

Supplement of

A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station: experimental vs. modeled formation rates

A. Bianco et al.

Correspondence to: M. Brigante (marcello.brigante@univ-bpclermont.fr) and L. Deguillaume (l.deguillaume@opgc.univ-bpclermont.fr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Reactions		k ₂₉₈ (M ⁻ⁿ⁺¹ s ⁻¹)	Ea/R (K)	References	Notes
HO _x chemistry					
$O_3 + h\nu \rightarrow H_2O_2 + O_2 - H_2O$	R(1)	Calculated		(Graedel and Weschler, 1981)	
$H_2O_2 + h\nu \rightarrow 2 HO^{\bullet}$	R(2)	Calculated		(Graedel and Weschler, 1981)	
$HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2 + O_2$	R(3)	8.3 10 ⁵	2700	(Bielski et al., 1985)	
$HO_2^{\bullet} + O_2^{\bullet} \rightarrow H_2O_2 + O_2 + OH^{\bullet} - H_2O$	R(4)	9.6 10 ⁷	910	(Christensen and	
	D/C)	<1 0 10 ⁴		Sehested, 1988)	1
$U_3 + HU_2 \rightarrow HU + 2U_2$	R(5) R(6)	<1.0 10 1 5 10 ⁹	2200	(Senested et al., 1984)	1
$r_{12} = r_{12} = r$	Π(0)	1.5 10	2200	(Senested et al., 1903)	
$Fe^{3^{+}} + by \rightarrow Fe^{2^{+}} + HO^{\bullet} + H^{+} - H_{2}O$	R(7)	Calculated		(Benkelberg and	
				Warneck, 1995)	
$[Fe(OH)]^{2+} + h\nu \rightarrow Fe^{2+} + HO^{\bullet}$	R(8)	Calculated		(Benkelberg and	
	D(0)	Coloulated		Warneck, 1995)	
$[Fe(OH)_2] + nV \rightarrow Fe + HO + OH$	K(9)	Calculated		(Benkelberg et al., 1991): (Weschler et	
				al., 1986)	
$\left[Fe(SO_4)\right]^+ + h\nu \to Fe^{2+} + SO_4^{-1}$	R(10)	Calculated		(Benkelberg and	
		5 o 10 ¹	5050	Warneck, 1995)	
$H_2O_2 + Fe^{-1} \rightarrow Fe^{-1} + HO + OH$	R(11)	5.2 10	5050	(Christensen et al., 1993): (Kremer, 2003)	
$H_2O_2 + FeO^{2+} \rightarrow Fe^{3+} + HO_2^{\bullet} + OH^{-}$	R(12)	9.5 10 ³	2800	(Jacobsen et al., 1997)	
$O_2^{-} + Fe^{2+} \rightarrow Fe^{3+} + H_2O_2 - 2 H^+$	R(13)	1.0 10 ⁷		(Rush and Bielski,	
		ō		1985)	
$O_2^{\bullet} + Fe^{3+} \rightarrow Fe^{2+} + O_2$	R(14)	1.5 10°			$= k(O_2^{\bullet} + [Fe(OH)]^{2+})$
$O_2^+ + [Fe(OH)]^{2+} \rightarrow Fe^{2+} + O_2 + OH^{2+}$	R(15)	1.5 10°		(Rush and Bielski,	
$O_2^{\bullet^-} + [Fe(OH)_2]^+ \rightarrow Fe^{2+} + O_2 + 2 OH^-$	R(16)	$1.5 10^8$		1900)	$= k(O_2^{\bullet} + [Fe(OH)]^{2+})$
$HO_2^{\bullet} + Fe^{2+} \rightarrow Fe^{3+} + H_2O_2 - H^+$	R(17)	1.2 10 ⁶	5050	(Jayson et al., 1973a)	
$HO_2^{+} + FeO_2^{+} \rightarrow Fe^{3+} + O_2^{+} + OH^{-}$	R(18)	2.0 10 ⁶		(Jacobsen et al., 1997)	
$O_3 + Fe^{2+} \rightarrow FeO^{2+} + O_2$	R(19)	8.2 10 ⁵		(Logager et al., 1992)	
$FeO^{2+} \rightarrow Fe^{3+} + HO^{\bullet} + OH^{-} + H_2O^{\bullet}$	R(20)	1.3 10 ⁻²	4100	(Jacobsen et al., 1997)	
$FeO_{2}^{2+} + Fe_{2}^{2+} \rightarrow 2 Fe_{3}^{3+} + 2 OH_{2}^{-} + H_{2}O_{2}^{-}$	R(21)	7.2 10 ⁴	840	(Jacobsen et al., 1997)	
$FeO^{2+} + Fe^{2+} \rightarrow Fe(OH)_2Fe^{4+} - H_2O$	R(22)	1.8 104	5050	(Jacobsen et al., 1997)	
$Fe(OH)_2Fe^{4+} \rightarrow 2 Fe^{3+} + 2 OH^{-}$	R(23)	4.9 10	8800	(Jacobsen et al., 1997)	
$Fe(OH)_2Fe^{-t} + H' \rightarrow 2 Fe^{-t} + 2 H_2O - H'$	R(24)	2.0	5650	(Jacobsen et al., 1997)	
$U_2 + Fe \rightarrow Fe + 2 U$	K(25)	1.0 10	3060	(Thornton and Laurence, 1973)	
$Cl_2^{\bullet\bullet} + Fe^{2+} \rightarrow [FeCl]^{2+} + Cl^{-}$	R(26)	4.0 10 ⁶	3700	(Thornton and	

Reactions		< ₂₉₈	Ea/R	References	Notes
	(M ⁻	ⁿ⁺¹ s ⁻¹)	(K)		
		2		Laurence, 1973)	
$CI^{-} + Fe(O)^{2+} \rightarrow Fe^{3+} + CIOH^{-} - H^{+}$ $R(2)$	27) 1.0	10 ²		(Jacobsen et al., 1998)	
$NO_3 + Fe^2 \rightarrow Fe^3 + NO_3$	28) 8.0	10°		(Pikaev et al., 1974)	
$NO_2 + Fe^{2\tau} \rightarrow Fe^{3\tau} + NO_2^{-\tau}$ R(2)	29) 3.1	104		(Epstein et al., 1982)	
$HNO_2 + FeO_2^{2+} \rightarrow Fe_2^{3+} + NO_2 + OH^{-}$	30) 1.1	10 ⁴	4150	(Jacobsen et al., 1998)	
$NO_2^{-} + FeO^{2^+} \rightarrow Fe^{3^+} + NO_2 + OH^- + H^+$ R(3)	31) <1.0) 10 ³		(Jacobsen et al., 1998)	
$HSO_{3}^{-} + [Fe(OH)]^{2^{+}} \rightarrow Fe^{2^{+}} + SO_{3}^{-} - H_{2}O$	32) 3.0	101		(Ziajka et al., 1994)	
$SO_5 + Fe^{2\pi} \rightarrow [Fe(OH)]^{2\pi} + HSO_5 - H_2O$ R(3)	33) 2.6	10′		(Williams, 1996)	
$HSO_5^{-1} + Fe^{2+} \rightarrow [Fe(OH)]^{2+} + SO_4^{-1}$	34) 3.0	10 [∓]		(Gilbert and Stell,	
$r_{1}^{-1} + r_{2}^{2+} + r_{3}^{3+} + r_{2}^{2-}$	<u>ک</u> ۲\ ۱۱	10 ⁹	2105	1990) (Buyton et al. 1007)	
$SU_4 + Fe \rightarrow Fe + SU_4$ $O^{\bullet^*} + [C_2(SO_1)]^+ > C_2^{2+} + SO_2^{2-} + O$ P(S)	35) 4.1 36) 1.5	10 10 ⁸	-2105	(Buxton et al., 1997) (Bush and Biolski	
$O_2 + [Fe(SO_4)] \rightarrow Fe^- + SO_4^- + O_2^-$	30) 1.5	10		(Rush and Bleiski, 1985)	
$S_{2}O_{2}^{2^{-}} + Fe^{2^{+}} \rightarrow Fe^{3^{+}} + SO_{4}^{4^{-}} + SO_{4}^{2^{-}}$	37) 1.7	10^{1}		(Buxton et al., 1997)	
$HSO_{2}^{-} + FeO_{2}^{2+} \rightarrow Fe^{3+} + SO_{2}^{-} + OH^{-}$, 38) 2.5	10 ⁵		(Jacobsen et al., 1998)	
$Fe^{3^{+}} + SO_{4}^{2^{-}} \rightarrow [Fe(SO_{4})]^{+}$, 39) 3.2	10 ³		(Javson et al., 1973b)	
$[Fe(SQ_4)]^+ \rightarrow Fe^{3+} + SQ_4^{2-}$, 40) 2.7	10^{1}		(Javson et al., 1973b)	
$Fe^{3+} + CI \rightarrow [FeCI]^{2+}$, 41) 4.8			(Xu et al., 1985)	
$[\text{FeC}]^{2^+} \rightarrow \text{Fe}^{3^+} + C^-$, 42) 9.2	10 ⁻¹		Estimated following	2
				(Nadtochenko and	
		_		Kiwi, 1998)	
$C_2O_4^{\bullet} + O_2 \rightarrow 2 CO_2 + O_2^{\bullet}$	43) 2.4	10 ⁹		(Hislop and Bolton,	
		6		1999)	3
$CO(O)CO(O) + Fe^{S^{*}} \rightarrow [Fe(C_{2}O_{4})]^{*}$	44) 7.5	10°			4
$[Fe(C_2O_4)]^+ \rightarrow CO(O^-)CO(O^-) + Fe^{3+}$	45) 3.0	10-5		(Moorhead and Sutin,	4
	. 10	104		1966)	3
$CO(O)CO(O) + [Fe(C_2O_4)] \rightarrow [Fe(C_2O_4)_2] \qquad \qquad R(4)$	46) 1.9	10			· //- / >>+ ·
$[Fe(C_2O_4)_2] \rightarrow CO(O)CO(O) + [Fe(C_2O_4)]$	47) 3.0	10 5			$= k([Fe(C_2O_4)]^{-} \rightarrow CO(O^{-}) \leftarrow C_2^{3+})$
$CO(O^{-})CO(O^{-}) + [F_{O}(C, O, V)]^{2} + [F_{O}(C, O, V)]^{3}$	10) 19	10^{1}			CO(O)CO(O) + Fe
$CO(O) CO(O) + [Fe(C_2O_4)_2] \rightarrow [Fe(C_2O_4)_3] $ $R[2$	48) 4.0	10 ⁻³			
$[Fe(C_2O_4)_3] \rightarrow CO(O)[CO(O)] + [Fe(C_2O_4)_2] $ $R(4)$	49) 3.0	10			$= K([Fe(C_2O_4)] \rightarrow Co(O_1^-) + Ee^{3+})$
$\left[Fe(C_{\circ}O_{\circ})\right]^{+} + hv \to Fe^{2+} + C_{\circ}O_{\circ}^{\bullet^{-}}$	50) Calc	ulated		(Long et al., 2013)	000000000000000000000000000000000000000
$\begin{bmatrix} c_1(c_2, c_3) \end{bmatrix}^{-1} + b_1 + b_2 = b_2 + c_2(c_3) + c_2 + c_3 $	50) Calc	ulated		(Eaust and Zenn	
$[re(C_2O_4)_2] + IIV \rightarrow re^{-1} + CO(O_1CO(O_1) + C_2O_4)$	51) Calc	ulateu		(1993)	
$[Fe(C_2O_4)_2]^{3-} + hv \rightarrow Fe^{2+} + 2 CO(O^{-})CO(O^{-}) + C_2O_4^{-}$	52) Calc	ulated		(Faust and Zepp,	
	/			1993)	
Chloring chomistry					
	53) 17	10 ⁵		(Yu 2004)	
	JJ] 1./	10		(Tu, 2004)	
				3	

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$OHCl^{-} + H^{+} \rightarrow Cl^{+} + H_{2}O$	R(54)	3.3 10 ¹⁰		(Yu and Barker, 2003)	
$Cl^{\bullet} + Cl^{-} \rightarrow Cl_{2}^{\bullet^{-}}$	R(55)	7.8 10 ⁹		(Yu and Barker, 2003)	
$Cl_2^{\bullet} \rightarrow Cl^{\bullet} + Cl^{\bullet}$	R(56)	5.7 10 ⁴		(Yu and Barker, 2003)	
$Cl_2^{\bullet} \rightarrow OHCl^{-} + Cl^{-} + H^{+} - H_2O$	R(57)	1.3.10 ³		(Yu, 2004)	
$Cl_2^{\bullet -} + OH^- \rightarrow OHCl^- + Cl^-$	R(58)	2.0 10 ⁷		(Grigor'ev et al., 1987)	
$OHCl^{-} + Cl^{-} \rightarrow Cl_{2}^{+} + OH^{-}$	R(59)	$1.0 \ 10^4$		(Grigor'ev et al., 1987)	
$Cl_2^{\bullet} + Cl_2^{\bullet} \rightarrow Cl_2 + 2 Cl_2^{\bullet}$	R(60)	9.0 10 ⁸		(Yu, 2004)	
$Cl_2^{\bullet} + Cl^{\bullet} \rightarrow Cl_2 + Cl^{\bullet}$	R(61)	2.1 10 ⁹		(Yu, 2004)	
$Cl_2 \rightarrow Cl^- + HOCl + H^+ - H_2O$	R(62)	$2.2 \ 10^1$	7600	(Wang and	
		4		Margerum, 1994)	
$Cl^{-} + HOCl + H^{+} \rightarrow Cl_{2} + H_{2}O$	R(63)	2.110^4	3500	(Wang and	
	D(CA)	7 5 106		Margerum, 1994)	
$HOCI + HO_2 \rightarrow CI + O_2 + H_2O$	R(64)	7.5 10			$= K(HOCI + O_2)$
$HOCI + O_2 \rightarrow CI + O_2 + OH$	R(65)	7.5 10-		(Long and Bielski,	
	R(66)	1 0 10 ⁹		1980) (Bierghakke et al	
$C_1_2 + RO_2 \rightarrow C_2 + O_2 + R$	1(00)	1.0 10		(bjeigbakke et al., 1981)	
$(l_2 + O_2^{\bullet} \rightarrow Cl_2^{\bullet} + O_2)$	R(67)	1.0 10 ⁹		1901)	$= k(Cl_2 + HO_2^{\bullet})$
$HO_2^{\bullet} + Cl^{\bullet} \rightarrow Cl^{\bullet} + O_2 + H^{+}$	R(68)	3.1 10 ⁹	1500	(Graedel and	
	. ,			Goldberg, 1983)	
$H_2O_2 + Cl^{\bullet} \rightarrow Cl^{\bullet} + HO_2^{\bullet} + H^+$	R(69)	2.0 10 ⁹		(Yu and Barker, 2003)	
$Cl^{-} + NO_{3}^{\bullet} \rightarrow NO_{3}^{-} + Cl^{\bullet}$	R(70)	$1.0\ 10^{7}$	4300	(Exner et al., 1992)	
$NO_3^{+} + Cl^{+} \rightarrow Cl^{+} + NO_3^{+}$	R(71)	1.0 10 ⁸		(Buxton et al., 2000)	
$SO_4^{\bullet-} + CI^- + \rightarrow SO_4^{-2-} + CI^{\bullet-}$	R(72)	2.5 10 ⁸		(Buxton et al., 1999)	
$SO_4^{2-} + CI^{\bullet} \rightarrow SO_4^{\bullet-} + CI^{-}$	R(73)	2.1 10 ⁸		(Buxton et al., 1999)	
$HO_2^{\bullet} + CI_2^{\bullet} \rightarrow O_2 + 2 CI^{\bullet} + H^{+}$	R(74)	1.3 10 ¹⁰		(Jacobi et al., 1996)	
$O_2^{\bullet} + CI_2^{\bullet} \rightarrow O_2 + 2 CI^{\bullet}$	R(75)	6.0 10 ⁹		(Jacobi et al., 1996)	
$H_2O_2 + Cl_2^{\bullet-} \rightarrow 2 Cl^- + HO_2^{\bullet} + H^+$	R(76)	6.2 10 ⁶		(Yu, 2004)	
$O_3 + Cl_2^{\bullet} \rightarrow OHCl + Cl^{\bullet} + O_2 + OH^{-} + H_2O$	R(77)	9.0 10 ⁷		(Bielski, 1993)	
$HSO_3^- + Cl_2^{\bullet-} \rightarrow SO_3^{\bullet-} + 2 Cl^- + H^+$	R(78)	1.7 10 ⁸	400	(Jacobi et al., 1996)	
$SO_3^{2^-} + CI_2^{\bullet^-} \rightarrow SO_3^{\bullet^-} + 2 CI^-$	R(79)	6.2 10 ⁷		(Jacobi et al., 1996)	
Carbonate chemistry					
$HCO_3^+ + SO_4^{\bullet-} \rightarrow SO_4^{2-} + CO_3^{\bullet-} + H^+$	R(80)	2.8 10 ⁶	2100	(Huie and Clifton,	
		c.		1990)	
$\text{CO}_3^{2^-} + \text{SO}_4^{\bullet^-} \rightarrow \text{SO}_4^{2^-} + \text{CO}_3^{\bullet^-}$	R(81)	4.1 10 ⁶	3200	(Padmaja et al., 1993)	
$HCO_3^{-} + Cl^{-} \rightarrow Cl^{-} + CO_3^{-} + H^{+}$	R(82)	2.4 10 ⁹		(Buxton et al., 2000)	
$\mathrm{CO}_3^{2^-} + \mathrm{Cl}^{\bullet} \rightarrow \mathrm{Cl}^{-} + \mathrm{CO}_3^{\bullet^-}$	R(83)	5.0 10 ⁸		(Mertens and Von	
		c		Sonntag, 1995)	
$CO_3^{-1} + CO_3^{-1} \rightarrow 2O_2^{-1} + 2CO_2 - O_2$	R(84)	2.2 10°		(Huie and Clifton,	
				1990)	
				4	

Reactions		k ₂₉₈ (M ⁻ⁿ⁺¹ s ⁻¹)	Ea/R (K)	References	Notes
$CO_3^{\bullet} + HO_2^{\bullet} \rightarrow HCO_3^{\bullet} + O_2^{\bullet}$	R(85)	5.6 107		(Behar et al., 1970)	
$\operatorname{CO}_3^{\bullet} + \operatorname{O}_2^{\bullet} \rightarrow \operatorname{CO}_3^{2\bullet} + \operatorname{O}_2$	R(86)	6.5 10 ⁸		(Eriksen et al., 1985)	
$CO_3^{\bullet} + H_2O_2 \rightarrow HO_2^{\bullet} + HCO_3^{\bullet}$	R(87)	4.3 10 ⁵		(Draganic et al., 1991)	
$\operatorname{CO}_3^{\bullet} + \operatorname{SO}_3^{2-} \rightarrow \operatorname{CO}_3^{2-} + \operatorname{SO}_3^{\bullet-}$	R(88)	2.9 10 ⁷	470	(Huie et al., 1991)	
$CO_3^{\bullet} + O_3 \rightarrow CO_2 + O_2^{\bullet} + O_2$	R(89)	1.0 10 ⁵		(Sehested et al., 1983)	
$CO_3^{\bullet} + NO_2 \rightarrow CO_2 + NO_3^{\bullet}$	R(90)	1.0 10 ⁹		(Lilie et al., 1978)	
N chemistry					
$HNO_2 + h\nu \rightarrow NO + HO^{\bullet}$	R(91)	Calculated		(Graedel and Weschler, 1981)	
$NO_2^{-} + hv + H_2O \rightarrow NO + HO^{\bullet} + OH^{-}$	R(92)	Calculated		(Graedel and Weschler, 1981) ;	
		_		(Zellner et al., 1990)	
$HNO_2 + H_2O_2 + H^+ \rightarrow NO_3^- + 2 H^+ + H_2O$	R(93)	6.310^{3}	6700	(Lee and Lind, 1986)	
$NO_2 + O_3 \rightarrow NO_3 + O_2$	R(94)	5.0 10 ⁵	6900	(Damschen and	
• • •	- ()	6		Martin, 1983)	
$HNO_2 + NO_3 \rightarrow NO_2 + NO_3 + H^2$	R(95)	8.0 10°		(Katsumura, 1998)	
$NO_2^{-} + NO_3^{-} \rightarrow NO_2^{-} + NO_3^{-}$	R(96)	1.4 10		(Herrmann and	
$NO^{-} + CO^{+} \rightarrow NO^{-} + CO^{2}$	R(97)	6 6 10 ⁵	850	(Huje et al. 1998)	
$NO_2^- + CO_3^- \rightarrow NO_2^- + CO_3^-$	R(97)	$5.0 10^9$	050	(Buxton et al. 2000)	
	R(99)	$1.8 10^9$		(Logager and	
$NO_2 + NO_2 \rightarrow HNO_4$	1(55)	1.0 10		Sehested, 1993)	
$NO_2 + O_2^{\bullet} \rightarrow NO_4^{\bullet}$	R(100)	4.5 10 ⁹		(Logager and	
	. ,			Sehested, 1993)	
$HNO_4 \rightarrow HO_2^{\bullet} + NO_2$	R(101)	2.6 10 ⁻²		(Goldstein and	
		4		Czapski, 1997)	
$HNO_4 \rightarrow HNO_2 + O_2$	R(102)	7.0 10 ⁻⁴		(Logager and	
	D(102)	1 1		Sehested, 1993)	
$NO_4 \rightarrow NO_2 + O_2$	R(103)	1.1		(Goldstein and Czapski, 1997)	
$NO^{-} \rightarrow NO^{+}O^{+}$	R(104)	13		(Goldstein and	
	1(104)	1.5		(Zapski, 1997)	
$HNO_4 + HSO_3 \rightarrow SO_4^{2-} + NO_3 + 2 H^+$	R(105)	3.3 10 ⁵		(Amels et al., 1996)	
$NO_2 + NO_2 \rightarrow HNO_2 + NO_3^- + H^+ - H_2O_2$	R(106)	8.4 10 ⁷	-2900	(Park and Lee, 1988)	
$NO_2 + NO \rightarrow 2 NO_2^{-} + 2H^{+} - H_2O$	R(107)	3.0 10 ⁸		(Hoffmann and	
	. ,			Calvert, 1985)	
$NO_3^{-} + hv \rightarrow NO_2 + HO^{\bullet} + OH^{-} + H_2O$	R(108)	Calculated		(Graedel and	
				Weschler, 1981) ;	
		6		(Zellner et al., 1990)	
$N_2O_5 \rightarrow 2 HNO_3 - H_2O$	R(109)	1.0 10		Estimated	5
$NO_3 + h\nu \rightarrow NO + O_2$	R(110)	Calculated		(Graedel and	
				5	

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
		0		Weschler, 1981)	
$NO_3 + HO_2 \rightarrow NO_3 + H^+ + O_2$	R(111)	3.0 10°		(Sehested et al., 1994)	
$NO_3 + O_2 \rightarrow NO_3 + O_2$	R(112)	3.0 10 [°]			$= k(NO_3 + HO_2)$
$NO_3 + OH \rightarrow NO_3 + HO$	R(113)	9.4 10′	2700	(Exner et al., 1992)	
$NO_3^{\bullet} + H_2O_2 \rightarrow NO_3^{\bullet} + H^+ + HO_2^{\bullet}$	R(114)	4.9 10°	2000	(Herrmann et al.,	
		2 6 4 9 5		1994) (D. J. 1996)	
$NO_3 + HSO_4 \rightarrow NO_3 + H + SO_4$	R(115)	2.6 10		(Raabe, 1996)	
$NO_3 + SO_4^- \rightarrow NO_3 + SO_4$	R(116)	1.0 10		(Logager and	
	R(117)	1 3 10 ⁹	2200	(Experied, 1993)	
$NO_3^{+} + SO_3^{-} \rightarrow NO_3^{-} + SO_3^{-}$	R(118)	$3.0.10^8$	2200	(Exner et al. 1992)	
	1(110)	5.0 10			
3 chemistry 20^{+} $0 \rightarrow 0^{+}$	R(119)	1 1 10 ⁹		(Das. 2001)	
$SO_3^{\bullet+} + SO_2^{\bullet-} \rightarrow S_2O_2^{2-}$	R(120)	$1.1 10^{7}$	1200	(Buxton et al 1996b)	
$50^{-1} + 150^{-1} \rightarrow 150^{-1} + 50^{-1}$	R(121)	8.610^{3}	1200	(Buxton et al., 1996b)	
$50_5 + 1150_3 > 1150_5 + 50_3$	R(122)	$3.6 10^2$		(Buxton et al., 1996b)	
$50_5 + 150_3 > 50_4 + 50_4 + 11$	R(122)	2.0 ± 0		(Buxton et al., 1996b)	
$50_5 + 50_3 \rightarrow 150_5 + 50_3 + 01 - 11_20$	R(12J)	$5.5 10^{5}$		(Buxton et al., 1996b)	
$50_5 + 50_3 > 50_4 + 50_4$	R(125)	$1.7 10^9$		(Buxton et al., 1996a)	
$50_5 + 10_2 \rightarrow 150_5 + 0_2$	R(126)	$2.3 10^8$		(Buxton et al., 1996b)	
$50_5 + 0_2$ / $150_5 + 0_2 + 01 - 11_20$	R(127)	2.3 ± 10^{8}		(Das 2001)	
$50_5 + 50_5 - 250_4 + 0_2$	R(128)	2.1 10		(Das, 2001)	
$30_5 + 30_5 - 32_{08} + 0_2$	R(120)	$1.0 10^{7}$		(Das, 2001)	
$130_5 + 130_3 + 1772 + 30_4 + 511$	R(120)	$1.0\ 10$		(Das, 2001)	
$130_5 + 30_3 + 17 - 7230_4 + 211$	D(121)	$1.0 \ 10^{6}$		(Dac. 2001)	$= \kappa(1150_5 + 1150_3)$
$150_5 + 50_4 - 30_5 + 150_4$	D(122)	$1.0\ 10$		(Das, 2001)	
$50_4 + 50_4 - 75_20_8$	D(122)	6 8 10 ⁸		(Das, 2001)	
$50_4 + 150_3 - 30_4 + 11 + 30_3$	D(127)	0.8 10	1200	(Buxton et al., 1990b)	
$50_4 + 50_3 \rightarrow 50_4 + 50_3$	D(125)	3.1 10 $2.5 10^9$	1200	(Buxton et al., 1990b)	
$50_4 + 10_2 - 30_4 + 1 + 0_2$	D(126)	3.5 10		(Jiding et al., 1992) (Ruytop at al. 1996b)	
$SO_4 + O_2 \rightarrow SO_4 + O_2$	D(127)	$4.0\ 10$		(Buxton et al., 1990b)	
$SO_4^+ + OH \rightarrow SO_4^- + HO$	D(130)	$2.0\ 10$		(Noss et al., 1994)	
$SO_4 + H_2O_2 \rightarrow SO_4 + HO_2 + H$	K(138)	1.2 10		(Matuthamuthu anu Nata 1978)	
$SO^{\bullet} + NO^{\bullet} \rightarrow SO^{2-} + NO^{\bullet}$	R(139)	$5.0.10^{4}$		(Experiet al 1992)	
$SO_4^{\bullet} \rightarrow HSO_2^{\bullet} + HO_3^{\bullet}$	R(140)	$3.6 10^2$		(Tang et al 1988)	
$HSO_{-} + O_{-} \rightarrow HSO_{-} + O_{-}$	R(141)	3.0 10 3 7 10 ⁵	5500	(Hoffmann 1986)	
$SO_{2^{-}} + O_{2^{-}} + O_{2^{-}}$	R(1/12)	$1.5 10^9$	5300	(Hoffmann, 1986)	
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	R(1/2)	9.1.10 ⁷	3600	(Maale at al 1000)	
$n_{3} \vee_{3} + n_{2} \vee_{2} \rightarrow 3 \vee_{4} + 2 n_{1} + n_{2} \vee_{2} - n_{1}$	11(140)	J.T TU	5000	(1110015 Et al., 1999)	

¹ - Sehested et al. (1984) argue that this reaction is very slow with a rate constant lower than $10^4 \text{ M}^{-1} \text{ s}^{-1}$. ² - Xu et al. (1985) calculated k(Fe³⁺ + Cl⁻) = 4.8 M⁻¹ s⁻¹. The equilibrium constant from Nadtochenko and Kiwi (1998) is equal to 5.3 M⁻¹. Therefore we calculate the backward rate constant by 4.8/5.3 = 9.1 10^{-1} s^{-1} . ³ - The equilibrium constants are from Martell and Smith (1977). logK(CO(O⁻)CO(O⁻) + Fe³⁺ \leftrightarrow [Fe(C₂O₄)]⁺) = 9.4 ; logK(2 CO(O⁻)CO(O⁻) + Fe³⁺ \leftrightarrow [Fe(C₂O₄)₂]⁻) = 16.2 ; logK(3 CO(O⁻)CO(O⁻) + Fe³⁺ \leftrightarrow [Fe(C₂O₄)₃]³⁻) = 20.4). We calculate the equilibrium constants : $\log K(CO(O^{\circ})CO(O^{\circ}) + [Fe(C_2O_4)_2]^{\circ} \leftrightarrow [Fe(C_2O_4)_2]^{\circ} \to [Fe($ we calculate the forward rate constants.

⁴ - Moorhead and Sutin (1966) measured rate constants for the equilibrium $Fe(OH)^{2^+} + CO(OH)CO(O^-) \leftrightarrow Fe(C_2O_4)^+ : k_{backward} = 3.0 \ 10^{-3} \ s^{-1} \ and \ k_{forward} = 2.0 \ 10^4 \ M^{-1} \ s^{-1}$. The equilibrium constant is similar to Martell and Smith (1977). We suppose that the rate constant of the reaction $[Fe(C_2O_4)]^+ \rightarrow CO(O^-)CO(O^-) + Fe^{3^+}$ is equal to $3.0 \ 10^{-3} \ s^{-1}$.

⁵ - We suppose that the N₂O₅ hydrolysis is fast with a first order rate constant equal to 10^6 s^{-1} (Bertram and Thornton, 2009).

Equilibria

Species		$\mathrm{K}_\mathrm{a}\mathrm{or}\mathrm{K}_\mathrm{h}$	-ΔΗ/R (K)	References	Notes
$H_2O_2 \leftrightarrow HO_2^- + H^+$	T(1)	2.2 10 ⁻¹²	-3730	(Smith and Martell, 1976)	
$HO_2^{\bullet} \leftrightarrow O_2^{\bullet} + H^+$	T(2)	1.6 10 ⁻⁵		(Bielski et al., 1985)	
$HNO_2 \leftrightarrow NO_2^- + H^+$	T(3)	1.6 10 ⁻³	1760	(Park and Lee, 1988); (Biordan et al., 2005)	
$HNO_2 \leftrightarrow NO_2^- + H^+$	Т(4)	2.2 10 ¹		(N.B.S, 1965)	
$HNO_4 \leftrightarrow NO_4^- + H^+$	T(5)	1.3 10 ⁻⁶		(Goldstein and Czapski, 1997)	
$\mathrm{HCI} \leftrightarrow \mathrm{CI}^{-} + \mathrm{H}^{+}$	T(6)	1.7 10 ⁻⁶	-6890	, (Marsh and McElroy, 1985)	
$SO_2 + H_2O \leftrightarrow HSO_3^- + H^+$	Т(7)	1.3 10 ⁻²	-1960	, (Maash, 1982)	
$HSO_3^- \leftrightarrow SO_3^{2-} + H^+$	T(8)	6.4 10 ⁻⁸	-1430	(Maash, 1982)	
$H_2SO_4 \leftrightarrow HSO_4^- + H^+$	T(9)	1.0 10 ³		(Cotton and Wilkinson, 1980)	
$HSO_{4} \leftrightarrow SO_{4}^{2-} + H^{+}$	T(10)	1.0 10 ⁻²		, (Eigen et al., 1964)	
$Fe^{3+} + H_2O \leftrightarrow [Fe(OH)]^{2+} + H^+$	T(11)	6.0 10 ⁻³		(Brandt and van Eldik, 1995)	
$\left[Fe(OH)\right]^{2+} + H_2O \longleftrightarrow \left[Fe(OH)_2\right]^+ + H^+$	T(12)	7.6 10 ⁻⁴		(Brandt and van Eldik,	
$CO_2 + H_2O \leftrightarrow HCO_3^- + H^+$	T(13)	4.2 10 ⁻⁷		(Cotton and Wilkinson,	
$HCO_3^- \leftrightarrow CO_3^{-2-} + H^+$	Т(14)	4.8 10 ⁻¹¹		(Cotton and Wilkinson, 1980)	

Table SM1: Chemical mechanism considered in the M2C2 model.

	Deta		Origin	Temperature	лЦ	Redox	тос	тс	IC			Anio	ns (µmol/I	2)			Cation	ns (µmol/	L)	
	Date		Origin	(°C)	рп	(mV)	(mg/L)	(mg/L) (1	(mg/L) (mg/L)		CI.	Acetate	Formate	Oxalate	Succinate	\mathbf{Na}^+	$\mathbf{NH_4}^+$	Mg^{2+}	\mathbf{K}^+	Ca ²⁺
1	10/14/2013	4PM-6PM	W	6	6.1	NM	NM	NM	2.7	23.0	45.9	8.7	34.8	4.5	3.3	18.5	66.2	33.7	7.2	2.4
2	10/14/2013	6PM-9PM	W	6.5	5.6	NM	NM	NM	0.9	16.7	82.5	3.3	20.4	2.5	3.7	7.6	33.0	6.4	33.1	0.4
3	10/14/2013	9PM-12PM	W	6.7	5.6	NM	1.6	2.2	0.7	18.5	46.2	2.6	11.7	1.8	4.2	11.9	44.6	5.2	20.9	3.8
4	10/29/2013	5AM-8AM	W	2.2	5.0	261	2.8	3.6	0.8	46.8	246.9	21.1	28.5	2.7	4.2	56.3	38.0	NM	4.8	NM
5	10/29/2013	8AM-12AM	W	3.1	5.6	248	3.2	3.3	0.1	55.8	269.5	19.1	25.3	2.8	5.2	76.3	64.0	NM	11.7	NM
6	11/5/2013	2PM-4PM	W	6	5.8	231	2.0	2.7	0.7	8.5	25.0	13.9	25.5	1.9	3.4	7.8	13.5	NM	34.1	NM
7	11/5/2013	4PM-7PM	W	6	5.5	263	1.1	1.7	0.6	4.5	7.2	17.5	12.4	1.3	3.9	3.7	8.9	NM	25.7	NM
8	11/5/2013	7PM-9PM	W	5.8	5.6	313	0.8	1.4	0.56	7.9	16.6	9.3	24.5	1.7	3.0	4.5	17.7	NM	21.9	NM
9	11/5/2013	9PM-12PM	W	5.5	5.0	290	0.6	1.5	0.8	9.8	16.9	5.7	7.2	1.3	2.3	6.5	26.7	NM	22.7	NM
10	11/6/2013	7AM-10AM	W	7.9	5.4	289	1.1	1.9	0.9	6.1	9.7	7.5	17.2	1.3	5.7	6.0	18.0	NM	24.3	NM
11	11/6/2013	10AM-12AM	W	8	5.7	352	1.9	2.6	0.7	6.7	5.8	7.5	9.5	1.5	2.7	3.3	27.0	NM	25.8	NM
12	3/22/2014	7AM-11AM	W	0	6.7	228	2.9	3.5	0.6	34.8	65.7	13.3	48.3	4.1	0.1	20.9	87.6	12.4	2.3	4.7
13	3/22/2014	11AM-2PM	W	0	6.7	264	5.4	6.1	0.7	37.1	133.8	20.4	43.8	5.4	0.2	36.8	108.8	8.7	4.9	6.6
14	3/25/2014	11AM-1PM	W	-2	6.6	240	3.4	3.9	0.5	49.2	228.5	13.8	30.6	3.2	0.1	56.8	73.2	10.3	9.1	7.1
15	3/25/2014	1PM-3PM	NW	0	6.4	228	6.0	6.6	0.5	32.6	153.8	14.0	65.1	3.3	0.2	38.8	79.6	12.5	6.4	6.9
16	3/25/2014	7PM-9PM	NW	-2	6.1	243	8.7	9.0	0.4	14.8	73.0	12.5	65.0	3.8	0.2	20.8	50.2	13.6	4.0	9.4
17	3/26/2014	8AM-9AM	Ν	-3	5.5	233	6.5	7.0	0.5	56.4	25.2	26.2	38.3	5.9	0.8	9.6	252.4	7.2	2.9	7.9
18	3/26/2014	9AM-11AM	Ν	-3	5.4	239	8.6	9.2	0.6	45.4	26.5	15.8	34.9	5.3	0.7	8.3	206.0	9.0	2.4	15.6
19	4/4/2014	8PM-10PM	NW	2	6.2	261	1.5	2.0	0.5	13.5	19.4	9.6	23.6	3.4	0.4	5.0	39.6	5.4	7.8	0.0
20	4/4/2014	10PM-12PM	NW	2	6.5	261	1.7	2.1	0.4	18.2	18.2	7.2	24.2	3.8	0.3	3.9	71.4	4.3	7.1	0.0
21	4/5/2014	1PM-4AM	W	2	6.6	250	2.6	3.1	0.5	26.0	29.4	14.3	32.5	4.4	0.3	6.9	124.1	4.4	7.4	0.0
22	4/5/2014	4AM-7AM	W	2	6.9	237	3.9	4.6	0.7	39.8	48.7	25.4	48.8	6.9	0.4	12.6	192.8	4.3	4.8	0.0
23	4/5/2014	7AM-10AM	W	2	6.8	239	4.5	5.3	0.7	67.5	76.1	30.4	63.4	7.4	0.5	18.0	212.7	5.3	4.3	2.0
24	4/11/2014	11AM-1PM	W	1	5.4	207	1.9	1.9	0.0	7.5	14.0	7.6	3.6	5.4	6.2	27.7	NM	NM	31.9	NM
25	5/11/2014	4AM-6PM	W	0.3	4.7	238	1.8	1.8	0.0	58.1	35.4	11.8	3.8	113.2	13.9	51.4	NM	NM	26.0	NM
26	5/11/2014	7AM-9AM	NW	0	4.1	280	1.8	1.8	0.0	139.3	41.7	5.2	3.3	115.7	9.2	43.8	39.7	NM	20.3	NM

27 5/11/2014	9AM-12AM	NW	-0.1	4.1	298	NM	14.9	0.1	247.4	98.0	3.8	3.4	302.2	18.8	99.9	83.9	NM	17.8	NM
28 5/11/2014	12AM-1PM	NW	0.1	4.2	295	3.6	3.6	0.0	202.8	87.0	10.8	3.1	377.2	27.9	116.7	97.37	NM	21.7	NM
29 12/11/2014	3PM-5PM	W	3	5.4	250	4.0	4.0	0.0	38.3	78.9	11.9	5.4	83.2	21.9	83.5	15.1	NM	19.9	NM
30 12/11/2014	5PM-7PM	W	2	5.5	261	2.3	2.4	0.1	28.7	68.2	12.7	4.8	47.1	21.7	72.2	NM	NM	17.6	NM
31 12/11/2014	7PM-9PM	W	2	5.6	254	2.7	2.8	0.1	24.2	68.9	2.9	2.9	32.5	33.0	77.3	NM	NM	21.3	NM
32 12/11/2014	9PM-12PM	W	2	5.4	254	1.7	1.7	0.1	23.4	64.4	5.2	4.5	20.2	13.5	80.1	NM	NM	17.5	NM
33 14/11/2014	5PM-7PM	S	5	5.5	258	2.2	2.2	0.0	11.3	6.0	4.9	3.6	10.4	5.4	15.7	NM	NM	16.3	NM
34 17/11/2014	4PM-6PM	W	1.1	5.6	249	2.2	2.4	0.1	8.8	4.7	7.6	3.9	11.8	5.6	13.1	NM	NM	21.3	NM
35 17/11/2014	7PM-9PM	W	0.7	5.7	245	1.0	1.1	0.0	8.0	2.0	7.3	3.6	10.0	5.8	10.9	NM	NM	19.9	NM
36 17/11/2014	9PM-12PM	W	0.6	5.3	263	1.2	1.2	0.0	11.0	5.3	6.9	3.8	14.3	6.9	14.2	NM	NM	18.5	NM
37 18/11/2014	6AM-8AM	NW	0.1	5.4	258	1.0	0.9	0.0	28.2	16.5	4.2	3.4	32.6	7.2	23.0	NM	NM	19.1	NM
38 18/11/2014	5PM-7PM	NW	1.8	5.7	243	2.3	2.4	0.1	16.4	11.9	8.8	3.6	22.0	7.0	18.3	2.2	NM	20.2	NM
39 18/11/2014	7PM-9PM	NW	1	5.3	257	1.8	1.8	0.0	14.0	7.3	5.6	3.7	14.1	5.6	18.2	NM	NM	20.2	NM
40 18/11/2014	9PM-12PM	NW	1	4.9	284	1.9	1.9	0.1	20.0	18.0	7.0	3.6	16.0	8.3	17.7	NM	NM	18.7	NM
41 19/11/2014	12PM-2AM	NW	1	4.6	306	2.2	2.2	0.0	26.7	36.7	10.3	3.4	34.7	12.3	28.1	NM	NM	17.1	NM

Table SM2: Physico-chemical parameters of sampled clouds. 23 samples have been analyzed corresponding to 6 cloud events. Acet: acetic acid; Form: formic acid, Oxal:

 oxalic acid, Succ: succinic acid). NM: not measured.

Claudesamala		Re	lative contribut	ion (%)		$\mathbf{P}^{f} \mod (\mathbf{M}^{-1})$	\mathbf{R}^{f} evp (M s ⁻¹)	
Cloud sample	$H_2O_2 + h\nu$	Fe (II) + H_2O_2	Fe (III) + hv	$NO_3^- + hv$	$HNO_2 + NO_2 + hv$	$\mathbf{R}_{HO^{\bullet}}$ mod (M S)	$\mathbf{R}_{HO^{\bullet}} \exp(\mathbf{M} \mathbf{S})$	
1	86.7	0.0	0.0	2.6	10.6	4.3×10 ⁻¹¹	3.3×10 ⁻¹¹	
2	64.9	0.0	0.0	1.0	34.1	4.2×10 ⁻¹¹	NM	
3	90.7	0.0	0.0	1.3	7.9	5.0×10 ⁻¹¹	NM	
4	91.2	0.0	0.0	2.0	6.7	4.6×10 ⁻¹¹	1.4×10^{-10}	
5	89.1	0.0	0.0	2.2	8.6	4.4×10 ⁻¹¹	1.2×10^{-10}	
6	99.3	0.0	0.0	0.7	0.0	2.4×10 ⁻¹¹	2.8×10 ⁻¹¹	
7	99.4	0.0	0.0	0.6	0.0	1.9×10 ⁻¹¹	5.6×10 ⁻¹¹	
8	98.4	0.0	0.0	1.6	0.0	3.0×10 ⁻¹¹	2.5×10 ⁻¹¹	
9	97.8	0.0	0.0	2.2	0.0	2.5×10 ⁻¹¹	2.2×10 ⁻¹¹	
10	99.5	0.0	0.0	0.5	0.0	3.1×10 ⁻¹¹	2.9×10 ⁻¹¹	
11	99.3	0.0	0.0	0.7	0.0	5.2×10 ⁻¹¹	6.8×10 ⁻¹¹	
12	22.3	21.6	54.2	0.7	1.2	2.4×10^{-10}	6.1×10 ⁻¹¹	
13	57.3	10.7	22.4	1.2	8.4	1.3×10 ⁻¹⁰	4.7×10 ⁻¹¹	
14	52.4	10.7	35.1	1.8	0.0	6.9×10 ⁻¹¹	2.8×10 ⁻¹¹	
15	92.5	0.0	0.0	2.7	4.9	4.7×10 ⁻¹¹	1.1×10 ⁻¹¹	
16	91.8	0.0	0.0	4.8	3.4	3.0×10 ⁻¹¹	NM	
17	50.2	12.4	21.7	15.1	0.7	9.8×10 ⁻¹¹	6.1×10 ⁻¹¹	
18	51.8	22.3	10.4	14.6	0.9	9.4×10 ⁻¹¹	3.4×10 ⁻¹¹	
19	94.6	0.0	0.0	2.8	2.6	4.8×10 ⁻¹¹	8.1×10 ⁻¹¹	
20	91.4	0.0	0.0	4.8	3.7	5.2×10 ⁻¹¹	8.5×10 ⁻¹¹	
21	88.0	0.0	0.0	6.4	5.6	7.6×10 ⁻¹¹	1.5×10^{-10}	
22	90.7	0.0	0.0	5.1	4.2	1.7×10^{-10}	3.4×10 ⁻¹⁰	
23	89.0	0.0	0.0	5.3	5.7	1.7×10^{-10}	4.2×10^{-10}	
24	98.0	0.0	0.0	2.0	0.0	2.5×10 ⁻¹¹	5.1×10 ⁻¹¹	
25	60.6	29.2	1.1	4.2	4.9	3.4×10 ⁻¹¹	2.4×10 ⁻¹¹	
26	26.2	70.0	1.1	2.6	0.1	1.0×10^{-10}	1.4×10^{-10}	
27	19.3	76.8	0.9	3.0	0.1	1.8×10^{-10}	5.0×10 ⁻¹¹	
28	17.6	79.0	1.0	2.4	0.0	2.2×10^{-10}	NM	

29	39.8	40.3	12.7	2.7	4.5	6.2×10 ⁻¹¹	8.5×10 ⁻¹¹
30	43.4	27.3	18.6	2.2	8.5	6.2×10 ⁻¹¹	8.4×10 ⁻¹¹
31	21.7	33.0	39.4	1.1	4.8	1.3×10^{-10}	6.1×10 ⁻¹¹
32	92.1	1.6	1.3	3.3	1.7	4.3×10^{-11}	NM
33	31.0	10.2	56.8	2.0	0.0	2.3×10 ⁻¹¹	3.3×10 ⁻¹²
34	16.6	27.9	52.0	0.5	3.1	1.5×10^{-10}	2.7×10^{-11}
35	24.0	5.5	48.5	3.7	18.4	2.9×10 ⁻¹¹	3.6×10 ⁻¹¹
36	60.7	7.3	18.9	13.0	0.2	1.1×10^{-11}	6.0×10 ⁻¹¹
37	63.5	8.3	15.6	12.4	0.2	1.0×10^{-11}	2.4×10 ⁻¹¹
38	47.7	17.3	6.7	5.9	22.4	1.5×10^{-11}	5.8×10 ⁻¹¹
39	67.5	14.7	7.7	10.0	0.1	1.4×10^{-11}	2.7×10 ⁻¹¹
40	81.6	4.5	1.3	12.4	0.2	2.1×10^{-11}	1.3×10^{-10}
41	47.0	35.9	2.9	9.0	5.3	3.5×10 ⁻¹¹	1.1×10^{-10}

Table SM3: Modelled relative contributions of HO[•] sources for the 41 cloud samples. Modelled and experimental $R_{HO^{\bullet}}^{f}$ are also indicated. NM: not measured.

Cloud sample	Re	elative contr	ibution (%)	$R^f \mod (M s^{-1})$	R^f exp (M s ⁻¹)
	$H_2O_2 + h\nu$	$NO_3^- + hv$	$HNO_2 + NO_2 + hv$	HO [•] HO [•]	H_{HO} exp (W s)
1	93.2	3.1	3.7	$6.6 imes 10^{-11}$	3.3×10^{-11}
2	84.4	1.4	14.2	$5.3 imes 10^{-11}$	NM
3	95.7	1.6	2.7	$7.9 imes 10^{-11}$	NM
4	95.3	2.4	2.4	$7.3 imes 10^{-11}$	$1.4 imes 10^{-10}$
5	94.4	2.6	3.0	6.9×10^{-11}	$1.2 imes 10^{-10}$
6	99.2	0.8	0.0	3.9×10^{-11}	$2.8 imes 10^{-11}$
7	99.3	0.7	0.0	3.1×10^{-11}	$5.6 imes 10^{-11}$
8	98.3	1.7	0.0	4.9×10^{-11}	$2.5 imes 10^{-11}$
9	97.6	2.4	0.0	$4.2 imes 10^{-11}$	$2.2 imes 10^{-11}$
10	99.4	0.6	0.0	5.1×10^{-11}	$2.9 imes 10^{-11}$
11	99.2	0.8	0.0	$8.6 imes 10^{-11}$	$6.8 imes 10^{-11}$
12	95.2	3.2	1.6	9.4×10^{-11}	$6.1 imes 10^{-11}$
13	93.4	2.2	4.3	$1.3 imes 10^{-10}$	$4.7 imes 10^{-11}$
14	96.2	3.8	0.0	$6.2 imes 10^{-11}$	$2.8 imes 10^{-11}$
15	95.3	3.1	1.6	$7.6 imes 10^{-11}$	1.1×10^{-11}
16	93.5	5.4	1.1	$4.8 imes 10^{-11}$	NM
17	74.6	25.0	0.4	$1.1 imes 10^{-10}$	$6.1 imes 10^{-11}$
18	75.8	23.8	0.5	$1.1 imes 10^{-10}$	3.4×10^{-11}
19	96.0	3.2	0.8	$7.7 imes 10^{-11}$	$8.1 imes 10^{-11}$
20	93.3	5.5	1.2	$8.4 imes 10^{-11}$	$8.5 imes 10^{-11}$
21	90.8	7.3	1.8	$1.2 imes 10^{-10}$	$1.5 imes 10^{-10}$
22	92.9	5.8	1.4	$2.8 imes10^{-10}$	$3.4 imes 10^{-10}$
23	92.0	6.1	1.9	$2.7 imes 10^{-10}$	$4.2 imes 10^{-10}$
24	97.7	2.2	0.0	4.1×10^{-11}	$5.1 imes 10^{-11}$
25	90.4	7.1	2.6	3.7×10^{-11}	$2.4 imes 10^{-11}$
26	87.3	12.6	0.1	3.9×10^{-11}	$1.4 imes 10^{-10}$
27	77.8	22.0	0.2	4.2×10^{-11}	$5.0 imes 10^{-11}$
28	79.7	20.2	0.2	$4.5 imes 10^{-11}$	NM
29	89.8	6.8	3.3	4.4×10^{-11}	$8.5 imes 10^{-11}$
30	89.4	5.0	5.7	$4.9 imes 10^{-11}$	$8.4 imes 10^{-11}$
31	88.7	5.0	6.3	$5.1 imes 10^{-11}$	6.1×10^{-11}
32	95.6	3.8	0.6	$6.8 imes 10^{-11}$	NM
33	93.3	6.7	0.0	$1.1 imes 10^{-11}$	3.3×10^{-12}
34	91.8	2.8	5.5	$4.6 imes 10^{-11}$	$2.7 imes 10^{-11}$
35	70.6	12.0	17.4	$1.6 imes 10^{-11}$	3.6×10^{-11}
36	80.7	19.2	0.1	$1.3 imes 10^{-11}$	$6.0 imes 10^{-11}$
37	82.0	17.9	0.1	$1.3 imes 10^{-11}$	2.4×10^{-11}
38	77.6	10.8	11.7	$1.5 imes 10^{-11}$	$5.8 imes 10^{-11}$
39	85.7	14.2	0.1	$1.8 imes 10^{-11}$	$2.7 imes 10^{-11}$
40	85.4	14.5	0.1	$3.3 imes 10^{-11}$	$1.3 imes 10^{-10}$
41	79.5	17.2	3.2	$3.3 imes 10^{-11}$	$1.1 imes 10^{-10}$

Table SM4. Modeled relative contributions of HO[•] sources for the 41 cloud samples considering the new photolysis experimental rates in the model for H_2O_2 , nitrite and nitrate and without iron chemistry. Modeled and experimental R_{HO}^{f} , are also indicated. NM: not measured.

References

- Amels, T., Elias, H., Götz, U., Steingens, U., and Wannowius, K. J.: Kinetic investigation of the stability of peroxonitric acid and its reaction with sulfur(IV) in aqueous solution, in: Heterogeneous and liquid-phase processes, 1, 1996.
- Behar, D., Czapski, G., and Duchovny, I.: Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions, J. Phys. Chem., 74, 2206-2210, 10.1021/j100909a029, 1970.
- Benkelberg, H. J., Schäfer, A., and Warneck, P.: Product quantum yields for the photodecomposition of H₂O₂ and Fe(III) complexes in aqueous soltion in: Air Pollution research Report 33: Atmospheric Oxidation Processes, edited by: Becker, K. H., CEC, Brussels, 130, 1991.
- Benkelberg, H. J., and Warneck, P.: Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and SO₄⁻ quantum yields, J. Phys. Chem., 99, 5214-5221, 10.1021/j100014a049, 1995.
- Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B.: Reactivity of HO₂/O₂⁻ Radicals in Aqueous Solution, J. Phys.Chem. Ref. Data, 14, 1041-1100, 1985.
- Bielski, B. H. J.: A pulse radiolysis study of the reaction of ozone with Cl₂ in aqueous solutions, Rad. Phys. Chem., 41, 527-530, 1993.
- Bjergbakke, E., Navaratnam, S., Parsons, B. J., and Swallow, A. J.: Reaction between hydroperoxo radicals and chlorine in aqueous solution, J. Am. Chem. Soc., 103, 5926-5928, 10.1021/ja00409a059, 1981.
- Brandt, C., and van Eldik, R.: Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms, Chem. Rev., 95, 119-190, 10.1021/cr00033a006, 1995.
- Buxton, G. V., Malone, T. N., and Salmon, G. A.: Pulse radiolysis study of the reaction of SO₅⁻ with HO₂, J. Chem. Soc., Faraday Transactions, 92, 1996a.
- Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D.: A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ-radiolysis study, Atmospheric Environment, 30, 2483-2493, http://dx.doi.org/10.1016/1352-2310(95)00473-4, 1996b.
- Buxton, G. V., Malone, T. N., and Salmon, G. A.: Reaction of SO₄⁻ with Fe²⁺, Mn²⁺ and Cu²⁺ in aqueous solution, J. Chem. Soc., Faraday Transactions, 93, 1997.
- Buxton, G. V., Bydder, M., and Salmon, G. A.: The reactivity of chlorine atoms in aqueous solution. Part II. The equilibrium $SO_4^- + Cl^- = Cl + SO_4^{-2-}$, Phys. Chem. Chem. Phys., 1, 269-273, 1999.
- Buxton, G. V., Bydder, M., Salmon, G. A., and Williams, J.: The reactivity of chlorine atoms in aqueous solution, Part III. The reactions of Cl with solutes, Phys. Chem. Chem. Phys., 2, 237-245, 2000.
- Christensen, H., and Sehested, K.: Hydroperoxo and oxygen(1-) radicals at elevated temperatures, J. Phys. Chem., 92, 3007-3011, 10.1021/j100321a060, 1988.
- Christensen, H., Sehested, K., and LÃ, gager, T.: The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures, Rad. Phys. Chem., 41, 575-578, 1993.
- Cotton, F. A., and Wilkinson, G.: Advanced inorganic chemistry: a comprehensive text, 4th ed., John Wiley & Sons, New York, 1455 pp., 1980.
- Damschen, D. E., and Martin, L. R.: Aqueous aerosol oxidation of nitrous acid by O₂, O₃, and H₂O₂, Atmos. Environ., 17, 2005-2011, 1983.
- Das, T. N.: Reactivity and role of SO₅⁻ radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation, J. Phys. Chem., 105, 9145-9155, 2001.
- Draganic, Z. D., Negron-Mendoza, A., Sehested, K., Vujosevic, S. I., Navarro-Gonzales, R., Albarran-Sanchez, M. G., and Draganic, I. G.: Radiolysis of aqueous solution of ammonium bicarbonate over a large dose range, Rad. Phys. Chem., 38, 317-321, 1991.
- Eigen, M., Krause, W., Maash, H. G., and Demaeyer, L.: Rate constants of photolytic reactions in aqueous solution, in: Progress in reaction kinetics, edited by: Porter, G., Macmillan, N. J., 285-318, 1964.
- Epstein, I. R., Kustin, K., and Simoyi, R. H.: Systematic design of chemical oscillators. 6. Nitrous acid decomposition catalyzed by an iron(II) complex: tris(3,4,7,8-tetramethyl-1,10-phenanthroline)iron(II), J. Am. Chem. Soc., 104, 712-717, 10.1021/ja00367a013, 1982.

- Eriksen, T. E., Lind, J. A., and Merenyi, G.: On the acid-base equilibrium of the carbonate radical, Rad. Phys. Chem., 26, 197-199, 1985.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, B. Buns. phys. Chem., 3, 470-477, 1992.
- Faust, B. C., and Zepp, R. G.: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters, Environ. Sci. Tech., 27, 2517-2522, 1993.
- Gilbert, B. C., and Stell, J. K.: Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO₃⁻) with Ti(III), Fe(II), and alpha-oxygen-substituted radicals, J. Chem. Soc., Perkin Transactions 2, 1990.
- Goldstein, S., and Czapski, G.: Reactivity of peroxynitric acid (O₂NOOH): A pulse radiolysis study, Inorg. Chem., 36, 4156-4162, 1997.
- Graedel, T. E., and Weschler, C. J.: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys., 19, 505-539, 10.1029/RG019i004p00505, 1981.
- Graedel, T. E., and Goldberg, K. I.: Kinetic studies of raindrop chemistry 1. Inorganic and organic processes, J. Geophys. Res., 88, 10865-10882, 10.1029/JC088iC15p10865, 1983.
- Grigor'ev, A. E., Makarov, I. E., and Pikaev, A. K.: Formation of Cl₂⁻ in the bulk solution during the radiolysis of concentrated aqueous solutions of chloride, High Ener. Chem, 21, 1987.
- Herrmann, H., Exner, M., and Zellner, R.: Reactivity trends in reactions of the nitrate radical (NO₃) with inorganic and organic cloudwater constituents, Geochim.Cosmochim. Acta, 58, 3239-3244, 1994.
- Herrmann, H., and Zellner, R.: Reaction of NO₃ radicals in aqueous solution, in: N-Centered Radicals, edited by: Alfassi, Z., Wiley, London, 291-343, 1998.
- Hislop, K. A., and Bolton, J. R.: The photochemical generation of hydroxyl radicals in the UV-vis/Ferrioxalate/H₂O₂ system, Environ. Sci.Tech., 33, 3119-3126, 1999.
- Hoffmann, M. R., and Calvert, J. G.: Chemical transformation modules for Eulerian acid deposition models, Environmental Protection Agency, 1985.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145-1154, 10.1016/0004-6981(86)90147-2, 1986.
- Huie, R. E., and Clifton, C. L.: Temperature dependence of the rate constants for reactions of the sulfate radical, SO₄⁻, with anions, J. Phys. Chem., 94, 8561-8567, 1990.
- Huie, R. E., Shoute, L., and Neta, P.: Temperature dependence of the rate constants for reactions of the carbonate radical with organic and inorganic reductants, Inter. J. Chem. Kin., 23, 541-542, 1991.
- Jacobi, H. W., Herrmann, H., and Zellner, R.: Kinetic investigation of the Cl₂⁻ radical in the aqueous phase, in: Air Pollution research Report 57: Homogenous and heterogenous chemical processes in the troposphere, edited by: Becker, K. H., CEC, Brussels, 1996.
- Jacobsen, F., Holcman, J., and Sehested, K.: Activation parameters of ferryl ion reactions in aqueous acid solutions, Inter. J. Chem. Kin., 29, 17-24, 10.1002/(sici)1097-4601(1997)29:1<17::aidkin3>3.0.co;2-o, 1997.
- Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Intern. J. Chem. Kin., 30, 215-221, 1998.
- Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Oxidation of ferrous ions by perhydroxyl radicals, J. Chem.Soc., Faraday Transactions, 69, 1973a.
- Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Appearance of sulphatoferric complexes in the oxidation of ferrous sulphate solutions. A study by pulse radiolysis, J. Chem. Soc., Faraday Transactions, 69, 1973b.
- Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., and Yoshida, Y.: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals, J. Chem. Soc., Faraday Transactions, 88, 1653-1658, 1992.
- Katsumura, Y.: NO₂ and NO₃ radicals in radiolysis of nitric acid solutions, in: N centered RAdical, edited by: Alfassi, Z. B., Wiley, Chichester, 393, 1998.
- Kremer, M. L.: The Fenton reaction. Dependence of the rate on pH, J. Phys. Chem. A, 107, 1734-1741, 10.1021/jp020654p, 2003.
- Lee, Y. N., and Lind, J. A.: Kinetics of aqueous oxidation of nitrogen (III) by hydrogen peroxide, J. Geophys. Res., 91, 2793-2800, 1986.
- Lilie, R., Hanrahan, J., and Henglein, A.: O transfer reactions of the carbonate radical anion, Rad. Phys. Chem., 11, 225-227, 1978.

- Logager, T., Holcman, J., Sehested, K., and Pedersen, T.: Oxidation of ferrous ions by ozone in acidic solutions, Inorg. Chem., 31, 3523-3529, 10.1021/ic00043a009, 1992.
- Logager, T., and Sehested, K.: Formation and decay of peroxynitric acid : a pulse radiolysis study, 39, American Chemical Society, Washington, DC, 10047-10052 pp., 1993.
- Long, C. A., and Bielski, B. H. J.: Rate of reaction of superoxide radical with chloride-containing species, J. Phys. Chem., 84, 555-557, 10.1021/j100442a023, 1980.
- Long, Y., Charbouillot, T., Brigante, M., Mailhot, G., Delort, A.-M., Chaumerliac, N., and Deguillaume, L.: Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The H_xO_y/iron/carboxylic acid chemical system, Atmos. Environ., 77, 686-695, 2013.
- Maash, H. G.: Sulfur dioxide/water equilibrium between 0 degrees and 50 degrees Celcius, and examination data at low concentrations, in: Heterogenous Atmospheric Chemistry, Geophys. Monogr. Ser., edited by: Schryer, D. R., AGU, Washington, D. C., 187-1959, 1982.
- Maaß, F., Elias, H., and Wannowius, K. J.: Kinetics of oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution: ionic strength elects and temperature dependence, Atmos. Environ., 33, 4413-4419, 1999.
- Marsh, A. R. W., and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075-1080, 1985.
- Maruthamuthu, P., and Neta, P.: Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds, J. Phys. Chem., 82, 710-713, 10.1021/j100495a019, 1978.
- Mertens, R., and Von Sonntag, C.: Photolysis (λ = 354 nm) of tetrachloroethene in aqueous solutions, J. Photochem. Photobio: A chem., 85, 1-9, 1995.
- Moorhead, E. G., and Sutin, N.: Rate and equilibrium constants for the formation of the monooxalate complex of iron(III), Inorg. Chem., 5, 1866-1871, 1966.
- Nadtochenko, V. A., and Kiwi, J.: Photolysis of FeOH²⁺ and FeCl²⁺ in aqueous solution. Photodissociation kinetics and quantum yields, Inorg. Chem., 37, 5233-5238, 10.1021/ic9804723, 1998.
- Padmaja, S., Neta, P., and Huie, R. E.: Rate constant for some reactions of inorganic radicals with inorganic ions. Temperature dependence and solvent dependence, J. Phys. Chem., 25, 445-455, 1993.
- Park, J. Y., and Lee, Y. N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294-6302, 10.1021/j100333a025, 1988.
- Pikaev, A. K., Sibirskaya, G. K., Shirshov, E. M., Glazunov, P. Y., and Spitsyn, V. I.: Pulse radiolysis of concentrated aqueous solutions of aqueous acid, Dokl. Phys. Chem. Proc. Acad. Sci., 215, 328-331, 1974.
- Raabe, G.: Eine Laserphototyische Studie zur Kinetik der Reaktionen des NO₃ Radicals in Wässriger Lösun, Cuvillier, Göttingen, Germany, 1996.
- Riordan, E., Minogue, N., Healy, D., O'Driscol, P., and Sodeau, J. R.: Spectroscopic and optimization modeling study of nitrous acid in aqueous solution, J. Phys. Chem. A, 109, 779-786, 10.1021/jp040269v, 2005.
- Ross, A. B., Bielski, B. H. J., Buxton, G. V., Greenstock, C. L., Helman, W. P., Huie, R. E., Grodkowski, J., Neta, P., and Mallard, W. G.: NDLR-NIST Solution kinetics database, version 3: NIST Standard reference database 40. National Institute of Standards and Technology, in, Gaithersburg, MD, 1994.
- Rush, J. D., and Bielski, B. H. J.: Pulse radiolytic studies of the reactions of HO₂/O₂⁻ with Fe(II)/Fe(III) ions. The reactivity of HO₂/O₂⁻ with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem., 89, 5062-5066 1985.
- Sehested, K., Holcman, J., and Hart, E. J.: Rate constants and products of the reactions of e_{aq}, O₂⁻ and H with ozone in aqueous solutions, J. Phys. Chem., 87, 1951-1954, 10.1021/j100234a024, 1983.
- Sehested, K., Holcman, J., Bjergbakke, E., and Hart, E. J.: A pulse radiolytic study of the reaction hydroxyl + ozone in aqueous medium, J. Phys. Chem., 88, 4144-4147, 10.1021/j150662a058, 1984.
- Sehested, K., Logager, T., Holoman, J., and Nielsen, O. J.: Formation and reactions of the NO₃ radical in aqueous solution, in: Proceedings of EUROTRAC Symposium '94: Transport and Chemical Transformation of Pollutants in the Troposphere, edited by: Borrell, P. M., Cvitas, T., and Seiler, W., SPB Academic Publishing, The Hague, 999-1004, 1994.
- Smith, R. M., and Martell, A. E.: Critical Stability Constants, Volume 4: Inorganic Complexes, Plenum, New York, 1976.

- Tang, Y., Thorn, R. P., Mauldin Iii, R. L., and Wine, P. H.: Kinetics and spectroscopy of the SO₄⁻ radical in aqueous solution, J. Photochem. Photobiol. Chem A, 44, 243-258, http://dx.doi.org/10.1016/1010-6030(88)80097-2, 1988.
- Thornton, A. T., and Laurence, G. S.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton Trans., 1973.
- Wang, T. X., and Margerum, D. W.: Kinetics of Reversible Chlorine Hydrolysis: Temperature Dependence and General-Acid/Base-Assisted Mechanisms, Inorg. Chem., 33, 1050-1055, 10.1021/ic00084a014, 1994.
- Weschler, C. J., Mandich, M. L., and Graedel, T. E.: Speciation, photosensitivity, and reactions of transition metal Ions in atmospheric droplets, J. Geophys. Res., 91, 5189-5204, 10.1029/JD091iD04p05189, 1986.
- Williams, J.: PhD-Thesis, University of Leeds, 1996.
- Xu, F. C., Krouse, H. R., and Swaddle, T. W.: Conjugate base pathway for water exchange on aqueous chromium(III): variable-pressure and -temperature kinetic study, Inorg. Chem., 24, 267-270, 10.1021/ic00197a005, 1985.
- Yu, X. Y., and Barker, J. R.: Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical Mechanism, J. Phys. Chem. A, 107, 1313-1324, 2003.
- Yu, X. Y.: Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions, J. Phys. Chem. Ref. Data, 33, 2004.
- Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H₂O₂ at 308 and 351 nm in the temperature range 278–353 K, J. Atmos. Chem., 10, 411-425, 10.1007/bf00115783, 1990.
- Ziajka, J., Beer, F., and Warneck, P.: Iron-catalysed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism, Atmos. Environ., 28, 2549-2552, 10.1016/1352-2310(94)90405-7, 1994.