporal match for each of the AQS stations of interest. While
the NARR product represents modeled output and includes its own errors and biases10

when compared to observations, it allows for the consistent use of many variables at
high spatial and temporal resolution, most of which would not be available at all in-
cluded AQS stations examined here. NARR reanalyses have been used in previous
examinations of meteorological air-pollution drivers with some success (e.g. Tai et al.,
2010).15

2.2 Meteorological variable generation

As an initial step towards understanding the impacts of meteorology on pollutant ex-
tremes, we construct a large set of possible meteorological drivers, including NARR
meteorological variables for a range of time frames. By extending the initial scope of
possible drivers, we attempt to capture all the important factors and interactions, in-20

cluding not only effects that were important at all sites, but also those that stood out
only in particular regions or types of locations. To this end, we begin by considering
as many potential indicators as possible, gradually trimming the list down to a final set
to be used in the multivariate quantile regressions. We use the 3 hourly NARR output
to reconstruct diurnal cycles for each meteorological variable at each station through25

bilinear interpolation of the gridded fields to station latitudes and longitudes.
In addition to the raw variables available through NARR output, we calculate several

derived parameters. The synoptic recirculation of air has been linked to elevated pollu-
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tant concentrations at many sites around the world, especially in coastal regions where
diurnal wind patterns are prone to recirculation (Alper-Siman Tov et al., 1997; St. John
and Chameides, 1997; Yimin and Lyons, 2003; Zhao et al., 2009). When air masses
are returned to a site with ongoing emissions, the buildup of precursor concentrations
may generate exceptionally high pollutant levels. To measure this effect we calculate5

a daily Recirculation Potential Index (RPI) from surface wind speeds, indicating the ratio
between the summed vector and scalar magnitudes of 3 hourly wind speeds over the
previous 24 h (Levy et al., 2009). A high RPI (close to 1) indicates that, regardless of
average wind-velocity magnitudes, the total displacement of air over the previous 24 h
was low, potentially leading to a pollutant buildup. Meanwhile, a very low RPI (close to10

0) indicates steady, consistent wind, advecting air masses away from a location.
Stagnation, or the relative stability of tropospheric air masses, is another meteorolog-

ical phenomenon previously cited as a driver of pollutant extremes (Banta et al., 1998;
Jacob and Winner, 2009; Valente et al., 1998). While some of the raw meteorologi-
cal fields (e.g. wind speed and precipitation) are already themselves good indicators15

of local stagnation, Lower Tropospheric Stability (LTS), the difference between surface
and 700 hPa potential temperatures, is also calculated as a reflection of temperature
inversion strength in the lower troposphere (Klein and Hartmann, 1993). Temperature
inversions, in which the daytime pattern of air being warmer near the Earth’s surface
is reversed, generally lead to stable, stagnant conditions well suited for the buildup of20

pollutants such as O3 and PM2.5. This phenomenon can be particularly pronounced
in areas with geographical barriers to horizontal transport, such as the basins of Los
Angeles and Salt Lake City (Langford et al., 2010; Pope, 1991).

From the selected set of raw and derived NARR meteorological fields (Table 1), we
generate a range of temporal variables for each individual meteorological variable, in-25

cluding extrema and means for each 24 h day, as well as for 8 h daytime and previous
8 h nighttime ranges. To include possible long-term impacts of these meteorological
variables, each of the 9 daily values are then extended into 3 and 6 day maxima, min-
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ima, and means, as well as a 1 day delta variable to show 24 h change, resulting in 63
total temporal options for each listed meteorological variable.

2.3 Fire proximity metric

Biomass burning emissions can impact pollutant concentrations (e.g. Streets et al.,
2003) with indirect correlations to daily meteorological variability, making it a potentially5

confounding factor when performing analyses using meteorological variables alone.
To help examine and quantify the likely impact of fires on observed pollutant levels we
create a simple fire metric to represent the spatial and temporal proximity of each site to
satellite-observed burn locations. Using output from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Global Monthly Fire Location Product (Giglio et al., 2003;10

Justice et al., 2002) we estimate the total fire proximity impact for each site by applying
spatial and temporal decays to burn detection confidence values, and summing these
values across all detected pixels through the equation

F = log

(∑
i

1
r

1

2t
conf

)
. (1)

Here, the fire proximity index F is a function of the distance (r) and number of elapsed15

days (t, ranging from 0 to 6) separating a station from a MODIS-detected burn pixel
with a given confidence value (conf), summed over all nearby burn pixels i . The result-
ing proximity metric does not take transport, precipitation, or any other meteorological
variables into account, simply producing higher values for stations near burning (or
recently burned) locations. A comprehensive treatment of biomass burning emissions20

and transport requires accurate information on many complex factors, including fuel
type, burn intensity, and smoke injection heights (Val Martin et al., 2010; Wiedinmyer
et al., 2011), and fully representing these factors to generate a robust estimate for the
influence of fire emissions goes well beyond the scope of this work. However, consid-
ering both the stochastic nature of large fire events and the importance of biomass25

14082

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/14075/2015/acpd-15-14075-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/14075/2015/acpd-15-14075-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 14075–14109, 2015

Meteorological
drivers of air quality

extremes

W. C. Porter et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

burning on air-quality variability, we use this cumulative proximity metric as an interme-
diate measure.

2.4 Meteorological variable selection

Combining the 63 described temporal options with all chosen raw and derived mete-
orological variables results in over 1700 possible pollutant indicators, making variable5

selection problematic. With driver identification an important goal of this work, we keep
the selection procedure as open as possible initially, maximizing the first sweep of
candidates and only eliminating possible drivers after thorough evaluation. However,
indiscriminate inclusion of additional variables opens the strong likelihood of problems
related to overfitting and multicollinearity. Furthermore, for the sake of comparison be-10

tween stations, we desire a single set of indicator variables for the entire set of ob-
servation sites included, making selection on a station-by-station basis impractical. For
these reasons we utilize a stepwise multivariate approach based on combining driver
rankings at individual stations into a single selection metric. To reduce the computa-
tional cost of variable selection initially we use a testing subset of stations, including15

10 stations (with varying degrees of mean pollutant levels) from each of the 10 EPA
regions (shown in Figs. 3 and 5). We then use observed pollutant levels from each
of these 100 stations to evaluate and select key indicators from the full set of possi-
ble meteorological variables included. Meteorological variable selection is performed
independently for ozone and PM2.5, as well as for summer and winter seasons.20

We select meteorological indicators using 90th percentile quantile regressions eval-
uated with the Bayesian information criterion (BIC) metric, a statistical tool closely re-
lated to the Akaike information criterion (AIC) and similarly based on the likelihood
function (Schwarz, 1978; Lee et al., 2014). BIC evaluates the likelihood of a given set
of indicators representing the best set possible, given a set of associated responses25

(in this case, daily pollutant levels), with lower BIC values indicating a stronger sta-
tistical model (i.e. the set of predictive meteorological indicators being evaluated). To
perform stepwise variable selection we quantify the benefit (via BIC) of adding each
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individual variable candidate to the list of selected variables in turn. Large reductions
in BIC indicate a more-important variable, while small reductions (∆BIC<2) indicate
a less-important variable. Unlike other goodness of fit metrics such as the coefficient
of determination R2, BIC values say nothing about the overall strength of the predictive
model as a whole, but rather serve to compare the relative effectiveness of multiple5

statistical models attempting to explain the same set of results. However, again unlike
R2, both BIC and (to a lesser extent) AIC penalize the inclusion of extraneous indi-
cators, reducing the chance of overfitting. While there is some discussion within the
statistical literature regarding the strengths of BIC vs. AIC, both are considered versa-
tile, robust tools in the evaluation of statistical models (Burnham and Anderson, 2004;10

Yang, 2005), and applicable to quantile regression if errors are assumed to follow an
asymmetric Laplace distribution (Geraci and Bottai, 2007). Note that while the 90th
percentile of pollution levels is lower than the 95th quantile targeted later in this study,
the slightly reduced value is chosen to improve robustness during the initial variable
selection phase.15

We begin variable selection by using only time (measured in days elapsed) as a pre-
dictor variable, accounting for any linear trend in pollutant behavior over the course of
the observed period. From there, we identify the most impactful temporal option (daily
maximum, mean, minimum, etc. . . ) available for a single meteorological variable (e.g.
surface temperature). We perform stepwise variable selection at each station indepen-20

dently, selecting the candidate temporal option producing the greatest reduction in BIC
(and therefore greatest improvement in the statistical model), and continuing until no
further improvement is possible. We then rank the final set of included variables by or-
der of selection, invert and sum those variable ranks over all 100 test stations, and add
the single temporal option with the greatest summed total to the global list of selected25

variables. With a new indicator chosen we filter the remaining candidates, eliminating
poor performers (those selected at too few sites in the previous round) or those exhibit-
ing collinearity with the current statistical model (R2 ≥ 0.6 relative to current indicators).
After this pruning process we start the selection routine again for all remaining indica-
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tor candidates, using both time and the recently added variable as fixed covariates.
We repeat this cycle until no temporal candidates remain for the current meteorological
variable, after which the temporal variable selection starts anew with the next meteo-
rological parameter. Once temporal variable options have been filtered down for each
individual meteorological driver through this selection process we gather all selected5

variables together and apply the same selection process to the full set of approximately
300 candidates, finally arriving at trimmed down set of less than 20 meteorological in-
dicators for each pollutant species and season (Table 2, top). The selection process
is somewhat sensitive to the percentile used for the regression, as evidenced by the
different variables selected using the 50th percentile rather than the 90th (Table 2, be-10

low). While most high-ranked meteorological variables show up using both selection
processes, there are noticeable differences, especially in the temporal options chosen.

Through this routine, variables can stand out for selection by being either moderately
important at many sites, or by being very important at fewer sites. By adjusting the
threshold parameter for variable selection, the scope of variable inclusion can be tuned15

to a certain extent. In this work we identify and compare both a concise “Core” set of
indicators (summed inverse rank threshold of at least 2) and a “Full” set of indicators
(relaxed summed inverse rank threshold of at least 1).

2.5 Quantile regression

The final sets of indicator variables represent those drivers most broadly responsible20

for variability in high pollutant levels due to meteorological factors at the 100 chosen
test sites. Using these selected meteorological variables we next perform multivariate
quantile regression to identify sensitivities for percentiles from 2 to 98 % at each station
in the full set of AQS sites. From these regressions we collect Summer (JJA) and Winter
(DJF) quantile sensitivities of O3 and PM2.5 to each meteorological variable for each25

AQS station.
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3 Results

To assess relative driver importance across the United States we normalize quantile
sensitivities to standard deviations of pollutant and indicator fluctuations and rank them
in relation to each other at each site. Top-ranking covariates for any given station,
then, are those whose variabilities (in normalized units of standard deviations) are5

most responsible for variability in the observed pollutant. Figures 3 and 5 show each
variable’s frequency of appearing as the first or second most important indicator by this
metric, with similar variables grouped together into columns. We compare the drivers
of the 95th and 50th percentile of pollutant concentrations, finding similar, though not
identical, frequencies between top performers for the two quantiles.10

3.1 O3 drivers – summer

In the summertime, drivers of high-percentile O3 are dominated by a positive corre-
lation with temperature at most sites (Fig. 3a, top), consistent with previous modeling
sensitivity conclusions (Jacob and Winner, 2009). Altogether, 49 % of the analyzed
sites show maximum daily surface air temperature as the meteorological variable with15

the greatest normalized slope relative to observed maximum 8 h average O3 concen-
trations, and it is within the top five most influential variables at 79 % of all sites. Un-
derlying reasons for the dominance of temperature as a driver of observed O3 include
a positive correlation with biogenic emissions of isoprene (a potential precursor of O3),
a negative correlation with the lifetime of peroxyacetylnitrate (PAN, an important reser-20

voir species for NOx and HOx radicals), and an associated correlation between higher
temperatures and bright, stagnant conditions (Jacob and Winner, 2009).

While maximum daily surface temperature stands out as the covariate with the high-
est normalized impact on daily summer O3 levels, many other variables also play im-
portant roles, especially in the south and southeast regions (Fig. 3a, bottom). Water25

vapor generally reduces O3 levels under pristine conditions, removing dissociated ex-
cited oxygen atoms and producing the hydroxyl radical (OH). Under polluted conditions
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this negative effect competes with increased O3 production as a result of OH reacting
with carbon monoxide (CO) or volatile organic compounds (VOCs), O3 precursors com-
mon to highly polluted environments. These two effects combine to produce generally
weak correlations between humidity and O3 in model perturbation studies (Jacob and
Winner, 2009). In this work, however, relative humidity (RH) has a strong negative re-5

lationship with O3 in many locations, particularly in the south, consistent with previous
analyses of observed sensitivities (e.g. Camalier et al., 2007). An inverse correlation
with temperature and a positive correlation with cloudy, unstable conditions may explain
the stronger associations found in the observations relative to those of model pertur-
bation studies. Stability, in the form of turbulent kinetic energy (TKE) is also a strong10

performer at many sites, though less so for the 95th percentile than for the 50th. Finally,
while fire proximity stands out at relatively few stations as a dominant driver of median
O3 levels (50th percentile), it appears to be important at far more sites when examining
higher O3 levels (95th percentile).

While the top driver frequencies shown in Fig. 3a can help identify dominant mete-15

orological drivers overall, they do not indicate spatial distributions or sensitivity mag-
nitudes. The bottom panel of Figs. 3a and 4 address these aspects of selected top
drivers, showing where each tends to drive pollutant variability, as well as how the
sensitivity magnitudes are distributed overall. Spatially, the temperature sensitivity of
95th percentile O3 levels appears to be most directly associated with coastal areas,20

though the strong negative relationship between relative humidity and O3 in the south
likely includes temperature effects (Fig. 3, bottom). In general, the sensitivities of O3
to changes in temperature are greater for higher O3 quantiles, as shown by the in-
creasing and flattening distributions for 95th quantile regression sensitivities compared
to 50th and 5th quantile values (Fig. 4, upper left). In fact, quantile regression coef-25

ficients for the 95th percentiles averaged 0.9 ppb ◦C−1, 50 % greater than mean 50th
percentile sensitivities. This difference again highlights the importance of temperature
in determining extreme O3 events, since increased temperatures could be expected
to positively affect the magnitudes of high O3 days even more than would be expected
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based on average days. By comparison, downward shortwave radiation flux also shows
up as a positive driver of high O3 levels, but displays much more consistent sensitivities
across O3 quantiles (Fig. 4, upper right).

3.2 O3 drivers – winter

O3 levels are generally lower at all percentiles during the winter months compared to5

the summer months, with 95th percentile O3 levels almost halved at some sites. As
seen in Fig. 3b, temperature is almost completely absent from the top ranks of O3 indi-
cators during the winter. Instead, variables related to incoming radiation flux are most
important at many sites, especially for 95th percentile O3 levels. This indicates the rela-
tive importance of consistently clear skies for O3 production during the coldest months,10

a relationship that appears consistently across quantiles and regions (Fig. 3b, bottom).
Among the incoming radiation metrics, the 6 day maximum of daily mean shortwave ra-
diation flux showed up as a top driver most often, with consistently positive correlations
evenly distributed spatially (Fig. 4, lower left). Sensitivities are slightly greater, on aver-
age, for higher quantiles, and stand out as particularly strong at stations in Wyoming,15

an area previously highlighted for its dangerously high winter O3 levels (e.g. Schnell
et al., 2009). As with summer O3, DSWRF again has a generally positive influence
on winter O3, with some increase in sensitivity at higher quantiles (Fig. 4, lower right).
HPBL, wind, and specific humidity show up as top drivers at many sites as well, but
more so for median quantile regressions than for 95th regressions, while fire proximity20

becomes increasingly important at the higher quantiles.

3.3 PM2.5 drivers – summer

Figure 5a shows that mean daily temperature is also a key player in predicting sum-
mertime PM2.5, with greater sensitivities at the highest concentration percentiles. While
the previously discussed sensitivities of O3 to temperature shown in Fig. 4 are greatest25

along both the Northeast coast and Southern California, PM2.5 sensitivities to tem-
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perature peak entirely in the East. One possible reason for this spatial difference in
PM2.5 temperature sensitivity is the regionality of PM2.5 speciation, especially in terms
of competing sensitivities of nitrate and sulfate aerosol (Dawson et al., 2007). While
concentrations of nitrate aerosol (and, to a lesser extent, organics) are generally re-
duced by higher temperatures due to increased gas phase partitioning, sulfate aerosol5

concentrations can increase at higher temperatures because of increased rates of ox-
idation. Sulfur emissions are far higher in the East than in the West, offering a likely
explanation for the differing sensitivities of PM2.5 to temperature between the regions.

In addition to temperature, 95th percentile PM2.5 shows strong sensitivities to wind
speeds and tropospheric stability at many sites, emphasizing the importance of trans-10

port and stagnancy for extreme PM2.5 events, particularly those in highly-polluted re-
gions (Fig. 5a, bottom). 3 day averages wind speed stood out among drivers at many
sites throughout the East and Midwest regions, and influences tended to be of higher
magnitude for high-quantile PM2.5 levels than for medians or low quantiles (Fig. 6, up-
per right). Positive correlations for this metric may be associated with areas whose15

extremes were governed primarily by transport, rather than production. Also increas-
ingly important for higher quantiles of fine particulate matter was fire proximity, with over
twice as many sites including this metric in the top drivers for 95th percentile PM2.5 as
for 50th percentile PM2.5.

3.4 PM2.5 drivers – winter20

Unlike O3, winter PM2.5 levels in the United States are often comparable to (or even
greater than) those of the summer months at many sites (Fig. 2). Compared to other
seasons and species, the dominant drivers of winter PM2.5 are more consistently dis-
tributed between a few key variables (Fig. 5b, top). Temperature is apparently less of
a factor during cold months, rarely appearing among the top normalized indicators, and25

metrics related to stagnation stand out as important drivers of pollution events. Among
meteorological drivers of increased winter PM2.5, stability metrics (TKE and LTS), rela-
tive humidity, and planetary boundary layer height (HPBL), stood out as key variables
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at the most sites, with wind and rainfall also important at many locations. Top drivers
were particularly consistent in selection and magnitude in the northeast (regions 1, 2,
and 3), as shown by the tight, nearly identical distributions (Fig. 5b). Turbulence had
a consistently negative influence on winter PM2.5, especially for high response quan-
tiles (Fig. 6, lower left).5

Compared to drivers of median PM2.5 levels, the two included tropospheric stabil-
ity indicators (3 day average of max daily TKE and 3 day minimum LTS) showed ex-
ceptionally strong sensitivities among drivers of 95th percentile levels, suggesting that
PM2.5 extremes in the wintertime are particularly sensitive to persistently stable condi-
tions (Fig. 6, lower right). Sites in Colorado and Utah, some of which are well-known10

for episodes of severely reduced winter air-quality, stand out in this regard, with 95th
quantile sensitivities to LTS over 4 times those of other site averages.

4 Discussion

4.1 Differences in quantile sensitivities

The differences between typical 5th, 50th, and 95th percentile sensitivities shown in15

Figs. 4 and 6 help to illustrate the ways in which meteorological impacts on pollutants
can vary in magnitude across the response distribution. These differences can be more
clearly quantified and compared by measuring the slope of a QR regression itself as
a function of the percentile (Fig. 7). Using the full range of normalized QR output gath-
ered, from 2–98 %, we perform weighted least squares regressions for each selected20

variable at each station. The resulting slope for each regression can be interpreted
as a measure of change in sensitivity across the pollutant distribution, with high val-
ues representing strong positive differences in sensitivity, and low values representing
strong negative differences. In other words, a zero slope implies that the response of
a pollutant to a given meteorological driver is relatively uniform regardless of the pol-25

lutant concentration, while a higher slope implies that responses at the extremes may
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differ from the mean behavior. To put these changes in context, the overall mean sen-
sitivity for each variable (in normalized units of standard deviations) is shown by color.

For summertime O3 and PM2.5, temperature stands out as a driver that not only has
a strong positive impact on concentrations (indicated by the bright red color), but also
exhibits even stronger impacts on high percentile pollutant levels than on lower per-5

centile levels at most stations. On the other hand, while HPBL also strongly impacts
summertime O3, the change in sensitivity between low and high quantiles is gener-
ally small, indicating a variable whose impact on O3 is relatively unchanging across
pollutant percentiles. Besides temperature’s impact on summer O3 and PM2.5, the key
drivers of winter PM2.5 stand out for having many changing quantile sensitivities. The10

sensitivity of PM2.5 to relative humidity, lower tropospheric stability, HPBL, and TKE are
all greater for high PM2.5 quantiles than they are for low ones, highlighting the impor-
tance of characterizing the full pollutant response to meteorological drivers, especially
for winter PM2.5.

4.2 Overall predictive power of statistical models15

The variables identified here were not selected based on their suitability for ordinary
least squares regression, but they do show considerable skill at predicting pollutant
levels using this methodology, explaining over half of the variability at most sites (Fig. 8).
Predictive skill for summertime O3 is greatest in East, South, and Midwest (regions
2 through 6) and least in the Pacific Southwest and Mountains and Plains regions20

(regions 8 and 9). Winter O3 R2 values are generally slightly lower than those of the
summer months, especially in the Pacific Northwest and South Central regions, though
this may be partly explained by reduced O3 variability overall in the winter months.

PM2.5 shows a strong split between the relatively well-modeled Northeast and the
less-accurately represented Midwest and Southwest. These results compare favorably25

to previous attempts to predict PM2.5 using meteorological indicators (Demuzere et al.,
2009; Tai et al., 2010). Tai et al. (2010), for example, find multivariate linear regres-
sion capable of explaining less than 50 % of PM2.5 variability in the Northeast United
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States. Almost half of the stations in those same regions showed adjusted R2 values
of greater than 60 % using our method, despite the indicators being chosen to optimize
high quantile regressions rather than OLS regressions. Regional differences in meteo-
rological predictive power in this work are also comparable to those of Tai et al., who
found high R2 values in the Northeast and Pacific Northwest (regions 2, 3, and 5), and5

lower values in the South and Mountains and Plains regions (regions 6 and 8).

4.3 Pollutant variability and trend

It is apparent that relatively simple meteorological processes, chosen for their influence
on high percentiles of O3 and PM2.5, are also capable of explaining a large fraction of
daily pollutant variability. There are a number of possible sources for the remaining10

variability, including day-to-day fluctuations in pollutant precursor emissions and highly
localized meteorological patterns. While the nation-wide variable selection process of
this study proved capable of identifying indicators that are broadly effective at predict-
ing daily pollutant levels in many locations, specific features relevant to individual sta-
tions (e.g. direction and distance of upwind emission sources) may not be adequately15

represented by the globally selected variables. Variability in local emission sources
themselves, either due to sporadic local events or differences in weekend vs. weekday
emissions, may also play an important role at some sites. This analysis is also sub-
ject to uncertainties in the NARR product and the pollutant observations, as well as
discrepancies between local station conditions and the grid-averaged NARR output.20

Another important consideration in the analysis of these results is the nonstationarity
of both pollutant concentrations and sensitivities. As a result of the implementation of
widespread emissions controls, concentrations of O3 and PM2.5 have decreased dra-
matically in many of the most polluted areas in the United States. For stations with the
most extensive record of summer O3 (at least 600 days of valid observations between25

2004 and 2012), summertime maximum daily 8 h average O3 fell by 0.2 ppb year−1

on average. 95th percentile values at these same stations fell even more rapidly, by
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an average of 0.7 ppb year−1. Furthermore, these changes over time were especially
pronounced over the most polluted areas. Stations representing the highest decile of
maximum 8 h average O3 over the full time period showed mean reductions of 0.5 and
1.0 ppb year−1 in their summertime mean and 95th percentile levels, respectively.

To a certain extent, these changes in pollution levels over time are accounted for in5

our analysis through the inclusion of time (measured in days since the start of the ana-
lyzed record) as an indicator variable. However, changes in meteorological sensitivities
themselves as a function of decreasing emissions are not accounted for. To assess
how these decreases in emissions and overall pollution levels might have affected me-
teorological sensitivities, the analyses above were repeated using 4 year subsets of the10

full data record: 2004–2007 and 2008–2012, showing a widespread reduction in sen-
sitivities over time, presumably due to changes in precursor emissions. For example,
95th percentile sensitivities of summertime O3 to temperature were 13 % lower in the
years 2009–2012 relative to 2004–2007, consistent with previously reported declines
in temperature sensitivity (Bloomer et al., 2009). In all, we see average absolute dif-15

ferences in 95th percentile sensitivities among each station’s top two drivers of 22 %,
with most changes representing reductions in sensitivity. Despite these differences,
the qualitative features of our analysis (including sign of sensitivities and differences
between pollutant quantiles) are consistent over time.

5 Conclusions20

This analysis demonstrates that air quality over the past decade was highly sensitive to
meteorology, and that this sensitivity varied across pollutant type (O3 vs. PM2.5), sea-
son, and concentrations (50th vs. 95th percentiles). These differences offer insights
into the key drivers behind extreme pollution event frequencies in the observed record
beyond simple conditional means, highlighting the meteorological drivers most respon-25

sible for magnitude and frequency increases of the highest pollutant levels.
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We find that temperature is a dominant driver at most stations in the summer for
both O3 and PM2.5, with relative humidity, stability, and radiation flux also key drivers
for O3, and wind, stability, and rain often important for predicting high PM2.5 levels. O3
variability during winter months is determined largely by changes in incoming radiation,
while winter PM2.5 extremes are most commonly affected by stagnation, humidity, and5

PBL height. We show substantial regional variation in these results, suggesting that
while classes of drivers of extreme air quality are generally consistent, specific factors
leading to air quality exceedances are local.

Climate change in coming decades is likely to induce a response in regional air pol-
lution. The sensitivities of O3 and PM2.5 to changes in meteorological patterns are,10

in general, stronger for higher pollution percentiles, meaning that changes to certain
drivers (most notably temperature, wind speed, PBL height, and tropospheric stability)
are likely to affect the magnitude and frequencies of pollutant extremes more drasti-
cally than they affect more moderate pollution levels. This effect suggests that regional
changes to climate could have more significant impacts on the frequencies of extreme15

O3 and PM2.5 events than would be suggested by bulk sensitivities from OLS regres-
sions.

This analysis framework offers new ways to investigate both the observed and sim-
ulated air-quality responses to climate. Through quantile regression, the selection and
ranking of key drivers of pollutant variability can be evaluated robustly, focusing not on20

the mean behavior of a heavy-tailed pollutant distribution, but rather the sensitivities
closer to the tail itself. Furthermore, the comparison of observed sensitivities to those
simulated by regional or global air quality models could identify key model biases rele-
vant to the projection of future air quality, potentially providing insights on the underlying
mechanistic reasons for those biases.25
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Table 1. Meteorological fields used in variable selection procedure. Each NARR field shown
was included using 9 different possible daily values (24 h max/min/mean, 8 h daytime
max/min/mean, previous 8 h nighttime max/min/mean), as well as longer term (3 and 6 day)
aggregates and 1 day deltas of those daily values. Variables marked “9x9” represent regional
means, and were generated by averaging the 9×9 square of NARR grid cells centered around
each station location (roughly 290 km to a side).

NARR Variablesa

air.2m 2 m air temperature pres.sfc surface pressure
air.sfc_9x9 surface air temperature (regional) rhum.2m 2 m relative humidity
apcp precipitation rate shum.2m 2 m specific humidity
crain_9x9 categorical rain (regional) tcdc_9x9 total projected cloud cover (regional)
dlwrf downward longwave radiation flux tke.hl1_9x9 turbulence kinetic energy
dswrf downward shortwave radiation flux tmp.700 700 hPa temperature
hcdc_9x9 high level cloud cover (regional) uwnd.500 500 hPa zonal wind speed
hgt.850 850 hPa geopotential height uwnddir.10m normalized 10 m wind direction
hpbl planetary boundary layer height vvel.700 700 hPa vertical velocity
lcdc_9x9 low level clouds (regional) vvel.hl1 lowest level vertical velocity
lftx4 Best lifted index vwnd.500 500 hPa meridional wind speed
mcdc_9x9 midlevel cloud cover (regional) vwnddir.10m normalized 10 m wind direction
prate precipitation rate wspd.10m 10 m wind speed

Derived Variables

fire fire proximity metric
ltsb lower tropospheric stability
rpic recirculation potential index

Temporal Options

max 24 h maximum value
min 24 h minimum value
mean 24 h mean value
daymax/min/mean as above, but using only 8.00 a.m. to 4.00 p.m.
nightmax/min/mean as above, but using only preceding night: 8.00 p.m. to 4.00 a.m.
diff change from previous day
3daymax/min/mean max/min/mean of previous 3 days
6daymax/min/mean max/min/mean of previous 6 days

a Mesinger et al. (2006)
b Klein and Hartmann (1993)
c Levy et al. (2009)
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Table 2. Selected drivers for O3 and PM2.5 using 90th percentile (above) and 50th percentile
(below) quantile regressions. “Core” drivers (in bold) were selected using a minimum threshold
for summed inverted ranks of at least 2, with remaining drivers added by rerunning the selection
procedure including all Core variables and a relaxed selection threshold of 1.

Selected via 90th Percentile QR
Summer O3 Summer PM2.5 Winter O3 Winter PM2.5

rhum.2m_mean air.2m_max dswrf_mean.6daymax hpbl_mean
vwnddir.10m_mean vwnddir.10m_mean wspd.10m_mean vwnddir.10m_mean
air.2m_max lftx4_daymin vwnddir.10m_mean tke.hl1_9x9_daymax.3daymean
crain_9x9_daymean uwnddir.10m_mean.3daymean rhum.2m_min wspd.10m_nightmax
fire wspd.10m_max.3daymean fire rhum.2m_mean
uwnddir.10m_mean air.sfc_9x9_nightmin.6daymean rpi_max shum.2m_daymax.6daymin
air.sfc_9x9_min.6daymin fire hpbl_daymax crain_9x9_nightmean
pres.sfc_daymax crain_9x9_max.6daymean air.sfc_9x9_nightmin.6daymean lts_min.3daymin
tke.hl1_9x9_max vwnddir.10m_daymean.6daymean dlwrf_daymax.6daymin uwnddir.10m_mean.3daymean
dswrf_daymin.3daymean apcp_nightmax crain_9x9_max dswrf_max.3daymean
hpbl_max rpi_nightmin uwnddir.10m_daymean lftx4_nightmin.6daymin
tcdc_9x9_mean vvel.hl1_nightmax.6daymax tcdc_9x9_mean wspd.500_min
dswrf_min.6daymin hpbl_nightmax.6daymax lts_nightmax.3daymin tke.hl1_9x9_max.6daymin
vwnd.500_daymax.3daymean rpi_nightmax.6daymin lftx4_min.diff vwnd.500_max.diff
shum.2m_max.diff tcdc_9x9_max.6daymax lcdc_9x9_nightmin.6daymax tcdc_9x9_max.diff
wspd.10m_daymin.3daymin shum.2m_min.diff wspd.10m_min.6daymax
hpbl_daymin.6daymin lts_nightmin.6daymin
pres.sfc_min.diff mcdc_9x9_nightmax.3daymin
apcp_daymin.3daymax

Selected via 50th Percentile QR
Summer O3 Summer PM2.5 Winter O3 Winter PM2.5

rhum.2m_mean air.2m_max dswrf_mean hpbl_mean
air.2m_max air.sfc_9x9_nightmin.6daymax wspd.10m_mean vwnddir.10m_mean
dswrf_daymin.3daymean crain_9x9_nightmax dswrf_daymean.diff wspd.10m_daymax.3daymax
vwnddir.10m_mean wspd.10m_max.3daymean vwnddir.10m_mean crain_9x9_nightmax
crain_9x9_daymean vwnddir.10m_mean lts_daymin wspd.10m_nightmax
fire lftx4_mean shum.2m_min rhum.2m_mean
tke.hl1_9x9_daymax lts_daymin uwnddir.10m_mean uwnddir.10m_mean
uwnddir.10m_daymean.3daymean uwnddir.10m_daymean.3daymean crain_9x9_daymax wspd.10m_max.3daymin
air.sfc_9x9_daymin.3daymean shum.2m_daymean.diff dswrf_min.3daymin rpi_max
rpi_max crain_9x9_max.6daymean fire uwnddir.10m_nightmean.3daymean
lts_mean rpi_max air.sfc_9x9_mean.6daymean dswrf_daymin.6daymax
dswrf_min.6daymin vwnd.500_min hpbl_daymax lftx4_nightmin.3daymean
vwnd.500_min vwnd.500_daymax.6daymax hcdc_9x9_daymax shum.2m_nightmin.6daymean
hpbl_nightmean.3daymin pres.sfc_max pres.sfc_nightmin.6daymean fire
vvel.hl1_mean.6daymean hgt.850_max.6daymax rpi_nightmax.6daymean
pres.sfc_mean.diff air.sfc_9x9_nightmin.diff
rhum.2m_max.diff lts_daymax.6daymin
vwnd.500_min.diff mcdc_9x9_nightmax.3daymin
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Figure 1. Daily maximum 8 h O3 vs. maximum daily temperature for example site in Essex
County, MA. An ordinary least squares regression line (a) captures the general trend, but is
unable to represent the increase of variability in the distribution with increasing temperature.
Using individual quantile regressions ranging from 5th to 95th percentiles (b), the increased
sensitivity of higher quantiles to increased temperatures becomes apparent.
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Figure 2. Location of AQS stations included in this study. The magnitude of each station’s 95th
percentile measurement is indicated by color.
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Figure 3. (a) Numbers of stations at which normalized 95th percentile QR coefficients for se-
lected variables were in the top 2 out of all included variables (above) for summer O3, and
boxplots of normalized regression coefficients for top 3 drivers in each region (below). Colors
on boxplots correspond to legend in above panel. EPA Region numbers are inset on top-right
of boxplot panels. (b) Same as Fig. 3a, but for winter O3.
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Figure 4. Spatial and frequency distributions for key drivers of summer (top) and winter (bottom)
O3. Maps show 95th percentile O3 sensitivities to selected meteorological variables at stations
where that variable was most important (defined as being one of the top 2 normalized drivers).
Below each map, histograms show the distribution of sensitivities for the 5th (blue), 50th (gray),
and 95th (red) percentiles at all sites.
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Figure 5. (a) Same as Fig. 3a but for summer PM2.5. (b) Same as for Fig. 3a but for winter
PM2.5.
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Figure 6. Same as Fig. 4 but for PM2.5.
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Figure 7. Estimate of how the pollutant concentrations sensitivity to meteorological driver
varies with pollution level (0 %=uniform sensitivity). Values shown here are the weighted least
squares regressions performed on QR coefficients as a function of quantile for variable drivers
with a mean sensitivity change of at least 5 %, by species and season. Color of bars show mean
normalized sensitivities (roughly equivalent to slopes expected from an ordinary least squares
regression), while magnitudes of bars show mean percent change across quantiles, averaged
over all stations. Error bars indicate standard error of the mean.
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Figure 8. Ordinary least squares coefficient of determination (R2) between observed pollu-
tant concentrations and the reduced set of meteorological variables selected in this analysis.
Results are shown by pollutant (O3 or PM2.5), EPA region (see Figs. 3 and 5), and season
(JJA= summer, DJF=winter). Red circles indicate median values using the full set of vari-
ables, for comparison. Refer to Table 2 for the listing of the reduced and full set of variables.
Boxplot whiskers mark 5th and 95th percentile R2 values.
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