Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

Y. H. Zhao1, L. Zhang1, Y. P. Pan2, Y. S. Wang2, F. Paulot3, and D. K. Henze4

1Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey 08540, USA
4Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA

Received: 27 February 2015 – Accepted: 21 April 2015 – Published: 12 May 2015

Correspondence to: L. Zhang (zhanglg@pku.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a⁻¹ as NH₃ and 15.7 Tg N a⁻¹ as NOₓ. China has the largest sources with 12.8 Tg N a⁻¹ as NH₃ and 7.9 Tg N a⁻¹ as NOₓ; the high NH₃ emissions reflect its intensive agricultural activities. We find Asian NH₃ emissions are a factor of 3 higher in summer than winter. The model simulation for 2008–2010 is evaluated with NH₃ and NO₂ column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8–20 kg N ha⁻¹ a⁻¹, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha⁻¹ a⁻¹ (5.0 as reduced nitrogen NHₓ and 6.9 as oxidized nitrogen NOᵧ) to the Yellow Sea, and 5.6 kg N ha⁻¹ a⁻¹ (2.5 as NHₓ and 3.1 as NOᵧ) to the South China Sea. Nitrogen sources over the ocean (ship NOₓ and oceanic NH₃) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants (22%), and transportation (18%). Deposition to the South China Sea shows source contribution from Mainland China (66%), Taiwan (20%), and the rest 14% from the Southeast Asian countries and oceanic NH₃ emissions. The adjoint analyses also indicate that reducing Asian NH₃ emissions would increase NOᵧ dry
deposition to the Yellow Sea (28% offset annually), limiting the effectiveness of NH₃ emission controls.

1 Introduction

Anthropogenic emissions of reactive nitrogen (or fixed nitrogen) have led to a rapid growth of nitrogen deposition to both land and marine ecosystems (Galloway et al., 2004; Duce et al., 2008; Liu et al., 2013). This additional input of nitrogen nutrient may enhance the primary production and carbon storage of the terrestrial biosphere (Pregitzer et al., 2008; Hyvonen et al., 2008). But excessive nitrogen deposition has been observed over sensitive ecosystems and can cause adverse effects including soil acidification and a reduction in plant biodiversity over land (Bowman et al., 2008; Stevens et al., 2004), and eutrophication on lakes and oceans (Bouwman et al., 2002).

The northwestern Pacific is a region vulnerable to atmospheric nitrogen deposition as its productivity is generally limited by the low nutrient supply from deep water (Duce et al., 2008; Kim et al., 2011, 2014). Frequent incidences of harmful algal blooms in the marginal seas of the Pacific Ocean such as the Yellow Sea have been of great concern (Hu et al., 2010). This region is subject to significant anthropogenic nitrogen deposition as it is located downwind of the Asian continent with high fixed nitrogen emissions from increasing human activities (Kurokawa et al., 2013; Luo et al., 2014). Increased nitrogen availability in waters of the northwestern Pacific has been observed in the past 30 years, most likely due to increasing deposition from the atmosphere (Kim et al., 2011). To alleviate the eutrophication conditions in the northwestern Pacific requires a better understanding of the sources and atmospheric processes controlling nitrogen deposition to the region. Here we use a nested global chemical transport model (GEOS-Chem) and its adjoint to address the issue.

Atmospheric nitrogen deposition mainly originates from emissions of ammonia (NH₃) and nitrogen oxides (NOₓ ≡ NO + NO₂). NOₓ sources include fuel combustion, lightning, and microbial processes in soil. It can be oxidized to nitric acid (HNO₃) and or-
ganic nitrates in the atmosphere on a time scale less than one day except in extratropical winter (1–2 days) (Martine et al., 2003). HNO₃ is water-soluble and is readily removed from the atmosphere by both wet and dry deposition. NH₃ is mainly produced by agricultural activities (fertilizer use and manure management), human waste, as well as natural sources such as oceanic emissions (Bouwman et al., 1997). Reacting with H₂SO₄ and HNO₃, NH₃ forms ammonium sulfate and ammonium nitrate particles in the atmosphere. The formation of ammonium particles increase the lifetime of nitrogen in the atmosphere, promoting its long-range transport as dry deposition for particles is slow.

A large fraction (~40%) of emitted NH₃ and NOₓ enters the ocean via wet and dry deposition from the atmosphere (Duce et al., 2008). Inputs from rivers provide additional fixed nitrogen to the ocean, but it is estimated that much of the riverine nitrogen is lost by denitrification in continental shelves and has a smaller impact on the open ocean (Seitzinger et al., 2006; Duce et al., 2008). Sanderson et al. (2008) showed using multiple models that about 10–15% of the emitted NOₓ is exported out of East Asia as nitrogen oxides (NOᵧ = NOₓ + HNO₃ + aerosol NO₃⁻ + PAN + N₂O₅ + isoprene nitrates) with 34–49% of them deposited within 1000 km distance. A number of studies have examined the processes of Asian pollution transport to the Pacific (Liu et al., 2003; Liang et al., 2004; Dickerson et al., 2007). Few studies have been conducted to quantify the patterns, processes, and source attribution of atmospheric nitrogen deposition to the northwestern Pacific.

We use the nested version of GEOS-Chem global chemical transport model (CTM) and its adjoint model with horizontal resolution of 1/2° × 2/3° (Chen et al., 2009; Jiang et al., 2015) to investigate the factors controlling atmospheric nitrogen deposition to the northwestern Pacific, particularly over the Yellow Sea and the South China Sea. Three-year (2008–2010) GEOS-Chem model simulations are conducted to quantify the deposition processes and to understand the impact of meteorology on the seasonal variability of atmospheric deposition. We evaluate the model simulation with surface measurements of wet deposition fluxes and satellite observations of NH₃ and NO₂.
columns. We further use the adjoint method to ascribe nitrogen deposition to the Yellow Sea and the South China Sea to nitrogen sources from different regions and sectors.

2 The GEOS-chem model and its adjoint

2.1 General description

We use a nested version of the GEOS-Chem 3-D global CTM (Chen et al., 2009; Zhang et al., 2012; http://geos-chem.org) driven by GEOS-5 (Goddard Earth Observing System) assimilated meteorological data from NASA Global Modeling and Assimilation Office (GMAO). The GEOS-5 meteorological data have a temporal resolution of 6 h (3 h for surface variables and mixing layer depths), a horizontal resolution of 1/2° latitude × 2/3° longitude, and 72 layers in the vertical. We use the native 1/2° × 2/3° horizontal resolution over the East Asia and its adjacent oceans (70–150° E, 11° S–55° N), and 4° × 5° over the rest of the world. We present results from three-year GEOS-Chem simulations for 2008–2010. A global 4° × 5° simulation is first conducted to provide the boundary conditions for the nested model at 3 h temporal resolution. Simulations are initialized on 1 January 2008 with model fields generated by a 6 month spin-up run at both 4° × 5° and nested resolutions.

Zhang et al. (2012) has applied a similar nested model for North America to analyze the sources and processes of nitrogen deposition to the United States. The model includes a fully coupled tropospheric ozone-NO\textsubscript{x}-hydrocarbon-aerosol chemical mechanism (Bey et al., 2001; Park et al., 2004; Mao et al., 2010). Partitioning of gas and aerosol phase of total NH\textsubscript{3} and HNO\textsubscript{3} is calculated using the ISORROPIA II thermodynamic equilibrium model (Fountoukis and Nenes, 2007). Following Zhang et al. (2012), we assume that isoprene nitrates produced from the oxidation of biogenic isoprene are removed by dry and wet deposition at the same rate as HNO\textsubscript{3}. The reactive uptake coefficients for N\textsubscript{2}O\textsubscript{5} in aerosols are from Evans and Jacob (2005), but are reduced by a factor of 10 as in Zhang et al. (2012).
Model parameterization of wet deposition via both convective updraft and large-scale precipitation scavenging follows the scheme described by Liu et al. (2001) for aerosol, and by Mari et al. (2000) and Amos et al. (2012) for soluble gas. Dry deposition calculation follows a standard big-leaf resistance-in-series model (Wesely, 1989) including the aerodynamic resistance, the boundary layer resistance, and the canopy or surface uptake resistance. Dry deposition velocities are calculated relative to the lowest model layer (~ 70 m above the surface) as discussed in Zhang et al. (2012).

Table 1 summarizes the model calculation of monthly mean daytime (10:00–16:00 LT) dry deposition velocities for different nitrogen species over the northwestern Pacific. Calculated dry deposition velocities are largest for HNO$_3$, N$_2$O$_5$ (0.56–1.16 cm s$^{-1}$) and NH$_3$ (0.60–1.10 cm s$^{-1}$), 0.06–0.08 cm s$^{-1}$ for aerosol NH$_4^+$ and NO$_3^-$, and near zero for insoluble species such as NO$_2$ and PAN. The values are generally much smaller than those over land (e.g., Table 1 of Zhang et al., 2012) as the uptake resistance over the smooth ocean surface is high. Deposition velocities are higher in winter than those in summer due to stronger winds near the ocean surface in winter. The model calculated dry deposition velocities for aerosols are consistent with the mean value of 0.1 cm s$^{-1}$ (with a range of 0.03–0.3 cm s$^{-1}$) estimated by Duce et al. (1991) for aerosol dry deposition over the ocean surface.

2.2 Emissions

Global anthropogenic emissions (NO$_x$, SO$_2$, CO, and non-methane VOCs) are from the Emission Database for Global Atmospheric Research (EDGAR) inventory (Olivier and Berdowski, 2001) except for global anthropogenic NH$_3$ emissions that are taken from the Global Emissions Initiative (GEIA) inventory (Bouwman et al., 1997). Regional emission inventories are then applied including the European Monitoring and Evaluation Programme (EMEP) inventory (Vestreng and Klein, 2002) over Europe, the EPA 2005 National Emissions Inventory (NEI-2005) over the US, the Canada Criteria Air Contaminants (CAC) inventory (http://www.ec.gc.ca/pollution/default.asp?lang=En&n=E96450C4-1) over Canada, and the Regional Emission inventory in Asia (REAS) over Asia.
(REAS-v2) inventory for 2008 (Kurokawa et al., 2013) over Asia (with updates for NH$_3$ emissions as described below). Global ship NO$_x$ emissions are from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) (Wang et al., 2008). The emitted NO$_x$ from ships is directly converted into HNO$_3$ and ozone to account for their rapid chemistry at a sub-grid scale (Vinken et al., 2011).

The model also includes various natural sources of NH$_3$ and NO$_x$. Lightning NO$_x$ emissions are calculated using the cloud top height parameterization of Price and Rind (1992), vertically distributed following Pickering et al. (1998), and further spatially constrained with satellite observations as described by Sauvage (2007) and Murray et al. (2012). Global lightning source is adjusted to be 6 Tg Na$^{-1}$ (Martin et al., 2007).

Soil emissions are computed by the algorithm Yienger and Levy (1995) with canopy reduction factors (Wang et al., 1998). Biomass burning emissions of NO$_x$ and NH$_3$ are from the GFED-v2 inventory (van der Werf et al., 2006). Natural NH$_3$ emissions include both terrestrial and ocean emissions from the GEIA inventory (Bouwman et al., 1997). The REAS-v2 emission inventory is estimated based on activity data and emission factors separated by different source categories (Kurokawa et al., 2013). Major NO$_x$ sources include fuel combustion in power plants, industry, transport and domestic sectors, and NH$_3$ sources are mainly from fertilizer use and manure management of livestock and human waste (Kurokawa et al., 2013). The sectorial information allows us to quantify nitrogen deposition contributions from different source categories in the adjoint analysis as discussed in Sect. 5.

The REAS-v2 NH$_3$ inventory consists of constant annual emissions without any seasonal variation (Kurokawa et al., 2013). Here we keep the annual total NH$_3$ emissions from REAS-v2 and derive monthly scalars over each model grid cell for NH$_3$ from different sectors (fertilizer use, livestock and human waste). NH$_3$ emissions from fertilizer use are controlled by soil properties, meteorology, and the timing of fertilizer application. We follow the method and formula given in Skjøth et al. (2011) and Paulot et al. (2014). We consider nine types of crops (early rice/late rice, winter wheat/spring wheat, maize, cotton, sweet potatoes, potatoes, fruit and vegetables) with the har-
vest areas given by Monfreda et al. (2008). The growth cycles of those crops and their fertilizer inputs at different application time are based on Liao et al. (1993) and Sacks et al. (2010). For NH$_3$ emissions from livestock and human waste, we use the temperature-dependent experimental formula from Aneja et al. (2000). For the diurnal variability, the NH$_3$ agricultural emissions are increased by 90% during the day and reduced by 90% at night following Zhu et al. (2013).

Figure 1 shows the spatial distribution of annual total NH$_3$ and NO$_x$ emissions over Asia. Monthly NH$_3$ and NO$_x$ emissions from different source types over this region are also shown in Fig. 1 and the annual totals for Asia and China are summarized in Table 2. The largest NH$_3$ emissions are over the eastern China and India with values over 50 kg N ha$^{-1}$ a$^{-1}$. We estimate strong seasonality for the NH$_3$ emissions from fertilizer use mainly determined by its usage timing, and from livestock and human waste depending on surface temperature. Asian NH$_3$ emissions are highest in May–August, and a factor of 3 higher than emissions in winter, similar to the seasonality of US NH$_3$ emissions in Zhang et al. (2012) derived by NH$_x$ (NH$_3$ gas + aerosol NH$_4^+$) surface concentration measurements and in Zhu et al. (2013) constrained by TES NH$_3$ observations. Natural NH$_3$ emissions account for 5% of the total Asian NH$_3$ emissions in summer, 11% in winter, and 7% annually. Anthropogenic NO$_x$ emissions show weak seasonal variation, consistent with other emission estimates (Streets et al., 2003; Zhang et al., 2009). Natural NO$_x$ emissions (lightning, soil, and biomass burning) account for 23% of the total Asian NO$_x$ emissions in summer, 8% in winter, and 16% annually.

Annual NH$_3$ and NO$_x$ emissions over China are respectively 12.8 and 7.9 Tg N a$^{-1}$ (REAS-v2 anthropogenic and natural emissions). Our NH$_3$ emissions are at the high end of the range of 7.9–13.2 Tg N a$^{-1}$ in the published Chinese NH$_3$ emission estimates (Streets et al., 2003; Dong et al., 2010; Paulot et al., 2014, and references therein). This is mainly attributed to a higher estimate of NH$_3$ from fertilizer use in REAS-v2 (7.8 Tg N a$^{-1}$) than other emission inventories (e.g., 3.2 Tg N a$^{-1}$ in Huang et al., 2012). The successful simulation of NH$_3$ column concentrations and ammonium wet deposition fluxes as described below lends support to the high Chinese NH$_3$ emissions.
Comparing with nitrogen emissions in the US (2.9 Tg N a$^{-1}$ as NH$_3$, and 6.3 Tg N a$^{-1}$ as NO$_x$) (Zhang et al., 2012), NH$_3$ emissions in China are a factor of 4 higher, reflecting its high levels of agricultural activities as well as the population.

2.3 The adjoint model

The adjoint method provides an efficient way to calculate the sensitivity of model variables (e.g., concentrations and deposition fluxes) to model parameters (e.g., emissions). Here we briefly describe the adjoint method, and more details are given in Henze et al. (2007). Mathematically, the GEOS-Chem model can be viewed as a numerical operator $F: y_{n+1} = F(y_n, x)$, where y_n is the vector of concentrations at time step n, and x is the vector of model parameters such as emissions. If we define a model response function, J (e.g., model deposition), and let $\lambda^n_x = \left(\frac{\partial J}{\partial x_n} \right)^T$ and $\lambda^n_y = \left(\frac{\partial J}{\partial y_n} \right)^T$, then $\lambda^0_x = \nabla_x J$ represents the sensitivity of J to model parameters, and $\lambda^0_y = \nabla_{y0} J$ represents its sensitivity to the initial conditions. In the adjoint model they are computed simultaneously backwards:

$$\lambda^{n-1}_y = \left(\frac{\partial F}{\partial y} (y_{n-1}, x) \right)^T \lambda^n_y$$
$$\lambda^{n-1}_x = \left(\frac{\partial F}{\partial x} (y_{n-1}, x) \right)^T \lambda^n_y + \lambda^n_x$$

where $\left(\frac{\partial F}{\partial y} (y_{n-1}, x) \right)^T$ and $\left(\frac{\partial F}{\partial x} (y_{n-1}, x) \right)^T$ are the model adjoint operators representing transpose of the model Jacobian matrix.

The adjoint of GEOS-Chem was constructed by Henze et al. (2007) for constraining aerosol sources, and extended by Kopacz et al. (2009) for inverse estimates of CO sources. The GEOS-Chem adjoint explicitly includes transport components (advection, boundary layer mixing, and convection), gas-phase chemistry, and heteroge-
neous chemistry (Henze et al., 2007, 2009). The adjoint of the ISORROPIA aerosol thermodynamic equilibrium model was constructed by Capps et al. (2012).

The GEOS-Chem adjoint model has been evaluated and applied in a number of studies, including optimizing aerosol emission (Henze et al., 2009; Zhu et al., 2013), attributing sources of ozone pollution in the western US (Zhang et al., 2009), and quantifying processes affecting nitrogen deposition to biodiversity hotspots worldwide (Paulot et al., 2013, 2014). Those studies used the adjoint model at global 4° × 5° or 2° × 2.5° resolution. The adjoint of the nested-grid GEOS-Chem has been developed by Jiang et al. (2015), and applied to constrain black carbon emissions (Mao et al., 2014) and assess human exposure to Equatorial Asian fires (Kim et al., 2015). Here we apply it to quantify sources contributing to atmospheric nitrogen deposition over the northwestern Pacific.

3 Column concentrations and wet deposition fluxes over Asia

We compare model simulation of NH$_3$ tropospheric columns with satellite measurements from the Tropospheric Emissions Spectrometer (TES) (Beer, 2006), and NO$_2$ tropospheric columns with those from the Ozone Monitoring Instrument (OMI) (Lev-elt et al., 2006). Both are aboard the NASA Aura satellite in a sun-synchronous orbit with an ascending equator crossing time of 13:45 (Beer, 2006). These comparisons provide valuable tests of the nitrogen emissions in the model. We evaluate model simulated wet deposition fluxes of ammonium and nitrate with observational data from the Acid Deposition Monitoring Network in East Asia (EANET; data available at http://www.eanet.asia/index.html) and ten sites monitored by the Chinese Academy of Science (CAS) located in North China (Pan et al., 2012). Measurements of nitrogen dry deposition fluxes are rather limited over the northwestern Pacific.

Figure 2 compares TES measured and GEOS-Chem simulated NH$_3$ tropospheric columns in summer (June–August). TES is an infrared Fourier transform spectrometer with high spectral resolution of 0.06 cm$^{-1}$ (Beer, 2006). The observations have
a spatial resolution of 5 km × 8 km with global coverage achieved in 16 days. NH$_3$ retrievals from TES are based on the optimal estimation method of Rodgers (2000), as described by Shephard et al. (2011). Following Zhu et al. (2013) that used TES NH$_3$ observations to optimize the US NH$_3$ emissions, we filter the TES observations based on the retrieval quality control flags, and only use the daytime observations. We use TES observations in summer as they generally have highest sensitivities during the year (Shephard et al., 2011), and use observations collected from 2005 to 2010 to increase the number of observations for comparison. The GEOS-Chem model results for 2009 are sampled along the TES orbit tracks at the overpass time, and then applied with the TES retrieval operator following Zhang et al. (2006) and Zhu et al. (2013). As shown in Fig. 2, the model generally captures the observed high NH$_3$ columns over the North and Northeast China, and India (correlation coefficient $r = 0.53$). The model largely underestimates NH$_3$ columns over India by 28 %, which suggests NH$_3$ emissions over India are too low. For observations over China, the model only has a small negative bias of 3 %.

Figure 2 also compares OMI measured and GEOS-Chem simulated NO$_2$ tropospheric columns averaged over March–November 2009. OMI measures backscattered solar radiation over the 270–500 nm wavelength range, and has a spatial resolution of 13 km × 24 km and daily global coverage (Levelt et al., 2006; Boersma et al., 2011). We use the monthly OMI NO$_2$ data (DOMINO v2.0) from KNMI (http://www.temis.nl/). The wintertime measurements are excluded due to large retrieval errors over snow (O’Byrne et al., 2010). The model generally captures the observed distribution of NO$_2$ tropospheric columns over Asia ($r = 0.93$), but it is biased low by 15 % over North China on average. A recent study by Lin et al. (2014) suggested that DOMINO NO$_2$ columns might be biased high due to overestimates of surface pressure and exclusion of aerosols in the retrieval.

We compare in Fig. 3 the observed vs. simulated seasonal mean ammonium and nitrate wet deposition fluxes at the EANET and CAS monitoring sites. The EANET data and model results are averaged for January 2008–December 2010, and the CAS
data are for December 2007–November 2010. We compute the correlation coefficient and the normalized mean bias (NMB = \(\sum_{i=1}^{N} (M_i - O_i) / \sum_{i=1}^{N} O_i \)) between the observations (\(O \)) and model results (\(M \)) for the \(N \) monitoring sites. The model simulation is in good agreement with the observations for both ammonium and nitrate wet deposition fluxes. For all seasons the correlation coefficients are great than 0.7 and NMB values are less than 15\%. Annually model simulated nitrogen wet deposition (\(\text{NH}_4^+ + \text{NO}_3^- \)) fluxes over China averages 9.3 kg N ha\(^{-1}\) a\(^{-1}\) with \(\text{NH}_4^+ \) contributing 70\%. This is similar to Lv et al. (2007) that estimated a mean nitrogen wet deposition flux of 9.88 kg N ha\(^{-1}\) a\(^{-1}\) over China with 72\% from \(\text{NH}_4^+ \) wet deposition using an ensemble of precipitation chemistry data.

Previous studies have shown that model simulation of wet deposition flux is highly sensitive to the model precipitation (Pinder et al., 2006; Paulot et al., 2014). We evaluate the GEOS-5 precipitation data over the northwestern Pacific with data from the CPC Merged Analysis of Precipitation (CMAP). The CMAP data are based on several satellite measurements as described in Xie and Arkin (1997), and have a spatial resolution of 2.5\(^\circ\) × 2.5\(^\circ\) and monthly variation (data available at http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.html). Figure 4 compares the monthly averaged GEOS-5 precipitation data with CMAP in January, April, July and October 2009. Both CMAP and GEOS-5 show maximum precipitation over the northwestern Pacific Ocean in July and minimum in January. The GEOS-5 precipitation data generally agree well with the CMAP data (\(r = 0.83–0.92 \)), with only small negative biases of 2–5\% over the ocean.

To focus on the northwestern Pacific, we further examine the measured and simulated nitrogen wet deposition fluxes at nine coastal EANET sites. Figure 5 shows locations of these monitoring sites and the focused region of this study. Figure 6a and b compare the observed vs. simulated monthly mean ammonium and nitrate wet deposition fluxes at the nine coastal sites. For the sites over the continent, both ammonium and nitrate wet deposition fluxes show summer maximum and winter minimum, consis-
tent with seasonal variation of nitrogen emissions and precipitation. For the island sites in the open ocean (Cheju and Hedo), the deposition fluxes are much smaller with much weaker seasonal variations. Overall the model closely reproduces the magnitudes and variability of the measured wet deposition fluxes.

4 Nitrogen deposition to the northwestern Pacific

4.1 Seasonal variation and deposition process

We now examine the deposition processes, patterns, and seasonal variation of atmospheric nitrogen deposition to the northwestern Pacific. Figure 7 shows the spatial distribution of total nitrogen deposition (ammonium and nitrate, dry and wet) to the northwestern Pacific in January, April, July and October, and Fig. 8 shows annual total deposition fluxes average over 2008–2010. Unlike the strong seasonality in nitrogen deposition over the Asian continent, deposition over the ocean has weaker seasonality as also shown by the wet deposition fluxes in Fig. 6. At low latitudes (< 30° N) or over the oceans east of Japan, we can see nitrogen deposition reaches its maximum in January and is lowest in July. At middle latitudes (> 30° N) along the eastern China coast, nitrogen deposition peaks in July with the highest values greater than 2 kg N ha⁻¹ month⁻¹ along the coastlines. In all seasons, deposition decreases rapidly downwind of the continental sources. Jung et al. (2011) using aerosol and rain samples estimated total nitrogen deposition fluxes of 32–64 µmol m⁻² d⁻¹ (1.6–3.3 kg N ha⁻¹ a⁻¹) in the central Pacific Ocean with 66–99% via wet deposition. Our model shows similar results (0.8–4 kg N ha⁻¹ a⁻¹).

We selected two regions as shown in Fig. 7 representing the Yellow Sea and the South China Sea. Table 3 summarizes the monthly and annual nitrogen deposition fluxes over the two regions for 2008–2010. Nitrogen deposition averages 11.9 kg N ha⁻¹ a⁻¹ over the Yellow Sea (5.0 kg N ha⁻¹ a⁻¹ as reduced nitrogen NHₓ and 6.9 kg N ha⁻¹ a⁻¹ as oxidized nitrogen NOᵧ). Seasonal variation of the deposition to the
Yellow Sea is weak with fluxes in October and January about 10\% higher than April and July. Nitrogen deposition to the South China Sea averages 5.6 kg N ha\(^{-1}\) a\(^{-1}\) with deposition in January nearly a factor of 3 higher than deposition in July. This reflects seasonal variations in both meteorology and nitrogen emissions as will be discussed below.

Wet deposition accounts for 67\% of the total nitrogen deposition to the Yellow Sea (82\% for NH\(_x\) and 57\% for NO\(_y\)) and the South China Sea (84\% for NH\(_x\) and 55\% for NO\(_y\)). The ratio of wet vs. dry deposition over the ocean is generally higher than that over the land, because of slow dry deposition velocities (Table 1) and less nitrogen exported near the surface, particularly for reduced nitrogen. Simulated nitrogen deposition fluxes are in the range of 20–55 kg N ha\(^{-1}\) a\(^{-1}\) in the eastern China, with wet deposition accounting for 65\% of the NH\(_x\) deposition and 54\% of the NO\(_y\) deposition (Figure not shown).

4.2 Contribution from the oceanic emissions

It is important to separate the contributions of ocean vs. land emissions to the nitrogen deposition over the northwestern Pacific. Sources of fixed nitrogen from the ocean include both anthropogenic ship NO\(_x\) emissions and natural oceanic NH\(_3\) emissions. Those emissions are small compared with land sources, but their contributions to the nitrogen deposition over the open ocean cannot be neglected due to the short lifetimes of nitrogen species. We have conducted two sensitivity simulations respectively with ship NO\(_x\) emissions or oceanic NH\(_3\) emissions shut off. The differences with the standard simulation represent contributions of each source to the nitrogen deposition.

We separate in Fig. 8 the annual contributions of nitrogen sources over land, ship NO\(_x\) emissions, and oceanic NH\(_3\) emissions to total nitrogen deposition over the northwestern Pacific. We can see nitrogen deposition to the marginal seas of the northwestern Pacific is dominated by transport of nitrogen sources over the Asian continent. Ship NO\(_x\) and oceanic NH\(_3\) emissions contribute little nitrogen deposition (together less than 1\%) to the Yellow Sea, and about 7\% over the South China Sea. Further to
the equatorial Pacific Ocean ship NO\textsubscript{x} emissions contribute 10–25\% of the total nitrogen deposition along the ship tracks. And oceanic NH\textsubscript{3} emissions account for 15–40\% of the total nitrogen deposition annually.

4.3 Outflow from mainland China

We have demonstrated above that nitrogen deposition to the marginal seas of the northwestern Pacific such as the Yellow Sea and the South China Sea mainly originates from nitrogen sources over the land. We now focus on the outflow fluxes from Mainland China where the largest nitrogen emissions are located. Figure 9 shows the outflow fluxes of fixed nitrogen transported across the coastline of Mainland China (as defined by the grid cells in Fig. 5) in different seasons. Fluxes of NH\textsubscript{3}, NH\textsubscript{4}+, HNO\textsubscript{3}, isoprene nitrates, and NO\textsubscript{3} are included. Other fixed nitrogen species such as PAN, although important in outflow fluxes, account for less than 1\% of the nitrogen deposition to the northwestern Pacific.

We can see that the spatial and seasonal variation of atmospheric nitrogen deposition over the marginal seas of the northwestern Pacific as shown in Fig. 7 can be mainly explained by variations of outflow fluxes from China. Nitrogen outflow fluxes across the eastern coastline (cell 1–14 in Fig. 5) to the Yellow Sea show strong transport from Jiangsu Province (cell 7–14 in Fig. 5) below 800 hPa corresponding to the maximum nitrogen deposition near the east coast of China in July. Fluxes in April and October are strong in the free troposphere, where the lifetimes of nitrogen species are longer than in the boundary layer leading to deposition further to the open ocean of the Yellow Sea. Over the southern coastline (cell 20–38 in Fig. 5) to the South China Sea, nitrogen fluxes are largest within the boundary layer in January and October. The fluxes turn to inflow in April and July, minimizing deposition to the South China Sea during these months.

The seasonal variation of pollution transport over the eastern Asia is largely controlled by the East Asian monsoon system (Liu et al., 2003; Liang et al., 2004; Zhang et al., 2010). We show in Fig. 10 the monthly mean wind fields averaged in the bound-
ary layer (generally below 950 hPa) and in the free troposphere at 700 hPa plotted over the monthly emissions of fixed nitrogen. In January the northwesterly monsoon prevails at middle latitudes (> 30°) in the boundary layer and gradually turns to the northeastern at lower latitudes (< 30°). Asian pollution is generally trapped in the boundary layer by the large-scale subsidence over the continent and transported southward as shown in Fig. 9. In July, the summer southerly monsoon winds bring clean ocean air to the southern China, but at latitudes north of 30° N the southwesterly winds combined with the high nitrogen emissions over the eastern China lead to large fluxes to the Yellow Sea. Spring and fall represent the transitional periods, and frequent cold fronts are the primary driver lifting anthropogenic pollution to the free troposphere followed by westerly transport (Liu et al., 2003; Liang et al., 2004).

Thus the strong seasonal variation in nitrogen deposition to the South China Sea is mainly attributed to the monsoonal Asian outflow. Over the Yellow Sea, we find the weaker winds in July can be compensated by higher nitrogen emissions over the land, leading to the weak seasonality of nitrogen deposition. We find in a sensitivity simulation without seasonal variations of Asian NH₃ emissions that nitrogen deposition to the Yellow Sea would have been 64 % higher in January than July.

5 Source attribution using the adjoint method

The adjoint model allows us to further quantify the sources contributing to atmospheric nitrogen deposition over the receptors at the model underlying grid scale. Here we calculate the sensitivities of nitrogen deposition (reduced and oxidized nitrogen, wet and dry) over the Yellow Sea and the South China Sea to grid-resolved NH₃ and NOₓ emissions for January, April, July and October 2009. For each month, we calculate sensitivity of the monthly mean nitrogen deposition to emissions in that month and a week in the preceding month (accounting for the lifetimes of nitrogen species). We separate the sensitivities to different source types (e.g., fertilizer and livestock for NH₃,
and industry and power plants for NO\textsubscript{x}) based on their relative contributions to the total anthropogenic emissions.

The top panels of Fig. 11 show the adjoint sensitivities for the monthly total nitrogen deposition to the Yellow Sea. The magnitude of adjoint sensitivity reflects deposition amount contributed by the nitrogen emissions in each grid cell. The sum of sensitivities integrated geographically matches the monthly deposition flux to the Yellow Sea within 5 %. From winter to summer the source regions move southward from North China and Northeast China to East China and Central China, consistent with the seasonal variation of the monsoonal flow. Nitrogen sources over China are the main contributor to the nitrogen deposition to the Yellow Sea (93 in January, 88 in July, and 92 % annually). Sources over the Korean peninsula contribute 7 % of annual nitrogen deposition to the Yellow Sea.

The bottoms panels of Fig. 11 separate the sensitivities of nitrogen deposition components (reduced and oxidized nitrogen, wet and dry) to emissions from different source types. The total sensitivity of each deposition component also approximately matches the simulated deposition flux (Table 3), with small discrepancies of 0.01–0.06 kgN ha-1 month-1 that can be attributed to nonlinearity between nitrogen deposition and emissions (including nitrogen, SO\textsubscript{2}, and VOC emissions) as discussed in Paulot et al. (2013). Figure 11 shows that NO\textsubscript{x} emissions from power plants (37 %), followed by emissions from transport (26 %) and industry (22 %) contribute most of the nitrogen deposition in January. In other months, NH\textsubscript{3} emissions from fertilizer use (25–32 %) are the largest source of nitrogen deposition to the Yellow Sea. Annually the major sources contributing to nitrogen deposition to the Yellow Sea are fertilizer use (24 %), power plants (22 %), and transportation (18 %).

Figure 12 shows source attribution of atmospheric nitrogen deposition to the South China Sea. Unlike that to the Yellow Sea, nitrogen deposition to the South China Sea shows a distinct winter peak as reflected by the largest source contributing areas in January spreading over the Asian continent. Kim et al. (2014) using back trajectories suggested transport of nitrogen from the east coasts of China and Indonesia to the
South China Sea. Here we estimate that nitrogen deposition to the South China Sea is mainly from Mainland China and Taiwan, contributing 66 and 20% of the annual total nitrogen deposition. The rest 14% results from sources over the Southeast Asian countries as well as oceanic NH₃ emissions.

For the sectorial contributions, nitrogen sources from power plants, transport, industry, and fertilizer use show comparable contribution to nitrogen deposition over the South China Sea in January (16–21%) and October (14–23%). But in April and July, fertilizer use and natural emissions become most significant. In April, natural emissions account for 17% of the nitrogen deposition to the South China Sea mainly via wet deposition, including 7% from the oceanic NH₃ emissions, 4% from lightning, and 6% from biomass burning emissions over Southeast Asia.

One interesting feature we can see from Figs. 11 and 12 is that anthropogenic NOₓ dry deposition exhibits different response to increasing NH₃ emissions over the Yellow Sea (negative) and the South China Sea (near zero). It indicates that reducing NH₃ emissions would even enhance dry deposition of NOₓ to the Yellow Sea. We show in Fig. 13 the sensitivity of NOₓ dry deposition to NH₃ emissions for deposition to the Yellow sea and to the South China Sea in January 2009. The values are generally negative for the Yellow Sea, and positive for the South China Sea except for the areas near the coast.

This can be explained by the conversion of HNO₃ to aerosol NO₃⁻ and their different dry deposition velocities. Dry deposition velocities for aerosol nitrate is much slower than HNO₃ gas (Table 1). NH₃ emissions would lead to formation of aerosol NO₃⁻ from HNO₃, increasing the lifetime of NOₓ and allowing them transport to a longer distance. It would thus decrease the dry deposition of NOₓ (mainly via reduction of HNO₃) near the source region (e.g., the Yellow Sea), and enhance its dry deposition further downwind (e.g., the South China Sea). The same response applies to NHₓ dry deposition and NOₓ emissions (the April panel of Fig. 11), but it is much weaker because NHₓ dry deposition fluxes to the ocean are small and mainly from dry deposition of aerosol NH₄⁺. This can have important implications on the effectiveness of the emission con-
control strategy for reducing nitrogen deposition to the Yellow Sea. As shown in Fig. 11, NH₃ emissions from fertilizer use are identified as the largest contributor to nitrogen deposition to the Yellow Sea except in winter. However, we estimate annually 28% (negative sensitivity of NOₓ dry deposition vs. sensitivity of NHₓ total deposition to NH₃ emissions, averaged over the four months in Fig. 11) of the expected benefits of reduction of nitrogen deposition to the Yellow Sea via controlling NH₃ would be offset by an increase in NOᵧ dry deposition.

6 Conclusions

Increasing atmospheric nitrogen deposition to the northwestern Pacific has likely been altering the marine environment. The purpose of this study is to quantify the sources, processes, and seasonal variation of atmospheric nitrogen deposition to the northwestern Pacific. We have used a nested-grid version of the GEOS-Chem global chemistry model and its adjoint model to address the issue. The model has a horizontal resolution of 1/2° latitude × 2/3° longitude over the East Asia and its adjacent oceans (70–150° E, 11° S–55° N), and 4° × 5° over the rest of the world. It includes a detailed tropospheric chemistry to simulate the sources, transformation, and deposition of fixed nitrogen (NHₓ and NOᵧ) in the atmosphere.

The model uses the anthropogenic emissions of fixed nitrogen (via NH₃ and NOₓ) from the REAS-v2 emission inventory for Asia (Kurokawa et al., 2013). The original NH₃ emissions had no seasonal variation, inconsistent with recent Asian NH₃ emission estimates. We calculate the seasonal variations for NH₃ emissions from fertilizer use based on soil properties, meteorology, and the timing of fertilizer application (Skjøth et al., 2011; Paulot et al., 2014), and for NH₃ from livestock and human waste using surface temperature (Aneja et al., 2000). The resulting Asian NH₃ emissions are highest in May–August, with emissions in summer a factor of 3 higher than winter. Total Asian NH₃ and NOₓ emissions are 28.6 and 16.2 Tg N a⁻¹, respectively. China has the largest nitrogen sources with 12.8 Tg N a⁻¹ as NH₃ and 7.9 Tg N a⁻¹ as NOₓ. Both NH₃
and NO\textsubscript{x} emissions are dominated by anthropogenic sources. Natural sources account for 7 % for NH\textsubscript{3}, and 16 % for NO\textsubscript{x}.

We evaluate the model simulation of NH\textsubscript{3} and NO\textsubscript{2} tropospheric columns with satellite observations from TES and OMI over Asia. The model generally captures the observed distribution of NH\textsubscript{3} and NO\textsubscript{2} tropospheric columns with only small negative biases for both species (−3 % for NH\textsubscript{3} over China and up to −15 % for NO\textsubscript{2} over the North China), providing support to the model emissions. The model further closely reproduces the magnitudes and variability of ammonium and nitrate wet deposition fluxes at the EANET sites and additional monitoring sites over the North China. Wet deposition fluxes measured over the continental sites show strong seasonality with summer maximum and winter minimum, while for the island sites in the open ocean, deposition fluxes are much smaller with weak seasonal variations.

We analyze three-year (2008–2010) model simulation of atmospheric nitrogen deposition to the northwestern Pacific, particularly over the marginal seas such as the Yellow Sea and the South China Sea. Atmospheric nitrogen deposition reaches as high as 20–55 kg N ha-1 a-1 in the eastern China, and decreases rapidly downwind the Asian continent (0.8–20 kg N ha-1 a-1 over the northwestern Pacific). Nitrogen deposition averages 11.9 kg N ha-1 a-1 over the Yellow Sea (5.0 kg N ha-1 a-1 as NH\textsubscript{x} and 6.9 kg N ha-1 a-1 as NO\textsubscript{y}), and 5.6 kg N ha-1 a-1 to the South China Sea (2.5 as NH\textsubscript{x} and 3.1 as NO\textsubscript{y}). Although Asian NH\textsubscript{3} emissions are much higher than NO\textsubscript{x} emissions, less NH\textsubscript{x} is exported and deposited over the open ocean due to its shorter lifetime. We find contributions of nitrogen sources over the ocean, including ship NO\textsubscript{x} emissions and oceanic NH\textsubscript{3} emissions, are negligible for nitrogen deposition to the Yellow Sea, and about 7 % over the South China Sea. Further downwind in the ocean ship NO\textsubscript{x} emissions contribute 10–25 % of total nitrogen deposition along the ship tracks, and oceanic NH\textsubscript{3} emissions are responsible for 15–40 % of the nitrogen deposition.

Seasonal variations in nitrogen deposition to the northwestern Pacific are generally determined by variations in meteorology and nitrogen emissions. Nitrogen deposition to the South China Sea showed strong seasonal variation, with deposition in
January (0.62 kg N ha\(^{-1}\) month\(^{-1}\)) nearly a factor of 3 higher than deposition in July (0.23 kg N ha\(^{-1}\) month\(^{-1}\)). This is consistent with the nitrogen outflow fluxes from Asia (mainly Mainland China), which are controlled by the East Asian monsoon system as discussed in previous studies (Liu et al., 2003; Zhang et al., 2010). In winter the northerly monsoon favors transport of Asian pollution to the open ocean in the boundary layer, while the summer southerly monsoon winds bring clean ocean air to the southern China. Nitrogen deposition to the Yellow Sea has weak seasonality (0.85–1.12 kg N ha\(^{-1}\) month\(^{-1}\)). We find the weaker winds in summer over the Yellow Sea suppress dry deposition of nitrogen, but are compensated by higher nitrogen emissions in summer.

We have further applied the adjoint of GEOS-Chem to estimate the contributions of nitrogen sources from different sectors and at the model underlying resolution to nitrogen deposition over the Yellow Sea and the South China Sea. This detailed source information can be crucial to design an effective strategy for reducing nitrogen deposition to these areas. Nitrogen deposition to the Yellow Sea mainly originates from nitrogen sources over China (92 % contribution) and the Korean peninsula (7 %) categorized by regions, and is contributed from fertilizer use (24 %), power plants (22 %), and transportation (18 %) categorized by emission sectors. For deposition to the South China Sea, nitrogen sources over Mainland China and Taiwan contribute 66 and 20 % of the annual total deposition, with the rest 14 % from sources over the Southeast Asian countries as well as oceanic NH\(_3\) emissions. Natural sources are particularly important in April, accounting for 17 % of the nitrogen deposition to the South China Sea (7 % from the oceanic NH\(_3\) emissions, 4 % from lightning, and 6 % from biomass burning emissions over Southeast Asia).

The adjoint analyses also indicate that dry deposition of oxidized nitrogen to the Yellow Sea shows negative sensitivity to Asian NH\(_3\) emissions, i.e., reducing Asian NH\(_3\) emissions would increase the NO\(_y\) dry deposition to the Yellow Sea. This response mainly reflects conversion of gaseous NH\(_3\) and HNO\(_3\) to ammonium nitrate aerosol and their different deposition efficiencies. Annually 28 % of the reduction of nitrogen
deposition to the Yellow Sea via reducing NH$_3$ emissions would be offset by increases in NO$_y$ dry deposition, placing a limitation on the effectiveness of NH$_3$ emission controls for mitigating nitrogen deposition over the Yellow Sea.

Acknowledgements. This work was supported by the National Key Basic Research Program of China (grant 2014CB441303), and by the National Natural Science Foundation of China (grant 41205103, 41475112, and 41405144). F. Paulot and D. K. Henze acknowledge funding support from the NASA Air Quality Applied Science Team (AQAST). The authors also acknowledge the work of many individuals who have made the measurements of EANET, OMI, and TES.

References

Atmospheric nitrogen deposition to the northwestern Pacific

Y. H. Zhao et al.

Table 1. Monthly mean daytime dry deposition velocities over the northwestern Pacifica.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Apr</th>
<th>Jul</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_3)</td>
<td>1.10</td>
<td>0.70</td>
<td>0.60</td>
<td>0.85</td>
</tr>
<tr>
<td>Aerosol (\text{NH}_4^+)</td>
<td>0.08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>H(\text{NO}_3), Isoprene nitratesb</td>
<td>1.16</td>
<td>0.69</td>
<td>0.56</td>
<td>0.84</td>
</tr>
<tr>
<td>Aerosol (\text{NO}_3^-)</td>
<td>0.08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>(\text{N}_2\text{O}_5)</td>
<td>1.16</td>
<td>0.69</td>
<td>0.56</td>
<td>0.84</td>
</tr>
<tr>
<td>(\text{NO}_2)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>PANsc</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

a Numbers are in unit of cm s\(^{-1}\) and averaged over 2008–2010.

b Isoprene nitrates represent the organic nitrates produced from the oxidation of isoprene by OH in the presence of NO\(_x\).

c Peroxyacetyl nitrate (PAN) and higher peroxyacyl nitrates.
Table 2. Annual total NH$_3$ and NO$_x$ emissions over Asia and Chinaa.

<table>
<thead>
<tr>
<th>Source type</th>
<th>Asia</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer</td>
<td>15.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Livestock</td>
<td>5.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Human waste</td>
<td>4.</td>
<td>1.5</td>
</tr>
<tr>
<td>Othersb</td>
<td>1.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Naturalc</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>28.6</td>
<td>12.8</td>
</tr>
<tr>
<td>NO$_x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power plants</td>
<td>4.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Transport</td>
<td>4.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Industry</td>
<td>2.8</td>
<td>2.</td>
</tr>
<tr>
<td>Domestic</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Naturald</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>15.7</td>
<td>7.9</td>
</tr>
</tbody>
</table>

a Annual emissions in unit of Tg N a$^{-1}$ for 2008–2010.

b Other anthropogenic sources include ammonia emissions from power plant, transport, industry, and domestic emission.

c Natural NH$_3$ emissions include emissions from natural terrestrial and ocean.

d Natural NO$_x$ emissions include emissions from soil, lightning and biomass burning.
Table 3. Monthly and annual nitrogen deposition fluxes to the Yellow Sea and the South China Sea for 2008–2010⁸.

<table>
<thead>
<tr>
<th></th>
<th>Wet deposition</th>
<th>Dry deposition</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH₄⁺</td>
<td>NO₃⁻</td>
<td>NHₓ</td>
</tr>
<tr>
<td>The Yellow Sea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>0.24 (0.16–0.27)</td>
<td>0.38 (0.25–0.47)</td>
<td>0.05 (0.05–0.06)</td>
</tr>
<tr>
<td>Apr</td>
<td>0.35 (0.21–0.46)</td>
<td>0.27 (0.18–0.37)</td>
<td>0.10 (0.07–0.12)</td>
</tr>
<tr>
<td>Jul</td>
<td>0.48 (0.40–0.60)</td>
<td>0.36 (0.30–0.43)</td>
<td>0.08 (0.06–0.11)</td>
</tr>
<tr>
<td>Oct</td>
<td>0.34 (0.20–0.53)</td>
<td>0.32 (0.21–0.46)</td>
<td>0.12 (0.07–0.17)</td>
</tr>
<tr>
<td>Annual</td>
<td>4.1 (3.8–4.2)</td>
<td>3.9 (3.9–3.9)</td>
<td>0.9 (0.8–1.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.9 (11.3–12.3)</td>
</tr>
<tr>
<td>The South China Sea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>0.18 (0.13–0.24)</td>
<td>0.17 (0.12–0.21)</td>
<td>0.03 (0.02–0.04)</td>
</tr>
<tr>
<td>Apr</td>
<td>0.20 (0.14–0.26)</td>
<td>0.12 (0.08–0.16)</td>
<td>0.04 (0.04–0.05)</td>
</tr>
<tr>
<td>Jul</td>
<td>0.10 (0.04–0.14)</td>
<td>0.09 (0.05–0.11)</td>
<td>0.02 (0.01–0.02)</td>
</tr>
<tr>
<td>Oct</td>
<td>0.20 (0.16–0.24)</td>
<td>0.16 (0.13–0.22)</td>
<td>0.05 (0.04–0.07)</td>
</tr>
<tr>
<td>Annual</td>
<td>2.1 (1.8–2.3)</td>
<td>1.7 (1.5–1.8)</td>
<td>0.4 (0.4–0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.6 (4.8–6.1)</td>
</tr>
</tbody>
</table>

⁸Numbers are three-year (2008–2010) averages and ranges (in parentheses) in unit of kg N ha⁻¹ month⁻¹ for the monthly values and kg N ha⁻¹ a⁻¹ for the annual totals.
Figure 1. Asian NH₃ and NOₓ emissions in 2008–2010. The left panels show annual total emissions and the right panels show monthly values of NH₃ and NOₓ emissions from each source type over Asia.
Figure 2. Satellite observations of NH$_3$ tropospheric columns from TES (top left) and NO$_2$ tropospheric columns from OMI (bottom left). The TES observations are daytime measurements during June–August 2005–2010. The OMI observations during March–November 2009 are from KNMI at 0.125° × 0.125° resolution. Both are regrided to the model resolution (1/2° × 2/3°). The middle panels show corresponding GEOS-Chem model results for 2009 sampled at the satellite overpass time (13:45 LT). The right panels show the GEOS-Chem minus satellite differences.
Figure 3. GEOS-Chem simulated seasonal mean ammonium (top panels) and nitrate (bottom panels) wet deposition fluxes for 2008–2010. The measurements from EANET (49 sites in the domain) and ten CAS sites are over-plotted (circles). Correlation coefficients (r) and mean normalized biases (NMB) are given inset. The EANET data and model results are averaged for January 2008–December 2010, and the CAS data are for December 2007–November 2010. DJF represents December–January–February, MAM: March–April–May, JJA: June–July–August, SON: September–October–November.
Figure 4. Monthly mean precipitation data from CMAP (left panels) and from GEOS-5 (central panels) for January, April, July and October 2009. The right panels show corresponding scatter-plots of CMAP vs. GEOS-5 precipitation over the northwestern Pacific Ocean. Correlation coefficients (r) and mean normalized biases (NMB) are shown inset.
Figure 5. Map of the focused domain. The black dots are the locations of nine EANET sites that used for model evaluation of nitrogen deposition near the coast (Fig. 6a and b): Mt. Sto. Tomas, Hedo, Cheju, Imsil, Kanghwa, Xiamen (Hongwen and Xiaoping sites), and Zhuhai (Xiang Zhou and Zhuxiandong sites). The red dots represent the grid cells covering the coastline of Mainland China that used for determining the outflow fluxes as indicated by the orange arrows.
Figure 6a. Monthly averaged ammonium wet deposition fluxes at nine EANET coastal sites (Fig. 5). The black lines are three-year averages (2008–2010) of observations, and the blue lines are the corresponding model results. The vertical black lines represent the range of observed values for 2008–2010.
Figure 6b. Same as Fig. 6a but for nitrate wet deposition fluxes.
Figure 7. GEOS-Chem simulated monthly nitrogen deposition fluxes to the northwestern Pacific in January, April, July and October 2008–2010. The black boxes in the left panel represent areas of the Yellow Sea and the South China Sea used in the adjoint analyses.
Figure 8. Annual total nitrogen deposition fluxes to the northwestern Pacific averaged in 2008–2010 (first panel), and annual percentage contributions from nitrogen sources over land, ship NO\textsubscript{x} emissions, and oceanic NH\textsubscript{3} emissions.
Figure 9. Vertical profile of fixed nitrogen (totals of NH$_3$, NH$_4^+$, HNO$_3$, isoprene nitrates, and NO$_3^-$) transported from the mainland of China to the ocean. The number of x coordinate corresponds to the grid cell number in Fig. 5. Positive values represent transport outside Mainland China, while negative values represent the opposite transport. The dotted lines represent the model boundary layer height. Three back lines divide the each panel in four parts. From left to right, we calculated transportation of nitrogen in each part in the direction of arrow F1 to arrow F4.
Figure 10. Monthly mean wind fields from the GEOS-5 assimilated meteorological data overplotted on the monthly emissions of fixed nitrogen ($\text{NH}_3 + \text{NO}_x$). The top panels are wind fields in the boundary layer (1000–950 hPa) and the bottom panels show the wind fields in the free troposphere (700 hPa).
Figure 11. (Top panels) sensitivity of monthly total nitrogen deposition over the Yellow Sea to emissions in each grid box, and (bottom panels) sensitivity of nitrogen deposition over the Yellow sea (domain defined by the black lines) to each emission sector. In the x axis labels P denotes Power plant, T: Transport, I: Industry, D: Domestic, F: Fertilizer use, L: Livestock, H: Human waste, and N: Natural emissions.
Figure 12. Same as Fig. 11 but for the South China Sea.
Figure 13. Sensitivity of NO\textsubscript{y} dry deposition over the Yellow Sea (left) and over the South China Sea (right) to NH\textsubscript{3} emissions in each model grid box for January 2009.