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Abstract

The implementation of emission reductions during the 2014 Asia-Pacific Economic Cooper-
ation (APEC) summit provides a valuable opportunity to study air pollution in Beijing. From
15 October to 30 November 2014, the height of the atmospheric mixing layer and the vertical
attenuated backscattering coefficient profiles were observed online using a lidar ceilome-5

ter. Compared with fine particulate matter (PM2.5) and aerosol optical depth (AOD) data,
the attenuated backscattering coefficients measured by the lidar ceilometer were strongly
correlated with the PM2.5 concentration and AOD (correlation coefficients of 0.89 and 0.86,
respectively). This result demonstrated the reliability of the vertical distribution of particles
measured by the lidar ceilometer. By classifying different air pollution degrees based on10

visibility, we found that during the transition period of air pollution, which was affected by
transport of southerly flows in the mixing layer, the attenuated backscattering coefficient
from 0 to 1500m was enhanced by approximately 1.4Mm−1 sr−1 (140 %). During the pol-
luted period, the attenuated backscattering coefficient from 0 to 300m suddenly increased,
and the coefficient near the surface peaked (approximately 14Mm−1 sr−1); however, the at-15

tenuated backscattering coefficient from 300 to 900m decreased gradually, and the average
value from 0 to 1500m decreased by 0.5Mm−1 sr−1 (20 %). The height of the mixing layer
gradually decreased, and the ratio of CO/SO2 gradually increased, which indicate that the
polluted period was dominated by local contribution. Due to the emission reductions during
APEC (DAPEC), the concentration of PM2.5 decreased by 59.2 and 58.9 % and visibility20

improved by 70.2 and 56.0 % compared to before (BAPEC) and after APEC (AAPEC), re-
spectively. The contribution of regional transport in DAPEC decreased by approximately 36
and 25 % and the local contribution decreased by approximately 48 and 54 % compared
to BAPEC and AAPEC, respectively. The most effective method of controlling air pollution
in the Beijing area is to reduce regional emissions during the transition period and reduce25

local emissions during the polluted period.
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1 Introduction

Aerosols are relatively stable suspensions formed by micro-liquid and solid particles that
are uniformly distributed in the air (Seinfeld, and Pandis, 1998). Atmospheric aerosols can
directly change the balance and distribution of global radiation by scattering or absorbing
sunlight, and they can also affect the formation of clouds and fogs (as condensation nu-5

cleus) and indirectly affect the global climate (Shine and Forster, 1999; Myhre et al., 2001;
IPCC, 2007). Furthermore, atmospheric aerosols are carriers of photochemical reactions
and provide good reaction beds for chemical reactions; therefore, they promote the occur-
rence of atmospheric photochemical reactions (Seinfeld and Pandis, 1998). Because of
their small radii and high specific areas, atmospheric aerosols can easily accumulate as10

hazardous material and can be absorbed by human bodies, where they are deposited in
the lungs and threaten human health (Englert, 2004; Campbell et al., 2005; Peters, 2005;
Auger et al., 2006).

With the rapid economic development of China, the amount of industrial products and the
number of vehicles increase year-by-year, thus lead to an increase of energy consumption15

(National Bureau of Statistics of China, 2014). The North China Plain region has one of the
highest global aerosol concentrations (Lu et al., 2010). Beijing, the economic, political and
cultural center of China, is adjacent to the Yanshan Mountains to the north and Taihang
Mountains to the west and is on the north boundary of the North China Plain (Fig. 1).
This special horseshoe-shaped geographical region provides efficient southerly transport20

of pollutants to Beijing, which affects air quality (Ding et al., 2005; Xin et al., 2010). In 2012,
China promulgated the Air Pollution Prevention and Control Action Plan to prevent and
control air pollution, and the details were disseminated in September 2012. The key control
region for air pollution is the North China Plain, which contains Beijing, Tianjin and Hebei.
The coordinated prevention and control of pollution in this region have been proposed (State25

council, 2013).
Although coordinated regional prevention and control have been proposed for many

years, it is difficult to obtain evidence and quantify the intensity of regional transport solely
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based on ground observations. Thus, reductions in regional emissions have not been im-
plemented. Previous studies attempted to use air quality model to quantify the intensity and
height of regional transport (Wu et al., 2011). However, the vertical gradient of air pollutants
was not measured to test the model; therefore, the results are not reliable. Thus, it is of
great importance to measure the vertical gradient of air pollutants to quantify the intensity5

and height of the regional transport.
Studies of the vertical distribution characteristics of atmospheric aerosols include layered

observations from meteorological observation towers, mooring boats, airplanes, ground re-
mote sensing and satellites, and such data can be utilized for exploration and measure-
ments of different spatial regions from the near-surface to the free atmosphere. Using these10

observation methods to study the vertical gradient, the effects of sand storms (Zhang et al.,
2006; McAuliffe and Ruth, 2013), volcanic eruptions (Emeis et al., 2014), and anthropogenic
sources (Tesche et al., 2007; Kamp et al., 2008; Zhang et al., 2009; Hänel et al., 2012; Sun
et al., 2013) on the atmospheric environment have been evaluated in several countries.
However, such studies in north China remain at the initial stages. Using the airplane obser-15

vation method, Zhang et al. (2006) classified the origin of atmospheric aerosols in Beijing
and showed that they are primarily affected by sand storms, southerly transport and local
emissions. Their airplane data were used to determine the concentration of aerosol parti-
cles and vertical distribution characteristics of particle radii in the Beijing area during the
periods when atmospheric aerosols are mainly affected by anthropogenic sources. Zhang20

et al. (2009) also analyzed the causes of vertical aerosol distribution under different me-
teorological conditions by considering meteorological factors. Guinot et al. (2006) and Sun
et al. (2013) used the layered meteorological observation method to show variations in the
vertical gradient of air pollutants during periods of heavy pollution. Although the aforemen-
tioned studies analyzed the vertical variation of aerosols in the Beijing area, the results25

are not ideal because they have low resolution, small sample size and low observational
height; they are unrepresentative; and they lack evidence for regional transport. In recent
years, satellite observations have become increasingly important in investigations of atmo-
spheric aerosol profiles. In addition, satellite observations provide reliable results compared
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with ground remote sensing (Wu et al., 2014). However, the resolution of the satellite obser-
vation method is very low because of short passing time. Therefore, surface remote sensing
is the best method to acquire the continuous vertical structure of atmospheric aerosols in
high resolution.

The Asia-Pacific Economic Cooperation (APEC) summit was held from 3 to 11 November5

2014 in Beijing, and it was important to ensure good air quality to provide for a success-
ful summit. Thus, the governments of Hebei province, Tianjin city, Shanxi province, Inner
Mongolia autonomous region, and Shandong province cooperated with the government of
Beijing to increase the intensity of emissions reductions for the entire region of north China
during the APEC summit, and a series of emission reduction methods were conducted.10

Consequently, more than 460 businesses with high emissions in Beijing were required to
stop or limit their production during 3–12 November, 2014. The number of private vehicles in
operation during the same period was reduced by 50 % through an odd/even number plate
rule. Further, 9298 enterprises were suspended, 3900 enterprises were ordered to limit pro-
duction, and more than 40,000 construction sites were shut down in all six provinces, cities15

and autonomous region. Besides, with the heating supply began to run extensively after
15 November, there was also a slight difference in emissions in the time period before vs.
after APEC. Therefore, the implementation of these emission variability methods resulted
in significant variations in regional transport and local pollutant contributions. In this study, a
lidar ceilometer was used to determine the mixing layer height and the attenuated backscat-20

tering coefficient before and after APEC (15 October to 30 November 2014). The values for
fine particulate matter (PM2.5) and aerosol optical depth (AOD) were combined, and the
present study tested and compared the attenuated backscattering coefficient measured by
the lidar ceilometer from 15 October to 30 November 2014. By applying visibility as an index
to classify the degrees of air pollution, the vertical gradients of the attenuated backscatter-25

ing coefficient were analyzed during multiple pollution episodes to determine the origin of
atmospheric pollution for different degrees of air pollution. Afterwards, changes in the atten-
uated backscattering coefficient profiles before, during and after APEC (BAPEC, DAPEC
and AAPEC, respectively) reflect the causes of variation during different pollution degrees
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and relative contribution of regional transport and local emissions in DAPEC. Finally, three
typical pollution episodes were analyzed in BAPEC, DAPEC and AAPEC to show the ori-
gin of atmospheric pollution in different pollution degrees in Beijing and the effects of the
emission reduction methods in DAPEC. The results strengthen our knowledge of pollution
formation and development in the Beijing area and provide a scientific basis for the control5

of air pollution in Beijing.

2 Methods

2.1 Measurements of attenuated backscattering coefficients

An observational station (BJT) was built in the Tieta courtyard of the Institute of Atmospheric
Physics of the Chinese Academy of Science (West of Jiandemen, Haidian District, Beijing)10

(Fig. 1). The station was between North Third Ring Road and North Fourth Ring Road,
and route G6 was on the east side. The geographic location of the station was 39.97◦ N,
116.37◦ E, and the altitude was 60m.

The equipment used in this study included an enhanced single-lens lidar ceilometer
(CL51, Vaisala). This equipment adopted the strobe laser lidar (laser detection and distance15

measurement) technique (910 nm) to measure the atmospheric attenuated backscattering
coefficient profiles. The detection distance of the CL51 ceilometer was 15.4 km, and it had
a temporal resolution of 6–120 s and vertical resolution of 10m. Because the height of the
atmospheric mixing layer barely exceeded 4 km and the concentration of aerosols in the
free atmosphere above the mixing layer is low in the Beijing area, high detection distance20

was not necessary to study the air pollution in this area. To strengthen the echo signals
and reduce detection noise, the detection height of the ceilometer was reduced by half to
7.7 km. Additional data were obtained to smooth the noise of detection signals by setting
the temporal resolution of detection to 16 s. To filter the noise of the observed data, 240m
vertical, 1200 s time smoothly averaging was applied by BLVIEW software before analyses25

(Münkel et al., 2007).
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2.2 Evaluation method of attenuated backscattering coefficients

Although aerosol concentration cannot be measured directly by a ceilometer (Wiegner et al.,
2014), the attenuated backscattering coefficient is a good indicator of the aerosol stratifi-
cation. However, uncertainties might occur in the attenuated backscattering coefficients
measured by the lidar ceilometer, especially above the boundary layer where the aerosol5

concentration is low (Jin et al., 2015). In addition, the attenuated backscattering coefficients
measured in the spectral region of 910 nm are influenced by water vapor absorption, and the
strength of the influence can be highly variable in time and space (Wiegner and Gasteiger,
2015). Therefore, the representativeness of the attenuated backscattering coefficient must
be evaluated by comparison with other observations, and a good relationship indicates that10

the influence of water vapor absorption is negligible.
To evaluate the atmospheric attenuated backscattering coefficients measured by the lidar

ceilometer, two methods based on the near-surface PM2.5 concentration and AOD column
data were adopted in this study. The reliability of measured results based on calibration
of the near-surface attenuated backscattering coefficients was evaluated by comparing the15

near-surface PM2.5 concentrations and near-surface atmospheric attenuated backscatter-
ing coefficients. Observational PM2.5 data were downloaded from the Chinese Environmen-
tal Protection Administration website (http://www.zhb.gov.cn/), and observational data at the
Olympic center (OLY), which was the closest landmark to the observational station, were
chosen for comparison (Fig. 1). The AOD data were measured using the MICROTOPS II20

heliograph at BJT station (Fig. 1), and the weather conditions were sunny and partly cloudy.
Each measurement was repeated three to five times, and the average value was used as
the mean value at each time step. Because the waveband of the heliograph is different from
the observational range of the lidar ceilometer, the AOD at 910 nm, which is consistent with
the wavelength of the lidar ceilometer, was derived from the measured AOD at 1020 nm25

using the heliograph and wavelength indices of four wave bands. The derivation method
was based on Eq. (1), where α is the wavelength index between 340 and 675 nm, and τ is

7
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the AOD:

lnα=
lnτ(1020nm)− lnτ(910nm)

ln1020− ln910
(1)

2.3 Calculation of mixing layer height

Because the particle lifetimes are long and range from several days to tens of days, the
distribution of particle concentrations in the atmospheric mixing layer is more uniform than5

that of gas-phase pollutants (Seinfeld, and Pandis, 1998). In addition, huge differences in
the concentrations of particles are observed between the mixing layer and free atmosphere.
The profile of attenuated backscattering coefficients in the atmosphere can be analyzed to
determine the location of sudden changes caused by variations in the attenuated backscat-
tering coefficients, which is at the top of the atmospheric mixing layer. The lidar ceilometer10

is inexpensive and convenient and has been widely applied in observations of the mixing
layer height (Michael et al., 2006; Münkel et al., 2007; McKendry et al., 2009; Emeis et al.,
2012; Yang et al., 2013; Pandolfi et al., 2013; Schween et al., 2014; Scarino et al., 2014). In
this study, the gradient method was used to identify the mixing layer height, and maximum
negative gradient value (−dβ/dx) of the attenuated backscattering coefficient profile was at15

the top of the mixing layer (Michael et al., 2006; Emeis et al., 2012). Because the data are
easily affected by noise and interference from the aerosol layering structure, time or space
must be smoothly averaged before the gradient method can be used to calculate the mixing
layer height from the profile data (Münkel et al., 2007).

2.4 Other data20

Because Beijing has a low concentration of industry and a large amount of vehicle traffic,
the emissions of SO2 are low, while the emissions of CO are high. Thus, the ratio of CO
to SO2 may provide a partial indication of the origin of atmospheric pollutants. The CO and
SO2 data at OLY station published by the Chinese Environment Protection Administration
were also used to help analyze the origin of atmospheric pollutants (Fig. 1). The obser-25

8
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vational data were downloaded from the live-updated website published by the Chinese
Environment Protection Administration (http://www.zhb.gov.cn/).

Visibility was measured at BJT station using a Belfort Model 6000 visibility sensor to char-
acterize the degree of atmospheric pollution during this period. In addition, to understand
the transport characteristics of different atmospheric pollution degrees, wind speed and di-5

rection vertical profile data were obtained from the international standard weather station
(ID: ZBAA) (Fig. 1). The meteorological sounding profile data were measured twice a day
at 08:00 and 20:00 LT at station ZBAA.

3 Results and discussion

3.1 Overview of air pollution10

During the summit, a number of controls were adopted to guarantee good air quality in Bei-
jing. To understand the pollution variation tendency during this period, the PM2.5 concen-
tration was plotted against time using the hourly PM2.5 concentration data from 15 October
to 30 November (Fig. 2). The observation period lasted for 47 days, and nine poor air qual-
ity episodes were observed, which lasted for 5.2 days on average. During each pollution15

episode, the PM2.5 concentration was characterized as “slowly accumulating and rapidly
disappearing”. At the transition stage during each pollution episode, the pollutant concen-
tration increased. After reaching the maximum value, the pollutant concentration plateaued
for 1–2 days and then rapidly decreased, which usually lasted for four to six days from the
beginning of the pollution episode to the end. This result is consistent with previous studies20

(Jia et al., 2008).
A statistical analysis of the ground concentrations of PM2.5 and heights of the mixing lay-

ers at the same time showed that with mixing layer heights rising from 0 to 1000m, the aver-
age PM2.5 concentration decreased from 158.9 to 67.9 µgm−3. When mixing layer heights
rose above 1200m, the PM2.5 concentration suddenly decreased (lower than 35 µgm−3)25

and did not vary with increasing height of the mixing layer (Fig. 3). Thus, when the mixing

9
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layer was lower than 1000m, the PM2.5 concentration was negatively correlated with the
mixing-layer height, and when the mixing layer was above 1000m, the air was of good qual-
ity and the negative correlation between the PM2.5 concentration and mixing-layer height
disappeared. Therefore, increased pollution during each pollution episode gradually led to
the accumulation of PM2.5 above 60 µgm−3, and the corresponding mixing layer heights5

were all below 1000m. This result indicates that the vertical diffusion capability of the atmo-
sphere is weak, and atmospheric pollution in Beijing may be enhanced by local emissions.
Because the level of industry and coal pollution is low and the number of vehicles is high in
Beijing, the ratio of CO/SO2 can reflect the contribution of local emissions to air pollution,
with higher ratios indicating higher local contributions. The ratios of CO/SO2 show that with10

decreasing mixing layer height, the ratio of CO/SO2 gradually increased (Fig. 3). This result
also suggests that with increasing pollution, the amount of pollutants transported from other
regions gradually decreases while the local contribution gradually increases.

3.2 Characteristics of attenuated backscattering coefficients

3.2.1 Evaluation of attenuated backscattering coefficients15

Because the vertical distribution of atmospheric pollutants in the convective layer can bet-
ter represent the evolution characteristics of pollution, the PM2.5 and AOD data observed
during this time period were used to compare the near-surface atmospheric attenuated
backscattering coefficient and 0 to 4500m column attenuated backscattering coefficient,
and the results could be used to evaluate the attenuated backscattering coefficient profile20

measured by the lidar ceilometer helping us to better understand the vertical structure of
atmospheric pollution.

The overlap of the laser beam of the ceilometer and its receiver field-of-view is smaller
than 1 in the near range. Therefore, the attenuated backscattering coefficient values at a
height of 100m were chosen for comparison with the near-surface PM2.5 concentration.25

The correlation showed that besides differences during several peak periods, the variations
were generally consistent (Fig. 4a), which indicates that the attenuated backscattering co-
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efficients at 100m and corresponding PM2.5 concentrations were significantly positively
correlated (R= 0.89) (Fig. 4b). For the column concentration, 4500m can generally cover
the entire mixing layer; therefore, the interference of cloud layers from 0 to 4500m was
manually removed, the atmospheric attenuated backscattering coefficients were integrated
in this region, and the values were compared with AOD. The results showed that AOD varied5

directly with the integrated attenuated backscattering coefficient of the atmospheric column
(Fig. 5a), and the positive correlation coefficient was as high as 0.86 (Fig. 5b).

It is noteworthy that any comparison with other parameters (PM or AOD) cannot lead to
full agreement as long as we cannot quantify the water vapor effect (Wiegner and Gasteiger,
2015). Even so, the significant correlations between the attenuated backscattering coef-10

ficients and concentrations of PM2.5 and the AOD showed that the vertical attenuated
backscattering coefficient profile measured by the lidar ceilometer could accurately rep-
resent the vertical distribution of atmospheric aerosols in Beijing.

3.2.2 Vertical distribution of attenuated backscattering coefficients

According to the average vertical gradient of the attenuated backscattering coefficients dur-15

ing the period of observation, we found clear differences between the attenuated backscat-
tering coefficients, with the highest values in the near-surface and average values reaching
4.5Mm−1 sr−1 (Fig. 6). The vertical lapse rate of the attenuated backscattering coefficients
for layers from 0 to 200m was small, and the attenuated backscattering coefficients showed
limited variation; however, the vertical lapse rate above 200m increased and the attenuated20

backscattering coefficients significantly decreased. After reaching the maximum value at the
height of 400 to 800m, the vertical lapse rate began to decrease gradually. Above 1000m,
the attenuated backscattering coefficient was below 0.65Mm−1 sr−1, and at approximately
2000m, the coefficient was lower than 0.1Mm−1 sr−1. A vertical gradient with high values
below and low values above is consistent with the characteristics of vertical gradient in25

other cities and regions (Tesche et al., 2007; Zhang et al., 2009; Liu et al., 2012; Cao et al.,
2013; McAuliffe and Ruth, 2013), although it is different from those regions that are severely
affected by regional transport (Yang et al., 2007). Thus, the gradual declining trend in the at-
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tenuated backscattering coefficient from the near-surface to the upper boundary layer also
indicates that the main sources of atmospheric aerosols are from the near-surface layers in
Beijing.

3.2.3 Attenuated backscattering coefficients during different pollution degrees

Although the main sources of atmospheric aerosols occur in the near-surface layers, fine5

particles may originate from different locations for the different pollution degrees of each
pollution episode. To analyze the origin of air pollution, visibility was used as an index to in-
dicate the degree of air pollution and applied in the analysis of the vertical gradient profile of
the attenuated backscattering coefficients under different visibility conditions (Fig. 7). When
the visibility was above 40 km, small differences occurred in the vertical gradients of the10

attenuated backscattering coefficients from the ground to 1.5 km, and the corresponding
attenuated backscattering coefficients were all below 2Mm−1 sr−1. With decreasing visibil-
ity, the attenuated backscattering coefficients increased to varying degrees from the ground
to 1.0 km. The near-surface layer presented a 2.1-fold increase from 2.4 to 7.4Mm−1 sr−1

when the visibility decreased from 20 to 4 km, and the mean attenuated backscattering15

coefficient from 0 to 1500 m presented a 1.4-fold increase from 1 to 2.4Mm−1 sr−1. In addi-
tion, the highly polluted region shifted from 0 to 300 to 0 to 900m, indicating that transport
in the upper boundary layer played an important role from the clear period to the transi-
tion period with medium haze. When the visibility decreased from 4 to 1 km, the attenuated
backscatter coefficient near the surface varied from 7.4 to 14Mm−1 sr−1. However, the20

mean attenuated backscattering coefficient from 0 to 1500m significantly decreased from
2.4 to 1.9Mm−1 sr−1 (approximately 20 %). The attenuated backscattering coefficient from
300 to 900m significantly decreased and the variation at approximately 450m reached
the maximum value (decreasing approximately 4Mm−1 sr−1), resulting in a sudden shift of
the near-surface high concentration region from 0 to 900m to 0 to 300m. The significant25

decrease in the mean column concentration differed from the rapid increase of the near-
surface concentration. Such a phenomenon is primarily caused by the weakened transport
capability of the atmosphere during heavy haze, which results in decreased concentrations

12
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in the space from 300 to 900m, and the increased contributions of local pollutants lead
to a sudden increase of pollutant concentrations. Thus, during the transition period of air
pollution, regional transport plays an important role, and within 0 to 600m, it is character-
ized by strong regional transport. During the polluted period, local emissions are the most
important factor and determine the accumulation rate of pollutants and pollution episode5

intensity.

3.3 Impact of emission controls during APEC

To evaluate the effectiveness of the emission reduction strategies during APEC, the obser-
vation periods were divided into three parts: BAPEC (15 October to 2 November), DAPEC
(3 to 12 November) and AAPEC (13 to 30 November). A statistical analysis of the PM2.510

concentration during these three time periods (Table 1) showed that the PM2.5 concen-
trations in BAPEC, DAPEC and AAPEC were 126.8, 51.5 and 125.2 µgm−3, respectively.
Compared with BAPEC and AAPEC, the PM2.5 concentration in DAPEC was decreased by
approximately 60 %. Correspondingly, the visibility was increased from 17.5 km in BAPEC
and 19.1 km in AAPEC to 29.8 km in DAPEC, which is an increase of approximately 60 %.15

To evaluate the diffusion capability of the atmosphere during these three periods of time,
the corresponding wind speeds and mixing-layer heights were calculated. The wind speeds
in BAPEC, DAPEC, and AAPEC were 2.4, 3.1 and 2.6ms−1, respectively, and the mixing-
layer heights were 502.3, 452.8 and 423.9m, respectively. Because wind speeds and mix-
ing layer heights can represent atmospheric diffusion capacity along the horizontal and ver-20

tical directions, respectively, the ventilation coefficient (wind speed multiplied by the mixing
layer height) was used as an index to evaluate the total diffusion capacity of the atmo-
sphere. The ventilation coefficients in BAPEC, DAPEC, and AAPEC were 1208.3, 1400.0
and 1085.9m2 s−1, respectively. Thus, the diffusion capability of the atmosphere was best in
DAPEC, but the variation magnitude was far below the decreased magnitude of the PM2.5,25

which indicates that coordinated regional emission reductions might have caused the sig-
nificant decrease in PM2.5 concentration because of the similar meteorological conditions
during these three periods.

13
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The results in Sects. 3.1 and 3.2 show that PM2.5 originate from different sources dur-
ing different pollution degrees. To identify the vertical gradient variations during different
pollution degrees in BAPEC, DAPEC and AAPEC, the PM2.5 concentration was divided as
follows: 50, 50 to 100 and > 100µgm−3, which represented the clean period, transition pe-
riod and polluted period, respectively. The vertical gradient variations of the atmospheric at-5

tenuated backscattering coefficients under the three different pollution concentrations were
statistically analyzed to obtain the attenuated backscattering coefficient profile plots for the
three periods (Fig. 8).

During the clean period, the attenuated backscattering coefficients for BAPEC, DAPEC,
and AAPEC from 0 to 2000m were similar, and the coefficients for the near-surface were10

all below 1.5Mm−1 sr−1(Fig. 8a). The near-surface attenuated backscattering coefficients
in AAPEC were 0.3Mm−1 sr−1 higher than those during other periods because of wide-
spread heating after 15 November. The variation magnitude was approximately 20 %.

Because of the important effect of regional transport from 0 to 1000m, the attenuated
backscattering coefficients were all higher during the transition period compared with the15

clean period for BAPEC, DAPEC, and AAPEC, with 1.2- to 3-fold changes at different
heights (Fig. 8b). Interestingly, compared with BAPEC and AAPEC, greater decreases in
the coefficients occurred in DAPEC with increasing height, and at 1000m, the value was ap-
proximately 35 and 25 % lower compared with that of BAPEC and AAPEC, respectively. The
smallest decrease of the attenuated backscattering coefficients occurred near the surface20

at only 10 %. The decreased pollutant concentration in the upper boundary layer relative
to the near-surface showed that during the transition period, regional transport was an im-
portant contributor to air pollution in Beijing. Considering the dominant effect of regional
transport during this period and southerly flow transport in the lower atmosphere within 300
to 900m, the mean attenuated backscattering coefficients in DAPEC, BAPEC, and AAPEC25

were calculated to eliminate the effect of local emission. The results showed that the atten-
uated backscattering coefficient for DAPEC decreased by 36 and 25 % relative to BAPEC
and AAPEC, respectively, which indicate that the contribution of regional transport to atmo-
spheric aerosols in Beijing decreased by approximately 36 and 25 %, respectively.

14
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Compared with the transition period, the near-surface attenuated backscattering coeffi-
cients for DAPEC, AAPEC and BAPEC were all greatly enhanced during the heavy pollution
stage and began to decrease at 600 to 1000m. The near-surface attenuated backscattering
coefficients in BAPEC and AAPEC exceeded 8Mm−1 sr−1, which was approximately twice
the variation that occurred in the transition period. The near-surface attenuated backscatter-5

ing coefficient during the DAPEC polluted period was only 4Mm−1 sr−1, and the increase
compared to the transition period was 25 %. Compared with BAPEC and AAPEC, the atten-
uated backscattering coefficients in DAPEC in the space from 0 to 2000m were decreased
by 0 to 48 % and 0 to 54 %, respectively, and the near-surface attenuated backscattering
coefficients showed the greatest decrease at 48 and 54 %, respectively. With increased10

height, the decreasing magnitude of the attenuated backscattering coefficients decreased
gradually. The higher decreasing magnitude of the near-surface relative to the upper bound-
ary layer indicates that during the polluted period, local emission contributed significantly
to air pollution. Considering the dominant role of local emissions during the polluted period
and using the near-surface attenuated backscattering coefficient as a baseline, the signif-15

icant decreases in DAPEC relative to BAPEC and AAPEC indicate that the contribution of
local emissions decreased by 48 and 54 %, respectively.

Although a number of air pollution controls were implemented in DAPEC, the increased
heat supply was the only difference between BAPEC and AAPEC. To evaluate the effect
of heat supply on air pollution during the heavy haze periods in Beijing, the near-surface20

attenuated backscattering coefficients in BAPEC and AAPEC were compared, and the re-
sult showed that they were 1.1-fold higher in AAPEC than BAPEC, which indicates that the
contribution from the heat supply to atmospheric aerosols in Beijing is approximately 10 %
during the heavy haze periods.

Based on the above discussion, three conclusions can be drawn: (1) the regional trans-25

port in DAPEC decreased by 25 and 36 % compared with BAPEC and AAPEC, respectively,
(2) the contribution of local emissions in DAPEC decreased by 48 and 54 % compared with
BAPEC and AAPEC, respectively; and (3) the contribution of the local heat supply to at-
mospheric aerosols in Beijing was approximately 10 % during the heavy haze periods. Al-
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though the quantitative contributions of local and regional areas are given, these are still
rough estimates for different episodes. Detailed contributions of local and regional sources
over north China still need further investigation and additional observational and modeling
studies (although beyond the scope of the present analysis) are suggested for further work.

3.4 Characteristics of heavy pollution episodes5

To predict the occurrence and development of air pollution under different pollution degrees
in Beijing more precisely, the atmospheric attenuated backscattering coefficients, mixing
layer height, ratio of CO to SO2 during BAPEC, DAPEC, and AAPEC and backscattering
profile with wind vectors during typical periods (Figs. 9–14) were evaluated in a time-series
plot to investigate the characteristics and the causes of the attenuated backscattering coef-10

ficients during different pollution degrees at different heights. The heavy pollution episodes
in BAPEC and AAPEC (Figs. 9, 10, 13 and 14) showed that during the transition period (21–
23 October and 17–18 November), southerly flow resulted in increased mixing-layer height
and a gradual increase of the atmospheric attenuated backscattering coefficient from the
near-surface (100m) to the upper boundary layer (300 to 900m). From 300 to 800m, the ef-15

fect of the southerly flow was significant, and the pollutant concentration rapidly increased.
However, during the polluted period (23–25 October and 19–20 November), the southerly
flow disappeared. Thus, the mixing-layer height decreased because of the westerly and
northerly flows and the attenuated backscattering coefficient of the upper boundary layer
began to decrease. The reduction in mixing-layer height and relatively low wind speed pro-20

moted an increase in near-surface pollutants, which quantitatively accumulated during the
polluted period. When cold, dry air masses go through Beijing, the attenuated backscatter-
ing coefficient and CO/SO2 ratio in the lower and upper air both rapidly decreased with the
rapidly increased mixing layer height, and the PM2.5 in the atmosphere was significantly
decreased. Subsequently, the evolution of a pollutant episode was completed. Although the25

mixing layer height gradually decreased, the “slow accumulation and rapid disappearance”
characteristics of the PM2.5 concentration, which were obvious in BAPEC and AAPEC, were
not clear in the pollution episode in DAPEC (6–11 October). In addition, variations in the
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PM2.5 concentration and atmospheric attenuated backscattering coefficient appeared as
zigzag shapes, and accumulation and disappearance alternated (Fig. 12). During the tran-
sition stage in DAPEC, the variations of air pollutants were similar to those of BAPEC and
AAPEC. Because of the effect of the southerly flow, the simultaneous increase in the space
from 0 to 900m that occurred in BAPEC and AAPEC also occurred in DAPEC (Figs. 115

and 12). In addition, the ratio of CO to SO2 was low, indicating that regional transport
was dominant during this period. During the polluted period, the attenuated backscatter-
ing coefficient of the upper boundary layer in DAPEC significantly decreases because of
the disappearance of westerly jet flows, which is consistent with what occurred in BAPEC
and AAPEC. However, the near-surface attenuated backscattering coefficient did not show10

a sharp increase (up and down), and the CO/SO2 ratio did not increase as expected. In-
stead, the near-surface attenuated backscattering coefficient decreased. Thus, during the
DAPEC polluted period, the decreased local contribution magnitude of pollutants was in-
sufficient to maintain the increases of pollutant concentrations at the near surface, which
resulted in a zigzag distribution of atmospheric attenuated backscattering coefficients dur-15

ing the polluted period.
Based on the above discussion, southerly flow occurred during the transition period (21–

22 October, 7–8 November, 17–18 November) in the upper boundary layer (300 to 900m),
and it transported large quantities of pollutants from the south to Beijing. In turn, the at-
tenuated backscattering coefficients from the near-surface to the upper boundary layer in-20

creased, and the abundance of pollutants in the mixing layer increased. Pollutants trans-
ported during the daytime are mixed with pollutants released locally by convective mixing,
and pollutants transported at night remain above the mixing layer overnight and then move
to the near surface through upper boundary layer convection after the development of the
mixing layer. Because of the transportation effect, the variation rate of the entire profile was25

relatively small and resulted in increased column concentrations of pollutants throughout
the mixing layer, which led to the air pollution. During the polluted periods (24–26 Octo-
ber, 8–11 November, and 19–21 November), southerly flow was not significant, and it was
replaced by near-surface static winds and westerly and northerly winds in the high layers.
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Because of this effect, the near-surface attenuated backscattering coefficient continued to
increase, whereas that of the upper boundary layer continued to decrease, resulting in in-
creased variation rates of the entire profile with height. The contribution of local emissions
to pollution during the polluted period increased, and its contribution to the upper boundary
layer was reduced.5

4 Conclusions

The APEC summit was held in Beijing from 3 to 11 November 2014. During this period,
six provinces, cities and autonomous region near Beijing (Beijing, Tianjin, Hebei, Shanxi,
Inner Mongolia, and Shandong) worked together to control the air pollution by emission
reduction, so this period provided the best experimental platform for studying regional pol-10

lution and transport. The following conclusions have been drawn based on the attenuated
backscattering coefficient and mixing layer height in the Beijing area as measured by lidar
ceilometer for the period 15 October to 30 November 2014.

1. A comparison of PM2.5 concentrations and AOD values showed that the near-surface
and 0 to 4500 m attenuated backscattering coefficient measured by the lidar ceilome-15

ter were well correlated with the near-surface PM2.5 and AOD values, respectively,
indicating that the lidar ceilometer can be used to study air pollution and indicate re-
gional transport characteristics of atmospheric aerosols in the boundary layer.

2. Air pollutants under different pollution degrees in Beijing were from different sources.
The transition period was primarily affected by southerly flow, and pollutant transport20

in the space from 300 to 900m was significant, which resulted in the accumulation of
pollutants and air pollution in Beijing. However, during the polluted period, the contri-
bution of upper air transport is decreased and local contributions played an important
role.

3. PM2.5 concentrations in DAPEC in Beijing were affected by coordinated regional emis-25

sion reductions and decreased by approximately 60 %, and the visibility was enhanced
18
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by approximately 60 %. During the transition period, the concentration was mainly af-
fected by regional transport, and the contribution of regional transport to aerosols in
the Beijing area was decreased by 36 and 25 % compared to BAPEC and AAPEC,
respectively. During the polluted period, the concentration was dominated by local
contributions, and the local contribution in Beijing was significantly decreased by 485

and 54 % relative to BAPEC and AAPEC. A comparison of the near-surface attenu-
ated backscattering coefficients in BAPEC and AAPEC showed that the contribution
of coal burning for heating to air pollution during the heavy haze period was approxi-
mately 10 %.

Therefore, local emissions are the key factors determining the formation and development of10

air pollution in the Beijing area, and a reduction in local emissions can greatly decrease local
pollution. However, regional transport can promote air pollution, so such processes cannot
be ignored, particularly during the transition period, which results in enhanced intensity and
increased accumulation of local pollution. Thus, during the transition period, emissions in
areas surrounding Beijing should be reduced to effectively control regional transport and15

reduce the load of regional pollution. During the polluted period, local emissions should be
reduced to control pollution. Our results can provide a scientific basis for emission control
and management and air pollution forecasting and prevention, and they have the potential
for use in the design and implementation of coordinated regional reduction strategies.
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Table 1. Meteorological conditions and atmospheric particle concentrations during BAPEC, DAPEC
and AAPEC.

WS MLH Ventilation Visibility PM2.5

(ms−1) (m) coefficient (m2 s−1) (km) (µgm−3)

BAPEC 2.4 502.3 1208.3 17.5 126.8
DAPEC 3.1 452.8 1400.0 29.8 51.5
AAPEC 2.6 423.9 1085.9 19.1 125.2
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Figure 1. Observation sites and topography over Northern China.
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Figure 2. PM2.5 concentrations and mixing-layer heights vs. time from 15 October to 30 November
2014.
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Figure 3. PM2.5 concentrations and CO/SO2 ratios of the mixing layer at different heights.
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Figure 6. The vertical attenuated backscattering coefficient profile and the lapse rate.
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Figure 7. The vertical gradient of attenuated backscattering coefficients under different visibility
conditions.
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Figure 8. Attenuated backscattering profiles under different air pollution degrees during BAPEC,
DAPEC and APPEC (a) PM< 50µgm−3, (b) 50µgm−3 < PM< 100µgm−3, (c) PM> 100µgm−3.
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Figure 9. Attenuated backscattering coefficients at different heights and near-surface CO/SO2 ratios
from 21–26 October.
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Figure 10. Attenuated backscattering coefficients and wind vectors for the periods 21–26 October
at (a) 08:00 LT on 21 October, (b) 08:00 LT on 22 October, and (c) 08:00 LT on 25 October.
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Figure 11. Attenuated backscattering coefficients at different heights and near-surface CO/SO2

ratios from 6–11 November.
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Figure 12. Attenuated backscattering coefficients and wind vectors for 6–11 November at (a)
20:00 LT on 7 November, (b) 20:00 LT on 8 November, and (c) 20:00 LT on 10 November.
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Figure 13. Attenuated backscattering coefficients at different heights and near-surface CO/SO2

ratios from 17–21 November.
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Figure 14. Attenuated backscattering coefficients and wind vectors for 17–21 November at (a)
20:00 LT on 17 November, (b) 20:00 LT on 18 November, (c) 20:00 LT on 21 November.
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