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Abstract 8 

Air pollution variability is strongly dependent on meteorology. However, quantifying the 9 

impacts of changes in regional climatology on pollution extremes can be difficult due to 10 

the many non-linear and competing meteorological influences on the production, 11 

transport, and removal of pollutant species. Furthermore, observed pollutant levels at 12 

many sites show sensitivities at the extremes that differ from those of the overall mean, 13 

indicating relationships that would be poorly characterized by simple linear regressions. 14 

To address this challenge, we apply quantile regression to observed daily ozone (O3) and 15 

fine particulate matter (PM2.5) levels and reanalysis meteorological fields in the United 16 

States over the past decade to specifically identify the meteorological sensitivities of 17 

higher pollutant levels. From an initial set of over 1700 possible meteorological 18 

indicators (including 28 meteorological variables with 63 different temporal options) we 19 

generate reduced sets of O3 and PM2.5 indicators for both summer and winter months, 20 

analyzing pollutant sensitivities to each for response quantiles ranging from 2-98%. 21 

Primary covariates connected to high-quantile O3 levels include temperature and relative 22 

humidity in the summer, while winter O3 levels are most commonly associated with 23 

incoming radiation flux. Covariates associated with summer PM2.5 include temperature, 24 

wind speed, and tropospheric stability at many locations, while stability, humidity, and 25 

planetary boundary layer height are the key covariates most frequently associated with 26 

winter PM2.5. We find key differences in covariate sensitivities across regions and 27 

quantiles. For example, we find nationally averaged sensitivities of 95th percentile 28 



summer O3 to changes in maximum daily temperature of approximately 0.9 ppb ºC−1, 1 

while the sensitivity of 50th percentile summer O3 (the annual median) is only 0.6 ppb 2 

ºC−1. This gap points to differing sensitivities within various percentiles of the pollutant 3 

distribution, highlighting the need for statistical tools capable of identifying 4 

meteorological impacts across the entire response spectrum. 5 

 6 

1 Introduction 7 

Poor air quality is projected to become the most important environmental cause of 8 

premature human mortality by 2030 (WHO 2014). Long-term exposure to high levels of 9 

ozone (O3) has been linked to increased risk of respiratory illness, while chronic exposure 10 

to elevated fine particulate matter (PM2.5) is associated with lung cancer, respiratory, and 11 

cardiovascular disease (e.g. Dockery et al., 1993; Jerrett et al., 2009; Krewski et al., 2009; 12 

Pope III et al., 2009). In addition to these consistently documented risks of chronic 13 

exposure, there is some evidence that acute exposures to pollution may themselves carry 14 

risks to human health above and beyond those of the long-term mean exposures (Bell et 15 

al., 2005). Thus, high pollution events may be responsible for a larger fraction of annual 16 

acute mortality. In addition, particularly extreme events may hinder day-to-day activities, 17 

and require the implementation of drastic tactical air pollution control measures (e.g. the 18 

temporary banning of vehicles with even-numbered license plates from driving in Paris 19 

during the Spring of 2015). Despite the lack of an observed threshold concentration for 20 

detrimental impacts of air pollution (e.g. Dockery et al., 1993), ambient air quality 21 

regulations are typically implemented as thresholds, with penalties for exceedances. For 22 

example, in the United Stated, pollution standards for O3 and PM2.5 include limits on not 23 

only mean annual values (in the case of PM2.5), but also thresholds for high annual values 24 

(equivalent to the averaged 98th or 99th percentiles for PM2.5 and O3, respectively). Thus, 25 

predicting and understanding potential changes in extreme air pollution episodes is 26 

central to both air pollution policy and human health concerns. 27 

A changing climate may modulate air quality, with implications for human health. 28 

Pollutant formation, transport, lifetime, and even emissions all depend, to a certain 29 



degree, on local meteorological factors (Jacob and Winner, 2009; Tai et al., 2010), 1 

meaning that changes in the behaviors of these factors will often lead to changes in 2 

pollutant levels and exposure risks. Understanding the relationships between 3 

meteorological variability and observed pollutant levels will be critical to the 4 

development of robust pollution projections, as well as sound pollution control strategies. 5 

However, while straightforward sensitivity analyses using long-term averages and simple 6 

linear regressions provide valuable information on mean pollutant behavior, they are 7 

insufficient for analyses of extreme behaviors. Drivers and sensitivities characteristic of 8 

average pollutant responses will not necessarily be reflected throughout the entire 9 

pollutant distribution. To evaluate these relationships statistically, alternative 10 

methodologies must be used. 11 

Previous studies examining the impact of meteorology on pollution levels have addressed 12 

the problem using a variety of tools. Modeling sensitivity studies offer a direct means of 13 

comparing the impacts of large-scale scenarios or individually adjusted parameters, 14 

allowing for a degree of comparison and replication that is impossible using only 15 

observations (e.g. Hogrefe et al., 2004; Mickley et al., 2004; Murazaki and Hess, 2006; 16 

Steiner et al., 2006; Heald et al., 2008). From such output, pollutant levels under multiple 17 

conditions or scenarios can be evaluated more or less in the same way that observed 18 

levels are, including the examination of global burdens, regional patterns, or even local 19 

exceedance frequencies as a function of meteorological changes. However, while these 20 

tools are powerful, it can be difficult to verify and understand projected changes due to 21 

the high degree of complexity of these models. On the other hand, observation-based 22 

examinations (e.g. Bloomer et al., 2009; Rasmussen et al., 2012) are tied closely to the 23 

actual underlying physical processes producing changes in pollutant levels, but are 24 

naturally limited in terms of identifying and quantifying the impacts of individual drivers 25 

– it is difficult to separate the impacts of different meteorological factors without the 26 

benefit of multiple sensitivity comparisons afforded by models. 27 

Ordinary least-squares (OLS) regressions are effective tools for identifying trends and 28 

sensitivities in the distribution of pollution levels as a whole, especially for well-behaved 29 

data showing uniform sensitivities. Previous studies have analyzed the impacts of 30 

changes in weather and climate on O3 and PM2.5 levels (e.g. Brasseur et al., 2006; Liao et 31 



al., 2006), finding connections between specific meteorological conditions and mean 1 

pollutant response. In particular, the sensitivity of surface O3 levels to changes in climate 2 

– the so-called “climate change penalty” (Wu et al., 2008) – has been examined in 3 

multiple studies worldwide (e.g. Bloomer et al., 2009), but previous examinations of 4 

individual meteorological sensitivities have typically produced single, monovariate 5 

estimates for changes in O3 given changes in each driver (e.g. temperature). However, 6 

when the variability of a given response is itself a function of the independent variable, as 7 

in Figure 1a, the information provided by such regressions is less valuable for describing 8 

the specific response across the distribution – especially at the extremes (defined here as 9 

pollutant levels below the 5th quantile or above the 95th quantile). If the sensitivities of 10 

high O3 extremes to temperature tend to be higher than those of median to low O3 days 11 

(as is the case at many polluted locations), a single sensitivity value would underestimate 12 

the increase in high O3 event frequencies and magnitudes, given rising temperatures. 13 

This situation is one common example of a distribution that might be better characterized 14 

through the use of more advanced statistical tools, such as quantile regression (Koenker 15 

and Bassett Jr, 1978). A semi-parametric estimator, quantile regression (QR) seeks to 16 

minimize the sum of a linear (rather than quadratic) cost function, making it less sensitive 17 

to outliers than OLS regression. Unweighted, this simple change produces a conditional 18 

median (or 50th quantile regression), rather than the conditional mean of OLS regression. 19 

Applying appropriately chosen weights to the positive and negative residuals of this cost 20 

function then targets specific percentiles of the response, allowing for the quantification 21 

of sensitivity across nearly the entire response distribution. An example of this regression 22 

performed across a broad range of percentiles is shown in Figure 1b, including the 5th 23 

quantile in black, the 50th quantile in yellow, and the 95th quantile in red.  24 

Here, we apply multivariate QR to an analysis of meteorological drivers of O3 and PM2.5, 25 

with the goal of identifying the covariates most correlated with changes in peak pollutant 26 

levels throughout the United States, and how these differ from the median response. Such 27 

a statistical examination of historical observations can provide a valuable reference point 28 

for the evaluation of model-predicted extremes, as well as a platform for short-term 29 

pollutant projections. 30 
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2 Methodology 2 

2.1 Inputs 3 

We use O3 and PM2.5 measurements from the US Environmental Protection Agency’s 4 

(EPA) Air Quality System (AQS) network, including daily peak 8-hour average 5 

measurements of O3 and daily mean PM2.5 levels. All stations with at least 150 valid 6 

maximum daily 8-hour averages between 2004 and 2012 are included in this study, 7 

totaling 1347 stations for summer O3, 675 stations for winter O3, 647 stations for summer 8 

PM2.5, and 636 stations for winter PM2.5 (locations and 95th percentile concentrations 9 

shown in Figure 2). 10 

Meteorological variables are taken from the NCEP North American Regional Reanalysis 11 

(NARR) product (Mesinger et al., 2006). With a spatial resolution of 32 km and 8 output 12 

fields per day (representing 3-hourly averages), NARR output provides a reasonable 13 

spatial and temporal match for each of the AQS stations of interest. While the NARR 14 

product represents modeled output and includes its own errors and biases when compared 15 

to observations, it allows for the consistent use of many variables at high spatial and 16 

temporal resolution, most of which would not be available at all included AQS stations 17 

examined here. NARR reanalyses have been used in previous examinations of 18 

meteorological air-pollution drivers with some success (e.g. Tai et al., 2010). 19 

2.2 Meteorological Variable Generation 20 

As an initial step towards understanding the impacts of meteorology on pollutant 21 

extremes, we construct a large set of possible meteorological covariates, including NARR 22 

meteorological variables for a range of time frames. By extending the initial scope of 23 

possible drivers, we attempt to capture the important factors and interactions, including 24 

not only effects that were important at all sites, but also those that stood out only in 25 

particular regions or types of locations. To this end, we begin by considering as many 26 

potential indicators as possible, gradually trimming the list down to a final set to be used 27 



in the multivariate quantile regressions. We use the 3-hourly NARR output to reconstruct 1 

hourly resolution diurnal cycles for each meteorological variable at each station through 2 

time series cubic splines and bilinear interpolation of the gridded fields to station 3 

latitudes and longitudes. In some cases regional means were included, primarily due to 4 

insufficient variability in individual cell values for that variable at some sites. 5 

In addition to the raw variables available through NARR output, we calculate several 6 

derived parameters. The synoptic recirculation of air has been linked to elevated pollutant 7 

concentrations at many sites around the world, especially in coastal regions where diurnal 8 

wind patterns are prone to recirculation (Alper-Siman Tov et al., 1997; St. John and 9 

Chameides, 1997; Yimin and Lyons, 2003; Zhao et al., 2009). When air masses are 10 

returned to a site with ongoing emissions, the buildup of precursor concentrations may 11 

generate exceptionally high pollutant levels. To measure this effect we calculate a daily 12 

Recirculation Potential Index (RPI) from surface wind speeds based on the ratio between 13 

the vector sum magnitude (L) and scalar sum (S) of wind speeds over the previous 24 14 

hours (Levy et al., 2009):  15 

𝑅𝑃𝐼 = 1 − (
𝐿

𝑆
).  (1) 16 

A high RPI (close to 1) indicates that, regardless of individual hourly wind-speed 17 

magnitudes, the total displacement of air over the previous 24 hours was low, potentially 18 

leading to a pollutant buildup. Meanwhile, a very low RPI (close to 0) indicates steady, 19 

consistent wind, advecting air masses away from a location.  20 

Stagnation, or the relative stability of tropospheric air masses, is another meteorological 21 

phenomenon previously cited as a driver of pollutant extremes (Banta et al., 1998; Jacob 22 

and Winner, 2009; Valente et al., 1998). While some of the raw meteorological fields 23 

(e.g. wind speed and precipitation) are already themselves good indicators of local 24 

stagnation, Lower Tropospheric Stability (LTS), the difference between surface and 700 25 

hPa potential temperatures, is also calculated as a reflection of temperature inversion 26 

strength in the lower troposphere (Klein and Hartmann, 1993). Temperature inversions, 27 

in which the daytime pattern of air being warmer near the Earth’s surface is reversed, 28 

generally lead to stable, stagnant conditions well suited for the buildup of pollutants such 29 

as O3 and PM2.5. This phenomenon can be particularly pronounced in areas with 30 



geographical barriers to horizontal transport, such as the basins of Los Angeles and Salt 1 

Lake City (Langford et al., 2010; Pope, 1991). 2 

From the selected set of raw and derived NARR meteorological fields (Table 1), we 3 

generate a range of temporal variables for each individual meteorological variable, 4 

including extrema and means for each 24-hour day, as well as for 8-hour daytime and 5 

previous 8-hour nighttime ranges. To include possible long-term impacts of these 6 

meteorological variables, each of the 9 daily values are then extended into 3 and 6-day 7 

maxima, minima, and means, as well as a 1-day delta variable to show 24-hour change, 8 

resulting in 63 total temporal options for each listed meteorological variable. 9 

2.3 Fire Proximity Metric 10 

Biomass burning emissions can impact pollutant concentrations (e.g. Streets et al., 2003) 11 

with indirect correlations to daily meteorological variability, making it a potentially 12 

confounding factor when performing analyses using meteorological variables alone. To 13 

help examine and quantify the likely impact of fires on observed pollutant levels we 14 

create a simple fire metric to represent the spatial and temporal proximity of each site to 15 

satellite-observed burn locations. Using output from the Moderate Resolution Imaging 16 

Spectroradiometer (MODIS) Global Monthly Fire Location Product (Giglio et al., 2003; 17 

Justice et al., 2002) we estimate the total fire proximity impact for each site by applying 18 

spatial and temporal decays to burn detection confidence values, and summing these 19 

values across all detected pixels through the equation 20 

𝐹 = log (∑
1

𝑟

1

2𝑡
𝑐𝑜𝑛𝑓𝑖 ).  (2) 21 

Here, the fire proximity index F is a function of the distance (r) and number of elapsed 22 

days (t, ranging from 0 to 6) separating a station from a MODIS-detected burn pixel with 23 

a given confidence value (conf), summed over all nearby burn pixels i. The resulting 24 

proximity metric does not take transport, precipitation, or any other meteorological 25 

variables into account, simply producing higher values for stations near burning (or 26 

recently burned) locations. A comprehensive treatment of biomass burning emissions and 27 

transport requires accurate information on many complex factors, including fuel type, 28 

burn intensity, and smoke injection heights (Val Martin et al., 2010; Wiedinmyer et al., 29 



2011), and fully representing these factors to generate a robust estimate for the influence 1 

of fire emissions goes well beyond the scope of this work. However, considering both the 2 

stochastic nature of large fire events and the importance of biomass burning on air-3 

quality variability, we use this cumulative proximity metric as an intermediate measure. 4 

2.4 Meteorological Variable Selection 5 

Combining the 63 described temporal options with all chosen raw and derived 6 

meteorological variables results in over 1,700 possible pollutant indicators, making 7 

variable selection problematic. With driver identification an important goal of this work, 8 

we keep the selection procedure as open as possible initially, maximizing the first sweep 9 

of candidates and only eliminating possible drivers after thorough evaluation (Figure 3). 10 

However, indiscriminate inclusion of additional variables opens the strong likelihood of 11 

problems related to overfitting and multicollinearity. Furthermore, for the sake of 12 

comparison between stations, we desire a single set of indicator variables for the entire 13 

set of observation sites included, making selection on a station-by-station basis 14 

impractical. For these reasons we utilize a stepwise multivariate approach based on 15 

combining covariate rankings at individual stations into a single selection metric. To 16 

reduce the computational cost of variable selection initially we use a testing subset of 17 

stations, including 10 stations (with varying degrees of mean pollutant levels) from each 18 

of the 10 EPA regions (shown in Figures 3 and 5). We then use observed pollutant levels 19 

(maximum 8-hour average O3 and daily average PM2.5) from each of these 100 stations to 20 

evaluate and select key indicators from the full set of possible meteorological variables 21 

included. Meteorological variable selection is performed independently for ozone and 22 

PM2.5, as well as for summer and winter seasons. 23 

We select meteorological indicators using 90th percentile quantile regressions evaluated 24 

with the Bayesian information criterion (BIC) metric, a statistical tool closely related to 25 

the Akaike information criterion (AIC) and similarly based on the likelihood function 26 

(Schwarz, 1978; Lee et al., 2014). BIC evaluates the likelihood of a given set of 27 

indicators representing the best set possible, given a set of associated responses (in this 28 

case, daily pollutant levels), with lower BIC values indicating a stronger statistical model 29 

(i.e. the set of predictive meteorological indicators being evaluated). To perform stepwise 30 



variable selection, we quantify the benefit (via BIC) of adding each individual variable 1 

candidate to the list of selected variables in turn. Large reductions in BIC indicate a 2 

more-important variable, while small reductions (∆BIC < 2) indicate a less-important 3 

variable. Unlike other goodness of fit metrics such as the coefficient of determination R2, 4 

BIC values say nothing about the overall strength of the predictive model as a whole, but 5 

rather serve to compare the relative effectiveness of multiple statistical models attempting 6 

to explain the same set of results. However, again unlike R2, both BIC and (to a lesser 7 

extent) AIC penalize the inclusion of extraneous indicators, reducing the chance of 8 

overfitting. While there is some discussion within the statistical literature regarding the 9 

strengths of BIC vs. AIC, both are considered versatile, robust tools in the evaluation of 10 

statistical models (Burnham and Anderson, 2004; Yang, 2005), and applicable to quantile 11 

regression if errors are assumed to follow an asymmetric Laplace distribution (Geraci and 12 

Bottai, 2007). Note that while the 90th percentile of pollution levels is lower than the 95th 13 

quantile targeted later in this study, the slightly reduced value is chosen to improve 14 

robustness during the initial variable selection phase. 15 

We begin variable selection by using only time (measured in days elapsed) as a predictor 16 

variable, accounting for any linear trend in pollutant behavior over the course of the 17 

observed period (Figure 3, step 3). From there, we identify the most impactful temporal 18 

option (daily maximum, mean, minimum, etc…) available for a single meteorological 19 

variable (e.g. surface temperature). We perform stepwise variable selection at each 20 

station independently, selecting the candidate temporal option producing the greatest 21 

reduction in BIC (and therefore greatest improvement in the statistical model), and 22 

continuing until no further improvement is possible. We then rank the final set of 23 

included variables by order of selection, invert those ranks, and sum these inverted ranks 24 

over all 100 test stations (Figure 3, step 4). This sum represents an overall importance 25 

metric, and will be large for variables that either appear somewhat valuable at many 26 

stations, or that appear to be exceptionally valuable at just a few stations. We then add the 27 

single temporal option with the greatest summed total to the global list of selected 28 

variables. With a new indicator chosen we filter the remaining candidates (Figure 3, step 29 

6), eliminating poor performers (those selected at too few sites in the previous round) or 30 

those exhibiting collinearity with the current statistical model (R2 ≥ 0.6 relative to current 31 



indicators). After this pruning process we start the selection routine again for all 1 

remaining indicator candidates, using time and all previously selected variable as fixed 2 

covariates. We repeat this cycle until no temporal candidates exhibiting summed ranks 3 

higher than our chosen threshold remain for the current meteorological variable, after 4 

which the temporal variable selection starts anew with the next meteorological parameter. 5 

Once temporal variable options have been filtered down for each individual 6 

meteorological covariate through this selection process we gather all selected variables 7 

together and apply the same selection process to the full set of approximately 300 8 

candidates, finally arriving at trimmed down set of less than 20 meteorological indicators 9 

for each pollutant species and season (Table 2, top). The selection process is somewhat 10 

sensitive to the percentile used for the regression, as evidenced by the different variables 11 

selected using the 50th percentile rather than the 90th (Table 2, below). While most high-12 

ranked meteorological variables show up using both selection processes, there are 13 

noticeable differences, especially in the temporal options chosen. 14 

Through this routine, variables can stand out for selection by being either moderately 15 

important at many sites, or by being very important at fewer sites. By adjusting the 16 

threshold parameter for variable selection, the scope of variable inclusion can be tuned to 17 

a certain extent. Higher thresholds end the selection process sooner, as fewer and fewer 18 

new variables are ranked highly at enough stations to meet the summed value 19 

requirements, while lower values allow the process to continue adding less important 20 

variables. In this work we identify and compare both a concise “Core” set of indicators 21 

(variables with summed inverse ranks of at least 2) and a “Full” set of indicators 22 

(variables with summed inverse ranks of at least 1).  23 

It should be noted that the NARR fields used to provide our input meteorological 24 

covariates likely exhibit intrinsic errors and biases which will certainly affect the 25 

predictive power of our models, as well as the strength of our variable selection process 26 

itself. Variables which are better represented (e.g. temperature) will have an advantage 27 

compared to other potentially important variables with greater uncertainties, such as 28 

precipitation. 29 

 30 



2.5 Quantile Regression 1 

The final sets of indicator variables represent those covariates most broadly associated 2 

with changes in high pollutant levels due to meteorological factors at the 100 chosen test 3 

sites. Using these selected meteorological variables, we next perform linear multivariate 4 

quantile regression to identify sensitivities for percentiles from 2% to 98% at each station 5 

in the full set of AQS sites. From these regressions we collect Summer (JJA) and Winter 6 

(DJF) quantile sensitivities of O3 and PM2.5 to each meteorological variable for each AQS 7 

station. 8 

3 Results 9 

To assess relative covariate importance across the United States we normalize quantile 10 

sensitivities to standard deviations of pollutant and indicator fluctuations and rank them 11 

in relation to each other at each site. Top-ranking covariates for any given station, then, 12 

are those whose variabilities (in normalized units of standard deviations) are most 13 

responsible for variability in the observed pollutant. Figures 3 and 5 show each variable’s 14 

frequency of appearing as the first or second most important indicator by this metric, with 15 

similar variables grouped together into columns. We compare the covariates most 16 

associated with the 95th and 50th percentile of pollutant concentrations, finding similar, 17 

though not identical, frequencies between top performers for the two quantiles. 18 

3.1 Summer O3 19 

In the summertime, covariates linked to high-percentile O3 are dominated by a positive 20 

correlation with temperature at most sites (Figure 4a, top), consistent with previous 21 

modeling sensitivity conclusions (Jacob and Winner, 2009). Altogether, 49% of the 22 

analyzed sites show maximum daily surface air temperature as the meteorological 23 

variable with the greatest normalized slope relative to observed maximum 8-hour average 24 

O3 concentrations, and it is within the top five most influential variables at 79% of all 25 

sites. Underlying reasons for the dominance of temperature as a driver of observed O3 26 

include a positive correlation with biogenic emissions of isoprene (a potential precursor 27 

of O3), a negative correlation with the lifetime of peroxyacetylnitrate (PAN, an important 28 



reservoir species for NOx and                                                                                                                                                                                                                                  1 

HOx radicals), and an associated correlation between higher temperatures and bright, 2 

stagnant conditions (Jacob and Winner, 2009). 3 

While maximum daily surface temperature stands out as the covariate with the highest 4 

normalized impact on daily summer O3 levels, many other variables also play important 5 

roles, especially in the south and southeast regions (Figure 4a, bottom). Water vapor 6 

generally reduces O3 levels under pristine conditions, removing dissociated excited 7 

oxygen atoms and producing the hydroxyl radical (OH). Under polluted conditions this 8 

negative effect competes with increased O3 production as a result of OH reacting with 9 

carbon monoxide (CO) or volatile organic compounds (VOCs), O3 precursors common to 10 

highly polluted environments. These two effects combine to produce generally weak 11 

correlations between humidity and O3 in model perturbation studies (Jacob and Winner, 12 

2009). In this work, however, relative humidity (RH) has a strong negative relationship 13 

with O3 in many locations, particularly in the south, consistent with previous analyses of 14 

observed sensitivities (e.g. Camalier et al., 2007). A negative correlation with 15 

temperature and a positive correlation with cloudy, unstable conditions may explain the 16 

stronger associations found in the observations relative to those of model perturbation 17 

studies. Stability, in the form of turbulent kinetic energy (TKE) is also a strong performer 18 

at many sites, though less so for the 95th percentile than for the 50th. Finally, while fire 19 

proximity stands out at relatively few stations as a dominant driver of median O3 levels 20 

(50th percentile), it appears to be important at far more sites when examining higher O3 21 

levels (95th percentile). 22 

While the top covariate frequencies shown in Figure 4a can help identify dominant 23 

meteorological factors overall, they do not indicate spatial distributions or sensitivity 24 

magnitudes. The bottom panel of Figure 4a and Figure 5 address these aspects of selected 25 

top covariates, showing where each tends to drive pollutant variability, as well as how the 26 

sensitivity magnitudes are distributed overall. Spatially, the temperature sensitivity of 27 

95th percentile O3 levels appears to be most directly associated with coastal areas, though 28 

the strong negative relationship between relative humidity and O3 in the south likely 29 

includes temperature effects (Figure 5, bottom). In general, the sensitivities of O3 to 30 

changes in temperature are greater for higher O3 quantiles, as shown by the increasing 31 



and flattening distributions for 95th quantile regression sensitivities compared to 50th and 1 

5th quantile values (Figure 5, upper left). In fact, quantile regression coefficients for the 2 

95th percentiles averaged 0.9 ppb ºC−1, 50% greater than mean 50th percentile 3 

sensitivities. This difference again highlights the importance of temperature in 4 

determining extreme O3 events, since increased temperatures could be expected to 5 

positively affect the magnitudes of high O3 days even more than would be expected based 6 

on average days. By comparison, downward shortwave radiation flux also shows up as a 7 

positive driver of high O3 levels, but displays much more consistent sensitivities across 8 

O3 quantiles (Figure 5, upper right).  9 

3.2 Winter O3 10 

O3 levels are generally lower at all percentiles during the winter months compared to the 11 

summer months, with 95th percentile O3 levels almost halved at some sites. As seen in 12 

Figure 6b, temperature is almost completely absent from the top ranks of O3 indicators 13 

during the winter. Instead, variables related to incoming radiation flux are most important 14 

at many sites, especially for 95th percentile O3 levels. This indicates the relative 15 

importance of consistently clear skies for O3 production during the coldest months, a 16 

relationship that appears consistently across quantiles and regions (Figure 6b, bottom). 17 

Among the incoming radiation metrics, the 6-day maximum of daily mean shortwave 18 

radiation flux showed up as a top covariate most often, with consistently positive 19 

correlations evenly distributed spatially (Figure 5, lower left). Sensitivities are slightly 20 

greater, on average, for higher quantiles, and stand out as particularly strong at stations in 21 

Wyoming, an area previously highlighted for its dangerously high winter O3 levels (e.g. 22 

Schnell et al., 2009). As with summer O3, DSWRF again has a generally positive 23 

influence on winter O3, with some increase in sensitivity at higher quantiles (Figure 5, 24 

lower right). HPBL, wind, and specific humidity show up as top covariates at many sites 25 

as well, but more so for median quantile regressions than for 95th regressions, while fire 26 

proximity becomes increasingly important at the higher quantiles.  27 

 28 



3.3 Summer PM2.5 1 

Figure 6a shows that mean daily temperature is also a key player in predicting 2 

summertime PM2.5, with greater sensitivities at the highest concentration percentiles. 3 

While the previously discussed sensitivities of O3 to temperature shown in Figure 5 are 4 

greatest along both the Northeast coast and Southern California, PM2.5 sensitivities to 5 

temperature peak entirely in the East. One possible reason for this spatial difference in 6 

PM2.5 temperature sensitivity is the regionality of PM2.5 speciation, especially in terms of 7 

competing sensitivities of nitrate and sulfate aerosol (Dawson et al., 2007). While 8 

concentrations of nitrate aerosol (and, to a lesser extent, organics) are generally reduced 9 

by higher temperatures due to increased gas phase partitioning, sulfate aerosol 10 

concentrations can increase at higher temperatures because of increased rates of 11 

oxidation. Sulfur emissions are far higher in the East than in the West, offering a likely 12 

explanation for the differing sensitivities of PM2.5 to temperature between the regions. 13 

In addition to temperature, 95th percentile PM2.5 shows strong sensitivities to wind speeds 14 

and tropospheric stability at many sites, emphasizing the importance of transport and 15 

stagnancy for extreme PM2.5 events, particularly those in highly-polluted regions (Figure 16 

6a, bottom). 3-day averages wind speed stood out among covariates at many sites 17 

throughout the East and Midwest regions, and influences tended to be of higher 18 

magnitude for high-quantile PM2.5 levels than for medians or low quantiles (Figure 7, 19 

upper right). Positive correlations for this metric may be associated with areas whose 20 

extremes were governed primarily by transport, rather than production. Also increasingly 21 

important for higher quantiles of fine particulate matter was fire proximity, with over 22 

twice as many sites including this metric in the top drivers for 95th percentile PM2.5 as for 23 

50th percentile PM2.5. 24 

3.4 Winter PM2.5  25 

Unlike O3, winter PM2.5 levels in the United States are often comparable to (or even 26 

greater than) those of the summer months at many sites (Figure 2). Compared to other 27 

seasons and species, the dominant covariates of winter PM2.5 are more consistently 28 

distributed between a few key variables (Figure 6b, top). Temperature is apparently less 29 



of a factor during cold months, rarely appearing among the top normalized indicators, 1 

and metrics related to stagnation stand out as important covariates associated with 2 

pollution events. Among meteorological covariates associated with increased winter 3 

PM2.5, stability metrics (TKE and LTS), relative humidity, and planetary boundary layer 4 

height (HPBL), stood out as key variables at the most sites, with wind and rainfall also 5 

important at many locations. Top covariates were particularly consistent in selection and 6 

magnitude in the northeast (regions 1, 2, and 3), as shown by the tight, nearly identical 7 

distributions (Figure 6b). Turbulence had a consistently negative influence on winter 8 

PM2.5, especially for high response quantiles (Figure 7, lower left).  9 

Compared to factors connected to median PM2.5 levels, the two included tropospheric 10 

stability indicators (3-day average of max daily TKE and 3-day minimum LTS) showed 11 

exceptionally strong sensitivities among covariates of 95th percentile levels, suggesting 12 

that PM2.5 extremes in the wintertime are particularly sensitive to persistently stable 13 

conditions (Figure 7, lower right). Sites in Colorado and Utah, some of which are well-14 

known for episodes of severely reduced winter air-quality, stand out in this regard, with 15 

95th quantile sensitivities to LTS over 4 times those of other site averages. 16 

4 Discussion 17 

4.1 Differences in Quantile Sensitivities 18 

The differences between typical 5th, 50th, and 95th percentile sensitivities shown in figures 19 

4 and 6 help to illustrate the ways in which meteorological impacts on pollutants can vary 20 

in magnitude across the response distribution. These differences can be more clearly 21 

quantified and compared by measuring the slope of a QR regression itself as a function of 22 

the percentile (Figure 8). Using the full range of normalized QR output gathered, from 2-23 

98%, we perform weighted least squares regressions for each selected variable at each 24 

station. The resulting slope for each regression (in normalized units of standard 25 

deviations) can be interpreted as a measure of change in sensitivity across the pollutant 26 

distribution, with high values representing strong positive differences in sensitivity, and 27 

low values representing strong negative differences. In other words, a zero slope implies 28 

that the response of a pollutant to a given meteorological covariate is relatively uniform 29 



regardless of the pollutant concentration, while a positive slope implies that responses at 1 

the high extremes tend to be greater than those of lower percentiles.  To put these 2 

changes in context, the overall mean sensitivity for each variable is shown by color. 3 

Quantifying the extent to which these differences in quantile sensitivities might impact 4 

the response distributions themselves is beyond the scope of this work, but the 5 

magnitudes of sensitivity differences relative to the mean sensitivities themselves suggest 6 

large differences between mean and extreme behavior. For example, the sensitivity 7 

change of summer O3 to maximum air temperature is shown to be roughly equivalent to 8 

the mean sensitivity itself. Thus, a location showing a mean increase of 1 ppb O3 per ºC 9 

might exhibit an increase of only 0.5 ppb O3 per ºC at the 5th percentile, but a much larger 10 

increase of 1.5 ppb O3 per ºC at the 95th percentile. This could clearly have important 11 

consequences for the resulting O3 distribution, given increasing temperatures. 12 

For summertime O3 and PM2.5, temperature stands out as a covariate that not only has a 13 

strong positive impact on concentrations (indicated by the bright red color), but also 14 

exhibits even stronger impacts on high percentile pollutant levels than on lower percentile 15 

levels at most stations. On the other hand, while HPBL also strongly impacts 16 

summertime O3, the change in sensitivity between low and high quantiles is generally 17 

small, indicating a variable whose impact on O3 is relatively unchanging across pollutant 18 

percentiles. Besides temperature’s connections to summer O3 and PM2.5, the key 19 

meteorological factors associated with winter PM2.5 stand out for having highly quantile-20 

specific sensitivities. The sensitivity of PM2.5 to relative humidity, lower tropospheric 21 

stability, HPBL, and TKE are all greater for high PM2.5 quantiles than they are for low 22 

ones, highlighting the importance of characterizing the full pollutant response to 23 

meteorological covariates, especially for winter PM2.5. 24 

 25 

4.2 Overall Predictive Power of Statistical Models 26 

The variables identified here were not selected based on their suitability for ordinary least 27 

squares regression, but they do show considerable skill at predicting pollutant levels 28 

using this methodology, explaining over half of the variability at most sites (Figure 9). 29 



Predictive skill for summertime O3 is greatest in East, South, and Midwest (regions 2 1 

through 6) and least in the Pacific Southwest and Mountains and Plains regions (regions 8 2 

and 9). Winter O3 R
2 values are generally slightly lower than those of the summer 3 

months, especially in the Pacific Northwest and South Central regions, though this may 4 

be partly explained by reduced O3 variability overall in the winter months. 5 

PM2.5 shows a strong split between the relatively well-modeled Northeast and the less-6 

accurately represented Midwest and Southwest. These results compare favorably to 7 

previous attempts to predict PM2.5 using meteorological indicators (Demuzere et al., 8 

2009; Tai et al., 2010). Tai et al. (2010), for example, find multivariate linear regression 9 

capable of explaining less than 50% of PM2.5 variability in the Northeast United States. 10 

Almost half of the stations in those same regions showed adjusted R2 values of greater 11 

than 60% using our method, despite the indicators being chosen to optimize high quantile 12 

regressions rather than OLS regressions. Regional differences in meteorological 13 

predictive power in this work are also comparable to those of Tai et al., who found high 14 

R2 values in the Northeast and Pacific Northwest (regions 2, 3, and 5), and lower values 15 

in the South and Mountains and Plains regions (regions 6 and 8). 16 

 17 

4.3 Pollutant Variability and Trend 18 

It is apparent that relatively simple meteorological processes, chosen for their influence 19 

on high percentiles of O3 and PM2.5, are also capable of explaining a large fraction of 20 

daily pollutant variability. There are a number of possible sources for the remaining 21 

variability, including day-to-day fluctuations in pollutant precursor emissions and highly 22 

localized meteorological patterns. While the nation-wide variable selection process of 23 

this study proved capable of identifying indicators that are broadly effective at predicting 24 

daily pollutant levels in many locations, specific features relevant to individual stations 25 

(e.g. direction and distance of upwind emission sources) may not be adequately 26 

represented by the globally selected variables. Variability in local emission sources 27 

themselves, either due to sporadic local events or differences in weekend vs. weekday 28 

emissions, may also play an important role at some sites. This analysis is also subject to 29 



uncertainties in the NARR product and the pollutant observations, as well as 1 

discrepancies between local station conditions and the grid-averaged NARR output. 2 

Another important consideration in the analysis of these results is the nonstationarity of 3 

both pollutant concentrations and sensitivities. As a result of the implementation of 4 

widespread emissions controls, concentrations of O3 and PM2.5 have decreased 5 

dramatically in many of the most polluted areas in the United States. Since 2004, mean 6 

summertime O3 levels at the sites used in this study have decreased by an average of 0.14 7 

ppb per year, while 95th percentile O3 levels have decreased by 0.58 ppb per year. 8 

Stations that started with exceptionally high O3 levels (mean summertime levels greater 9 

than 80 ppb) have seen even more dramatic decreases, with means falling by 0.63 ppb per 10 

year and 95th percentile levels falling by 1.3 ppb year.  11 

To a certain extent, these changes in pollution levels over time are accounted for in our 12 

analysis through the inclusion of time (measured in days since the start of the analyzed 13 

record) as an indicator variable. However, changes in meteorological sensitivities 14 

themselves as a function of decreasing emissions are not accounted for. To assess how 15 

these decreases in emissions and overall pollution levels might have affected 16 

meteorological sensitivities, the analyses above were repeated using 4-year subsets of the 17 

full data record: 2004-2007 and 2008-2012, showing a widespread reduction in 18 

sensitivities over time, presumably due to changes in precursor emissions. For example, 19 

95th percentile sensitivities of summertime O3 to temperature were 13% lower in the 20 

years 2009-2012 relative to 2004-2007, consistent with previously reported declines in 21 

temperature sensitivity (Bloomer et al., 2009). In all, we see average absolute differences 22 

in 95th percentile sensitivities among each station’s top two covariates of 22%, with most 23 

changes representing reductions in sensitivity. Despite these differences, the qualitative 24 

features of our analysis (including sign of sensitivities and differences between pollutant 25 

quantiles) are consistent over time. 26 

5 Conclusions 27 

This analysis demonstrates that air quality over the past decade was highly sensitive to 28 

meteorology, and that this sensitivity varied across pollutant type (O3 vs. PM2.5), season, 29 



and concentrations (50th vs. 95th percentiles). These differences offer insights into the key 1 

drivers behind extreme pollution event frequencies in the observed record beyond simple 2 

conditional means, highlighting the meteorological covariates most associated with 3 

changes in the highest pollutant levels. 4 

We find that temperature is a dominant covariate at most stations in the summer for both 5 

O3 and PM2.5, with relative humidity, stability, and radiation flux also key covariates 6 

relating to O3, and wind, stability, and rain often effective for predicting high PM2.5 7 

levels. O3 variability during winter months is determined largely by changes in incoming 8 

radiation, while winter PM2.5 extremes are most commonly affected by stagnation, 9 

humidity, and PBL height. We show substantial regional variation in these results, 10 

suggesting that while classes of meteorological drivers of extreme air quality are 11 

generally consistent, specific factors leading to air quality exceedances are local.  12 

Climate change in coming decades is likely to induce a response in regional air pollution. 13 

The sensitivities of O3 and PM2.5 to changes in meteorological patterns are, in general, 14 

stronger for higher pollution percentiles, meaning that changes to certain factors (most 15 

notably temperature, wind speed, PBL height, and tropospheric stability) are likely to 16 

affect the magnitude and frequencies of pollutant extremes more drastically than they 17 

affect more moderate pollution levels. This effect suggests that regional changes to 18 

climate could have more significant impacts on the frequencies of extreme O3 and PM2.5 19 

events than would be suggested by bulk sensitivities from OLS regressions. 20 

This analysis framework offers new ways to investigate both the observed and simulated 21 

air-quality responses to climate. Through quantile regression, the selection and ranking of 22 

key predictors of pollutant variability can be evaluated robustly, focusing not on the mean 23 

behavior of a heavy-tailed pollutant distribution, but rather the sensitivities closer to the 24 

tail itself. Furthermore, the comparison of observed sensitivities to those simulated by 25 

regional or global air quality models could identify key model biases relevant to the 26 

projection of future air quality, potentially providing insights on the underlying 27 

mechanistic reasons for those biases. 28 

 29 
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Table 1. Meteorological fields used in variable selection procedure. Each NARR field 1 

shown was included using 9 different possible daily values (24-hour max/min/mean, 8-2 

hour daytime max/min/mean, previous 8-hour nighttime max/min/mean), as well as 3 

longer term (3-day and 6-day) aggregates and 1-day deltas of those daily values. 4 

Variables marked “9x9” represent regional means, and were generated by averaging the 5 

9x9 square of NARR grid cells centered around each station location (roughly 290 km to 6 

a side). 7 

  8 

NARR Variables1   

air.2m 2m air temperature pres.sfc surface pressure 

air.sfc_9x9 surface air temperature (regional) rhum.2m 2m relative humidity 

apcp accumulated total precipitation shum.2m 2m specific humidity 

crain_9x9 binary precipitation flag (regional) tcdc_9x9 total column cloud cover (regional) 

dlwrf downward longwave radiation flux tke.hl1_9x9 turbulence kinetic energy 

dswrf downward shortwave radiation flux tmp.700 700 hPa temperature 

hcdc_9x9 high level cloud cover (regional) uwnd.500 500 hPa zonal wind speed 

hgt.850 850 hPa geopotential height uwnddir.10m normalized 10m wind direction 

hpbl planetary boundary layer height vvel.700 700 hPa vertical velocity 

lcdc_9x9 low level clouds (regional) vvel.hl1 lowest level vertical velocity 

lftx4 best lifted index vwnd.500 500 hPa meridional wind speed 

mcdc_9x9 midlevel cloud cover (regional) vwnddir.10m normalized 10m wind direction 

prate precipitation rate wspd.10m 10m wind speed 

    

Derived Variables    

fire fire proximity metric   

lts2 lower tropospheric stability   

rpi3 recirculation potential index   

    

Temporal Options    

max 24-hour maximum value   

min 24-hour minimum value   

mean 24-hour mean value   

daymax/min/mean as above, but using only 8:00 AM to 4:00 PM   

nightmax/min/mean as above, but using only preceding night: 8:00 PM to 4:00 AM   

diff change from previous day   

3daymax/min/mean max/min/mean of previous 3 days   

6daymax/min/mean max/min/mean of previous 6 days   

    
1Mesinger et al., 2006    
2Klein and Hartmann, 1993    
3Levy et al. 2009    



Table 2. Selected covariates for O3 and PM2.5 using 90th percentile (above) and 50th 1 

percentile (below) quantile regressions. “Core” covariates (in bold) were selected using a 2 

minimum threshold for summed inverted ranks of at least 2, with remaining covariates 3 

added by rerunning the selection procedure including all Core variables and a relaxed 4 

selection threshold of 1. 5 

 6 

Selected via 90th Percentile QR   

Summer O3  Winter O3  Summer PM2.5 Winter PM2.5 
rhum.2m_mean dswrf_mean.6daymax air.2m_max hpbl_mean 

vwnddir.10m_mean wspd.10m_mean vwnddir.10m_mean vwnddir.10m_mean 

air.2m_max vwnddir.10m_mean lftx4_daymin tke.hl1_9x9_daymax.3daymean 

crain_9x9_daymean rhum.2m_min uwnddir.10m_mean.3daymean wspd.10m_nightmax 

fire fire wspd.10m_max.3daymean rhum.2m_mean 

uwnddir.10m_mean rpi_max air.sfc_9x9_nightmin.6daymean shum.2m_daymax.6daymin 

air.sfc_9x9_min.6daymin hpbl_daymax fire crain_9x9_nightmean 

pres.sfc_daymax air.sfc_9x9_nightmin.6daymean crain_9x9_max.6daymean lts_min.3daymin 

tke.hl1_9x9_max dlwrf_daymax.6daymin vwnddir.10m_daymean.6daymean uwnddir.10m_mean.3daymean 

dswrf_daymin.3daymean crain_9x9_max apcp_nightmax dswrf_max.3daymean 

hpbl_max uwnddir.10m_daymean rpi_nightmin lftx4_nightmin.6daymin 

tcdc_9x9_mean tcdc_9x9_mean vvel.hl1_nightmax.6daymax wspd.500_min 
dswrf_min.6daymin lts_nightmax.3daymin hpbl_nightmax.6daymax tke.hl1_9x9_max.6daymin 

vwnd.500_daymax.3daymean lftx4_min.diff rpi_nightmax.6daymin vwnd.500_max.diff 

shum.2m_max.diff lcdc_9x9_nightmin.6daymax tcdc_9x9_max.6daymax tcdc_9x9_max.diff 
wspd.10m_daymin.3daymin  shum.2m_min.diff wspd.10m_min.6daymax 

hpbl_daymin.6daymin  lts_nightmin.6daymin  

pres.sfc_min.diff  mcdc_9x9_nightmax.3daymin  
apcp_daymin.3daymax    

 7 

 8 
Selected via 50th Percentile QR   

Summer O3  Winter O3  Summer PM2.5 Winter PM2.5 
rhum.2m_mean dswrf_mean air.2m_max hpbl_mean 

air.2m_max wspd.10m_mean air.sfc_9x9_nightmin.6daymax vwnddir.10m_mean 

dswrf_daymin.3daymean dswrf_daymean.diff crain_9x9_nightmax wspd.10m_daymax.3daymax 

vwnddir.10m_mean vwnddir.10m_mean wspd.10m_max.3daymean crain_9x9_nightmax 

crain_9x9_daymean lts_daymin vwnddir.10m_mean wspd.10m_nightmax 

fire shum.2m_min lftx4_mean rhum.2m_mean 

tke.hl1_9x9_daymax uwnddir.10m_mean lts_daymin uwnddir.10m_mean 

uwnddir.10m_daymean.3daymean crain_9x9_daymax uwnddir.10m_daymean.3daymean wspd.10m_max.3daymin 

air.sfc_9x9_daymin.3daymean dswrf_min.3daymin shum.2m_daymean.diff rpi_max 

rpi_max fire crain_9x9_max.6daymean uwnddir.10m_nightmean.3daymean 

lts_mean air.sfc_9x9_mean.6daymean rpi_max dswrf_daymin.6daymax 
dswrf_min.6daymin hpbl_daymax vwnd.500_min lftx4_nightmin.3daymean 

vwnd.500_min hcdc_9x9_daymax vwnd.500_daymax.6daymax shum.2m_nightmin.6daymean 
hpbl_nightmean.3daymin pres.sfc_nightmin.6daymean pres.sfc_max fire 

vvel.hl1_mean.6daymean rpi_nightmax.6daymean hgt.850_max.6daymax  

pres.sfc_mean.diff air.sfc_9x9_nightmin.diff   
rhum.2m_max.diff lts_daymax.6daymin   

vwnd.500_min.diff mcdc_9x9_nightmax.3daymin   
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Figure 1. Daily maximum 8-hour O3 vs. maximum daily temperature for example site in 2 

Essex County, MA (JJA, 2004-2012). An ordinary least squares regression line (a) 3 

captures the general trend, but is unable to represent the increase of variability in the 4 

distribution with increasing temperature. Using individual quantile regressions ranging 5 

from 5th to 95th percentiles (b), the increased sensitivity of higher quantiles to increased 6 

temperatures becomes apparent.  7 



 1 

Figure 2. Location of AQS stations included in this study. The magnitude of each station’s 95th percentile measurement 2 

is indicated by color. 3 

  4 
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Figure 3. Flowchart of variable selection procedure described in section 2.4.  2 



 1 

Figure 4a. Frequency at which normalized 95th percentile QR coefficients for selected variables were in the top 2 out of 2 

all included variables (above) for summer O3, and boxplots of normalized regression coefficients for top 3 covariates in 3 

each region (below). Specific meteorological variables (shown in legend) have been grouped into categories shown on 4 

the x-axis of the bar plot. Colors on inset boxplots correspond to legend in above panel, and grey dots indicate the 5 

fraction of stations showing a statistically significant relationship (p ≤ 0.05) to the indicated covariate in that region. 6 

EPA Region numbers are inset on top-right of boxplot panels. 7 
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Figure 4b. Same as Figure 4a, but for winter O3.  2 



 1 

 2 

Figure 5. Spatial and frequency distributions for key covariates of summer (top) and winter (bottom) O3. Maps show 3 

95th percentile O3 sensitivities to selected meteorological variables at stations where that variable was most important 4 

(defined as being one of the top 2 normalized covariates). Below each map, histograms show the distribution of 5 

sensitivities for the 5th (gray), 50th (yellow), and 95th (red) percentiles at all sites.   6 
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 2 

Figure 6a. Same as Figure 4a but for summer PM2.5.   3 



 1 

Figure 6b. Same as for Figure 4a but for winter PM2.5.   2 
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Figure 7. Same as Figure 5 but for PM2.5.   2 



 1 

Figure 8: Normalized pollutant concentration sensitivities to meteorological covariates (0.0 = uniform sensitivity across 2 

quantiles). Values shown here are the weighted least squares regressions performed on normalized QR coefficients as a 3 

function of quantile for covariates with a mean sensitivity change of at least 0.05, by species and season. Colors of bars 4 

show mean normalized sensitivities (roughly equivalent to slopes expected from an ordinary least squares regression), 5 

while magnitudes of bars show mean change across quantiles, averaged over all stations. Error bars indicate standard 6 

error of the mean.  7 



 1 

Figure 9. Ordinary least squares coefficient of determination (R2) between observed pollutant concentrations and the 2 

reduced set of meteorological variables selected in this analysis. Results are shown by pollutant (O3 or PM2.5), EPA 3 

region (see Figures 3 and 5), and season (JJA=summer, DJF=winter). Red circles indicate median values using the full 4 

set of variables, for comparison. Refer to Table 2 for the listing of the reduced and full set of variables. Boxplot 5 

whiskers mark 5th and 95th percentile R2 values. 6 


