Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

Rudong Zhang^{1, 2, 3}, Hailong Wang², Dean A. Hegg³, Yun Qian², Sarah J. Doherty⁴, Cheng Dang³, Po-Lun Ma², Philip J. Rasch², and Qiang Fu^{1, 3}

¹ Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.

² Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.

³ Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle, WA 98195, USA.

⁴ Joint Institute for the Study of Atmosphere and Ocean, 3737 Brooklyn Ave NE, Seattle, WA 98195, USA.

Manuscript revised for Atmospheric Chemistry and Physics

Correspondence to: Hailong.Wang@pnnl.gov

1

Abstract

The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon 2 (BC) emissions by source regions and types, has been employed to establish source-receptor 3 4 relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 5 2013 when measurements of BC in both near-surface air and snow are available for model 6 evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in 7 snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA 8 and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer 9 calculations show that the BC-in-snow darkening effect is substantially larger than the BC 10 dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface 11 12 atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the 13 dominant source type for total column BC burden over the two regions. FF is also the dominant 14 15 local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An 16 observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity 17 chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While 18 CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC 19 originating from BB and FF emissions, it significantly underestimates the relative contribution of 20 BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely 21 missing a significant source of snow darkening from local soil found in the observations. 22

23 1 Introduction

Black carbon (BC) is the most light-absorbing component of anthropogenic aerosols, and it has 24 25 been assessed to be responsible for a significant fraction of the climate warming in the Northern Hemisphere (Bond et al., 2013). BC-containing particles impact the radiative balance of the 26 Earth-atmosphere system in several ways, including their "dimming effect" of reducing the 27 amount of radiation reaching the surface, heating the atmosphere by absorbing radiation, and a 28 darkening effect when incorporated in snow/ice at the surface, thereby increasing absorbed solar 29 radiation (Flanner et al., 2007, 2009). The latter effect is of special interest due to the strong 30 positive feedbacks it can trigger (e.g. Hansen and Nazarenko, 2004; Flanner et al., 2007; Bond et 31 al., 2013). Largely because of this latter effect, BC may play a key role in causing climate 32 change in the snow and ice covered regions of the globe, which have undergone accelerated 33 change in recent decades (Lubin and Vogelmann, 2006; Lewis et al., 2007; IPCC, 2013). There 34 have been numerous studies, both observational and modeling, attempting to highlight and 35 36 understand the role of BC in accelerating changes in the cryosphere (e.g., Warren and Wiscombe, 1980; Clarke and Noone, 1985; Hansen and Nazarenko, 2004; Jacobson, 2004; 37 38 Flanner et al., 2007, 2009; Ming et al., 2008; Xu et al., 2009; Koch et al., 2009; Doherty et al., 39 2010, 2013; Qian et al., 2011, 2015; Huang et al., 2011; Ye et al., 2012; Wang et al., 2015). However, with a few notable exceptions, the focus of these studies has been either in the Polar 40 41 Regions or sharply circumscribed mid-latitude mountainous regions. Some recent studies (e.g., 42 Flanner et al., 2009; Shindell and Faluvegi, 2009; Bond et al., 2013) have pointed out that the 43 climatic effect of BC might be greater at mid-latitudes, a relatively understudied region, from the standpoint of global mean forcing. 44

An important aspect of the BC-climate connection is the source attribution of BC in the 45 Earth system. Such attribution is important for the formulation of mitigation strategies, a 46 particularly acute issue for BC since its relatively short lifetime holds promise for mitigation of 47 near-term climate warming. In addition, the global BC forcing estimate is very uncertain mostly 48 because of large uncertainties in BC emissions (e.g., Bond et al., 2013). Observational and 49 50 modeling source-attribution studies focusing on specific receptors regions are useful for identifying biases in emissions. Previous source attribution studies have primarily focused on 51 sources of BC to the Arctic (e.g., Law and Stohl, 2007; Shindell et al., 2008; Hirdman et al., 52 2010a, b; Huang et al., 2010; Jacobson, 2010; Hegg et al., 2009, 2010; Stohl, 2006; Sharma et al., 53 2006, 2013; Sand et al., 2013; Wang et al., 2014), the Antarctic (e.g., Graf et al, 2010), or 54 various mountain regions (Fagerli et al., 2007; Kopacz et al., 2011; Lu et al., 2012; Zhang et al., 55 2015; Wang et al., 2015). A number of studies have also suggested the importance of long-range 56 57 transport of aerosols to North America (e.g., Jaffe et al., 1999; VanCuren, 2003; Park et al., 2005; Heald et al., 2006; Chin et al., 2007; Hadley et al., 2007; Eguchi et al., 2009; Clarke and 58 Kapustin, 2010; Fischer et al., 2010; Yu et al., 2012, 2013). A few of these studies assessed 59 transport of BC to North America from various remote source regions using numerical models. 60 For example, Hadley et al. (2007) found that long-range transport from Asia was a major source 61 of BC in the upper atmosphere over North America. 62

Recently, Wang et al. (2014) introduced an explicit aerosol tagging technique to a global aerosol-climate model to produce a detailed characterization of the fate of BC in receptor regions of interest emitted from various geographical source regions. Compared to other widely-used approaches (e.g., the emissions perturbation approach) that have been previously employed to establish global aerosol source-receptor relationships, the tagging approach neither assumes a linear response to perturbations to get fractional contribution of different sources, nor requires additional simulations for each source perturbation. Thus we believe the tagging technique is more computationally efficient and gives more accurate results. Zhang et al. (2015) extended the Wang et al. (2014) modeling tool so it tags source types/sectors in addition to source regions, and they conducted a BC source attribution analysis over the Himalayas and Tibetan Plateau. This modeling framework provides a powerful tool for looking at source attribution of BC in North America, an understudied mid-latitude region for BC in snow.

A key facet of employing any model such as that of Zhang et al. (2015) is an assessment 75 of how well it actually reproduces observed values. Atmospheric observational data from the 76 Interagency Monitoring of Protected Visual Environments (IMPROVE) long-term surface 77 monitoring network permit an assessment of model predictions of near-surface atmospheric 78 79 concentrations of BC. Observations of BC in snow in the Arctic and North China have been used to evaluate models in several previous studies (e.g., Flanner et al., 2007; Skeie et al., 2011; Wang 80 et al., 2011; Lee et al., 2013; Jiao et al., 2014; Qian et al., 2014; Zhao et al., 2014). A recent 81 82 study by Doherty et al., (2014) presented a large-area survey of observed BC concentrations in snow in Western North America (Fig. S1), affording an opportunity to make such an assessment 83 for model predictions of BC in snow. For the first time, we use their measurements of BC in 84 snow over North America to evaluate our global aerosol-climate model in terms of the amount 85 and sources of BC in snow. The Doherty et al. (2014) study included a Positive Matrix 86 Factorization (PMF) source attribution analysis of BC in snow, making feasible an additional 87 assessment of the source attribution of BC in snow in the enhanced CAM5 model. Here we 88 assess the CAM5 results against these observations and analyses for two receptor areas defined 89 by the western North American region for which the Doherty et al. (2014) data are available. 90

Additionally, we present radiative transfer calculations in the atmosphere and snow with the evaluated model to assess the impact of the modeled BC as well as dust on the radiative balance for the studied region. This facilitates a comparison of the radiative forcing between this region and other mid-latitude or high-latitude regions.

95

96 **2** Methods

97 2.1 Observations

Monthly mean near-surface atmospheric BC concentrations for January, February and March of 2013 used in this study are from IMROVE non-urban background sites within the United States (Malm et al., 1994). Fine particles ($PM_{2.5}$, particles with aerodynamic diameters < 2.5 µm) are captured on filters, which are weighed and then subjected to BC concentration analysis using the thermal-optical measurement technique in a laboratory (Chow et al. 1993, 2007).

While previous observation/model comparisons of BC in snow have typically compared 103 BC mixing ratios in the surface snow, here we compare the average snow column BC mixing 104 105 ratio (calculated as the sum of all BC in the snow column divided by the column equivalent water mass, hereafter BCC) over a specified period of time. This is likely a better metric for 106 model comparison than the BC concentration in the top snow layer only, since surface snow 107 mixing ratios at a given point in time can be strongly affected by, e.g., how recently new snow 108 fell, accurate representation of BC mixing ratios in the most recent snowfall and other processes 109 that can vary on the timescale of days. In particular, melting of surface snow can strongly 110 enhance surface snow mixing ratios but melting followed by percolation and refreezing 111 redistributes BC particles within the snow column, resulting in no change to the total BC mass in 112 the snow column. Indeed, Doherty et al. (2014) found that BCC is more regionally consistent 113

than BC concentrations in top snow layer. Further, they showed that while there were vertical variations in the mixing ratio of BC in snow at their study sites there is no consistent vertical gradient. This is also the case in the model Table S1 consistent with the fact that BC emissions during the cold season don't have strong temporal gradient. Hence, in this study, we use the BCC data from Table 6 of Doherty et al. (2014) to evaluate our model.

The BCC estimates by Doherty et al. (2014) are based on samples of seasonal snow 119 collected January through March 2013 at 67 sites in the northwest and north-central U.S. and 120 Canada. Snow BC mixing ratios are estimated based on an optical measurement of spectrally-121 resolved light absorption by all particles in the snow, using an ISSW (Integrating 122 Sphere/Integrating Sandwich) Spectrophotometer (Grenfell et al., 2011). Absorption is 123 apportioned to BC and non-BC particulate components using the measured absorption Ångström 124 exponent 450-600 nm along with assumed absorption Ångström exponents of the BC and non-125 BC components. Note that the absorption Ångström exponent is the slope of the logarithm of 126 absorption versus the logarithm of wavelength. Absorption attributed to BC is then converted to 127 128 a BC mass mixing ratio using a set of calibration standards with weighed amounts of synthetic BC. Full details of the analysis are given by Grenfell et al. (2011) and Doherty et al. (2014). Of 129 relevance here is that this is not a direct measure of BC, but an estimate of mass based on 130 measured absorption and the assumed optical properties of these absorbing components. 131

132 **2.2** Model description and experimental design

An explicit BC source tagging capability was developed in the Community Atmosphere Model version 5 (CAM5) by Wang et al. (2014), and they applied it to establish source-receptor relationships for BC in the Arctic and quantify source contributions from a few major geographical regions. Zhang et al. (2015) extended this tool to quantifying sources of BC in the

Himalayas and Tibetan Plateau originating from biomass & biofuel (BB) and fossil fuel (FF) 137 sectors in various regions. In this study, we use CAM5 with this explicit BC tagging technique, 138 139 including a recently improved representation of convective transport and wet scavenging of aerosols (H. Wang et al., 2013). We conduct a CAM5 simulation at a horizontal resolution of 140 $1.9^{\circ} \times 2.5^{\circ}$ and 56 vertical levels in the specified dynamics mode (Ma et al., 2013), in which 141 142 model meteorology (e.g., wind, temperature, surface pressure, surface stress, and surface fluxes) are constrained to agree with the NASA Modern Era Retrospective-Analysis for Research and 143 Applications (MERRA) 6 hourly reanalysis (Rienecker et al., 2011), while atmospheric 144 constituents such as water vapor, clouds, and aerosols are allowed to evolve according to their 145 prognostic equations in the model. Although land surface processes including those involve BC 146 in snow are not directly nudged to observations, the constrained meteorological fields should 147 make modeled precipitation and BC deposition more accurate. Monthly-mean model fields for 148 January to March 2013 are used for the comparison to observations in the large-area survey of 149 150 BC in snow in Western North America (Doherty et al., 2014) and in the comparison to the IMPROVE surface network measurements, and they are used to establish source-receptor 151 152 relationships and quantify BC radiative forcing.

Accurate BC emissions are critical to accurate modeled distributions of BC in the atmosphere and snow, but BC emissions are highly uncertain (e.g., Bond et al., 2013). Instead of using the Intergovernmental Panel on Climate Change (IPCC) AR5 present-day (year 2000) BC inventory (e.g., Lamarque et al., 2010), we compile a new BC emission dataset of year 2010 for our simulation. The 2010 BC emission dataset consists of three parts: 1) The annually-constant total BC emissions over land surfaces, obtained from the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) V4a dataset (Stohl et al., 2015), which was developed within the framework of the ECLIPSE European project (http://eclipse.nilu.no) using the Greenhouse gas and Air pollution Interactions and Synergies (GAINS) model (Amann et al., 2011), including BC emissions from gas flaring (Stohl et al., 2013); 2) The 2010 annuallyconstant BC shipping emissions from the IPCC RCP6 (Representative Concentration Pathways); and 3) The 2010 seasonally-varying biomass burning BC emissions from the Global Fire Emission Database (GFED) version 3 (van der Werf et al., 2010). Emission datasets for all other aerosol species are obtained from the IPCC AR5 emission inventories (Lamarque et al., 2010).

To prepare BC emissions for the source-type tagging in the CAM5 simulation, we first 167 divide the total ECLIPSE BC emissions over land surface into two types, fossil fuel and biofuel, 168 using the ratio of biofuel to the total (biofuel plus fossil fuel) in each model grid provided by 169 Dentener et al. (2006). In order to make the model source categories directly comparable to those 170 given by the PMF analysis using the observational data, we then combine the GFED biomass 171 burning emissions and ECLIPSE surface biofuel emissions to form the BB emission sector 172 173 (biofuel and biomass). This is because, as discussed below, the PMF is unable to distinguish open burning (fires) from biofuel burning. The IPCC RCP6 shipping emissions and ECLIPSE 174 175 surface fossil fuel emissions are also combined to form the FF emission sector (fossil fuel). 176 Figures S2 shows the geographical distributions of JFM (Jan., Feb. and Mar.) mean BB and FF 177 BC emission rate for year 2010 dataset we compiled.

178 Following the division of source/receptor regions in Work Plan (WP 2.1) of the Task 179 Force on Hemispheric Transport of Air Pollution (http://iek8wikis.iek.fz-180 juelich.de/HTAPWiki/WP2.1), we define fifteen geographical source regions (Fig. 1a) for this study, including ARC (Arctic), WCA (West Canada and Alaska), ECA (East Canada), LAM 181 (Latin America), NWU (Northwest USA), NEU (Northeast USA), SWU (Southwest USA), SEU 182

183 (Southeast USA), EAS (East Asia), SAS (South Asia), SEA (Southeast Asia), ERCA (Europe,

184 Russia and Central Asia), AFME (Africa and Middle East), PAN (Pacific, Australia and New
185 Zealand), and ROW (Rest of World).

Figure 1b summarizes the fractional contributions to global total BC emissions by different source regions and sectors. The JFM mean global total BC emission rate is 7.69 Tg yr⁻¹ with 53.5% (sum of the red bars) from the BB sector and 46.5% (sum of the blue bars) from the FF sector. Emissions from source regions in North America (i.e., WCA, ECA, NWU, NEU, SWU and SEU) are quite low compared to the emissions from the major source regions in Asia, Europe and Africa.

192 **2.3 Metrics**

Here we define two metrics, following Lee et al. (2013), to quantify the deviation of thesimulated values from the observations.

195 (1) Log-mean normalized bias (LMNB) is defined as

196
$$LMNB = \frac{\sum_{i=1}^{N} log_{10}\left(\frac{c_{mod}^{i}}{c_{obs}^{i}}\right)}{N}$$
(1)

197 (2) Log-mean normalized error (LMNE) is defined as

198
$$LMNE = \frac{\sum_{i=1}^{N} \left| log_{10} \left(\frac{c_{mod}^{i}}{c_{obs}^{i}} \right) \right|}{N}$$
(2)

N is the total number of data points in a given region for model evaluation. At each point i, the modeled value (C_{mod}^{i}) represents the grid mean, while the observed value (C_{obs}^{i}) is the average of all point measurements taken within the model grid cell.

We also define metrics to quantify fractional contribution (C_i^{BB} and C_i^{FF}) and emission source efficiency (S_i^{BB} and S_i^{FF}), following Zhang et al. (2015), as follows:

205
$$C_i^{BB} = \frac{A_i^{BB}}{\sum_{i=1}^N (A_i^{BB} + A_i^{FF})} \qquad C_i^{FF} = \frac{A_i^{FF}}{\sum_{i=1}^N (A_i^{BB} + A_i^{FF})}$$
(3)

where C_i^{BB} and C_i^{FF} are fractional contributions of BB and FF emissions, respectively, originating from the source region *i* to a BC property A_i^{BB} and A_i^{FF} (e.g., mass mixing ratio, column burden, or deposition flux) in a specified receptor region; and

209
$$S_{i}^{BB} = \frac{C_{i}^{BB}}{\left[\frac{E_{i}^{BB}}{\sum_{i=1}^{N}(E_{i}^{BB} + E_{i}^{FF})}\right]} \qquad S_{i}^{FF} = \frac{C_{i}^{FF}}{\left[\frac{E_{i}^{FF}}{\sum_{i=1}^{N}(E_{i}^{BB} + E_{i}^{FF})}\right]}$$
(4)

where S_i^{BB} and S_i^{FF} are the source efficiencies of BB and FF emissions, respectively, originating 210 from the source region *i*, in changing BC in a specified receptor region. E_i^{BB} and E_i^{FF} are the BB 211 and FF emission rates, respectively, in the source region *i*. The summation $\sum_{i=1}^{N} (E_i^{BB} + E_i^{BB})$ 212 E_i^{FF}) represents the global total emission rate from all source regions (N = 15 in this study). Thus 213 the denominator terms are the corresponding contribution of BB or FF emissions in source 214 region *i* to the global total BC emissions (Fig. 1b), and the efficiencies S_i^{BB} and S_i^{FF} characterize 215 the sensitivity of BC properties in a specified receptor region to per-unit BB and FF emissions, 216 respectively, in source region *i*. 217

218 2.4 Data preparation for source attribution

In addition to BC concentrations in snow, Doherty et al. (2014) also provide a PMF analysis of the sources of light absorption by all particulates in the snow. In brief, the PMF analysis determined the set of orthogonal factors, each with an associated chemical "fingerprint", that are associated with variations in light absorption by all particulates in snow. Each of the factors are then associated with specific source types (e.g. biomass burning, fossil fuel burning, soil, mineral

dust, etc.) based on their chemical fingerprints. The chemical markers from open biomass 224 burning (e.g., forest fires) and biofuel burning (e.g., woodsmoke from fireplaces and wood 225 226 stoves) are quite similar, so biomass and biofuel sources cannot be distinguished in the PMF; both sources would be included in the factor identified as "biomass burning (BB)". In order to do 227 a comparison to CAM5, which tracks the sources of BC only, rather than all light-absorbing 228 species to snow, we re-ran the PMF analysis so it determined the sources that contribute to 229 variations in snow BC only (i.e. C_{BC}^{est} , in Doherty et al., 2014). This PMF analysis of sources of 230 231 BC in snow (Fig. S3) shows a similar, though not identical, source attribution as that for all lightabsorbing particulates in snow (given in Doherty et al., 2014). For both, the main source sectors 232 233 are pollution (likely mainly fossil fuel combustion), soil, and biomass/biofuel burning. These 234 three categories account for almost all of the light absorption by BC and other particles in the snow samples. The fractional contribution of the fossil fuel/pollution source is higher for BC 235 (Fig. S3) than for total particulate absorption (Doherty et al., 2014), and the fractional 236 contribution by the soil factor is lower for BC than for total particulate absorption. The issue of 237 the nature of a BC component associated with soil, which is not intuitively obvious, is discussed 238 below. 239

The estimated snow BC concentration used in the PMF analysis and the fraction of absorption due to the biomass burning, pollution/fossil-fuel and soil sources (F_{BB} , F_{FF} and F_{SOIL}) from the PMF analysis, are given in the Table S2. The PMF analysis allows some factors to contribute negative fractions to absorption, which is of course unphysical. To rationalize the data for comparison with CAM5, we first set all negative fractions F_{BB} , F_{FF} and F_{SOIL} to zero, and then scale the remaining fractions so that they sum to 1.0, yielding adjusted values f_{BB} , f_{FF} and f_{Soil} .

We next calculate average fractional contributions by the BB and FF sources from the 247 PMF analysis for each of the snow samples sites falling within a given model grid box, using Eq. 248 249 (A1) in the Appendix. It is important to note that the sum of BB and FF contributions does not necessarily equal to 100%. This is, of course, because of the soil source in the PMF model, a 250 source of BC not present in CAM5. This renders the comparison between the model (i.e., 251 CAM5) and observed (i.e., PMF) sources of BC imperfect, an issue that will be discussed further 252 below. The CAM5 JFM mean fractional contributions for the BB and FF sectors in each model 253 grid box, where observational/PMF data are available, are calculated using Eq. (A2). Note that 254 the sum of BB and FF contributions equals to 100%. 255

Based on the above procedures, we calculate the regional average of fractional 256 contributions from the BB and FF sectors from the PMF analysis and from the CAM5 simulation 257 using Eqs. (A3) and (A4), respectively. In principle, another fraction corresponding to the soil 258 contribution should also be present in Eq. (A3) for the PMF analysis. By excluding this fraction, 259 we are essentially renormalizing our fractional contributions such that $\overline{BB_{obs}}$ and $\overline{FF_{obs}}$ now 260 represent the fractions of direct combustion emissions (fossil fuel and biomass/biofuel) that can 261 be attributed to the BB and FF sectors. This renders these fractions equivalent to those generated 262 by CAM5 via Eq. (A4). 263

264

265 **3 Results and discussion**

266 3.1 Near-surface atmospheric BC concentrations

There are 42 non-urban IMPROVE observation sites available in the northwest of the USA (Figure S4). For comparison with model results, measurements at sites located in the same model grid box are averaged first. As a result, we obtain 30 model/observation comparison pairs. The following analysis is based on the JFM mean modeled and observed values for these 30comparison pairs.

272 Figure 2a shows the scatter plot of simulated versus observed JFM mean near-surface BC concentrations. About 57% of the ratios fall within a factor of 2. The linear correlation 273 coefficient (R) is 0.5. The statistical significance of R is at >99% confidence level (p = 0.005, N 274 275 = 30). The LMNB and LMNE are calculated using Eqs. (1) and (2), respectively. The CAM5 results over the 30 grid boxes have LMNB of -0.05, which means that the model-predicted BC 276 concentrations are smaller than observations by 11% (=1-10^{-0.05}) on average. The model error 277 relative to the observations is, however, more substantial. The LMNE is 0.3, which means that 278 the model predictions are, on average, within a factor of 2 ($=10^{0.3}$) of the observations. Figure 2b 279 shows statistics for the JFM near-surface BC concentrations for the IMPROVE observations and 280 CAM5 results, respectively. The model moderately under-predicts mean and median BC 281 concentrations, as expected. The maximum observed and modeled near-surface BC 282 concentrations among the sites are close, but the modeled minimum and 25th percentile values 283 are higher than observed values. The observed and modeled mean values (± standard deviation) 284 are 72.0 \pm 63.3 ng m⁻³ and 54.8 \pm 42.5 ng m⁻³, respectively. The strong spatial variation in BC over 285 286 these sites, indicated by the high coefficient of variation (i.e., the ratio of the standard deviation to the mean – see also the spatial distributions of BC in Fig. S4), renders the comparison of these 287 mid-latitude observations with CAM5 (having a horizontal grid spacing of $1.9^{\circ} \times 2.5^{\circ}$) 288 289 challenging. In this light, we consider the model-observational agreement within a factor of two 290 quite reasonable.

291 **3.2** BC in snow column

In addition to evaluation of BC in the atmosphere, we also evaluate the model 292 performance with respect to BC in snow. Figure 3 shows a comparison between CAM5 293 294 predictions of BCC and the corresponding observations of BCC from the 49 sampling sites given in Table 6 of Doherty et al. (2014), where total-column snow BC could be calculated. We obtain 295 36 observation/model comparison pairs by averaging measurements made at all sites located in 296 297 the same model grid box. This results in 20 comparison pairs in the Northwest USA and 16 in West Canada (Fig. 3d; BCC concentrations for individual pairs are summarized in Table S3). 298 Modeled BCC does not differ appreciably between January, February and March for the grid 299 boxes where we made comparisons, so we use the mean BCC across all three months (JFM) in 300 the comparison with the observation. 301

Figure 3a shows the scatter plot of the simulated JFM mean values compared to observed 302 BCC over the 36 observation/model pairs. BCC is substantially lower in the modeled snowpack 303 than in the observations. This model low bias in BCC is substantially larger than in near-surface 304 305 atmospheric concentrations of BC (hereafter, referred to as BCS) discussed in the previous section. In addition, the linear correlation coefficient (R) for the modeled versus observed BC 306 mixing ratios in snow is 0.2, significant only at the 70% level (p = 0.3, N = 36). The CAM5 BCC 307 308 has a LMNB (Eq. 1) of -0.2 which means that the model-predicted BCC concentrations are lower than the observations by 37% (=1-10^{-0.2}) on average. The LMNE (Eq. 2) in the CAM5 BCC is 309 0.3 which means that the model predictions are, on average, within a factor of 2 (= $10^{0.3}$) of the 310 311 observations, though as noted above the correlation between the two is poor. The observed and modeled means (\pm standard deviation) for these 36 BCC values are 32.7 \pm 24.5 ng g⁻¹ and 312 19.1±11.5 ng g⁻¹, respectively. As was the case with model comparisons for BCS, BCC has a 313

large coefficient of variation (i.e., the ratio of the standard deviation to the mean), reflecting the
strong spatial variation of BCC in this region (Fig. 3d).

Figure 3b compares the simulated and observed BCC as a function of latitude. The 316 modeled JFM zonal mean of BCC over the longitude range of 93.75-123.75° W (blue line in Fig. 317 3b) shows an increasing trend with latitude in the Northwest USA and a decreasing trend in West 318 Canada. This trend is also seen in the observations in West Canada, but there is no trend in BCC 319 with latitude in the Northwest USA. The model agrees well with the observations in Canada, but 320 has generally lower concentrations of BC in snow in the U.S. (Fig 3c). The observed values of 321 BCC range between 8 and 110 ng g⁻¹ in the Northwest USA with a mean of 44 ng g⁻¹, and 7 to 39 322 ng g^{-1} in West Canada with a mean of 19 ng g^{-1} . The correlation coefficient between the observed 323 and modeled BCC is low (R=0.1) for the Northwest USA with negligible statistical significance 324 (p = 0.6, N = 20). However, the correlation coefficient (R) is relatively high (0.7) for West 325 Canada, significant at >99% confidence level (p = 0.005, N = 16). 326

327 Turning next to the regionally stratified LMNB and LMNE values, for the Northwest USA region, the LMNB and LMNE are -0.39 (59% low bias) and 0.47 (a factor of 3), 328 respectively, while for West Canada, LMNB and LMNE are -0.04 (9% low bias) and 0.17 (a 329 330 factor of 1.5), respectively. Hence, for West Canada the model bias is essentially the same for the BCC as it is for the BCS (in Northwest USA) while the model error is actually appreciably less. 331 For the Northwest USA, on the other hand, the LMNE is substantially worse for BCC than it was 332 333 for BCS. Furthermore, most of this error is associated with a model low bias far larger that was 334 the case for BCS. Note that the measurements of BCS and BCC are from different locations and are not necessarily representative of the whole model grid box, so the comparison of biases in 335 336 BCS and BCC is not ideal but is nonetheless informative.

The smaller error (LMNE) in BCC for West Canada than for BCS in the Northwest USA 337 indicates the model might also be doing a better job of predicting BCS in West Canada than in 338 339 the Northwest USA, but it is not possible to know this since all the BCS observations we have are from sites in the USA. For the Northwest USA sites the substantially larger low bias in BCC 340 versus in BCS is quite interesting. A commonly invoked explanation for a low bias in model 341 predictions of atmospheric BC has been flawed emissions inventories. For example, Mao et al. 342 (2011) indicated that there is a large uncertainty in the emissions of BC from biomass burning in 343 western North America. However, the larger low bias in BCC compared to BCS suggests that 344 deficiencies in emissions inventories are not likely the primary explanation for the model under-345 prediction of BCC in this instance, since a source-based bias should show up in both BCS and 346 BCC (similar source attribution of BCS and BC deposition shown in Fig. 4), assuming the model 347 representation of deposition/scavenging processes is not flawed. In fact, the small bias in model-348 predicted BCC in West Canada indicates that the model representation of BC deposition is less 349 350 likely to be the primary cause of the large low bias in BCC in Northwest USA.

In addition to emissions or model processes errors, another possibility for the difference 351 in modeled and observed BCC is a bias¹ in the observational estimates. In a recent comparison, 352 353 Schwarz et al. (2012) found that estimates of the mixing ratio of BC in snow using the ISSW (used in the Doherty et al., 2014 study to estimate BCC) were biased high by up to a factor of 354 three when BC is mixed with dust. While this artifact could possibly explain a portion of the 355 356 observed discrepancy between the model predictions and the observations, it is not fully 357 consistent with the contrast in model-observational comparisons between the Northwest USA and West Canada regions. Although there is significantly less dust in the Canadian samples 358

¹ For simplicity and consistency we use "model bias" below to describe the difference between model results and observations, although the measurements might have a significant bias or error.

(based on both ISSW analysis of BC/non-BC partitioning of absorption and the PMF analysis) 359 than for the Northwest USA, the amount of dust present at the West Canada sites is still 360 361 substantial: The PMF analysis suggests that $\sim 17\%$ of the light absorption is associated with dust for the Canadian sites on average, and much more at some sites, whereas it's ~36% at the U.S. 362 sites. Given this, we would expect to also find a model low bias in BCC for Canada on the order 363 of half that in the Northwest U.S., e.g. LMNB of about -0.2, rather than the actual near-zero bias 364 (LMNB=-0.04). Hence, the relatively good model-observational agreement for the Canadian 365 sites makes it unlikely that measurement bias in BCC is the sole source of the discrepancy 366 between the CAM5 predications and the field observations. 367

Another possible cause of lower BCC in the model versus the observations is a missing 368 source of BC to snow in the model. The sources of BC in CAM5 are biofuel burning, biomass 369 burning and fossil fuel combustion. In the model, emissions of BC from these sources are 370 incorporated in surface snow either in snowfall (wet deposition) or by settling directly to the 371 372 surface snow (dry deposition). In contrast to this, the PMF analysis suggests that a significant source of BC in snow is soil. At first glance this seems counter-intuitive, since soil itself does not 373 374 produce BC. However, in mid-latitude regions the snow is often patchy, and intermixed with 375 large areas of exposed soil. This soil can mix with the snow mechanically (e.g. by livestock; X. Wang et al., 2013) or by winds, which loft the soil and deposit it to snow on scales of tens to 376 377 hundreds of meters (Doherty et al., 2014). These exposed soil areas are subject to BC deposition 378 throughout the year and likely accumulate a substantial reservoir of BC from a multitude of 379 sources (e.g., Schmidt and Noack, 2000; Hegarty et al., 2011). This deposited BC is then subject to re-suspension via saltation and deposition on the surrounding snow, along with the soil. As 380 381 mentioned above, the contribution of the soil/dust source to light absorption by snow impurities

for the Canadian sites is $17 \pm 5\%$. In contrast, for the U.S. sites it is $36 \pm 4\%$, consistent with the 382 thinner and more variable snow cover in the U.S. region (snow cover fraction derived from 383 384 satellite measurements shown in Fig. S5). While the magnitude of this source of BC to snow is unknown, the PMF analysis suggests this mechanism for getting BC into snow is not 385 insignificant in some locations. Thus, soil as a source of BC to snow at the USA sites likely 386 explains a substantial portion of the low bias in modeled snow BC for sites in this region with 387 patchy snow cover, and is also likely the explanation for much of the low bias over the entire 388 data set. We turn next to an assessment of the source attribution of BC in CAM5, including a 389 comparison with the results of a PMF analysis of the North American observations of BC in 390 snow. 391

392

393 3.3 Source attribution and emission source efficiency

394 **3.3.1** Modeled source-receptor relationships using CAM5

395 The direct source tagging method in CAM5 provides a straightforward means of quantifying source-receptor relationships for BC reaching the receptor regions in North America originating 396 397 from the various source regions and types. Figures 4a and 4b show relative contributions (as 398 defined in Sect. 2.3, Eq. 3) to the JFM mean BC atmospheric column burden, deposition flux, 399 and near-surface atmospheric concentrations for two receptor regions, the Northwest USA and 400 West Canada (as outlined by white boxes in Fig. 3d). The contributions are shown explicitly for 401 all major source regions and both source types (solid bar for BB and stippled bar for FF). The 402 contributions of BB and FF from minor source regions are lumped together (black bar in Figs. 4a and b). Clearly, FF sources play a primary role in determining atmospheric concentrations and 403 404 deposition fluxes of BC. Contributions of BB and FF from the North American sources

(hereafter, for brevity, we use USA to denote four source regions NWU, NEU, SWU and SEU; 405 see Figure 1a for region definitions) increase in importance moving from total column 406 407 atmospheric burden to deposition fluxes and then to near-surface atmospheric concentrations of BC. North American sources, especially FF sources, are definitely the major sources of BC in the 408 near-surface atmosphere and of BC deposited to the surface – i.e. to snow – as they are within or 409 close to the receptor regions. Long-range transport of BC from distant sources in Asia and Africa 410 (e.g., EAS, SAS, SEA and AFME) to North America takes place mainly in the middle and upper 411 troposphere (shown in Fig. S8); BC in this part of the atmosphere is less prone to wet removal, 412 and thus contributes more to column burden than to near-surface BC or deposition. The spatial 413 distributions of JFM mean BC column burden and deposition along with BC transport pathways 414 from various distant and domestic source regions and sectors to North America are shown in Fig. 415 S6-S11. 416

Contributions to BC atmospheric column burden from all source regions are 38% BB and 417 418 62% FF for the Northwest USA receptor region, and 37% BB and 63% FF for the West Canada receptor region. Contributions to BC column burden from the overseas combination of EAS 419 420 (East Asia), SAS (South Asia), SEA (Southeast Asia) and AFME (Africa and Middle East) to the 421 Northwest USA and West Canada receptor regions are 57% (32% BB and 25% FF) and 63% (32% BB and 31% FF), respectively, among which BB from SAS and FF from EAS are the two main 422 423 overseas sources. Contributions to BC column burden in the receptor regions from the North 424 American source regions (USA and WCA) are 41% (5% BB and 36% FF) for the Northwest 425 USA and 34% (5% BB and 29% FF) for West Canada.

Relative to that for total column burden, the contribution from FF increases for depositionand is even greater for near-surface atmospheric BC. Contributions from the combined source

regions of USA and WCA to BC deposition over two receptor regions, Northwest USA and West Canada, are 77% (10% BB and 67% FF) and 81% (11% BB and 70% FF), respectively. For near-surface atmospheric BC, the total FF contributions from the USA and WCA (West Canada and Alaska) increase to 82% (76% from USA) and 83% (75% from WCA) over Northwest USA and West Canada, respectively.

Figures 4c and 4d show emission source efficiency (as defined in Sect. 2.3, Eq. 4) in 433 affecting the three JFM mean BC properties in both receptor regions. We use this efficiency 434 (assuming a global mean efficiency of 1) as an index to quantify the sensitivity of BC in a 435 receptor region to a fixed mass perturbation in emissions in different source regions and sectors. 436 It is not surprising that BC in a given receptor region is most sensitive to local emissions (i.e., 437 NWU for the Northwest USA receptor and WCA for the West Canada receptor). As was the case 438 for source attributions in Figure 4a and 4b, the emission source efficiency (Fig. 4c & 4d) of more 439 local sources is lowest for total atmospheric column burden, then increases for deposition and 440 441 near-surface atmospheric BC. The distant emission sources have quite low efficiencies, with significant non-local contributions only for the total column burden. 442

Differences in the vertical distribution of contributions to atmospheric BC are shown in 443 444 more detail in Fig. 5a and 5b. Modeled vertical profiles of area-averaged BC mixing ratio and liquid cloud fraction over both receptor regions are also shown, in Fig. 5c and 5d, to indicate the 445 446 altitude where wet scavenging of aerosols in clouds is most likely to occur. Clearly, the 447 contribution of local sources significantly decreases above 800 hPa, while distant sources 448 become progressively more important at higher altitudes (Fig. 5a & 5b). BC from distant sources contribute less to wet scavenging of BC mass than they do to column burden in the two receptor 449 450 regions. Liquid clouds are at a maximum in the 600-800 hPa layer. Here, the BC profiles also

451 show a minimum, possibly associated with cloud scavenging of BC in the model. This layer 452 (600–800 hPa) has an intermediate local source contribution between those in the higher layers 453 and the bottom layer (800–1000 hPa). Above 400 hPa, liquid clouds and thus wet removal are 454 minimal. Below 800 hPa, below-cloud scavenging by precipitation removes BC from the air and 455 in this altitude range BC sources are mostly local. This would increase the local source 456 contribution to the total deposition flux.

457 3.3.2 Comparison of source sector attribution between CAM5 and PMF

Using the procedures described in Sect. 2.4, our PMF source attribution results are compared with the corresponding CAM5 source attributions (Table 1). Comparisons are done for each model grid box where we have a model/observation comparison pair. We reiterate that for both data sets BB includes emissions from both open biomass burning and biofuel burning.

As discussed in Sect. 2.4, the BB and FF fractions for the PMF analysis are not precisely 462 comparable to those from CAM5 since the PMF analysis has identified an additional BC source, 463 464 soil, which is not included in the CAM5 simulation. This is reflected in the fact that, while the sum of CAM5 BB and FF contributions equals 1, the sum of BB and FF contributions from the 465 466 PMF analysis are commonly less than 1. Due to the lack of soil source in CAM5 and 467 uncertainties in both measurements and emissions (e.g., spatial distribution of sources and the partitioning between BB and FF sectors), it is not surprising that there are quite large 468 discrepancies between the CAM5 and PMF values for some individual comparison pairs. When 469 470 compared to the PMF values (which included contributions from FF, BB and soil), CAM5 471 underestimates the BB contribution for 80% of the comparison pairs (modeled mean and standard deviation of 18%±5% vs. PMF values of 28%±22%) and overestimates the FF 472 473 contribution for all comparison pairs (82%±5% vs. 47%±21%).

For a better quantitative PMF/CAM5 comparison, relative contributions to BC were also 474 calculated for a PMF analysis allowing for BC only from direct combustion sources, i.e., the BB 475 476 and FF sources of BC considered in the CAM5 simulation. Average contributions of BC from combustion sources only are compared for our two receptor regions in Figure 6. The two regions 477 differ little in the partitioning of the BC between BB and FF sources, but in both regions the 478 479 PMF indicates a larger role by BB than does the model. The PMF model attributes 32% of the BC to BB for the Northwest USA region, while for West Canada the fraction is 28%. CAM5 480 attributes 16% of BC in the Northwest USA to BB and 15% to BB in West Canada. Averaging 481 over both regions, the PMF model attributes 30% of the BC to BB while CAM5 allocates 16% to 482 this source. Compared to the PMF results, CAM5 over-predicts the ratio of FF to BB for the 483 484 North American receptor region.

While certainly significant, the difference in source attribution between CAM5 and the 485 factor analysis is not surprising. The factors that possibly cause the substantial model low bias in 486 487 BCC could potentially generate biases in the source-type attribution. In addition, uncertainties in BC emission data and model treatment of BC aging/deposition processes can also be a source of 488 bias in the attribution, including but not limited to 1) the partitioning of BC emissions into fossil 489 490 fuel and biofuel based on the ratio provided by Dentener et al. (2006); 2) initial injection heights (up to 6 km) of biomass burning emissions that directly affect BC interaction with clouds and its 491 492 wet deposition in CAM5; 3) treatment of the mixing of hydrophobic BC particles with 493 hygroscopic components (e.g., sulfate and organics) that is important for BC aging and wet 494 removal but does not differentiate BB or FF origin in the model. These factors, among many others, along with the possible measurement bias for samples with large soil dust concentrations, 495

496 could explain the difference in source-type attribution between CAM5 and the PMF analysis.497 The data we have are not sufficient to distinguish between these possible sources of bias.

498 **3.4 Radiative forcing**

Figure 7 shows the CAM5 modeled JFM mean atmospheric BC all-sky shortwave direct 499 radiative forcing (DRF) at the surface (dimming effect), at the top of the atmosphere (TOA) and 500 501 in the atmosphere (heating effect), and it also shows the radiative forcing due to BC and mineral dust in snow (darkening effect), as a function of latitude (zonally averaged over the longitude 502 band 93.75–123.75° W). The forcing due to BC is separated out from other aerosol components 503 using the radiation diagnostic calculations recently implemented in CAM5 by Ghan et al. (2012), 504 while the BC- and dust-in-snow forcing are calculated in the SNICAR (SNow, ICe, and Aerosol 505 Radiative) model (Flanner et al., 2007), which is coupled to CAM5. The CAM5/SNICAR 506 models do include the light-absorbing effect of mineral dust particles (in addition to BC). Note 507 that the surface radiative forcing due to BC and dust in snow shown here is the total-area mean 508 509 forcing (i.e., zero values enter the calculation for snow-free grids during the model integration), so this represents the true climate forcing (Flanner et al., 2007). 510

The DRF by BC in the atmosphere (in-atmosphere heating) decreases with latitude, as 511 does DRF at the surface (cooling). The DRF of BC at the TOA maximizes around 50° N, where 512 BC- and dust-in-snow radiative forcings also reach their maxima. To explain these variations 513 with latitude, we plot the zonal mean of JFM mean BC total column burden in Figure 7, and we 514 also plot BC and dust deposition scaled by the snow cover fraction (SCF) to weigh the 515 contribution by each grid box to the area mean forcing by BC and dust in snow. The model 516 estimate of surface SCF was first assessed and found to be in reasonable agreement with the 517 satellite retrievals (shown in Fig. S5). Clearly, the total column burden shows the same trend as 518

the DRF in the atmosphere, and the BC- and dust-in-snow radiative forcing follow the respective latitudinal variations of deposition flux. This suggests that the source attribution for BC DRF in the atmosphere and forcing by BC in snow could be by approximated using the source-receptor relationships for BC total column burden (Fig. 4) and BC deposition (Table S4), respectively, if one assumes a linear relationship between radiative forcing and BC concentrations. Note that we did not use such an assumption in the radiative forcing calculation.

The color-coded numbers in Fig. 7 correspond to the various JFM mean radiative 525 forcings averaged over the entire receptor regions, Northwest USA and West Canada. The BC 526 darkening effect on snow is significant and comparable to its DRF in the atmosphere, especially 527 in West Canada where snow covers almost the entire area (Fig. S5). It's interesting to note that 528 the BC darkening effect outweighs the BC dimming effect (i.e., cooling at the surface) and 529 530 warming effect on the Earth-atmosphere system (i.e., DRF at the TOA) over both of the two regions. The modeled surface radiative forcing due to dust in snow is very small in these regions. 531 However, Doherty et al. (2014) found that local soil dust, which is not considered in the CAM5 532 533 simulation, is a significant contributor to light absorption in snow over the U.S. Northern Plains, as well as at some sites in Canada. Intra-regionally transported desert dust has also been shown 534 to have a significant impact on snow in the San Juan Mountains of Colorado (e.g., Painter et al., 535 2010, 2012) and in northwest China (X. Wang et al., 2013; Zhang et al., 2013). This suggests 536 that CAM5 and other climate models that ignore the surface radiative forcing induced by soil 537 and/or desert dust in snow may significantly underestimate the impact of light-absorbing 538 impurities on snowmelt and climate. 539

540

541 4 Summary and conclusions

In this study, the CAM5 global model, implemented with an explicit BC source tagging 542 technique, has been employed to establish source-receptor relationships for atmospheric BC and 543 544 its deposition to snow over a large receptor area encompassing a substantial portion of the Great Plains of North America. The model meteorological fields are constrained to agree with the 545 MERRA reanalysis data sets for year 2013. Model-predicted near-surface atmospheric BC 546 concentrations and BC-in-snow concentrations in January, February and March (JFM) were 547 evaluated against atmospheric observations from the IMPROVE network and field 548 measurements from a recent large-area survey of BC (and other light-absorbing particles) in 549 snow over land (Doherty et al., 2014), respectively. We found that CAM5 had a small low bias 550 (11%) but a substantial random error (about a factor of 2) in the estimates of monthly mean near-551 surface atmospheric BC concentrations. However, the model had a substantial error (a factor of 2) 552 and a larger negative bias (37%) in the prediction of BC-in-snow concentrations at all the snow 553 sampling sites. Analysis of the geographic variation in the bias and error in modeled BC in snow 554 555 versus that observed, along with the comparison of the atmospheric near-surface BC, suggests that the negative model bias is more likely due to the lack of a soil source for BC in patchy snow 556 557 rather than an underestimate of direct combustion emissions in the model simulation. Patchy 558 snow at the U.S. sites is prone to contamination of soil dust originating from the exposed soil areas. The soil dust may contain BC deposited from the atmosphere, which was not included in 559 560 the emission inventory for the CAM5 simulation. It is also possible that some of the difference 561 between model and observation is due to a high bias in the measurements when BC is mixed 562 with significant amounts of light-absorbing soil dust.

The explicit direct source tagging technique in CAM5 permits a quantitative attribution of BC in receptor regions (Northwest USA and West Canada) to source regions (North American

or more distant emissions) and source types (fossil fuel, FF, versus biomass/biofuel, BB). In the 565 model, local sources generally contribute more to near-surface BC and deposition than distant 566 567 sources. However, distant sources contribute significantly to the column BC burden, especially to BC in the middle and upper troposphere. At these altitudes wet removal is relatively weak, so 568 little of this BC likely reaches the surface snowpack. In the model, FF is the dominant source 569 type for total column BC over the two receptor regions. FF is also the dominant local source type 570 for BC column burden, deposition, and near-surface BC. However, for all distant source regions 571 combined the contribution of BB is larger than FF. 572

An observationally-based PMF analysis of the sources of BC to snow, based on snow 573 chemistry, is compared to the CAM5 source attribution based on source tagging. While the 574 CAM5 source attribution was biased high for the FF sector and low for the BB sector compared 575 to PMF, they both show that the contribution of the FF sector is much larger than that of the BB 576 sector. For the two receptor regions examined in this study (Northwest US and Northwest 577 578 Canada), the relative contribution of the BB sector was underestimated by about a factor of two in CAM5 relative to that given by the PMF analysis. The quantitative difference in the source-579 580 type attribution between CAM5 and PMF analysis could be due to an underestimation of North 581 American BB emissions, the lack of a soil source of BC with a high BB/FF ratio in the model, 582 model treatment of aerosol aging/deposition processes such that the wet removal rate of BC from the BB sector is overestimated, and/or biases in the measurements. 583

Based on the CAM5 predictions of BC concentrations in both the air and snow, and of dust in snow, radiative forcing calculations were carried out for our two North American receptor regions (Figure 3d). The darkening effect of BC in surface snow (i.e., snow albedo reduction due to the presence of BC) is substantially larger than the BC dimming effect (i.e.,

reduction in surface radiative flux due to BC in the atmosphere) but is comparable to BC heating in the atmosphere. The modeled surface radiative forcing due to dust in snow is small in the two regions. However, Doherty et al. (2014) found that local soil, which is not considered in the CAM5 simulation, is a significant contributor to light absorption in snow, suggesting that CAM5 and other climate models that ignore the local soil contributions to snow may significantly underestimate the impact of light-absorbing impurities on snowmelt and climate.

594 Appendix:

The average fractional contributions by the BB and FF sources from the PMF analysis for each of the snow samples sites (*k*) falling within a given model grid box are calculated using Eq. (A1).

598
$$BB_{obs}^{i} = \frac{\sum_{k=1}^{S} c_{obs}^{k} \times f_{BB}^{k}}{\sum_{k=1}^{S} c_{obs}^{k} \times (f_{BB}^{k} + f_{FF}^{k} + f_{Soil}^{k})} \qquad FF_{obs}^{i} = \frac{\sum_{k=1}^{S} c_{obs}^{k} \times f_{FF}^{k}}{\sum_{k=1}^{S} c_{obs}^{k} \times (f_{BB}^{k} + f_{FF}^{k} + f_{Soil}^{k})}$$
(A1)

where $f_{BB}^{k} + f_{FF}^{k} + f_{soil}^{k} = 1$. C_{obs}^{k} is the estimated snow BC concentrations used in the PMF analysis for the snow sampling site *k* (Table S2). *S* is the total number of sampling sites within the same model grid box.

602 The CAM5 JFM mean fractional contributions for the BB and FF sectors in each model 603 grid box, where observational/PMF data are available, are calculated using Eq. (A2).

604
$$BB_{mod}^{i} = \frac{\sum_{j=1}^{M} c_{mod}^{j} \times D_{BB}^{j}}{\sum_{j=1}^{M} c_{mod}^{j} \times (D_{BB}^{j} + D_{FF}^{j})} \qquad FF_{mod}^{i} = \frac{\sum_{j=1}^{M} c_{mod}^{j} \times D_{FF}^{j}}{\sum_{j=1}^{M} c_{mod}^{j} \times (D_{BB}^{j} + D_{FF}^{j})}$$
(A2)

where C_{mod}^{j} are the modeled snow BC concentrations in month *j* for the model grid box *i*. D_{BB}^{j} and D_{FF}^{j} are fractional contributions of BB and FF deposition, respectively, to total BC deposition in month *j*, and $D_{BB}^{j} + D_{FF}^{j} = 1$. *M* is 3 (total number of months). The regional average of fractional contributions from the BB and FF sectors from the PMF analysis and from the CAM5 simulation is calculated using Eqs. (A3) and (A4), respectively.

$$611 \qquad \overline{BB_{obs}} = \frac{\sum_{n=1}^{N} \overline{c_{obs}^{n}} \times BB_{obs}^{n}}{\sum_{n=1}^{N} \overline{c_{obs}^{n}} \times (BB_{obs}^{n} + FF_{obs}^{n})} \qquad \overline{FF_{obs}} = \frac{\sum_{n=1}^{N} \overline{c_{obs}^{n}} \times FF_{obs}^{n}}{\sum_{n=1}^{N} \overline{c_{obs}^{n}} \times (BB_{obs}^{n} + FF_{obs}^{n})}$$
(A3)

612

613
$$\overline{BB_{mod}} = \frac{\sum_{n=1}^{N} \overline{c_{mod}^{n}} \times BB_{mod}^{n}}{\sum_{n=1}^{N} \overline{c_{mod}^{n}} \times (BB_{mod}^{n} + FF_{mod}^{n})} \qquad \overline{FF_{mod}} = \frac{\sum_{n=1}^{N} \overline{c_{mod}^{n}} \times FF_{mod}^{n}}{\sum_{n=1}^{N} \overline{c_{mod}^{n}} \times (BB_{mod}^{n} + FF_{mod}^{n})}$$
(A4)

where N is the total number of observation/model comparison pairs (n) in a given region.

615

616

617 Acknowledgments. This research is based on work supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research as part of the Earth System Modeling 618 619 Program. The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. The CESM project is supported by the National Science 620 621 Foundation and the DOE Office of Science. D. A. Hegg, S. J. Doherty, C. Dang, and Q. Fu acknowledge 622 support from the EPA STAR grant RD-82503801. R. Zhang acknowledges support from the China 623 Scholarship Fund. We gratefully thank Stephen G. Warren for helpful advice and discussion on using the snow impurity data. ECLIPSE emission data sets are available from http://www.geiacenter.org/access. 624 625 Funding for the development of the ECLIPSE emission data set was provided by the European Union 626 Seventh Framework Program (FP7/2007–2013) under grant agreement no. 282688 – ECLIPSE. The 627 IMPROVE network data were made available at http://vista.cira.colostate.edu/improve/. Computational 628 resources were provided by the National Energy Research Scientific Computing Center (NERSC), a 629 national scientific user facility located at Lawrence Berkeley National Laboratory in Berkeley, California.

- 630 NERSC is the flagship scientific computing facility for the Office of Science in DOE. A portion of the
- research was performed using DOE EMSL Molecular Sciences Computing resources located at PNNL.

632 **References**

- Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B.,
 Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of
 air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Model. Softw., 26,
 1489–1501, 2011.
- Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S.,
 Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
 Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z.,
 Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and
 Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J.
 Geophys. Res.-Atmos., 118, 5380–5552, doi:10.1002/jgrd.50171, 2013.
- 643 Chin, M., Diehl, T., Ginoux, P., and Malm, W.: Intercontinental transport of pollution and dust aerosols:
 644 implications for regional air quality, Atmos. Chem. Phys., 7, 5501–5517, doi:10.5194/acp-7-5501-2007,
 645 2007.
- Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., and Purcell, R. G.: The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in US air quality studies, Atmos. Environ., 27A(8), 1185–1201, 1993.
- Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. C. O., Robinson, N. F., Trimble, D., and Kohl, S. D.: The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database, J. Air Waste Manage. Assoc., 57(9), 1014–1023, 2007.
- Clarke, A. D., and Noone, K. J.: Soot in Arctic snow: a cause for perturbations of radiative transfer. Atmos.
 Environ., 19, 2045–2053, 1985.
- Clarke, A., and Kapustin V.: Hemispheric aerosol vertical profiles: Anthropogenic impacts on optical depth and
 cloud nuclei, Science, 329, 1488–1492, 2010.
- Dang, C., and Hegg D. A.: Quantifying light absorption by organic carbon in Western North American snow by serial chemical extractions, J. Geophys. Res. Atmos., 119, 10,247–10,261, doi:10.1002/2014JD022156, 2014.
- bentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito,
 A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.:
 Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for
 AeroCom, Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006, 2006.
- Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic
 snow, Atmos. Chem. Phys., 10, 11647–11680, doi:10.5194/acp-10-11647-2010, 2010.
- Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E., and Warren, S. G.: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, J. Geophys.
 Res.-Atmos., 118, 5553–5569, doi:10.1002/jgrd.50235, 2013.
- Doherty. S. J., Dang C., Hegg D. A., Zhang R., and Warren S. G.: Black carbon and other light-absorbing particles in snow of central North America, J. Geophys. Res.-Atmos., 119, doi:10.1002/2014JD022350, 2014.

- Eguchi, K., Uno, I., Yumimoto, K., Takemura, T., Shimizu, A., Sugimoto, N., and Liu, Z.: Trans-pacific dust transport: integrated analysis of NASA/CALIPSO and a global aerosol transport model, Atmos. Chem.
 Phys., 9, 3137-3145, doi:10.5194/acp-9-3137-2009, 2009.
- Fagerli, H., Legrand, M., Preunkert, S., Vestreng, V., Simpson, D., and Cerqueira, M.: Modeling historical long-term trends of sulfate, ammonium, and elemental carbon over Europe: A comparison with ice core records in the Alps, J. Geophys. Res.-Atmos., 112, D23s13, doi:10.1029/2006jd008044, 2007.
- Fischer, E. V., Jaffe, D. A., Marley, N. A., Gaffney, J. S., and Marchany-Rivera, A.: Optical properties of aged
 Asian aerosols observed over the US Pacific Northwest, J. Geophys. Res., 115, D20209,
 doi:10.1029/2010JD013943, 2010.
- Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003, 2007.
- Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.:
 Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–
 2497, doi:10.5194/acp-9-2481-2009, 2009.
- Ghan, S. J., Liu, X., Easter, R. C., Zaveri, R., Rasch, P. J., Yoon, J.-H. and Eaton, B.: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semi-direct and indirect radiative forcing, J. Climate, 25, 6461–6476, doi:10.1175/JCLI-D-11-00650.1, 2012.
- Graf, H.-F., Shirsat, S. V., Oppenheimer, C., Jarvis, M. J., Podzun, R., and Jacob, D.: Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources, Atmos. Chem. Phys., 10, 2457–2465, doi:10.5194/acp-10-2457-2010, 2010.
- Grenfell, T. C., Doherty, S. J., Clarke, A. D., and Warren, S. G.: Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters, Appl. Opt., 50, 2037–2048, 2011.
- Hadley, O. L., Ramanathan, V., Carmichael, G. R., Tang, Y., Corrigan, C. E., Roberts, G. C., and Mauger, G. S.:
 Trans-Pacific transport of black carbon and fine aerosols (D < 2.5 μm) into North America, J. Geophys.
 Res., 112, D05309, doi:10.1029/2006JD007632, 2007.
- Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428, doi:10.1073/pnas.2237157100, 2004.
- Heald, C. L., Jacob, D. J., Park, R. J., Alexander, B., Fairlie, T. D., Yantosca, R. M., and Chu, D. A.: Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States, J. Geophys. Res.-Atmos., 111, 13, D14310, doi:10.1029/2005JD006847, 2006.
- Hegarty, J., D. Zabowski, and J. D. Bakker. 2011. Use of soil properties to determine the historical extent of two
 western Washington prairies. *Northwest Science*, 85:120–129.
- Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Larson, T. V., and Clarke, A. D.: Source Attribution of Black Carbon in Arctic Snow, Environ. Sci. Technol., 43, 4016–4021, doi:10.1021/es803623f, 2009.
- Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., and Clarke, A. D.: Sources of light-absorbing aerosol in arctic snow and their seasonal variation, Atmos. Chem. Phys., 10, 10923–10938, doi:10.5194/acp-10-10923-2010, 2010.
- Hirdman, D., Burkhart, J. F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Long term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions, Atmos. Chem. Phys., 10, 9351–9368, doi:10.5194/acp-10-9351-2010, 2010a.
- Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S.,
 Ström, J., and Stohl, A.: Source identification of short-lived air pollutants in the Arctic using statistical

- analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693,
 doi:10.5194/acp-10-669-2010, 2010b.
- Huang, J., Fu, Q., Zhang, W., Wang, X., Zhang, R., Ye, H., and Warren, S. G.: Dust and black carbon in seasonal snow across Northern China, Bull. Am. Meteorol. Soc., 92, 175–181, doi:10.1175/2010BAMS3064.1, 2011.
- Huang, L., Gong, S. L., Jia, C. Q., and Lavoue, D.: Relative contributions of anthropogenic emissions to black
 carbon aerosol in the Arctic, J. Geophys. Res.-Atmos., 115, D19208, doi:10.1029/2009jd013592, 2010.
- 719 IPCC: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working
 720 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by
 721 Stocker, T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., and
 722 Midgley P.M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
- Jacobson, M. Z.: Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice
 albedo and emissivity, J. Geophys. Res., 109, D21201, doi:10.1029/2004JD004945, 2004.
- Jacobson, M. Z.: Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate,
 Arctic ice, and air pollution health, J. Geophys. Res.-Atmos., 115, D14209, doi:10.1029/2009jd013795,
 2010.
- Jaffe, D., Anderson, T., Covert, D., Kotchenruther, R., Trost, B., Danielson, J., Simpson, W., Berntsen, T.,
 Karlsdottir, S., Blake, D., Harris, J., Carmichael, G., and Uno, I.: Transport of Asian air pollution to North
 America, Geophys. Res. Lett., 26(6), 711–714, 1999.
- Jiao, C., Flanner, M. G., Balkanski, Y., Bauer, S. E., Bellouin, N., Berntsen, T. K., Bian, H., Carslaw, K. S.,
 Chin, M., De Luca, N., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Koch, D., Liu, X., Mann, G. W.,
 Penner, J. E., Pitari, G., Schulz, M., Seland, Ø., Skeie, R. B., Steenrod, S. D., Stier, P., Takemura, T.,
 Tsigaridis, K., van Noije, T., Yun, Y., and Zhang, K.: An AeroCom assessment of black carbon in Arctic
 snow and sea ice, Atmos. Chem. Phys., 14, 2399-2417, doi:10.5194/acp-14-2399-2014, 2014.
- 736 Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. 737 C., Boucher, O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, 738 D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen, T., 739 Kirkevåg, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., 740 Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.: Evaluation of 741 742 black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-743 9001-2009, 2009.
- Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., and Singh, K.: Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837-2852, doi:10.5194/acp-11-2837-2011, 2011.
- Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A.,
 Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R.,
 Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical
 (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:
 methodology and application, Atmos. Chem. Phys., 10, 7017–7039, doi:10.5194/acp-10-7017-2010, 2010.
- Law, K. S. and Stohl, A.: Arctic air pollution: Origins and impacts, Science, 315, 1537–1540, 2007.
- Lee, Y. H., Lamarque, J.-F., Flanner, M. G., Jiao, C., Shindell, D. T., Berntsen, T., Bisiaux, M. M., Cao, J.,
 Collins, W. J., Curran, M., Edwards, R., Faluvegi, G., Ghan, S., Horowitz, L. W., McConnell, J. R.,
 Ming, J., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R. B., Sudo, K., Takemura, T.,
 Thevenon, F., Xu, B., and Yoon, J.-H.: Evaluation of preindustrial to present-day black carbon and its

- albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
 Atmos. Chem. Phys., 13, 2607-2634, doi:10.5194/acp-13-2607-2013, 2013.
- Levis, S., Bonan, G. B., and Lawrence, P. J.: Present-day springtime high-latitude surface albedo as a predictor of simulated climate sensitivity, Geophys. Res. Lett., 34, L17703, doi:10.1029/2007GL030775, 2007.
- Lu, Z., Streets, D. G., Zhang, Q., and Wang, S.: A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010, Geophys. Res. Lett., 39, L01809, doi:10.1029/2011GL049903, 2012.
- Lubin, D. and Vogelmann, A. M.: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 453–456, doi:10.1038/nature04449, 2006.
- Ma, P.-L., Rasch, P. J., Wang, H., Zhang, K., Easter, R. C., Tilmes, S., Fast, J. D., Liu, X., Yoon, J.-H., and Lamarque, J.-F.: The role of circulation features on black carbon transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5), J. Geophys. Res.-Atmos., 118, 4657–4669, 2013.
- Mao, Y. H., Li, Q. B., Zhang, L., Chen, Y., Randerson, J. T., Chen, D., and Liou, K. N.: Biomass burning contribution to black carbon in the Western United States Mountain Ranges, Atmos. Chem. Phys., 11, 11253-11266, doi:10.5194/acp-11-11253-2011, 2011.
- Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and seasonal trends in particle
 concentration and optical extinction in the United States, J. Geophys. Res., 99(D1), 1347–1370, 1994.
- Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.: Black carbon record based on a shallow
 Himalayan ice core and its climatic implications, Atmos. Chem. Phys., 8, 1343–1352, doi:10.5194/acp-8-1343-2008, 2008.
- Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., and Udall, B.: Response of Colorado River runoff to dust radiative forcing in snow, P. Natl. Acad. Sci., 107, 17125–17130, doi:10.1073/pnas.0913139107, 2010.
- Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C. C.: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations, Water Resour. Res., 48, W07521, doi:10.1029/2012WR011985, 2012.
- Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J., Zondlo, M. A., Eisele, F. L., Bandy, A. R.,
 Thornton, D. C., Sachse, G.W., and Bond, T. C.: Export efficiency of black carbon aerosol in continental
 outflow: Global implications, J. Geophys. Res.-Atmos., 110, D11205, doi:10.1029/2004JD005432, 2005.
- Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau
 snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929 1948, doi:10.5194/acp-11-1929-2011, 2011.
- Qian, Y., Wang H., Zhang R., Flanner M. G., and Rasch P. J.: A sensitivity study on modeling black carbon in snow
 and its radiative forcing over the Arctic and Northern China, Environ. Res. Lett., 9, 064001,
 doi:10.1088/1748-9326/9/6/064001, 2014.
- Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K., Ming, J., Wang, H., Wang, M., Warren, S. G.,
 and Zhang, R.: Light-absorbing particles in snow and ice: Measurement and modeling of climatic and
 hydrological impact, Adv. Atmos. Sci., 32, 64–91, 2015.
- Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D.,
 Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu,W., Joiner, J., Koster,
 R. D., Lucchesi, R., and Molod, A.: MERRA NASA's Modern-Era Retrospective Analysis for Research
 and Applications, J. Clim., 24, 3624–3648, 2011.

- Sand, M., Berntsen, T. K., Seland, Ø., and Kristjansson, J. E.: Arctic surface temperature change to emissions of
 black carbon within Arctic or midlatitudes, J. Geophys. Res., 118, 7788–7798, doi:10.1002/jgrd.50613,
 2013.
- Schmidt, M. W. I., and Noack, A. G.: Black carbon in soils and sediments: Analysis, distribution, implications, and
 current challenges, Global Biogeochem. Cycles, 14, 777-793, 2000.
- Schwarz, J. P., Doherty, S. J., Li, F., Ruggiero, S. T., Tanner, C. E., Perring, A. E., Gao, R. S., and Fahey, D. W.: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow, Atmos. Meas. Tech., 5, 2581– 2592, doi:10.5194/amt-5-2581-2012, 2012.
- Sharma, S., Andrews, E., Barrie, L. A., Ogren, J. A., and Lavoue, D.: Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003, J. Geophys.
 Res., 111, D14208, doi:10.1029/2005JD006581, 2006.
- Sharma S., Ishizawa, M., Chan, D., Lavoué, D., Andrews, E., Eleftheriadis, K., and Maksyutov, S.: 16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition, J. Geophys. Res. Atmos., 118, 943–964, doi:10.1029/2012JD017774, 2013.
- Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G., Fiore, A. M., Hess, P., Koch, D. M.,
 MacKenzie, I. A., Sanderson, M. G., Schultz, M. G., Schulz, M., Stevenson, D. S., Teich, H., Textor, C.,
 Wild, O., Bergmann, D. J., Bey, I., Bian, H., Cuvelier, C., Duncan, B. N., Folberth, G., Horowitz, L. W.,
 Jonson, J., Kaminski, J. W., Marmer, E., Park, R., Pringle, K. J., Schroeder, S., Szopa, S., Takemura, T.,
 Zeng, G., Keating, T. J., and Zuber, A.: A multi-model assessment of pollution transport to the Arctic,
 Atmos. Chem. Phys., 8, 5353-5372, doi:10.5194/acp-8-5353-2008, 2008.
- Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during the twentieth century, Nature Geosci., 2, 294–300, 2009.
- Skeie, R. B., Berntsen, T., Myhre, G., Pedersen, C. A., Str¨om, J., Gerland, S., and Ogren, J. A.: Black carbon in the atmosphere and snow, from pre-industrial times until present, Atmos. Chem. Phys., 11, 6809–6836, doi:10.5194/acp-11-6809-2011, 2011.
- Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res.-Atmos., 111,
 D11306, doi:10.1029/2005jd006888, 2006.
- Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A. N.:
 Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions,
 Atmos. Chem. Phys., 13, 8833-8855, doi:10.5194/acp-13-8833-2013, 2013.
- Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R.,
 Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C.,
 Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T.,
 Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E.,
 and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys.
 Discuss., 15, 15155-15241, doi:10.5194/acpd-15-15155-2015, 2015.
- VanCuren, R. A.: Asian aerosols in North America: Extracting the chemical composition and mass concentration of
 the Asian continental aerosol plume from long-term aerosol records in the western United States, J.
 Geophys. Res., 108(D20), 4623, doi:10.1029/2003JD003459, 2003.
- van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C.,
 DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation,
 savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707-11735,
 doi:10.5194/acp-10-11707-2010, 2010.

- Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J.-H., Ma, P.-L., and Vinoj, V.:
 Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model, Geosci. Model Dev., 6, 765–782, doi:10.5194/gmd-6-765-2013, 2013.
- Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., and Beagley, N.: Using an explicit
 emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic:
 Variations, Sources and Transport pathways, J. Geophys. Res.-Atmos., 119, 12888–12909,
 doi:10.1002/2014JD022297, 2014.
- Wang, M., Xu, B., Cao, J., Tie, X., Wang, H., Zhang, R., Qian, Y., Rasch, P. J., Zhao, S., Wu, G., Zhao, H.,
 Joswiak, D. R., Li, J., and Xie, Y.: Carbonaceous aerosols recorded in a southeastern Tibetan glacier:
 analysis of temporal variations and model estimates of sources and radiative forcing, Atmos. Chem. Phys.,
 15, 1191-1204, doi:10.5194/acp-15-1191-2015, 2015.
- Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y.,
 Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black
 carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–
 12473, doi:10.5194/acp-11-12453-2011, 2011.
- Wang, X., S. J. Doherty, and J. Huang: Black carbon and other light-absorbing impurities in snow across Northern
 China, J. Geophys. Res. Atmos., 118, 1471–1492, doi:10.1029/2012JD018291, 2013.
- Warren, S. G. and Wiscombe, W. J.: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734–2745, 1980.
- Xu, B., Cao, J., Hansen, J., Yao, T., Joswiak, D. R., Wang, N., Wu, G., Wang, M., Zhao, H., Yang, W., Liu, X., and
 He, J.: Black soot and the survival of Tibetan glaciers, Proc. Natl. Acad. Sci. USA, 106, 22114–22118,
 2009.
- Ye, H., Zhang, R., Shi, J., Huang, J., Warren, S. G., and Fu, Q.: Black carbon in seasonal snow across northern Xinjiang in northwestern China, Environ. Res. Lett. 7, 044002, doi:10.1088/1748-9326/7/4/044002, 2012.
- Yu, H., Remer, L., Chin, M., Bian, H., Tan, Q., Yuan, T., and Zhang, Y.: Aerosols from Overseas Rival Domestic
 Emissions over North America, Science, 337, 566–569, 2012.
- Yu, H., Chin, M., West, J. J., Atherton, C. S., Bellouin, N., Bergmann, D., Bey, I., Bian, H., Diehl, T., Forberth, G.,
 Hess, P., Schulz, M., Shindell, D., Takemura, T., and Tan, Q.: A multimodel assessment of the influence of
 regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of
 intercontinental transport, J. Geophys. Res., 118, 700–720, doi:10.1029/2012JD018148, 2013.
- Zhang, R., Hegg, D. A., Huang, J., and Fu, Q.: Source attribution of insoluble light-absorbing particles in seasonal
 snow across northern China, Atmos. Chem. Phys., 13, 6091-6099, doi:10.5194/acp-13-6091-2013, 2013.
- Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P.-L., Singh, B., Huang, J., and Fu, Q.: Quantifying sources, transport, deposition and radiative forcing of black carbon over the Himalayas and Tibetan Plateau, Atmos. Chem. Phys. Discuss., 15, 77-121, doi:10.5194/acpd-15-77-2015, 2015.
- Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H.,
 Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal
 snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 1147511491, doi:10.5194/acp-14-11475-2014, 2014.
- 883
- 884

Table 1. BB and FF fractional contributions based on the PMF and CAM5 source attribution results for BC in snow for each model/observation comparison pair (*i*). $\overline{C_{obs}^{i}}$ is the mean of the estimated BC concentrations used in the PMF analysis when more than one sampling sites reside in the same model grid box. $\overline{C_{mod}^{i}}$ is the JFM mean of CAM5 modeled BC concentrations in snow column. The contributions are calculated as given in Eqs. (A1) (observations) and (A2) (model).

Comparison pair	C^{i}	BB_{obs}^{i}	FF ⁱ ohs	C^{i}	BB_{mod}^{i}	FF ⁱ mod
i	$(ng g^{-1})$	(%)	(%)	$(ng g^{-1})$	(%)	(%)
1	15.5	62	38	0.8	21	79
2	5.8	100	0	9.5	28	72
3	13.3	51	49	14.7	28	72
4	14.2	70	26	9.8	25	75
5	13.7	47	21	15.3	26	74
6	29.3	27	47	14.3	26	74
7	24.2	27	71	14.2	25	75
8	22.0	20	51	12.6	23	77
9	90.1	0	0	5.4	19	81
10	28.4	16	42	11.3	26	74
11	50.6	7	11	10.1	16	84
12	40.7	11	26	37.1	11	89
13	17.9	34	44	24.0	12	88
14	49.5	23	53	52.5	13	87
15	5.9	46	52	51.8	12	88
16	25.8	16	31	46.6	11	89
17	110.6	3	31	30.5	14	86
18	61.4	8	61	23.3	14	86
19	24.8	13	76	27.6	11	89
20	26.9	17	33	39.9	12	88
21	22.2	26	56	44.5	15	85
22	17.8	31	61	18.2	15	85
23	27.5	23	28	12.6	15	85
24	15.8	22	63	7.2	19	81
25	14.4	32	68	5.6	19	81
26	26.0	0	77	12.6	15	85
27	15.1	15	48	16.0	15	85
28	18.4	16	69	22.0	13	87
29	8.4	66	34	29.2	15	85
30	17.0	18	75	24.8	15	85
31	8.4	45	55	9.1	18	82
32	14.7	30	68	20.2	15	85
33	21.5	24	61	27.3	16	84
34	17.5	18	61	29.8	17	83
35	25.0	22	66	38.9	16	84

Fig. 1. (a) Tagged source regions and (b) the contributions (%) to the global mean BC emissions (7.69 Tg yr⁻¹) for January, February and March from the individual source regions (marked on the horizontal axis) and sectors (FF in blue, biomass-BB in solid red, and biofuel-BB in dotted red).

Fig. 2. (a) Scatter plot of CAM5 simulated versus observed JFM mean near-surface atmospheric BC concentrations (ng m⁻³) in 2013 at the IMPROVE network sites. The observations are averages across sites falling into the same model grid box. The correlation coefficient (R), the statistical significance of R (p), the log-mean normalized bias (LMNB), and the log-mean normalized error (LMNE) are shown in numbers in the top-left corner; the 1:1 (thick solid), 2:1 (thin solid) and 10:1 (dashed) lines are also plotted for reference. (b) Box and whisker plot of observed (red color) and simulated (blue color) JFM mean of near-surface BC concentrations (ng m⁻³) for all comparison pairs. The 25th, 50th, and 75th percentiles are marked with a box, the mean value with a dot, and the minimum and maximum values with whiskers; the colored numbers give the mean and standard deviation for the observed (red) and modeled values (blue).

Fig. 3. (a) Scatter plot of simulated versus observed BC concentrations (ng g^{-1}) in the snow column (BCC). As in Figure 2, R, p, LMNB, and LMNE are shown in numbers on the top-left corner; the color numbers show the mean and standard deviation for observations (red) and modeled values (blue). (b) Observed (red circle) and simulated (blue asterisk) BCC versus latitude for the 36 comparison pairs in Northwest USA and West Canada. The modeled values are the JFM mean. The blue line indicates the modeled JFM zonal-mean values over the longitude band 93.75–123.75° W (white outlines in panel d) for BCC. (c) Box and whisker plot of observed (red color) and simulated (blue color) BCC in the two regions. The 25th, 50th, and 75th percentiles are marked with a box, the mean value with a dot, and the minimum and maximum values with whiskers; the number of samples (N), R, and p for each region are shown at the bottom. (d) Spatial distributions of modeled JFM mean BCC with the observed BCC (color circles with black outlines) superimposed. In d) the observed values are averages across the sampling sites of Doherty et al. (2014), when more than one sampling site fell within a model grid box. The white boxes in d) outline the two receptor regions, Northwest USA (39.8–49.3° N, 93.75–123.75° W) and West Canada (49.3–58.8° N, 93.75–123.75° W).

Fig. 4. Fractional contributions to JFM mean BC total column burden, deposition and nearsurface concentrations over (a) Northwest USA and (b) West Canada (as defined in Fig. 3d), from six major tagged source regions (colors) and sectors (solid color and stippled bar for BB and FF, respectively); the black bar in each column represents the combined contribution from all of the other tagged source regions and sectors. Panels (c) and (d) show efficiency of FF (top) and BB (bottom) emissions from six major tagged source regions (marked on the y-axis) in changing JFM mean BC total column burden, deposition and near-surface concentrations over Northwest USA (c) and West Canada (d).

Fig. 5. Panels (a) and (b) are similar to Fig. 4a and b, respectively, but for fractional contributions to BC column burden in five separate vertical layers: 0–200, 200–400, 400–600, 600–800 and 800–1000 hPa. Panels (c) and (d) show the vertical profiles of area-averaged BC mixing ratio (in black) and liquid cloud fraction (in blue) over Northwest USA and West Canada, respectively. All fields are from the CAM5 model run.

Fig. 6. Regional average contributions from BB (red color) and FF (blue color) sector to combustion-sourced BC in snow in Northwest USA and West Canada based on the PMF analysis (solid bar) and CAM5 simulation (stippled bar). The contributions are calculated as in Eqs. (A3) (observed values) and (A4) (modeled values).

Fig. 7. Modeled JFM and zonal mean radiative forcing (RF) values (in W m⁻², using y-axis on the left) induced by the various BC effects and the dust-in-snow effect (indicated by the different colors and symbols in the legend) over the longitude band $93.75-123.75^{\circ}$ W (white outlines in Fig. 3d). The corresponding area-average RF values are shown in colored numbers for Northwest USA and West Canada, respectively. Modeled JFM and zonal mean values of BC total column burden (in μ g m⁻²), BC deposition (in μ g m⁻² day⁻¹) and dust deposition (in 10 mg m⁻² day⁻¹) multiplied by SCF (snow cover fraction) are shown in colored dashed lines (using y-axis on the right).