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Abstract. Immersion freezing is an important ice nucleation pathway involved in the formation of

cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to deter-

mine the range in temperature (T ) and relative humidity (RH) at which ice nucleation occurs and to

quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature)

and cooling rate dependent immersion freezing experimentsare conducted. In these experiments it5

is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP

surface area (ISA), however the validity of this assumptionor the impact it may have on analysis and

interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and vari-

ability of contact angles have been successfully formulated to describe ice nucleation experimental

data in previous research, however, we consider the abilityof a stochastic freezing model founded10

on classical nucleation theory to reproduce previous results and to explain experimental uncertain-

ties and data scatter. A stochastic immersion freezing model based on first principles of statistics is

presented, which accounts for variable ISA per droplet and uses parameters including the total num-

ber of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient,Jhet(T ). This model is

applied to address if (i) a time and ISA dependent stochasticimmersion freezing process can explain15

laboratory immersion freezing data for different experimental methods and (ii) the assumption that

all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis

and interpretation of immersion freezing.

The simple stochastic model can reproduce the observed timeand surface area dependence in

immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed20

to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a con-
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tinuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS),

and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time

dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained

by this model considering varying ISA. An apparent cooling rate dependence ofJhet is explained by25

assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate depen-

dence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model

simulations allow for a quantitative experimental uncertainty analysis for parametersNtot, T , RH,

and the ISA variability. The implications of our results forexperimental analysis and interpretation

of the immersion freezing process are discussed.30

1 Introduction

Ice crystals in tropospheric clouds form at altitudes wheretemperatures fall below the ice melting

point, also known as supercooled temperatures, and for conditions in which water partial pressure ex-

ceeds the saturation vapor pressure with respect to ice (Pruppacher and Klett, 1997; Hegg and Baker,

2009). Cirrus or mixed-phase clouds consist entirely of icecrystals or of ice crystals coexisting35

with supercooled aqueous droplets, respectively. These clouds can significantly impact the global

radiative budget and the hydrological cycle (Baker, 1997; Rossow and Schiffer, 1999; Chen et al.,

2000; Liu et al., 2007; Lohmann and Hoose, 2009; Tao et al., 2012; Rosenfeld et al., 2014), however,

their formation is not well understood or constrained in cloud and climate models (Boucher et al.,

2013). Ice nucleation precedes the formation of ice crystals. Homogeneous ice nucleation occurs40

from supercooled aqueous aerosol particles or cloud droplets. Ice formation can also occur at tem-

peratures higher than the homogeneous freezing limit initiated by insoluble particles acting as ice

nucleating particles (INPs). Heterogeneous ice nucleation can occur when INPs are immersed in

supercooled aqueous droplets, termed immersion freezing,when INPs make physical contact with

supercooled droplets, termed contact freezing, or when icenucleates on INPs directly from the su-45

persaturated vapor phase, termed deposition ice nucleation. It is impossible to observe in situ ice

nucleation in the atmosphere and very difficult to infer the ice nucleation pathway (Haag et al., 2003;

Hegg and Baker, 2009). Despite the established importance of the impact of heterogeneous ice nu-

cleation on cirrus and mixed-phase cloud formation, it is not included in global radiative forcing

estimates (Myhre et al., 2013).50

Laboratory studies are necessary to investigate at which thermodynamic conditions, i.e. temper-

ature,T , and relative humidity, RH, and by which mode ice nucleationoccurs for predictive use in

cloud and climate models. This study presents a newly developed model simulation applied for anal-

yses of previously published laboratory immersion freezing data obtained by different experimental

methodologies. It allows prediction of atmospheric ice particle production under relevant scales of55

time and INP surface area (ISA).
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Classical nucleation theory (CNT) is currently the only available physical theory to describe ice

nucleation. Simply stated, CNT quantifies a maximum Gibbs free energy barrier corresponding to

the minimum number of water molecules in a cluster that has tobe overcome to initiate ice nucleation

(Pruppacher and Klett, 1997). Cluster formation and thus, ice nucleation, occurs stochastically and is60

dependent on time,t, and in the case of homogeneous ice nucleation, the supercooled liquid volume,

V . Koop et al. (2000) parameterized the theoretical homogeneous ice nucleation rate coefficient,

Jhom, as a function ofT and water activity,aw (aw = 1.0 for pure water andaw < 1.0 for aqueous

solution). This approach yieldsJhom to be independent of the nature of the solute and avoids the

weakness of the capillary approximation in CNT (Pruppacherand Klett, 1997).65

Immersion freezing can be described by CNT by reducing the free energy barrier due to the pres-

ence of a solid surface. Ice nucleation remains a stochasticprocess, but is dependent on the available

ice nucleating surface area,A, instead ofV (Pruppacher and Klett, 1997; Zobrist et al., 2007). The

heterogeneous ice nucleation rate coefficient,Jhet, is a physically and experimentally defined param-

eter which gives the rate of nucleation events for given surface area and unit time. Knopf and Alpert70

(2013) parameterizedJhet as a function ofT andaw following Koop et al. (2000) using direct mea-

surements ofJhet andJhet derived from previous studies (Archuleta et al., 2005; Alpert et al., 2011a,

b; Knopf and Forrester, 2011; Murray et al., 2011; Broadley et al., 2012; Iannone et al., 2011; Pinti et al.,

2012; Rigg et al., 2013). Known as theaw based immersion freezing model (ABIFM) (Knopf and Alpert,

2013),Jhet can be derived for different types of INPs such as mineral dusts, organic, surfactant and75

biogenic, applicable foraw ≤ 1.0, and independent of the nature of the solute. The ABIMF is a holis-

tic and computationally efficient description of the immersion freezing process for prediction of ice

nucleation for atmospherically relevant conditions and applicable for a variety of experimental meth-

ods, including the droplet-on-substrate approach (Zobrist et al., 2007; Knopf and Forrester, 2011;

Alpert et al., 2011a, b; Iannone et al., 2011; Murray et al., 2011; Broadley et al., 2012; Rigg et al.,80

2013), oil-encased droplets (Murray et al., 2011; Broadleyet al., 2012; Wright and Petters, 2013),

differential scanning calorimetry (Marcolli et al., 2007;Pinti et al., 2012), and continuous flow diffu-

sion (Rogers et al., 2001; Archuleta et al., 2005; Hartmann et al., 2011; Kulkarni et al., 2012; Wex et al.,

2014). These previous studies represent a subset of a much broader selection of experimental meth-

ods and designs.85

Different parameterizations ofJhet exist. Zobrist et al. (2007) investigated droplet freezinginiti-

ated by organic surfactant monolayers and parameterized experimentally derivedJhet values using

parameterizations of the Gibbs free energy and diffusion activation energy. Reduction in the Gibbs

free energy barrier is described by the parameter known as the contact angle,α, which is defined as

the angle of contact between an ice embryo and substrate surrounded by the liquid parent phase and90

derived by the balance between interfacial surface tensionbetween the three (Pruppacher and Klett,

1997). It was found that a single value ofα could not reproduce the experimental freezing data

for organic monolayers, but when allowingα to be a linear function ofT the data could be rep-
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resented (Zobrist et al., 2007), corroborated by others andfor different INPs (Knopf and Forrester,

2011; Alpert et al., 2011a, b; Welti et al., 2012; Rigg et al.,2013). It is important to note that a self95

assembled organic monolayer is a completely uniform surface down to the molecular level, i.e. the

notion of different ice active sites present does not apply (Gavish et al., 1990; Popovitz-Biro et al.,

1994; Majewski et al., 1995). For particles that have an uneven morphology, cracks, pits, or ridges

such as mineral dust, a singleα value has been shown also to not reproduce experimental data(e.g.

Marcolli et al., 2007; Lüönd et al., 2010; Niedermeier et al., 2011b; Welti et al., 2012; Rigg et al.,100

2013; Niedermeier et al., 2014; Wheeler et al., 2015). UnlikeZobrist et al. (2007), some of these

studies do not consider thatα can vary withT , but instead randomly distributeα values on particles

immersed in droplets while using all the other same parameterizations (i.e. the Gibbs free energy and

diffusion activation energy) to calculateJhet and not experimentally deriveJhet. This procedure is

similar to distributingJhet values over different droplets containing INPs as done by Broadley et al.105

(2012) and Herbert et al. (2014). These are successful approaches to describe the freezing data lead-

ing one to think that allowingα to be a linear function ofT or distributingα across particles are

in principle the same, both resulting in the necessity to change the contact angles to represent the

freezing data. However, application of these frameworks are conceptually and mathematically very

different and in fact result in very different interpretations of the data and underlying ice nucleation110

processes. The method of Zobrist et al. (2007) derives a single continuous function ofJhet(T ) for a

specific particle type, while an active site approach randomly distributes multipleJhet(T ) functions

across particles and their surfaces. In other words, one caneither use a singleJhet(T ) function (i.e.

not applying a singleα value) or use multipleJhet(T ) functions (different only by utilizing different

values ofα), constituting completely different pictures of ice nucleation. One major advantage of115

the ABIFM approach chosen here is that it uses a single function of Jhet(T ) and avoids any use or

calculation ofα and instead uses water activity as a parameter. It inherently allowsα to be both

T dependent (Zobrist et al., 2007) or distributed in a particle population (an active site approach).

A caveat to our approach is that it cannot make a statement about the active site distribution. An-

other advantage of our approach is that ABIFM can be used simultaneously for immersion freezing120

from pure water and aqueous solution droplets. When using theABIFM, a uniform ice nucleating

surface is not assumed, however, a single function ofJhet(T ) for a single particle type is assumed to

describe the experimental data without invoking the presence of different (rare) and non-detectable

ice nucleating sites or components present in some but not all droplets.

The major difficulty with a variety of experimental techniques is how accuracy and uncertainty of125

T , RH, t, andA are assessed and how these uncertainties affect extrapolation of laboratory derived

ice nucleation parameterizations to atmospherically relevant conditions. Previous investigations have

developed state of the art instrumentation and methods to constrain uncertainties (Connolly et al.,

2009; Lüönd et al., 2010; Niedermeier et al., 2010; DeMott etal., 2010; Niedermeier et al., 2011b;

Hoose and Möhler, 2012; Niemand et al., 2012; Rigg et al., 2013; Hiranuma et al., 2015; Vali and Snider,130
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2015). Additionally, progress in understanding ice nucleation behavior has been made by validat-

ing empirical parameterizations or models based on the concept of ice active sites, i.e. that surface

sites on a particle have variable ice nucleating efficiencies, can be used to reproduce experimental

data. However, there is no physical basis for these interpretations (Niedermeier et al., 2010) and

they may be inherently constrained to the investigated range of T , RH, t, A and concentration135

of INPs from which they are derived (Rigg et al., 2013; Knopf and Alpert, 2013). These include

the multi-component model (Murray et al., 2011), the time-dependent freezing rate parcel model

(Vali and Snider, 2015), parameterizations of INPs per liter of air (DeMott et al., 2010), theα-

PDF model (Marcolli et al., 2007; Lüönd et al., 2010), the active site model (Marcolli et al., 2007;

Lüönd et al., 2010), the singular description (Vali, 1971; Connolly et al., 2009; Alpert et al., 2011a,140

b; Vali, 2008; Murray et al., 2011; Hiranuma et al., 2015) andthe soccer ball model (Niedermeier et al.,

2011b). According to the singular hypothesis, the number ofactive sites,ns(T ), is dependent onT

only and neglects ice nucleation kinetics. We suggest that further analytical efforts regarding ice nu-

cleation kinetics can improve our understanding on the governing parameters of immersion freezing.

The immersed ISA per droplet is important for experimental derivation ofJhet and for deriving145

empirical quantities such asns(T ) or fitting functions and their parameters. In previous experimental

studies, droplets for ice nucleation experiments were dispensed from a bulk solution containing INPs

(Broadley et al., 2012; Rigg et al., 2013; Wright and Petters,2013; Herbert et al., 2014; Diehl et al.,

2014). In other investigations, solid particles were size selected by their electrical mobility and then

injected into, or continuously flown through, an ice nucleation chamber where water condensa-150

tion precedes ice nucleation (Archuleta et al., 2005; Niedermeier et al., 2010; Kulkarni et al., 2012;

Welti et al., 2012; Wex et al., 2014). In these studies and those that used polydisperse aerosol (e.g.

Niemand et al., 2012), surface area calculations assumed that particles with the same mobility diam-

eter are spherical with identical surface area. Despite this assumption, advancement in accounting

for particle size variability considering multiple charged particles in ice nucleation experiments has155

been made (Lüönd et al., 2010; Augustin-Bauditz. et al., 2014). However, extensive theoretical and

experimental literature exists on aerosol sizing instrumentation and morphology characterization,

which consider particle density, void fraction, shape and electrical charge effects implying their

non-sphericity (DeCarlo et al., 2004; Slowik et al., 2004; Zelenyuk et al., 2006; Schmid et al., 2007;

Park et al., 2008). In general, neglecting these effects mayinfluence surface area estimates. Surfaces160

of particles may differ depending on different generation techniques, and previous studies have made

progress in understanding why or why not these result in differences in ice nucleation efficiency

for particle types such as hematite (Hiranuma et al., 2014),Fluka kaolinite (Lüönd et al., 2010),

KGa-2 and KGa-1b type kaolinites (Pinti et al., 2012), NX illite (Pinti et al., 2012; Hiranuma et al.,

2015), or Arizona Test Dust (ATD) (Marcolli et al., 2007; Niedermeier et al., 2011a). In the present165

study, we consider laboratory generated particles of ATD (Wright and Petters, 2013), NX illite

(Broadley et al., 2012; Diehl et al., 2014), KGa-1b kaolinite and K-feldspar (Herbert et al., 2014),
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Fluka type kaolinite (Wex et al., 2014) and natural dust (Niemand et al., 2012) each with their own

respective generation method and argue that accurate quantification of ISA is crucial to discriminate

how surface properties affect ice nucleation efficiency. Frequently, distributions of immersed ISA170

per droplet are typically assumed to be monodispersed, or inother words, each droplet is assumed to

contain identical ISA. Furthermore, the number of dropletsapplied in an ice nucleation experiment

may also affect the significance of the freezing data and thusinterpretation of the experiment. It is

necessary to question if a potential variability in ISA and/or the assumption of monodisperse ISA

and a limited number of observed freezing events become important for interpretation of immersion175

freezing experiments with subsequent ramifications for theanalytical ice nucleation description.

We introduce a newly developed model simulation in which icenucleation is treated explicitly

as a stochastic process applicable for isothermal and cooling rate experiments. Previous experimen-

tal results using different experimental methods are simulated and compared for a wide range of

atmospherically relevant conditions. However, this analysis is applied to laboratory generated parti-180

cles only and may not be applicable to field or natural samplesbecause of the difficulty to separate

INPs from others. Sensitivity studies on frozen fraction data and experimentally derivedJhet are

performed as a function of ISA assumptions, the number of droplets employed in the experiment,

T , and RH. The validity of typical assumptions of ISA variability and uncertainty are tested. Then,

a detailed analysis of the ability of the model simulation toreproduce experimental results with strict185

uncertainty estimation is presented for 7 independent immersion freezing studies utilizing 8 different

instrumentation: (i) droplets on a cold-stage exposed to air, (ii) droplets on a cold-stage covered in

oil, (iii) oil-droplet emulsions, (iv) droplet acoustic levitation, (v) droplet wind tunnel levitation, (vi)

the Leipzig aerosol cloud interaction simulator (LACIS), (vii) a continuous-flow diffusion chamber

(CFDC) and (viii) the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber.190

A rigorous uncertainty analysis of the ice nucleation kinetics for typical ranges in experimental con-

ditions is presented and discussed for laboratory application.

2 Immersion freezing model based on classical nucleation theory

2.1 Simulation of isothermal freezing experiments

Stochastic immersion freezing simulations (IFSs) are performed to evaluate the effect of variable195

ISA on droplet immersion freezing experiments conducted inthe laboratory. As discussed above,

different droplets in a laboratory experiment will possessdifferent ISA. To account for this fact,

ISA in each simulated droplet is sampled from a distributionto mimic this variability. Surface area

can be any real positive value and can change by orders of magnitude. For this reason, a lognormal

distribution can be assumed with the most probable ISA beingAg or a mean distribution parameter200

µ= ln(Ag). The distribution width parameter isσ = ln(σg), whereσg represents the factor by which

ISA can vary. A different distribution can also be assumed with knowledge of experimental meth-
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ods used in particle generation, e.g. assuming a bipolar charge distribution for electrical mobility

diameter selected particles. Knowledge of ISA for each droplet can be directly used as an alterna-

tive without a need for random sampling. Droplet freezing for isothermal experiments can then be205

described by

δNufz =−JhetAtotδt , (1)

whereδNufz represents the change in the number of unfrozen droplets after a certain interval of time,

δt, andJhet is the heterogeneous ice nucleation rate coefficient. The total available ISA isAtot =
∑

Aj , whereAj is the ISA in thejth droplet. An assumption typically made is that all droplets210

contain the same ISA, orAtot =AgNufz , whereAg is the ISA for all droplets (e.g. Marcolli et al.,

2007; Lüönd et al., 2010; Niedermeier et al., 2010; Murray etal., 2011; Rigg et al., 2013). Using

this assumption and assuming a continuous differential in Eq. (1) leads to,

dNufz

Nufz
=−JhetAgdt. (2)

Integrating Eq. (2) further results in the commonly used expression for the fraction of frozen droplets,215

ffrz =
Nfrz

Ntot
= 1− e−JhetAgt. (3)

The form of the expression given in Eq. (3) is used in many studies although modified slightly

when considering multiple components or contact angle distributions (e.g. Niedermeier et al., 2010;

Murray et al., 2011; Broadley et al., 2012; Rigg et al., 2013), and when particle or droplet sizes are

discretized or binned (e.g. Marcolli et al., 2007; Lüönd et al., 2010). The major weakness of this220

exponential form to describeffrz lies entirely in the assumption it is based on, i.e. it is onlyvalid if

the ISA is exactly the same for all droplets considered. When taking into account individual droplet

ISA for all droplets, this formulation is not valid. Thus, application of this formula to interpret ice

nucleation studies, or use in mathematical frameworks, strictly speaking, is also invalid when ISA

on a droplet per droplet basis is different.225

The ISA in a single droplet is a measurable quantity with a corresponding measurement uncer-

tainty. It is unlikely that every droplet prepared in an immersion freezing experiment has identical

ISA. For the same particle type, there will exist a systematic ISA uncertainty with respect to a par-

ticular droplet preparation technique. This systematic uncertainty isσg and can be determined by

directly measuring ISA in a population of independently prepared droplets. Since the ISA variabil-230

ity may not be typically resolved in previous experiments, adroplet freezing simulation must be

employed to model ice nucleation for interpretation purposes. To accomplish this, freezing of each

single droplet is assumed to be stochastic, or in other words, there exists a probability of thejth

droplet to freeze,Pj,frz, within δt. The probability for a single droplet not to freeze,Pj,ufz, is realized

as an exponential decay law (Pruppacher and Klett, 1997; Koop et al., 1997) and therefore,235

Pj,frz = 1−Pj,ufz = 1− e−JhetAjδt. (4)
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A time and surface area dependent immersion freezing process which follows CNT is assumed and

as a result, all simulations employJhet having units ofcm−2 s−1. However,Jhet does not explicitly

depend on time and ISA, but onT andaw. A droplet can either remain in an unfrozen state or freeze

and therefore, is described exactly by a binomial distribution, B(k;n,Pj,frz), with parametersPj,frz240

given by Eq. (4) andn= 1 meaning that only one trial is given for an individual droplet to freeze in

δt. A randomly sampled number,k = 0 or 1, is obtained from the distribution

B(k;n= 1,Pj,frz) = P k
j,frz(1−Pj,frz)

1−k (5)

for each droplet with a normalization prefactor,n!/(k!(n− k)!) = 1. Whenk = 1, freezing occurs

for thejth droplet and ifk = 0, the droplet does not freeze and anotherk is sampled in the next time245

interval. For a collection of multiple droplets, the numberof freezing events that occur in a given

time interval isnfrz and the cumulative sum as a function of time isNfrz(t). For a single IFS starting

with Ntot liquid droplets, the fraction of unfrozen droplets isfufz(t) = 1−Nfrz(t)/Ntot.

A record ofnfrz and corresponding droplet ISA, i.e.Aj , is kept for a single IFS. This record can be

thought of as a simulated experimental immersion freezing data set, i.e. it gives a record of droplet250

freezing time while trackingAj . Due to the stochastic nature of nucleation, repetition of isothermal

IFSs will not result in identical values offufz overt. Likewise, repetition of a laboratory experiment

will not result in exactly the samefufz(t) curve. Therefore it is necessary to repeat the simulations in

order to reveal a range offufz(t) values of which the mean unfrozen fraction,fufz(t), can be derived

from all simulations. We choose an ensemble of105 IFSs to accurately determinefufz(t). This255

procedure is a basic form of a Monte Carlo method and yields upper and lower percentile bounds at5

and95% serving as a stochastic uncertainty of the immersion freezing process. We define stochastic

uncertainty as the scatter in the data due to the occurrence of random (i.e. stochastic) freezing events

upon repeat experiments as a result of a set number of observed freezing events.

An ensemble of IFSs, referred to as a model simulation, requires the selection of parameters, e.g.260

Ntot, Ag, σg, andJhet. For demonstration purposes, the parameter choice is arbitrary. However, when

reproducing a laboratory derived data set, a parameter selection process is applied. Parameters which

can be directly accessed from previous laboratory studies are first selected to mimic experimental

conditions. For example, if a study reports that 100 droplets were examined in an immersion freez-

ing experiment, thenNtot = 100. Some previous studies report only average ISA per droplet,Aavg,265

and neglect information for estimatingσg. If Aavg is reported as7.1× 10−6 cm2, then for simplicity

we setAg = 7.1× 10−6 cm2. For all studies in which a parameter or multiple parametersare not

available or readily calculated, the model derivedfufz or ffrz are fitted simultaneously to experimen-

tally derivedfufz or ffrz, and either critically assessed whether or not the parameter best reproduces

experimental conditions or the fitted parameter value is compared with independently derived val-270

ues from other published literature. We define ‘model derived’ to refer to calculated frozen fraction,

unfrozen fractions orJhet values which are not model input parameters. Details about the selection

of parameters or whether or not parameters are or are not fitted for each simulation will be discussed
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in results section 3. In many isothermal immersion freezinglaboratory studies, droplet freezing con-

tinues over time when all other conditions remain constant,i.e. at constantT (Wright and Petters,275

2013; Murray et al., 2011; Broadley et al., 2012; Herbert et al., 2014). Therefore, theJhet parameter

is selected to be constant for isothermal IFSs.

2.2 Simulation of cooling rate dependent immersion freezing experiments

2.2.1 Experimentally derivedJhet for model input

When a cooling rate is applied in model simulations, droplet freezing is simulated in discrete temper-280

ature intervals and thereforeJhet at every step is required for derivingPj,frz. In this study, only water

droplets are considered and therefore, it is assumed thataw = 1.0 andJhet becomes a function ofT

only. Ideally, experimentally derivedJhet(T ) should be used for prediction of immersion freezing.

However, these data sets are usually limited inT range and are discrete in nature. Knopf and Alpert

(2013) compiled experimental data which was parameterizedas a continuous function overT fol-285

lowing the ABIFM expressed as,

log10(Jhet) =m∆aw + c , (6)

wherem andc are slope and intercept parameters, respectively, and∆aw is the independent variable

following the formulation of Koop et al. (2000). The∆aw at which a droplet freezes is calculated

by subtracting theaw of the droplet (= 1.0 for pure water) from the water activity point that falls on290

the ice melting curve,aw, ice(T ), at the same temperature or

∆aw = aw(T )− aw, ice(T ) , (7)

where

aw, ice(T ) = pice(T )/p
◦

H2O(T ) , (8)

andpice(T ) andp◦H2O are the vapour pressure with respect to planar ice and water,respectively295

(Murphy and Koop, 2005).

Resulting calculations from Eqs. (6) to (8) are not computationally demanding and conveniently

deriveJhet(T ) for model input. Details about parameter selection, i.e.m andc, the treatment of ISA

variability or whether or not parameters are or are not fittedwill be discussed in the results section

3.300

2.2.2 Simulated droplet freezing

Cooling rate dependent IFSs are performed to evaluate the effect of stochastic freezing and variable

ISA in laboratory immersion freezing experiments. Again, the ISA for a single droplet is sampled,

however, Eqs. (1) and (4) are modified to

δNufz =−
Atot

r
Jhet(T )δT , (9)305
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and

Pj,frz = 1−Pj,ufz = 1− e−
Aj
r

Jhet(T )δT , (10)

respectively, whereδT is a temperature interval andr = δT/δt is the cooling rate.Jhet(T ) is calcu-

lated from Eq. (6) and used in Eq. (10). Once the probability for thejth droplet to freeze is calculated

for all droplets, freezing is determined by sampling fromB(k;n,Pj,frz) (Eq. 5). The number of freez-310

ing events that occur in a givenδT is nfrz, and the cumulative sum as a function ofT isNfrz(T ) and

used to calculate frozen fractions of droplets,ffrz(T ) =Nfrz(T )/Ntot. Similar to isothermal freezing,

a singler dependent IFS yields a droplet immersion freezing record analogous to an experimental

data set. In this case, the record of droplet freezing and correspondingAj is a function ofT . The

average frozen fraction for105 simulations,f frz(T ), is calculated along with percentiles at5 and315

95% used as a stochastic uncertainty.

It is important to note that application ofr dependent IFSs presented here do not require the AB-

IFM, as it is only used as a parameterization of previously published immersion freezing data sets to

calculateJhet(T ). Any other publishedJhet(T ) will work equally as well. The ABIFM parameteri-

zation is INP type dependent and suitable for saturated and subsaturated conditions, i.e.aw ≤ 1, or320

RH≤ 100%, if the droplet is in equilibrium with the water vapor phase.Therefore, the ABIFM is

a useful and convenient tool for model inputJhet(T ).

3 Results and discussion

3.1 Isothermal model simulations of individual droplet freezing experiments

Figure 1a shows5 and95% bounds offufz from 4 model simulations for differentNtot applying either325

uniformly equal (σg = 1) or lognormally distributed (σg = 10) ISA per droplet as given in Table 1.

Two of these test cases, Iso1 and Iso2, have uniform ISA both resulting infufz (on a logarithmic scale)

linear witht. However, the spread of the5 and95% bounds is much wider for Iso2 havingNtot = 30

than for Iso1 havingNtot = 1000. It is clear that a larger spread in simulatedfufz is entirely due to

applied smallerNtot. This implies that a laboratory experiment using a smallNtot, is statistically330

less significant compared to an experiment with greaterNtot. A single experimentally derivedfufz

curve under the same conditions as Iso2 will fall anywhere between the upper and lower bounds, and

thus may even appear to deviate from a log-linear relationship over time. Therefore, interpretation

about the nature of the heterogeneous ice nucleation process from the slope offufz over time for an

experiment using smallNtot should be conducted with care.335

Model simulations Iso3 and Iso4 are shown in Fig. 1a whereNtot = 1000 and30, respectively,

and the ISA per droplet is sampled from lognormal distribution with σg = 10. In Iso3,fufz signifi-

cantly deviates from a log-linear relationship witht. In Iso4, the same curvature exists, however the

percentile bounds are much wider due to applied smallerNtot. It is important to note thatJhet is the
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same and constant for all simulations shown in Fig. 1a. The nucleation rate of eachjth droplet can340

be calculated as,ωhet,j = JhetAj with units ofs−1. The droplets having a larger or smaller ISA will

result in larger or smallerωhet,j , respectively. The fact thatfufz is linear forσg = 1, the curvature

effect infufz seen forσg = 10 must be entirely due to ISA variability. This is because droplets with

greater values ofωhet,j will tend to nucleate more rapidly than those having smallerωhet,j values. In

other words, the curvature offufz(t) is entirely due to those droplets having larger and smaller ISA345

that freeze within shorter and longer time scales, respectively. In addition, the spread in the 5 and 95

percentiles is very similar for Iso1 and Iso3, and for Iso2 and Iso4. This is seen most clearly at the

intersection of the blue and green shaded regions (t≃ 1.3min). In isothermal freezing experiments,

variability in ISA will not significantly affect stochasticuncertainty estimates, but will causefufz(t)

to deviate from a log-linear relationship.350

In some previous experimental isothermal immersion freezing studies, the number of liquid droplets

and an estimate of the average ISA per droplet are provided orcan be derived. However, the validity

of the assumption that all droplets possess the same ISA is rarely investigated or quantified. Simi-

larly, Jhet is not often reported. However, laboratory data do provide an opportunity to test our model

for robustness while using parameters similar to those reported in the experimental studies. In fact,355

our model can also provide estimates for parameters typically unreported or unavailable, such asJhet

andσg.

Experimental data by Wright and Petters (2013) for isothermal immersion freezing by ATD is very

well reproduced by model simulation IsoWR as demonstrated inFig. 1b. Parameters for IsoWR are

given in Table 1 and chosen to mimic experimental conditionsin which droplets contained 1wt%360

ATD held at251K. Bounds at5 and95% of simulatedfufz are shown in Fig. 1b and envelop the lab-

oratory data. A repeat experiment by Wright and Petters (2013) should result in afufz curve falling

within the percentile bounds95% of the time when considering only stochastic uncertainty.

To further evaluate the validity of the simulations, the parameters used are compared with exper-

imental conditions given in Wright and Petters (2013). IsoWR usesNtot = 1000 which agrees with365

the reported range of 300–1500. ParametersAg, σg andJhet used in IsoWR were fitted simultane-

ously so that the averagefufz from 105 simulations (orfufz) best reproduced observedfufz. The first

parameter in question isσg = 9.5, which can be interpreted as a systematic standard error in ISA due

to the experimental methods of generating or dispensing droplets containing ATD acting as INPs. We

note this is different from an absolute ISA measurement error. Wright and Petters (2013) emulsified370

a mixture of oil and a bulk solution of water and ATD particlesto form droplets with diameters of

50–250 µm. The variability in ISA should scale directly with the variability in droplet volumes (i.e.

a factor of 125 or just over 2 orders of magnitude). Additional uncertainty will certainly arise from

the variability in ATD particle numbers and the variabilityin ATD particle size. The surface area

distribution and a random sampling is given in Fig. S2 for theIsoWR model simulation. A factor of375

125 in range in ISA is a lower estimate of uncertainty, but already accounts for about 75% of the
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total sampled droplets. While not directly defined by Wright and Petters (2013), we are confident

that the overall range in ISA should be well over 2 orders of magnitude and therefore,σg = 9.5 is

a reasonable value for the lognormal distribution width parameter employed in the simulations in

Fig. 1b to reproduce the experimental data. The third parameter in question isAg = 6.4×10−3 cm2.380

Unfortunately, an average ISA was not reported by Wright and Petters (2013), but can be estimated

using literature values of specific surface area (SSA) applying the Brunauer, Emmett and Teller gas

adsorption method (Brunauer et al., 1938). It is important to note that surface area measurements

are not unambiguous due to the fact that heterogeneous ice nucleation may involve layers of wa-

ter molecules interacting with surface molecules (Cox et al., 2013). The BET technique is one of385

many in which particle surface area is measured, and can be used to represent molecular avail-

able surface area. Bedjanian et al. (2013) report SSA for ATDused in Wright and Petters (2013)

as85± 10m2 g−1. The ISA per drop can then be estimated from the drop volume,Vdrop, and the

density of water,ρw, using the equationVdrop · ρw ·wt% ·SSA. Considering only the variability in

Vdrop, average ISA per drop should range between5.5× 10−4 and7.0× 10−2 cm2. TheAg param-390

eter in model simulation IsoWR falls within this range. Finally, Jhet for ATD in water droplets was

investigated by Pinti et al. (2012) who reanalyzed ATD immersion freezing data by Marcolli et al.

(2007) but did not reportJhet values. However, estimates can be made following Knopf and Alpert

(2013) accounting forffrz = 0.01 and a nucleation time assumed to be1s, which yieldsJhet ranging

from 5× 106 to 1× 102 cm−2 s−1 betweenT = 247.4 and252.8K, in reasonable agreement with395

Jhet= 2.6× 103 cm−2 s−1 used in IsoWR at251K.

The new model simulation presented here based entirely on CNT can describe freezing experi-

ments by Wright and Petters (2013) accounting for long nucleation time scales and a large number

of droplets considering variability in ISA. In addition, all crucial parameters applied are experimen-

tally supported, in particularJhet which is in agreement with independent studies (Marcolli etal.,400

2007; Pinti et al., 2012). Therefore, the isothermal immersion freezing data set of Wright and Petters

(2013) may be explained by a time and ISA dependent stochastic freezing process, in which each

droplet contains variable ISA. More experimental investigation and model analysis should be con-

ducted to verify their agreement at different temperatures, time scales and surface areas. Droplet to

droplet variability in ice nucleation efficiency is typically parameterized with a variable efficiency405

of sites to nucleate ice, as done successfully in Wright and Petters (2013) or different contact angles

(e.g. Niedermeier et al., 2011b; Broadley et al., 2012). Droplet to droplet variability parameterized

in these ways and employing identical ISA can result in a deviation offufz from a log-linear rela-

tionship, similar to what is seen if Fig. 1. However, using a known ISA variability (Broadley et al.,

2012; Wright and Petters, 2013), we reveal that the observed deviation from a log-linear relationship410

can be accounted for entirely by the ISA distribution. This may imply that the droplet to droplet

variability in ice nucleation efficiency is entirely due to variable ISA.
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Figure 2 shows results of isothermal freezing experiments by Broadley et al. (2012) for illite com-

pared to model simulation IsoBr and experimental results byHerbert et al. (2014) for the INP types

kaolinite and feldspar compared to model simulations IsoHE1 and IsoHE2, respectively (see Ta-415

ble 1). The experimental data andfufz for all model simulations are in agreement and fall within the

percentile bounds. Notice that the scatter in the isothermal immersion freezing data points is much

larger than for Wright and Petters (2013) shown in Fig. 1b. As previously discussed, this is entirely

due to a smaller number of droplets used in the laboratory experiments by Broadley et al. (2012)

(Ntot = 63) and Herbert et al. (2014) (Ntot = 40) and thus, may be entirely attributed to the stochas-420

tic nature of immersion freezing as expected by CNT. The model simulations capture this effect by

producing a wide range infufz. Only one experiment was performed for each of the laboratory data

sets presented in Fig. 2 and if these experiments were repeated,fufz values would very likely not be

the same and may even exhibit a more linear or curved behaviorwith time. Repetition of experiments

should provide better estimates offufz andσg, but for any single experiment,fufz may still fall within425

the given percentile bounds. In other words, additional experiments would better define the mean of

fufz and the uncertainty in the mean offufz, but will not decrease the uncertainty bounds. Only by

using more droplets, e.g. Wright and Petters (2013), would a single experiment be more statistically

significant.

The selection of parameters and ISA distribution used in IsoBR are discussed.Ntot = 63 applied430

in IsoBR is used here (Broadley et al., 2012). In the analysisof the experiment “run 20” simulated

by IsoBR, the authors sub-selected droplets10− 20µm in diameter from a droplet population. The

droplet volume and the ISA variability should scale to the 3rd power of the droplet diameter, i.e.

by a factor of about(20/10)3 = 8. Therefore, the simulated ISA is assumed to follow a uniform

probability density function between9.4×10−8 and7.5×10−7 cm2. This ISA range spans a factor435

of ∼ 8 with a geometric average of2.65× 10−7 cm2 as reported in Broadley et al. (2012). We note

that a factor of 8 is a lower limit of variability as any additional uncertainty in illite particle size

distribution or the numbers of illite particles per dropletis not considered. The parameterJhet=

2.82×103 cm−2 s−1 was not fitted, but instead selected in such a way that this single value resulted in

fufz data falling entirely within the stochastic uncertainty limits. This value is in agreement with the440

previous ABIFM parameterization,Jhet= 1.25× 103 cm−2 s−1, at the same temperature and water

activity (Knopf and Alpert, 2013). We note that the decay of simulatedfufz over time appears linear

in Fig. 2a although the experimental data appears curved. This curvature led Broadley et al. (2012)

to assume an active site model to describe the data. However,we find that when using too small

numbers of droplets, experiments may be too uncertain to make any solid claims about the nature445

of the ice nucleation process. The stochastic uncertainty bounds in Fig. 2a are sufficiently large

that the data is still in agreement with the model simulations presented here. The IsoBR simulation

demonstrates that freezing due to illite can also be described by a stochastic freezing approach with
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one value ofJhet. Thus, laboratory derived isothermal immersion freezing of illite may be explained

by CNT accounting for the stochastic nature of immersion freezing and variability in ISA.450

In the model simulation IsoHE1, parametersAg, σg and Jhet are are fitted to the experimen-

tal data. The parameterAg = 1.2cm2, is in good agreement with experimentally derivedAg =

2.4cm2 reported in Herbert et al. (2014), for kaolinite using SSA= 11.8m2 g−1 (Murray et al.,

2011), 1.0wt% concentration andVdrop= 1µL. Herbert et al. (2014) did not report sufficient in-

formation to estimate an overall variability in ISA, therefore, comparison ofσg to experimental455

conditions is difficult. As previously discussed, a repeat experiment may result infufz exhibiting

more linear or non-linear behavior witht within the calculated percentile bounds, i.e. within the

stochastic uncertainty. Figure 1a shows that a more linear or non-linear relationship offufz with t

implies a smaller or larger value ofσg. We note that due to the lack of quantitative information

about the variability in ISA, the assumed lognormal surfacearea distribution may be over or un-460

derestimated. Performing more experiments or employing a larger number of droplets will decrease

the stochastic uncertainty and better constrain the curvature of fufz over time. The ABIFM yields

Jhet= 1.75× 10−2 cm−2 s−1 atT = 255.15K andaw = 1.0 which is within an order of magnitude

of Jhet used in IsoHE1. The agreement between simulated and experimental parameters implies

that CNT may be able to explain observed immersion freezing of kaolinite when variable ISA and465

stochastic uncertainty is considered. Herbert et al. (2014) and Murray et al. (2011) came to the con-

clusion that this particular type of kaolinite, KGa-1b, is a“single-component system”, which means

that a singleJhet function ofT can reproduce the experimental data. Our model simulationslead to

the same conclusion, and the derivedJhet value is in agreement with the independently formulated

ABIFM parameterization by Knopf and Alpert (2013).470

Immersion freezing data of Herbert et al. (2014) for feldspar is reproduced by the model simula-

tion IsoHE2. The parameters for IsoHE2 are given in Table 1. Those that are fitted areAg, σg and

Jhet. Average ISA for the data in Fig. 2 is1.85× 10−2 cm2, similar toAg = 2.0× 10−2 cm2 used in

IsoHE2. Droplets used in Herbert et al. (2014) were dispensed with a digital micropipet with high

accuracy, thus it can be expected that the contribution of droplet volume variability to theσg pa-475

rameter is low. However, it is impossible to make any estimate ofσg for comparison with the fitted

σg due to the lack of quantitative experimental information about ISA variability. As in simulation

IsoHE1, a more linear or non-linearfufz curve may imply that our assumed lognormal distribution

width is over or underestimated, respectively. However, itwill be demonstrated that the sameσg can

be used to reproduce the cooling rate dependent experimentsof feldspar, which gives confidence480

that thisσg value may be appropriate. To better constrainσg, more stochastic certainty is required

by application of more droplets or conducting multiple experiments. Values ofJhet for feldspar in-

dependent from Herbert et al. (2014) in the same temperaturerange to our knowledge do not exist

making comparison difficult.
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Model simulations IsoDI1-3 of isothermal immersion freezing experiments by Diehl et al. (2014)485

for illite in wind tunnel levitation experiments are shown in Fig. 3. Simulation parameters are given

in Table 1. Only one droplet was observed in each experiment,and approximately 45 experiments

were conducted for each of the 3 data sets shown in Fig. 3. Thisis equivalent to 1 experiment

with Ntot = 45 droplets, since droplet freezing is independent of the freezing of other droplets. Ex-

cellent agreement is observed between simulated and experimentalfufz. The parameterAg for the490

three simulations match the average surface area per drop reported in Diehl et al. (2014). Param-

etersσg, Jhet(−18◦C) andJhet(−21◦C) are simultaneously fitted to experimental data. It can be

expected thatσg is the same for all three simulations, due to the fact that Diehl et al. (2014) likely

used identical bulk water-illite stock solutions. Therefore a single fitted value ofσg = 3.2 is used

for all simulations. IsoDI2 and IsoDI3 simulate data taken at T =−21◦C and use the fitted param-495

eterJhet(−21◦C) = 1.0× 100 cm−2 s−1. IsoDI1 simulated data atT =−18◦C uses the parameter

Jhet(−18◦C) = 1.8×10−2 cm−2 s−1. At T =−18 and−21◦C, the ABIFM yieldsJhet= 1.8×10−2

and2.6×10−1 cm−2 s−1, respectively, and is in excellent agreement with derived values in IsoDI1-

3. An adequate constraint ofσg could not be established due to a lack of information about the ISA

variability. However, it is evident that the fittedσg value may be justified due to the fact that the same500

value reproduced all 3 isothermal data sets. We find that a time dependent and stochastic immersion

freezing process may reconcile observations when variableISA is considered.

Depending on ISA variability, trajectories of model derived fufz over time are significantly altered

and thus assuming identical ISA may not be valid. It is well known that immersion freezing depends

on surface area, i.e. an increase in ISA translates to an increase in nucleation rate. However, we505

note that variability in botht and ISA equally affect calculations of droplet freezing probabilities

(Eq. 4) used in model simulations, and therefore neglectingtime dependence will cause erroneous

interpretation of immersion freezing data to the same degree as if the surface area dependence is ne-

glected. This simple stochastic immersion freezing model accounting for ISA variability can explain

the isothermal ice nucleation data of various experiments without invoking empirical parameteri-510

zations, assumptions of particle surface composition, and/or other modifications in parameters and

interpretations.

3.2 Cooling rate model simulations of individual droplet freezing experiments

Cooling rate IFSs were performed to investigate the effectsof variable ISA andNtot on experimen-

tally derivedJhet andffrz as a function ofT . For a single cooling rate IFS, variable ISA per droplet515

is applied and used to calculatePj,frz from from Eq. (10) in discrete temperature steps,δT , and then

Eq. (5) simulates freezing. The IFS stops after someT or when all droplets freeze, and the simu-

lated freezing record is kept detailing which droplets froze or remained liquid at eachT and their

corresponding ISA. This is analogous to running an immersion freezing experiment in a laboratory

setting and recording the observed number of frozen droplets or ice crystals as a function ofT .520
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The simulated freezing record is treated as a freezing data set from which the assumption of iden-

tical ISA can be tested. This is accomplished by re-calculating Jhet from the simulated data. These

(re-)calculations usenfrz, the length of the time interval,δt= δT/r, and either of two different ap-

proaches in determiningAtot. For the first approach,Ag is assumed to be identical for all droplets,

i.e. without the knowledge that immersion freezing was simulated for droplets with variable ISA525

in the first place. This is equal to assuming a monodisperse INP population in laboratory immer-

sion freezing experiments resulting in an “apparent” heterogeneous ice nucleation rate coefficient,

Japparent
het (T ), calculated by

Japparent
het (T ) =

nfrz(T )

nufz(T )Ag
δT
r

, (11)

wherenufz(T ) is the number of unfrozen droplets atT andAtot = nufzAg. The second approach ac-530

counts for the variable ISA present in droplets resulting inthe “actual” heterogeneous ice nucleation

rate coefficient,Jactual
het (T ), calculated by

Jactual
het (T ) =

nfrz(T )
∑

Aj
δT
r

, (12)

andAtot =
∑

Aj is the total surface area contribution from droplets that remain liquid. Comparing

results from Eqs. (11) and (12) allows evaluation of the assumption that all droplets have the same535

ISA, when they actually do not. In this way a null hypothesis is considered, that is ifJapparent
het (T ) and

Jactual
het (T ) are the same, then the assumption of identical ISA is valid.

Poisson statistics are used to derive upper and lower fiducial limits of Japparent
het (T ) andJactual

het (T )

atx= 0.999 confidence fornfrz following Koop et al. (1997). The upper fiducial limit of the hetero-

geneous ice nucleation rate coefficient,Jup
het, accounts for additional freezing events occurring with540

a probability ofx, than observednfrz. Likewise, a lower fiducial limit of the heterogeneous ice nu-

cleation rate coefficient,J low
het , accounts for less than the observednfrz occurring with a probability

of x. We refer to the upper and lower limits ofnfrz asnup
frz andnlow

frz , respectively (Koop et al., 1997).

The fiducial limits ofJapparent
het andJactual

het for a single simulation can be calculated using Eqs. (11)

and (12), but replacingnfrz with nup
frz ornlow

frz , respectively. Each simulation results in differentJapparent
het545

andJactual
het values and different fiducial limits at the sameT due to random sampling, therefore, av-

erages are reported.

Figure 4 shows the results of two model simulations, Cr1 and Cr2, havingr = 0.5 and5.0Kmin−1,

respectively. For all105 IFSs,J
apparent
het andJ

actual
het are shown in Fig. 4a and b as dashed lines, respec-

tively, along with correspondingffrz curves displayed in Fig. 4c and d. The parameterization of550

Jhet(T ) for illite dust (Knopf and Alpert, 2013) withm= 54.5 andc=−10.7 used in Eq. (10) for

each simulation is shown as the red line in Fig. 4a and b and referred to as the model inputJhet.

Simulation parameters for Cr1 and Cr2 are given in Table 2.

According to CNT, two immersion freezing cooling rate experiments conducted at differentr

should result in identicalJhet values due to the fact thatJhet is independent ofr. CNT is violated if555
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significantly differentJhet values are derived at differentr. Figure 4a shows that values ofJ
apparent
het

are significantly different between model simulations Cr1 and Cr2. AlsoJ
apparent
het is overestimated

at higher freezing temperatures and underestimated at lower freezing temperatures compared with

model inputJhet(T ). These significant differences do not support the null hypothesis and imply

that when experimentally derivingJhet, the assumption that ISA per droplet is identical is invalid.560

Figure 4b shows that accounting for variable ISA,J
actual
het for Cr1 and Cr2 is consistent. It is important

to note thatJ
apparent
het shows a cooling rate dependence, i.e. when the cooling rate varies by an order

of magnitude,J
apparent
het evaluated at one temperature is also about an order of magnitude different.

Values ofJ
actual
het on the other hand, are not dependent on cooling rate. We reiterate thatJ

apparent
het

andJ
actual
het are calculated from the same simulated freezing record having lognormally distributed565

ISA. The only difference between “actual” and “apparent”Jhet is the surface area assumptions used

in their respective calculation (Eqs. 10 and 11), i.e.Japparent
het intentionally assumes identical ISA as

done commonly in experimental analysis andJactual
het accounts for the variable ISA. Thus, the apparent

cooling rate dependence in simulations Cr1 and Cr2 is a direct result of assuming identical ISA. This

is the case when a broad ISA distribution is simulated, i.e.σg = 10. When the ISA distribution is570

very narrow, uniform orσg is about 1.0, thenJactual
het will equal Japparent

het . This is demonstrated in

Fig. S7 by model simulations Cr3 and Cr4 usingσg = 1. If an experimental study succeeds to create

a narrow enough distribution, then assuming identical ISA may be applicable.

Towards warmer(T > 248K) and colder temperatures(T < 238K), the difference in upper and

lower fiducial limits derived in Cr1 and Cr2 are much greater than for the mid temperature range575

(238< T < 248K). In fact the smallest difference occurs atf frz ≃ 0.5. This is because calculations

are statistically more significant at the median freezing wherenfrz is largest. Fewer droplets freeze

at the beginning and end of a cooling process resulting in a wide fiducial limit range reaching up

to 4 orders of magnitude (Fig. 4a and b) in spite of a high number of dropets used (Ntot = 1000).

The corresponding percentile bounds offfrz shown in Fig. 4c and d do not reflect a considerable580

uncertainty compared to the upper and lower fiducial limits (Fig. 4a and b). It is important to note

thatffrz are identical in Fig. 4c and d, because surface area is not used to deriveffrz. This analysis

suggest that values and uncertainties offfrz are not suited to deriveJhet and any corresponding error.

Previous immersion freezing experiments by Herbert et al. (2014) are modeled in CrHE1 and

CrHE2 wherer = 0.2 and2.0Kmin−1, respectively, for the case of feldspar acting as INPs. Herbert et al.585

(2014) used the same weight fraction of feldspar per dropletin isothermal and cooling rate depen-

dent experiments. Therefore, it is reasonable to suspect that the parameters should be the same or

very close. The parametersσg andAg are not fitted in model simulations CrHE1 and CrHE2 and

instead are taken from the values fitted in IsoHE2. The parametersm andc used to calculateJhet as

a function ofT following the ABIFM are fitted so that experimentally derived ffrz is best reproduced590

by model derivedf frz. Since Herbert et al. (2014) assumed identical ISA, experimentally derived

Jhet can be directly compared withJapparent
het from cooling rate model simulations.
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Figure 5 shows experimentally derivedffrz andJapparent
het from Herbert et al. (2014) compared to

results of model simulations CrHE1 and CrHE2. Parametersm= 122.83 andc=−12.98 are used in

Eq. (6) to reproduce frozen fraction data (Fig. 5a) within5 and95% bounds. The laboratory data falls595

within percentiles and fiducial limits offfrz andJapparent
het , respectively. Previous studies have been

successful in interpreting immersion freezing studies to follow an active site approach by considering

both cooling rate and isothermal experiments (Vali, 2014; Herbert et al., 2014). Alternatively, we

have found that our isothermal and cooling rate simulationsbased on a single function ofJhet(T ) for

feldspar are in agreement with experimental results when the sameAg andσg parameters are used.600

This also gives confidence for the appropriateness of the model parameter values. Although, we

reiterate that the ISA distribution may be over or underestimated as the experimental data has a large

stochastic uncertainty and thus, fitting our model to the data is not well constrained. Figure 5b shows

thatJapparent
het values for differentr are not the same, however, they are in agreement with experimental

data. Note that simulated and experimentally derivedJapparent
het for r = 0.2 and2.0Kmin−1 (5b) are605

different by about 1 order of magnitude at the sameT .

Figure 5c showsJ
actual
het with upper and lower fiducial limits derived from CrHE1 and CrHE2. For

comparison,Jhet derived in model simulation IsoHE2 for feldspar is also shown and in agreement

with Jactual
het within our stochastic uncertainty estimates. When accounting for variable ISA,J

actual
het

are in excellent agreement with the ABIFM parameterizationderived in this study for feldspar INPs.610

Furthermore,J
actual
het calculated for differentr are identical as predicted by CNT, a similar finding

as in the model simulations Cr1 and Cr2 (Fig. 4b). Therefore,Jhet(T ) used here can be considered

a newJhet(∆aw) parameterization for feldspar valid for0.078<∆aw < 0.120.

The differences betweenJapparent
het andJactual

het shown in Figs. 5b and c can be attributed to two

reasons. i) A potential misrepresentation of the slope ofJhet versusT and ii) a potential misrep-615

resentation of a dependence ofJhet on r. Regarding the slope ofJhet vs. T , note that droplets

with ISA less thanAg likely freeze at colderT compared to droplets with ISA greater thanAg,

that likely freeze at warmerT . However, assuming identical ISA equal toAg for all droplets ei-

ther overestimates or underestimates the actual ISA present in droplets that freeze at colder and

warmer temperatures, respectively. Due to the inverse relationship betweenAg andJhet, calcula-620

tions ofJapparent
het from Eq. (11) may then be underestimated and overestimated at colder and warmer

temperatures, respectively. When comparingJapparent
het againstJactual

het in model simulations (calculated

from the same freezing record generated using lognormally distributed ISA),Japparent
het is underesti-

mated and overestimated at colder and warmer temperatures,respectively. Therefore, this analysis

clearly shows that assuming identical ISA in each droplet may potentially lead to misrepresentation625

of the slopeJhet vs. T . Regarding a dependence ofJhet on r, we find thatJapparent
het for simulations

CrHE1 (r = 0.2Kmin−1) and CrHE2 (r = 2.0Kmin−1) are different by about 1 order of mag-

nitude at the sameT . In Herbert et al. (2014), experimentally derivedJhet applying r = 0.2 and

2.0Kmin−1 differ by about 1 order of magnitude at the sameT . In separate model simulations not
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shown here, applyingr different by 2 orders of magnitude yieldsJapparent
het values that differ by 2630

orders of magnitude. We note that this is the case for a wide distribution width ofσg = 8.5 and that

the stochastic uncertainty inJhet is large, not considering additional uncertainties, e.g. in temperature

or determining the surface area measurement and variability. Nevertheless, experimentally derived

Jhet data from Herbert et al. (2014) is in good agreement with model simulatedJapparent
het indicating a

potentially erroneous cooling rate dependence which may becaused by the assumption of identical635

ISA.

Model simulations CrDI1 and CrDI2 of immersion freezing experiments by Diehl et al. (2014) for

illite acting as INPs probed in acoustic levitation experiments are shown in Fig. 6. A non-linearr was

used in Diehl et al. (2014) and was the same for both experiments and model simulations, but the ISA

per droplet was varied. Diehl et al. (2014) reported an ISA per drop of7.1×10−1 and7.1×10−3 cm2640

in the 2 different sets of experiments. These surface areas are not the same as for isothermal exper-

iments, and so we suspect that different stock solutions were prepared for cooling rate experiments

by Diehl et al. (2014). Therefore, parameters from IsoDI1 to3 are not used in cooling rate model

simulations and instead newly fitted values of simulation parametersσg andAg for CrDI1 and CrDI2

were derived and are given in Table 2. A continuous function of Jhet was not fitted, but calculated us-645

ing the ABIFM for illite (Knopf and Alpert, 2013). When using theAg values reported in Diehl et al.

(2014) in conjunction with the other parameters, model simulations cannot reproduce experimental

ffrz. This is in spite of the excellent performance of IsoBr for reproducing droplet freezing initiated

by illite from Broadley et al. (2012). In attempt to reconcile results from Diehl et al. (2014) with

previous literature data (Broadley et al., 2012; Knopf and Alpert, 2013), model derivedffrz are fit to650

experimentalffrz yielding two different parameter values ofAg = 2.94 and2.91× 10−2 cm2 used

in CrDI1 and CrDI2, respectively. We note that fittedAg values differ only by a factor of 4 from

values reported by (Diehl et al., 2014) and therefore, are inreasonable agreement. However, calcu-

latedJapparent
het values shown in Fig. 6b still use ISA of7.1×10−1 and7.1×10−3 cm2 as reported by

Diehl et al. (2014).655

Figure 6a shows that simulated and experimentalffrz are in agreement when accounting for ISA

variability (σg = 5.7). Experimental values ofJapparent
het displayed in Fig. 6b are in agreement with

model derivedJ
apparent
het . This result is robust since experimentalJapparent

het data was not used in fit-

ting ffrz and the same value of the fitted parameterσg is used in the two surface area dependent

cooling rate experiments, which gives confidence that the ABIFM parameterization and the ISA660

distribution width are appropriate. Accounting for the actual variability in ISA used to simulate

freezing,Jactual
het shown in Fig. 6c is in perfect agreement with the ABIFM parameterization for illite

(Knopf and Alpert, 2013). For comparison,Jhet derived in model simulation IsoDI1 to 3 for illite

are also shown and in agreement withJactual
het within our stochastic uncertainty estimates. Again, the

data and model supports a stochastic, time dependent immersion freezing process and may describe665

laboratory data considering variable ISA.
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A major inconsistency between experiment and simulation isshown in Fig. 6b, evident from

the agreement ofJapparent
het for the case when different ISA but identical cooling rates are applied.

According to CNT,Jhet is independent of surface area. This means that if two experiments are

performed with different ISA but use the samer, Jhet should be the same as a function ofT . However,670

simulated and experimentally derivedJ
apparent
het (T ) deviate by more than 1 order of magnitude as the

surface area varies by two orders of magnitude. This would indicate thatJapparent
het values violate CNT,

but this is the cause of assuming identical ISA. In fact, thisfreezing behavior also contradicts all

surface-based empirical parameterization of immersion freezing, such as determiningns(T ), or the

number of actives sites per particle surface area (Murray etal., 2012; Hoose and Möhler, 2012). This675

result impacts immersion freezing experiments conducted as a function of ISA that assume identical

ISA in each experiment, thereby implicitly imposing a surface area dependence onJapparent
het orns(T ).

Accounting for the experimental uncertainty and variability in ISA may reconcile experimental data.

3.3 Continuous flow and cloud chamber immersion freezing experiments

Model simulations IsoCFDC and IsoLACIS (see Table 1) reproduce experimental results of Wex et al.680

(2014) who used 2 ice nucleation instrumentation, (i) a continuous flow diffusion chamber (CFDC)

(Rogers et al., 2001; DeMott et al., 2010) and (ii) the Leipzig aerosol cloud interaction simulator

(LACIS) (Hartmann et al., 2011), respectively, to observe immersion freezing of300nm mobility

diameter selected kaolinite particles as a function ofT and RH> 100%. It is important to note that

for both instruments, droplet freezing is not observed and instead is optically detected and at the685

LACIS outlet, a self-built optical particle spectrometer,TOPS-Ice (Clauss et al., 2013), determines

if the arriving hydrometeors are liquid droplets or frozen ice crystals, resulting in the determination

of a frozen fraction. Thus,ffrz is calculated from the ratio between observed ice crystal and aerosol

numbers per volume of air. The model simulation parameterNtot is derived from known experimen-

tal parameters, including residence time of the CFDC,tr = 5s, aerosol flow rate,Q= 1.0Lmin−1,690

and kaolinite particle concentrations,Np = 10cm−3 (Wex et al., 2014). By defining a single IFS

over an interval of time equal totr, Ntot =NpQtr = 833 particles per IFS. Similarly for LACIS,

Q= 0.08Lmin−1, tr = 1.6s, andNtot = 21 particles per IFS. Note that minimumffrz values for

CFDC and LACIS presented in Wex et al. (2014) are approximately equal to1/Ntot. We run 1440

and 6000 isothermal IFSs for IsoCFDC and IsoLACIS, respectively, equivalent to 2 h averages as695

done in Wex et al. (2014). Simulation parameters for IsoCFDCand IsoLACIS are given in Table 1.

Figure 7 shows that simulatedffrz for IsoCFDC and IsoLACIS agree very well with CFDC

and LACIS data by Wex et al. (2014). However, some data pointsfall outside of the 5 and 95

percentiles (Fig. 7a), which may imply that a greater uncertainty exists that cannot be explained

by a stochastic freezing process. This may be due, in part, touncertainty in ice crystal detection700

which is not accounted for in model simulations. The surfacearea for spherical300nm particles is

A300nm = 2.8×10−9 cm2. However, the assumption that a kaolinite particle with an electrical mobil-
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ity diameter of300nm is equal to a300nm diameter sphere is likely not true, due to shape irregular-

ities, variable density, void fractions, multiple charges, and other geometries (DeCarlo et al., 2004;

Slowik et al., 2004; Zelenyuk et al., 2006; Schmid et al., 2007; Park et al., 2008) with a tendency for705

greater surface area than assumed. Additionally, particles of larger diameter, and thus larger surface

area, may have the same electrical mobility due to the presence of multiple charges. Therefore, a

distribution of particle surface area can be expected. Following Wiedensohler and Fissan (1988), the

probability for particles having multiple charges as a function of particle diameter,P (ln Dp), at a

constant electrical mobility diameter of300nm is shown in Fig. S8. The distributionP (ln Dp) is710

a probability density function from which particle diameters are sampled in simulations IsoCFDC

and IsoLACIS. Individual sampled particle surface area is calculated assuming spherical particles.

We note that a lognormal distribution is not used in IsoCFDC and IsoLACIS. Instead, it is assumed

that the ISA distribution varies only due to the theoreticalmultiple charge distribution. Parameters

m andc used to calculateJhet for Fluka kaolinite are fitted.715

Calculations ofJapparent
het andJactual

het assuming constant ISA equal toA300nm or accounting for vari-

able ISA, respectively, in IsoCFDC and IsoLACIS are shown inFig. 7b. We find agreement between

Japparent
het , data by Wex et al. (2014) andJactual

het which accounts for multiple particle charges predicted

by Wiedensohler and Fissan (1988). Within the uncertainties presented here, assuming that the elec-

trical mobility diameter corresponds to the physical particle diameter and calculating surface area720

from a spherical geometry may be a valid assumption. Hence, ice nucleation experiments in which

particles are mobility selected may be good examples of cases where ISA variability plays a minor

role. Studies which use pre-impactors to remove larger sized particles, i.e. the selected size is larger

than the median size of the total size distribution (Wex et al., 2014; Augustin-Bauditz. et al., 2014),

may even have a more narrow size distribution than used here.On the other hand, a recent study by725

Hartmann et al. (2016) derived the numbers of multiple charges on300nm mobility diameter size

selected particles using simultaneous measurements of cloud condensation nuclei activation curves

and total particle counts with a condensation particle counter. The authors found that when utilizing a

pre-impactor, the multiple charge distribution of mobility diameter selected particles was larger than

theoretical predictions (Hartmann et al., 2016). For comparison to the charge distribution used in Iso-730

LACIS and IsoCFDC shown in Fig. S9, we also plot the distribution measured by Hartmann et al.

(2016) for the same particle type (Fluka kaolinite) used in (Wex et al., 2014). Hartmann et al. (2016)

claimed that when correcting for their measured multiple charge distribution in experiments, val-

ues ofns(T ) are shifted by2K. We note thatJapparent
het shown in Fig. 8b is about+1K shifted from

Jactual
het . This shift is smaller than observed in Hartmann et al. (2016) due to the fact that we applied735

the narrower theoretical distribution. Despite these issues, the model inputJhet represents a new pa-

rameterization for Fluka kaolinite wherem= 53.32 andc=−8.61 following the ABIFM applicable

for 0.220<∆aw < 0.305.
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Wex et al. (2014) presented a detailed immersion freezing analysis of various kaolinite particle

sizes and types of coatings and found that both stochastic and active site approaches can be applied740

to describe the data. Simulating all these cases using our model simulations is beyond the scope of

this paper, however, we are certain that model simulations which use the sameJhet(T,aw) will hold

for all systems at allT and RH due to the prediction of immersion freezing kinetics (i.e. usingJhet)

being independent of experimentally applied ISA, particlesize, and particle coating type (assuming

the coating dissolves when water is taken up and does not react with the INP surface). These findings745

demonstrate that our new model simulations and the ABIFM areapplicable for ice nucleation studies

using a CFDC as previously shown by Knopf and Alpert (2013) and additionally LACIS.

IFSs are used to describe AIDA chamber immersion freezing experiments applying natural dust

by Niemand et al. (2012) in model simulations CrNI1 and CrNI2. Among the different types of nat-

ural dust investigated, we choose 2 Asian dust experiments at −20.1< T <−28.1◦C and−14.3<750

T <−22.4◦C (see ACI04_19 and ACI04_16 in Tables 2 and 3 in Niemand et al.,2012). A continu-

ous non-linear cooling rate with time due to adiabatic expansion is fitted to experimental trajectories

using a4th order polynomial function. In AIDA experiments water saturation is typically reached

after cooling begins. To mimic this process, ice particle production in model simulations is allowed

after 80 s of cooling (see Fig. 2 in Niemand et al., 2012). Ice crystal concentration in an aerosol sam-755

pling flow of 5Lmin−1, from the chamber is observed every5s using an optical particle counter

(Benz et al., 2005), thus a volume of0.42L of air is simulated. Total particle numbers in the simu-

lated volume are on the order of105 which agree well with minimum reportedffrz of about10−5.

Niemand et al. (2012) reported lognormal surface-size distributions with parameters,dS,medianand

σg of polydisperse aerosol population. In CrNI1 and CrNI2,Aj is derived by sampling particle di-760

ameters from the corresponding number-size distributionsand assuming spherical particles. We note

that a fitted lognormal distribution is not used in CrNI1 and CrNI2, due to the fact that reported

size distributions are well defined. Sampling stops whenAtot equals total surface area reported by

Niemand et al. (2012). Experimentally derivedJhet is not available and so the ABIFM parameters

m andc are fitted to experimentally derivedffrz data. Model simulation parameters for CrNI1 and765

CrNI2 are given in Table 2.

Figure 8 shows simulatedffrz andJactual
het from CrNI1 and CrNI2 and the time evolution of sim-

ulated ice crystal concentration in CrNI1 observed during the experiments. Simulatedffrz (Fig. 8a)

fall within the experimental uncertainty reported by Niemand et al. (2012) and the scatter in the data

for all dust types. Narrow 5 and95% bounds are attributable to largeNtot on the order of105 droplets770

per cooling simulation. Ice particle concentrations over time in CrNI1 are shown (insert in Figure 8b)

and capture the overall observed trend in observations. This is in spite of the fact that the observed

time evolution of ice crystal numbers was not used for fittingparametersm andc. Figure 8b shows

J
actual
het and upper and lower fiducial limits. As frozen fraction decreases the fiducial limits become

broader ranging from0.8 to 2.5 orders of magnitude. We conclude that our model simulationsare775
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suitable for describing laboratory immersion freezing in AIDA cloud chamber and further support

the necessity of quantification of ISA variability in the derivation of ice nucleation kinetics.

Notice that in Fig. 8a, the vertical scatter in the experimental data increases at warmerT and for

low ffrz, which implies that uncertainty likely increases asffrz decreases. Since aerosol numbers and

surface area in the experiments by Niemand et al. (2012) are relatively the same for the two exper-780

iments, decreasingffrz implies fewer detected ice crystals or decreasing numbers of ice nucleation

events resulting in an increase in experimental uncertainty. Immersion freezing due to natural dust

was parameterized using a deterministic (singular) approach, i.e. usingns(T ), which captured the

trend in experimental results (Niemand et al., 2012). However, a deterministic approach for inter-

pretation and analysis of ice crystal production, which inherently ignores stochastic freezing, cannot785

explain the increase in the data scatter for smallerffrz values at warmerT . These observations can be

explained by a stochastic and time-dependent immersion freezing process. We note that other mea-

surement uncertainties may exist which may not be captured either by a deterministic approach or

by our model. However, we conclude that stochastic uncertainty is important to consider for future

ice nucleation studies. The fiducial limits ofJactual
het shown in Fig. 8b, in fact, capture this effect of790

larger scatter asT increases implying the uncertainty in observed ice nucleation kinetics increases.

Since the freezing efficiency of Asian dust was shown to be similar for Saharan, Canary Island, and

Israeli dust (Niemand et al., 2012), the new ABIFM parameterization ofJhet(T,aw) derived here is

applicable for natural dust.

4 Simulation findings and uncertainty analysis795

Our results strongly suggest that laboratory immersion freezing studies should provide accurate es-

timates of ISA variability in droplets. We find that simplified assumptions about ISA can result in

misinterpretation and miscalculation ofJhet values. This includes assuming identical surface area,

which implicitly imposes a dependence ofJhet on both ISA andr. Future laboratory immersion

freezing studies should also consider the stochastic nature of ice nucleation following CNT and re-800

sulting uncertainties. When only a single ice nucleation experiment is performed or too few droplets

are used, stochastic uncertainty can potentially be very large and may limit data interpretation. Once

again, stochastic uncertainty refers to large or small expected data scatter from observing small or

large numbers of freezing events, respectively. The surface area based deterministic approach deriv-

ing ns(T ) is an alternative to calculatingJhet, but does not consider stochastic effects or effect of805

time in analysis of immersion freezing. By design,ns(T ) should therefore, not have any dependence

on r. However, this is not supported asns(T ) has been observed to be dependent onr for feldspar

and kaolinite (Herbert et al., 2014).

The model simulation and laboratory data sets investigatedhere were performed for INPs im-

mersed in pure water droplets. However, aqueous solution droplets havingaw < 1.0 are frequently810
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present in the atmosphere at supercooled temperatures and subsaturated conditions (i.e. RH< 100%).

The ABIFM (Eqs. 6–8) inherently and accurately accounts forthese conditions and thus, provides

a complete description of immersion freezing for laboratory experiments, as well as cloud models

under atmospherically relevantT and RH. We suggest that future isothermal and cooling rate depen-

dent immersion freezing studies investigate aqueous solution droplets in addition to water droplets815

(e.g. Archuleta et al., 2005; Alpert et al., 2011b; Wex et al., 2014), providing additional data sets to

constrain ice nucleation kinetics and to validate and expand ABIFM and other parameterizations.

Uncertainty analysis is crucial for the interpretation of laboratory immersion freezing results.

Here we present a quantitative uncertainty analysis ofJhet, by defining∆Jhet as the total uncer-

tainty derived from individual contributions of statisical uncertainty due toNtot, temperature accu-820

racy referred to as∆T , aw or RH accuracy referred to as∆RH, ISA variability expressed asσg,

and accuracy of measuring absolute surface area referred toas∆Ag. This uncertainty analysis is

applicable to both isothermal and cooling rate dependent immersion freezing experiments. It is con-

venient to quantify∆Jhet in the form of a×

÷
error instead of a typical± error due toJhet varying

exponentially over a linear range inT . If Jhet= 100cm−2 s−1 with a factor of±3 error for example,825

then∆Jhet=
×

÷
3 equivalent toJhet= 100×3

÷3 = 100+200
−67 cm−2 s−1. In the following analysis,∆Jhet

is quantified as×
÷

, representing a factor error.

The uncertainty due to stochastic freezing is derived by running105 IFSs with different values of

Ntot and calculating∆Jhet where the widths of the fiducial limits are smallest, i.e. atffrz ≃ 0.5. Thus,

∆Jhet derived fromNtot yields the smallest error estimate possible or the limit of greatest experimen-830

tal accuracy. Figure 9a illustrates that smallerNtot results in larger∆Jhet. WhenNtot = 30 for ex-

ample,∆Jhet=
×15
÷5 , and whenNtot = 1000, ∆Jhet=

×1.3
÷1.3. The uncertainty contribution due to∆T is

calculated using the slope ofJhet vs.T following a similar procedure as in Riechers et al. (2013). Us-

ing the ABIFM at various temperature ranges and for different INP types (Knopf and Alpert, 2013),

Jhet varies by a factor of7.5± 5.5 per degreeK. This means that if∆T =±1.0K, ∆Jhet=
×

÷
7.5 on835

average, but can be×
÷
2 or ×

÷
13 depending on the INP type and the range inT and RH. For exam-

ple,∆T =±0.5K translates to∆Jhet=
×

÷
3.75 as displayed in Fig. 9a. Considering the uncertainty

in RH, Eq. (6) is used to derive∆Jhet= Jhet(∆aw)/Jhet(∆aw ±∆RH) = 10m∆RH. Values ofm in

Eq. (6) are taken from this study and from Knopf and Alpert (2013) ranging from 15–123 and re-

sults in69 on average. The mean and range of∆Jhet due to∆RH are shown in Fig. 9b. For example,840

if ∆RH=±3%, then∆Jhet=
×

÷
117 on average. If ISA per droplet varies in an experiment, but is

assumed to be uniform,Jhet is overestimated forffrz < 0.5 and underestimated forffrz > 0.5. This

effect is quantified by allowingσg to vary and calculating the ratio∆Jhet= J
apparent
het /J

actual
het evalu-

ated atffrz = 0.1 and0.9. The resulting∆Jhet is displayed in Fig. 9c as a function ofσg. If σg = 10,

for example, then∆Jhet=
×4
÷20 at ffrz = 0.1 and0.9. Finally, ∆Jhet is directly proportional to∆Ag845

shown in Fig. 9c, e.g. if∆Ag =
×

÷
5, then∆Jhet=

×

÷
5.
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Figure 9 demonstrates that each experimental parameter contributes to the uncertainty inJhet.

The total uncertainty inJhet can then be estimated by summing the error contributions dueto Ntot,

T , RH, σg, andAg, respectively. Figure 9 shows dotted lines serving as example values of exper-

imental uncertainties and corresponding∆Jhet. Applying Ntot = 30, ∆T =±0.5K, ∆RH=±3%,850

σg = 10, and∆Ag =
×

÷
5, results in∆Jhet=

×148
÷154. If laboratory immersion freezing studies were to

be conducted under these conditions, then the range in experimentally derivedJhet should be over 4

orders of magnitude. Notice that the uncertainty due to RH alone can potentially dominate the total

uncertainty. We hope that Fig. 9 provides guidance in conducting future immersion freezing studies.

We test our analysis to reproduce experimentally derived uncertainty. In Knopf and Alpert (2013),855

all experimentally derivedJhet fell within ±2 orders of magnitude as a function of theaw criterion

(Eq. 7) and as a result, this range was adapted as a conservative uncertainty estimate for the ABIFM

model. The root mean square error of over 18 000 droplet freezing events for 6 different INP types

was experimentally derived independent from model simulations, as an alternative uncertainty esti-

mate exhibiting values as high as±1.3 orders of magnitude. Experimental parameters of studies used860

in the formulation of the ABIFM for pure water and aqueous solution droplets (Alpert et al., 2011a,

b; Knopf and Forrester, 2011; Rigg et al., 2013; Knopf and Alpert, 2013) were aboutNtot = 300,

∆T =±0.3K, ∆RH=±1%, σg = 5, and∆Ag =
×

÷
5. Applying the analysis displayed in Fig. 9

results in an uncertainty of∆Jhet=
×16
÷18 (spanning about 2.5 orders of magnitude) for the ABIFM

model. This estimate is in excellent agreement with independently derived root mean square errors865

of Jhet (Knopf and Alpert, 2013) and demonstrates the accuracy of our uncertainty analysis.

Model simulations reproduced observations of immersion freezing due to illite by Diehl et al.

(2014) and Broadley et al. (2012). These experimental data were included in a recent intercompar-

ison study of illite immersion freezing by Hiranuma et al. (2015). Using 17 different instruments,

experimentally derivedns(T ) values were observed to increase from10−3 to 108 cm−2 whenT870

decreased from 263 to236K, equivalent to a slope of 0.5 orders of magnitude per1K. The in-

struments used are grouped by common methods and include, (i) cold stage (Broadley et al., 2012;

Bingemer et al., 2012; Schill and Tolbert, 2013; Wright and Petters, 2013; O’Sullivan et al., 2014;

Budke and Koop, 2015), (ii) liquid aliquots (Hill et al., 2014), (iii) droplet levitation (Szakáll et al.,

2009; Diehl et al., 2014; Hoffmann et al., 2013), (iv) cloud chamber (Möhler et al., 2003; Niemand et al.,875

2012; Tajiri et al., 2013) and (v) continuous flow (Bundke et al., 2008; Stetzer et al., 2008; Welti et al.,

2009; Lüönd et al., 2010; Chou et al., 2011; Friedman et al., 2011; Hartmann et al., 2011; Kanji et al.,

2013; Tobo et al., 2013; Wex et al., 2014). The scatter in thens is roughly 3 orders of magnitude,

but depending onT , a ns range of 2 and 4 orders of magnitude can envelop the data. However,

the authors provided no quantitative uncertainty analysisto explain this scatter. Since experimental880

methods and data reproduced by presented model simulationsare included in Hiranuma et al. (2015)

for illite, we apply the quantitative uncertainty analysispresented in Fig. 9 to provide a potential ex-

planation of the data scatter. We note that the abscissa in Fig. 9 extends to a value of∆Jhet equal to
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a factor of 300, to encompass typical uncertainties of about±2 orders of magnitude. Although,Jhet

andns(T ) are different quantities, the contribution to their uncertainties is the same for∆T , ∆RH,885

σg, ∆Ag.

ExperimentalT uncertainty for all methods typically ranged from±0.2 to ±1.0K, and hence

∆T =±0.5 is chosen as a representative value. Considering the slopens vs. T , ∆T =±0.5 con-

tributes a factor of∼ 2 uncertainty tons(T ), or∆ns =
×

÷
2. The ISA distribution width parameter of

simulated experiments (Tables 1 and 2) is averaged to representns(T ) data, yielding a reasonable890

value ofσg = 7, resulting in∆ns =
×3
÷12. The ISA measurement error is considered to be∆Ag =

×

÷
5,

thus∆ns =
×

÷
5. Calculation ofns(T ) is not stochastic by design, and thus any uncertainty contri-

bution due toNtot on ns(T ) was previously not considered (Hiranuma et al., 2015). Additionally,

the intercomparison analysis ignores differences in experimental time scales inns(T ) derivation.

However, this study demonstrates that the stochastic uncertainty may be able to explain immersion895

freezing data and may contribute to the range of data scatterin ns(T ). Typically, Ntot is about50

which serves as a reasonable representation yielding∆ns =
×8
÷4, althoughNtot can vary between10

and more than1000 depending on the experiment. Previous immersion freezing experiments for il-

lite have shown that whenr or residence time differ by 1 order of magnitude, freezing temperatures

shift by about0.75K on average (Broadley et al., 2012; Welti et al., 2012; Knopf and Alpert, 2013).900

As discussed in Hiranuma et al. (2015), cooling rates and residence times in the different instru-

ments varied over±2 orders of magnitude, or∆t=×

÷
100, corresponding to∆T =±1.5K, and thus

contributing to an error of±0.75 orders of magnitude or∆ns =
×

÷
6. Accounting for all uncertainties

and making use of Fig. 9 results in∆ns =
×(2+3+5+8+6)
÷(2+12+5+4+6) for a total uncertainty of∆ns =

×24
÷29, or an

uncertainty range of 2.8 orders of magnitude. The vast majority of data in Hiranuma et al. (2015) fall905

within this uncertainty and implies that variability inns(T ) may be attributed to experimental, time-

dependent, and stochastic uncertainties. It is important to note that the uncertainty due to neglecting

time, ISA variability and stochastic effect contributes more to∆ns, thanT and ISA measurement

error. Hiranuma et al. (2015) hypothesized that experimental procedures of droplet or particle prepa-

ration, including particle generation, size selection, ice crystal detection, particle loss at instrument910

sampling inlets, contamination, inhomogeneous temperature, and differences in surface cation con-

centration between wet dispersed or dry dispersed particles may be the cause in measured scatter in

ns(T ) data. These effects are not considered in the uncertainty analysis presented here, but may also

contribute.

5 Summary and conclusions915

Immersion freezing simulations based on a droplet resolvedstochastic ice nucleation process appli-

cable for various types of INPs and experiments are presented here for both isothermal conditions

and applying a cooling rate,r. The parameters in the IFSs are all physically defined and measurable,
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including the heterogeneous ice nucleation rate coefficient, Jhet, the number of droplets at the start of

an experiment,Ntot, and the immersed surface area (ISA) per droplet. When knowledge of ISA per920

droplet is not known, it may be assumed to be lognormally distributed. For IFSs in which a cooling

rate,r, is applied,Jhet as a function ofT and aqueous solution water activity,aw, can be calculated

following the water activity based immersion freezing model (ABIFM) applicable for both pure wa-

ter (aw = 1.0) and aqueous solution (aw < 1.0) droplets. These IFSs generate frozen and unfrozen

droplet fraction data,fufz andffrz, respectively, and using a Monte Carlo method in which105 IFSs925

are performed under the same conditions,5 and95% bounds are derived as uncertainty estimates.

The sensitivity offufz onσg andNtot was tested using sets of isothermal IFSs, where a single set is

referred to as a model simulation. Uniform ISA (i.e.σg = 1) resulted infufz (on a logarithmic scale)

being linear witht. When ISA varied lognormally with parametersµ= ln(Ag) andσ = ln(σg),

whereσg > 1, ln(fufz) vs. t exhibit non-linear behavior. When larger or smallerNtot was used,fufz930

had a smaller and larger uncertainty, respectively, due to the statistical significance of observing

more freezing events. These results demonstrate that in laboratory immersion freezing experiments,

variable ISA imposes changes in trajectories offufz andffrz over time, and that the number of inves-

tigated droplets significantly impacts experimental uncertainty.

Cooling rate model simulations were used to test the validity of assuming uniform ISA. This935

was accomplished by recalculatingJhet after simulation of immersion freezing in two ways, either

(i) assuming uniform ISA referred to as the “apparent” ice nucleation rate coefficient,Japparent
het , or

(ii) accounting for variable ISA referred to as the “actual”ice nucleation rate coefficient,Jactual
het .

When differentr were applied in simulations, values ofJapparent
het were significantly different from

each other. When comparing experiments with different ISA but identicalr, Japparent
het (T ) was again940

significantly different. Forffrz < 0.5 andffrz > 0.5, Japparent
het was over and underestimated, respec-

tively, compared toJactual
het , yielding an erroneous slope ofJapparent

het (T ). These results demonstrate that

the assumption of identical ISA implicitly imposes a cooling rate and surface area dependence on

experimentally derivedJhet(T ). However, derivation ofJactual
het from model simulations accounting

for variable ISA were consistent for differentr and ISA, supporting a stochastic immersion freezing945

description as predicted by CNT.

Model simulations in which variable ISA was considered reproduced laboratory experiments us-

ing Arizona test dust (ATD) (Wright and Petters, 2013), illite (Broadley et al., 2012; Diehl et al.,

2014), kaolinite (Wex et al., 2014; Herbert et al., 2014), feldspar (Herbert et al., 2014), and natu-

ral dusts from Asia, Israel, the Sahara desert and Canary Islands (Niemand et al., 2012) acting as950

INPs. Despite whether isothermal or linear and nonlinear cooling rates were applied, modeled and

experimentalffrz andfufz were in agreement within the stochastic uncertainty. More importantly,

experimentally derivedJhet(T ) and simulatedJapparent
het were in agreement for ATD, illite, kaolin-

ite and feldspar possible indicating an imposed bias solelydue to the assumption of uniform ISA

and not to physical processes governing ice nucleation. On the other hand, variability of ISA in955
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experimental studies using size selected particles from a differential mobility analyzer (Wex et al.,

2014), were modeled based on a bipolar charge distribution.There was a1K difference between

Jhet assuming uniform ISA and accounting for variable ISA following the bipolar charge distribu-

tion, but this was within stochastic uncertainty limits. Thus, the assumption of identical ISA may be

valid when size selecting particles. However, the actual ISA distribution for each study should be960

measured to verify this assumption about ISA in droplets in order to correctly interpret immersion

freezing (Hartmann et al., 2016). In general, model simulations can correct for any introduced bias

or calculate “actual” values, orJactual
het , when not provided.Jactual

het resulted in consistent agreement

between different studies and additionally newaw based parameterizations ofJhet(∆aw) for feldspar

and natural dusts.965

A quantitative uncertainty analysis ofJhet was presented applicable for experimental studies in

which the contribution due to (i)Ntot, (ii) temperature accuracy referred to as∆T , (iii) aw or RH

accuracy referred to as∆RH, (iv) σg, and (v) the accuracy ofAg referred to as∆Ag, were individ-

ually quantified. The following points summarize these error sources and give recommendations for

future experimental studies:970

– Applying too fewNtot or performing only a single ice nucleation experiment in laboratory

studies results in highly uncertain freezing results. Therefore, repetition of immersion freezing

experiments or a statistically significant number of droplets must be applied. We recommend

using at least 100 droplets and three independent freezing cycles in order to better quantify

data scatter and averageJhet, ffrz, andfufz values. This contributes to a range of 0.75 orders of975

magnitude in the uncertainty of experimentally derivedJhet.

– For different INP types, the slope ofJhet vs. T is not the same and thus, the uncertainty

due to∆T is INP type dependent, but can be as high as 1 order of magnitude per1K. We

recommended that∆T remain<±0.5K to achieve an acceptable uncertainty contribution,

i.e. half an order of magnitude.980

– The greatest source of error stems from RH, or∆RH. Immersion freezing experiments for

RH< 100% should aim for∆RH to be as small as possible. Current and future immersion

freezing experiments should be designed to carefully control RH and quantify its uncertainty.

– Droplets in laboratory immersion freezing experiments will not have identical ISA, but will

vary from droplet to droplet (σg) around some ISA value (Ag). Variability in ISA and corre-985

sponding uncertainty should be quantified and accounted forwhen analyzing ice nucleation

experiments.

– Surface area and nucleation time scales clearly affect immersion freezing data. Common as-

sumptions of ISA and neglecting the impact of variable experimental time scales will lead to
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an incomplete experimental accuracy and uncertainty. Consideration of these effects is recom-990

mended to narrow the uncertainty in predicting ice crystal formation.

Considering that ice nucleating particles have variable ISA may impact atmospheric ice crystal

numbers. For a broad surface area distribution of INPs, ice nucleation should occur over a broader

range of time and temperature, when compared with a narrow INP surface area distribution. This

results in greater ice particle production at warmer temperatures, important for mixed phase cloud995

formation and their evolution. We suggest that field measurements determine and consider the entire

aerosol size distribution as a source of INPs for implementation of a stochastic, time-dependent ice

nucleation process characterized byJhet, which is easily parameterized following the ABIFM in

addition to current methodologies.

Our findings concerning laboratory immersion freezing experiments emphasize the importance1000

of setting constraints on the minimum number of droplets andexperimental trials that need to be

employed for improved characterization of ISA per droplet.The results presented here resolves

commonly used assumptions that contribute to additional uncertainty in predicting immersion freez-

ing data for model implementation. The simulations use ABIFM, shown to be valid for various INP

types. We demonstrate that the ABIFM can reproduce immersion freezing by mineral dust for many1005

vastly different experimental designs and measurement methods. Laboratory derivedJhet values can

aid in testing existing ABIFM parameterizations and formulating new ones. Their application to

a very simple stochastic freezing model based on a binomial distribution in accordance with clas-

sical nucleation theory, can reconcile immersion freezingdata for various INP types and measure-

ment techniques when the applied INP surface areas are treated more realistically. These findings1010

hopefully stimulate further discussion on the analytical procedure and interpretation of immersion

freezing and its implementation in atmospheric cloud and climate models.
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Table 1.Summary of parameters used in isothermal model simulations.

Name Ntot σg Ag /cm
2 T /K Jhet INP Type Figure Color

cm
−2

s
−1

Iso1 1000 1 1.0× 10
−5 – 1.0× 10

3 – 1a dark green

Iso2 30 1 1.0× 10
−5 – 1.0× 10

3 – 1a light green

Iso3 1000 10 1.0× 10
−5 – 1.0× 10

3 – 1a dark blue

Iso4 30 10 1.0× 10
−5 – 1.0× 10

3 – 1a light blue

IsoWR 1000 9.5 6.4× 10
−3

251.15 6.0× 10
−4 ATDa 1b orange

IsoBR 63 U-pdfb 2.6× 10
−7

243.3 2.8× 10
3 illite 2a orange

IsoHE1 40 2.2 1.2× 10
0

255.15 4.1× 10
−3 kaolinite 2b orange

IsoHE2 40 8.5 2.0× 10
−2

262.15 2.0× 10
−2 feldspar 2c orange

IsoDI1 45 3.2 5.1× 10
−1

255.15 1.8× 10
−2 illite 3 green

IsoDI2 45 3.2 5.1× 10
−2

252.15 1.0× 10
0 illite 3 orange

IsoDI3 45 3.2 5.1× 10
−1

252.15 1.0× 10
0 illite 3 blue

IsoCFDC 833 MCDc MCD 238.65− ABIFM e kaolinite 7 orange, black

247.65d

IsoLACIS 21 MCD MCD 235.65− ABIFM kaolinite 7 blue, green

238.65d

a Arizona Test Dust.
b A uniform probability density function (U-pdf) was used to define the surface area distribution centered on2.6× 10−7 cm2, with distribution

endpoints at9.4× 10−8 and7.5× 10−7 cm2. See text and Fig. S3 for further details.
c A multiple charge distribution (MCD) was used to define the surface area distribution. See text and Fig. S9 for further details.
d Isothermal simulations were performed at0.15K increments within the stated temperature range.
e Values ofJhet are calculated from the water activity,aw , based immersion freezing model (ABIFM) wherem = 53.32 andc = −8.61

(Knopf and Alpert, 2013).

Table 2.Summary of parameters used in cooling rate model simulations.

Name Ntot σg Ag /cm
2 m c r /Kmin

−1 INP Type Figure Color

Cr1 1000 10 1.0× 10
−5

54.48 −10.67 0.5 illite 4 orange

Cr2 1000 10 1.0× 10
−5

54.48 −10.67 5.0 illite 4 blue

Cr3 1000 1 1.0× 10
−5

54.48 −10.67 0.5 illite 4 black

Cr4 1000 1 1.0× 10
−5

54.48 −10.67 5.0 illite 4 green

CrHE1 40 8.5 2.1× 10
−2

122.83 −12.98 0.2 feldspar 5 orange

CrHE2 40 8.5 2.1× 10
−2

122.83 −12.98 2.0 feldspar 5 blue

CrDI1 45 5.7 2.9× 10
0

54.48 −10.67 non-lineara illite 6 orange

CrDI2 45 5.7 2.9× 10
−2

54.48 −10.67 non-lineara illite 6 blue

Atot /cm
2 Dp,g /µm

CrNI1 6.5× 10
−4

1.72 0.42 22.62 −1.35 non-linearb NDc 8 blue

CrNI2 5.4× 10
−4

1.69 0.40 22.62 −1.35 non-linearb NDc 8 orange

a A continuous non-linear cooling rate with time is given in Diehl et al. (2014).
b A continuous non-linear cooling rate with time due to adiabatic expansion is fitted to experimental trajectories (Niemand et al., 2012) using a 4th order

polynomial.
c Natural dusts from Niemand et al. (2012): Asian, Saharan, Israeli and Canary Island dust.
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Figure 1. Sensitivity calculations of the unfrozen droplet fraction,fufz, as a function of time,t, derived from

model simulations for a total number of droplets,Ntot, and variability of ice nuclei surface area,σg. (a) Model

simulated5 and95% bounds offufz are shown as dark green (Iso1), light green (Iso2), dark blue (Iso3), and

light blue (Iso4) shading. Parameter values are given in the legend.(b) Simulated5 and95% bounds offufz

derived from IsoWR are shown as the orange shading along with experimental data of isothermal immersion

freezing by Arizona test dust (Wright and Petters, 2013) shown as black circles. Parameter values for all model

simulations in(a) and(b) are given in Table 1.
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Figure 2. Simulated and experimentally (Broadley et al., 2012; Herbert et al., 2014) derived unfrozen droplet

fractions,fufz, as a function time,t. Model simulations and INP types used are:(a) IsoBR and illite,(b) IsoHE1

and kaolinite, and(c) IsoHE2 and feldspar, respectively. Orange lines and shading representfufz and corre-

sponding5 and95% bounds, respectively. Parameter values for model simulations are given in Table 1.
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Figure 3. Simulated and experimentally (Diehl et al., 2014) derived unfrozen droplet fractions,fufz, as a func-

tion time, t, using illite. Model simulated5 and 95% bounds offufz are shown as green, orange and blue

shading for IsoDI1, IsoDI2 and IsoDI3, respectively. Temperature and average surface area per droplet reported

by Diehl et al. (2014) are given in the legend. Parameter values for model simulations are given in Table 1.
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Figure 4. Sensitivity calculations of heterogeneous ice nucleation rate coefficients,Jhet, and frozen droplet

fractions,ffrz, on cooling rate,r, derived from model simulations Cr1 (orange) and Cr2 (blue) wherer = 0.5

and5.0Kmin
−1, respectively.Jhet as a function of temperature,T , are shown in(a) assuming uniform ice

nuclei surface area (ISA) per droplet yieldingJapparent
het , and (B) accounting for different ISA yieldingJactual

het .

The dashed lines in(a) and (b) areJ
apparent
het andJ

actual
het , respectively. Shadings in(a) and (b) correspond to

upper and lower fiducial limits withx= 0.999 confidence and the solid red line is calculated from Eq. (6) for

illite (Knopf and Alpert, 2013). Frozen droplet fractions,ffrz, are shown in(c) and(d) where dashed lines and

shadings representf frz and 5 and95% bounds, respectively. Parameter values for Cr1 and Cr2 are givenin

Table 2.
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Figure 5. Frozen droplet fractions,ffrz, and heterogeneous ice nucleation rate coefficients,Jhet, from immer-

sion freezing cooling rate,r, dependent model simulations CrHE1 and CrHE2 wherer = 0.2 (orange) and

2.0Kmin
−1 (blue), respectively, and experimental data of feldspar acting as immersion INPs (Herbert et al.,

2014). Dashed lines and shadings in(a) aref frz and 5 and95% bounds, respectively.Jhet as a function of

temperature,T , are shown in(b) assuming uniform ice nuclei surface area (ISA) per droplet yieldingJapparent
het

and (c) accounting for variable ISA yieldingJactual
het . The dashed lines in(b) and (c) areJ

apparent
het andJ

actual
het ,

respectively. Shadings in(b) and(c) correspond to upper and lower fiducial limits withx= 0.999 confidence.

Experimentally derivedffrz andJhet are shown as circles in(a) and(b), respectively (Herbert et al., 2014). The

red line in(b) and(c) is calculated from Eq. (6) (Knopf and Alpert, 2013) using new parameters derived for

feldspar. Parameter values for CrHE1 and CrHE2 are given in Table 2. The fittedJhet value from model simu-

lation IsoHE2 is shown in(c) and its corresponding error derived from Fig. 9 consideringNtot = 40, σg = 8.5

(see Table 1) and a temperature error,∆T =±0.4K.
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Figure 6. Frozen droplet fractions,ffrz, and heterogeneous ice nucleation rate coefficients,Jhet, from immer-

sion freezing model simulations CrDI1 (orange) and CrDI2 (blue), and experimental data of illite acting as

immersion INPS are shown (Diehl et al., 2014). Dashed lines and shadings in (a) are f frz and 5 and95%

bounds, respectively.Jhet as a function of temperature,T , are shown in(b) assuming uniform ice nucleating

particle surface area (ISA) per droplet yieldingJapparent
het and(c) accounting for variable ISA yieldingJactual

het . The

dashed lines in(b) and (c) areJ
apparent
het andJ

actual
het , respectively. Shadings in(b) and (c) correspond to upper

and lower fiducial limits withx= 0.999 confidence. Experimentally derivedffrz andJhet are shown as circles

in (a) and(b), respectively (Diehl et al., 2014). The red line in(b) and(c) is calculated from Eq. (6) for illite

(Knopf and Alpert, 2013). Parameter values for CrDI1 and CrDI2 are given in Table 2. FittedJhet values from

model simulations IsoDI1 to 3 are shown in(c) and their corresponding error derived from Fig. 9 considering

Ntot = 45, σg = 3.2 and a temperature error,∆T =±0.7K (see Table 1).
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Figure 7.Frozen droplet fractions,ffrz, and heterogeneous ice nucleation rate coefficients,Jhet, from isothermal

model simulations IsoCFDC (orange and black) and IsoLACIS (blue and green), and experimental data of

immersion freezing due to kaolinite by Wex et al. (2014) are shown. Dashed lines and shadings in(a) aref frz

and 5 and95% bounds, respectively.Jhet as a function of temperature,T , are shown in(b) assuming uniform

ice nucleating particle surface area (ISA) per droplet yieldingJapparent
het , and accounting for variable ISA yielding

Jactual
het . The dashed lines in(b) areJ

apparent
het andJ

actual
het as indicated in the legend. Shadings in(b) correspond

to upper and lower fiducial limits withx= 0.999 confidence and the red line is calculated from Eq. (6) for

kaolinite (Knopf and Alpert, 2013). Parameter values for IsoCFDC andIsoLACIS are given in Table 1.

46



this study

10

10
2

10
3

10
4

J
h

e
t,

J
h

e
ta

c
tu

a
l

/
c

m
-2

s
-1

246 248 250 252 254 256 258 260

T / K

J het( aw),

10
4

10
5

10
6

Ic
e

C
ry

s
ta

ls
/

L
-1

246 248 250

T / K

Niemand et al., 2012

S imulated

10
-5

10
-4

10
-3

10
-2

10
-1

f f
rz

Niemand et al., 2012

Asian Dust, Low T

Asian Dust, High T

Natural Dust

S imulated,

S imulated,

a

b

Figure 8. Frozen droplet fractions,ffrz, and heterogeneous ice nucleation rate coefficients,Jhet, derived from

adiabatic cooling immersion freezing model simulations CrNI1 (blue) and CrNI2 (orange). Simulated and ex-

perimentally observed ice crystal concentrations are shown in the insertof panel(a). Dashed lines and shad-

ings in (a) are f frz and 5 and95% bounds, respectively. Experimentally derivedffrz and uncertainties by

Niemand et al. (2012) are shown as symbols and error bars.Jhet as a function of temperature,T , is shown

in (b) and accounting for variable ISA yieldingJactual
het , where dashed lines and shading areJ

actual
het and fidu-

cial limits with x= 0.999 confidence, respectively. The red line in(b) is calculated from Eq. (6) using new

parameters derived for natural dust. Parameter values for CrNI1 and CrNI2 are given in Table 2.

47



1 10 10
2

Ag

1 10 10
2

g

0 2 4 6 8 10

R H / %
10 10

2
10

3
10

4

Ntot

1

10

10
2

J
h

e
t

10
-1

1 10

T / K

a b c

Figure 9. Uncertainty analysis derived from immersion freezing model simulations. The relative error in the

experimentally derived heterogeneous ice nucleation rate coefficient,Jhet, is referred to as∆Jhet. They axis

indicates∆Jhet as a factor error, e.g.∆Jhet = 10 indicates an error inJhet by a factor of 10 in the positive and

negative direction. stochastic error due to the applied number of droplets, Ntot, is shown in(a) where red and

blue represent the upper and lower fiducial limits ofJhet, respectively. The error due to temperature accuracy,

∆T , for a variety of INP types is shown in(a) in orange color where the solid line is average∆Jhet as a function

of ∆T and the shading is for a range of INP types. The error due to the absoluteuncertainty in water activity

or equivalently relative humidity,∆RH, is shown in(b) where the blue line is average∆Jhet, and the shading

represents the range of values for a variety of INP types. The uncertainty due to variability in INP surface area,

σg, is shown in(c) as black and green lines evaluated atffrz = 0.1 and0.9, respectively. The uncertainty in

measuring absolute surface area,∆Ag, is shown in(c) as the red line. Further details and example uncertainty

values given as dotted lines are described in the text.
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