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Response to editor

Dear Prof. Huffman,

we have the pleasure to submit this revised versifoour paper “Free amino acids in Antarctic

aerosol: potential markers for the evolution artd & marine aerosol” (ACP-2014-1007).

Best regards

Elena Barbaro

Comments

The manuscript has made marked improvement frorfaitéime, as suggested by the referees. | waked |
to see a few additional areas made clearer, howbgéore publication. I've uploaded a document \widme
individual/minor comments written in-place, anceladded some more substantive comments separately.
Please process the changes appropriately and uploagersions: one clean manuscript, and a sepfilate
with all changes from the current version with ket changes so | can review quickly and efficierfigel
free to add a cover letter with any discussion/axation necessary.

Non-public comments to the Author:

Please also see the following comments and suggssti

Comments:

Line 309 - Figure 4 is hard to interpret in relation to your comments in Lines ~309. | see that you ar
referencing the comparison between Figure 4 and Fige 1, but the sizes of these figures and the
complexity of the data in both make it difficult to test your statements here. Could you make this
easier for the reader by either integrating the chdrophyll concentration along each of the sample
tracks, or something that would take the work awayfrom the reader having to look so hard at this to
merely get a rough idea for what you are saying?

To help the reader in understanding the correlatimm@iween chlorophyll and amino acid concentration i
the MZS aerosol, we have modified the figure 4.

Line 375 - | suggest adding more detail on your ierpretation of Figure 3 here. The way you look at
Fig. 3 plays heavily into the way you conclude ceain ideas here, but it is again hard to piece allfo



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

these details together by simply looking at Figuré. | suggest adding text to the paragraph here (or
close by) to more clearly support your arguments.

Line 379: The text in this area still needs to beefined in relation to the comments from referee #3
(page 8 of your response). This is one example ofi@re the term “enrichment” becomes unclear to me.

| agree with referee #3 that the processes may befluenced by primary emission. You site in your
response that the Atmospheric Physics book suggestsat coarse particles cannot be transported to
Antarctica due to their short residence time. Thisdepends on the wind, altitude of particle path, and
weather patterns, because there are plenty of colssgnt observations of large particles being
transported 1000’s of km. (Obrist, et al. (2008), f&nos. Environ., 42, 7579-7589 as one quick example)
I'm not sure what the answer is here, but I'm not onfident you can quickly write away all primary
emission and influence of coarse particles as sinyphs referencing this textbook.

We agree with the editor that the text must be onpd. We have completely revised these paragrampths
we have added the other hypothesis suggested yatbe bbeferee 3. We have moved some sentencedén or
to clarify our hypothesis; we have re-ordered ogument in what we hope is a more logical sequevite.
have described the different percentages of antis én the coarse fraction of DC aerosol relatetMZS
aerosol. Then we have introduced the back trajest@nd in the end we have made our hypothesig. Ou
results are a good starting point for future inigadions but at the moment it's quite difficult define a
correct interpretation for the increase of aminiol @ercentages in the coarse particles.

The final version can be read as:

The mean concentrations of free amino acids irctiase aerosol particles collected at DC for the field
campaigns were 407 and 421 fmolr(see Fig. 5)..At our coastal site, the mean fregna acids
concentration in the coarse fraction was 264 fmo(Fig. 2). At DC, the free amino acid concentration
the coarse aerosol, expressed as a fraction pextdm total free amino acids concentration wasbto be
13% in 2011-12 and 23% in the 2012-13 campaignnveéxsely, during our 2010-2011 sampling campaign
at MZS, which is located near the marine aeroseicg we found that only 2% of the total free améaoal

concentration was present in the coarse fraction.

During the Antarctic summer, the surface inversimer the polar ice cap is relatively weak and a@sos
produced on the ocean’s surface can be transptintedgh the upper troposphere to the Antarcticelat
where they are easily mixed down to the surfacenf@gham and Zoller, 1981). There are also transfer
mechanisms from the lower stratosphere to the uppposphere that occur near the coast of the Aticar
continent. Aerosol from different sources mixe®ittie upper troposphere, and this air descenderumiif
over the Antarctic plateau due to surface coolilagv$é off the plateau causing the katabatic windisTh
means that during the summer, there is a contintlonsf relatively clean air from the upper tropbere
with aerosol from high altitude inputs and longgartransport (Cunningham and Zoller, 1981; Stoll an
Sodemann, 2010).
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Cluster means backward trajectories analysis ahallsamples collected during both summer campaigns
DC revealed a prominent marine source (Fig. 3). Eighows that the 10-days backward trajectorieseca
from the Southern Ocean where there are no lareblzaan made influences.

Fig. 5 shows that the concentration of amino afidshe 2011-2012 summer Antarctic campaign wakédrig
than the values reported for the 2012-2013 Antarcéimpaign, and underlines that the main difference
between the two campaigns is mainly in the pergasaf amino acids in the coarse fraction. We ssigge
that the transport processes of the air massesthemain cause of these variations as the timet spand

by the air masses in the 2011-2012 summer was &tohours (Fig. 3) whilst in 2012-2013 the timegan
was between 4 and 7 days (Fig. 3).

The analysis of the size distribution of the framire acids (Fig 5) combined with the air mass back
trajectories (Fig. 3) allowed us to suggest thatamino acids in the aerosol collected at DC carm hao
possible sources. The first hypothesis is that tweye present in primary emitted coarse mode akroso
particles, which come from phytoplanktonic sea gpraarse mode particles (Matsumoto and Ueamatsu,
2005), or from soil dust coarse mode particles @ercal., 2003). Particles and their chemical éresits

can travel for many weeks in the upper troposphétigout being lost, provided they are not subjectviet
deposition, or that the compounds are reactindiénaerosol phase. The second hypothesis is thaipami
acids had a marine source and these aerosols wmtessveral physico-chemical transformations during
long-range transport. Our results suggest that amads were present in the fine particles overstiméace

of the Southern Ocean from bubble bursting procesBee air masses subsequently passed into the uppe
troposphere and then over the continent wherergregined for several days before descending oetacth
sheet. These fine aerosol particles could eithewgturing long-range transport, due to condensation
molecules from the gas phase or by collision oflsaral large particles (coagulation) (Petzold aratdKer,
2012; Roiger et al.,, 2012). However, these processe unlikely in Antarctica due to the very clean
conditions. The most likely explanation is that firee fraction has been subjected to other prosetsa
increased the particle size of the aerosol. Thet filady remaining process is ice nucleation durlogg-
range transport promoted by the intense cold dverplateau and presence of amino acids in the @eros
particles (Szyrmer and Zawadzki, 1997). The specdason for the increase of amino acids perceritage
the coarse particles is not clear, based on thdahie data. In our future investigations, we wallso
evaluate the aerosol mass, which is probably goleegmeter to measure that will help explain thisease

of concentration in the coarse particles.

Line 398 - I'm confused here. | thought you didn'tmeasure aerosol mass here, e.g. Line 384. If you
didn't measure total aerosol mass, or in each frain, how do you know the fractions quoted here? If

nothing else, be a little clearer with explanation.
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We have calculated the percentage of amino acidkercoarse fraction related to the total concéotra
detected in the PM10 aerosol. We didn’t measuresaémass. In order to clarify the concept, we have
modified the sentence as follows:

“The mean concentrations of free amino acids incb&se aerosol particles collected at DC fortiine
field campaigns were 407 and 421 fmof fsee Fig. 5)..At our coastal site, the mean freéa acids
concentration in the coarse fraction was 264 fmo(Fig. 2). At DC, the free amino acid concentration
the coarse aerosol, expressed as a fraction petdm total free amino acids concentration wasébto be
13% in 2011-12 and 23% in the 2012-13 campaignnvE€csely, during our 2010-2011 sampling campaign
at MZS, which is located near the marine aeroseicsn we found that only 2% of the total free amaoal

concentration was present in the coarse fraction.”

Per Referee #3 Comment: Please add the Kristensoha. 2010 article you reference in your response,
but not the others. This is the most directly apptable and circumvents some of the contentious
comments from previous referees.

We agree with the referee 3 and the editor and deed this sentence: “Recently Kristensoon et 2010)
investigated the ability of some amino acids (glgcine or leucine) to act as cloud condensatiocleiu
(CCN), they found that particles containing amirzida at “atmospherically relevant mixture ratioste
good CCN.”

Line 118: In response to a referee you changed ad to say that your “aim is to study aerosol partite
formation and growth in Antarctica”. This seems ove-reaching, since you don'’t actually measure this
process. The concentrations of amino acids might ntribute to these processes, but you would have to
scale back the goal sentence appropriately, e.g. t@aim is to study concentrations of airborne amino
acids, which may be related to aerosol growth in Aarctica in some circumstances.”

We agree with the editor and we changed the seases suggested.

Additional Minor comments:

Abstract, Line 37: May be better to consider usingsomething like the terminology “found in higher
concentration” rather than enriched, which may be anbiguous here.

As suggested, we modified as follows: “The aereaaiples collected at Dome C had the lowest amiitb ac
values (0.7 and 0.8 pmol¥nand the coarse particles were found to have éiigtoncentrations of amino
acids compared to the coastal site. .”

Page 10 — Several places you write “errors %" or guething similar, but these should all be
streamlined to be “percent error”. Look through and change to be consistent and accurate.

We have changed “error %" and other similar phraseish “percent error.
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Page 12, Paragraph starting Line 280 — It was uncie to me where the samples were taken. Were
these water samples?

We have clarified the type of samples (aerosol seshpollected above the Oceans and in the Artdittiom.

You can read: “The mean total concentration of feesino acids determined in this study was verylami

to those found in the literature for marine aer@ssa@h remote areas. Matsumoto and Uematsu (2005)
reported a mean free amino acid concentration of7 J8mol m-3 in aerosol samples above the Pacific
Ocean, while Gorzelska and Galloway (1990) and \&ednd Preston (2008) observed means of 3 pmol m-
3 and 20 pmol m-3 respectively in the Atlantic Qce&calabrin et al. (2012) determined a mean
concentration of 2.8 pmol m-3 using the same a¢mmmpling method reported here at an Arctic cohasta

station.”

Line 384 — “aerosols mass” should be “aerosol mass”

We modified “aerosols mass” with “aerosol mass”.
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Abstract

To investigate the impact of marine aerosols omglalimate change it is important to study their
chemical composition and size distribution. Amiroida are a component of the organic nitrogen in
aerosols and particles containing amino acids baea found to be efficient ice nuclei.

The main aim of this study was to investigate thahd D- free amino acid composition as possible
tracers of primary biological production in Antacctaerosols from three different areas: two
continental bases, Mario Zucchelli Station (MZS)tba coast of the Ross Sea, Concordia Station at
Dome C on the Antarctic Plateau, and the Southar@a® near the Antarctic continent. Studying
the size distribution of amino acids in aerosolsveéd us to characterize this component of the
water-soluble organic carbon (WSOC) in marine a@sosear their source and after long-range
transport. The presence of only free L- amino awidsur samples is indicative of the prevalence of
phytoplanktonic material. Sampling at these threiats allowed us to study the reactivity of these
compounds during long-range transport.

The mean total amino acid concentration detectddZ8 was 11 pmol M, a higher percentage of

amino acids were found in the fine fraction. Theoael samples collected at Dome C had the

lowest amino acid values (0.7 and 0.8 pmd) @ndthe coarse particles were foutwihave higher _ - ‘[Eliminato: and amino acids were found}n

”””””””””””””””””””” higher concentrationinand

concentrations ofmino acids compared to the coastal site. The @maid compositiorin_the { Etiminato: to be enriched with )

aerosol collected at Domehad also changetbmpared to the coastal siseiggesting that physical

and chemical transformations had occurred during lange transport.
During the sampling cruise on the R/V Italica oa Southern Ocean, high concentrations of amino
acids were found in the total suspended partidieis, we attribute to the presence of intact

biological material (as microorganisms or plantenat) in the sample.
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1. Introduction

The organic composition of marine aerosols is paldily interesting as it contributes a substantial
portion of theworld-wide aerosol mass, especially in the submicron sizgifna (Bigg, 2007). The

study of marine aerosols is of interest as anythhmg can change their size, composition or
concentration in the atmosphere may have an impadhe Earth’s climate, since as noted by
O’Dowd et al., (2004) “Marine aerosol contributdgnificantly to the global aerosol load and

consequently has an important impact on both ththiSaalbedo and climate”. This is because, the

sources on a global scale (O'Dowd and De Leeuwy 2B8naldi et al. 2010). Several studies
(Facchini et al., 2008a,b; Rinaldi et al., 2010Véhnademonstrated that the organic chemical
composition of marine aerosols depends on a cortibmaf different factors, such as primary
emission via bubble bursting and the subsequensfwemation into secondary aerosol. During the
primary emissiorvia bubble bursting processes, the presence of phytktola can further alter the
organic chemical composition and physical propegtf marine aerosols (Kuznetsova et al., 2005).
The organic fraction of marine aerosols containtewsoluble organic compounds (WSOC), which
include numerous species of organic acids, amtad®onyl compounds and amino acids (Saxena
and Hildemann, 1996). Amino acids are ubiquitoumpounds, and are an active component of the
organic nitrogen content of aerosols because sdntkeem have been shown to enhance the ice

nucleating ability of atmospheric particles (Szyrraad Zawadzki, 1997Recently Kristensoon et

al., (2010) investigated the ability of someamimida (e.g. glycine or leucine) to act as cloud

condensation nuclei (CCN), they found that parsiatentaining amino acids at “atmospherically

relevant mixture ratios” are good CCRhese compounds can also serve as a source ntsitior

marine ecosystengieto their high bioavailability (Zhang et al., 2002) __— { Eliminato: thanks

A large number of studies have confirmed the preserf amino acids in the condensed phase of

aerosols (Gorzelska and Galloway, 1990; Spitzy,019dilne and Zika, 1993; Saxena and
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Hildemann, 1996; Zhang et al.,, 2002; Zhang and fasés, 2003; Mandalakis et al., 2010;
Mandalakis et al., 2011; Ge et al., 2011 and ifsremces), in rainwater (Mopper and Zika, 1987;
Mace et al., 2003a,b), fog (Zhang and Anastasif1p0and in dew water (Scheller, 2001). They
can be present as dissolved combined amino acidte{jps and peptides) (Kuznetsova et al., 2005;
Ge et al.,, 2011), dissolved free amino acids frdme hydrolysis of the combined amino
acids(Mopper and Zika 1987; Milne and Zika, 1998)d particulate amino acids (from solid
microorganisms and debris particles inside thddiqerosol phase) (Kuznetsova et al., 2005).
Several emission sources can affect not only tta ¢oncentration of dissolved free amino acids in
the atmosphere, but also the amino acid compositiothe aerosol. Amino acids have been
detected in volcanic emissions (Mukhin et al., 1938alabrin et al., 2012), biomass burning has
also been suggested as a possible source of agig®as part of the WSOC content (Mace et al.,
2003a; Chan et al., 2005). The different amino saéaaind in continental particles are thought to
have been originally produced by plants, pollend alyae, as well as fungi and bacterial spores
(Milne and Zika, 1993; Scheller, 2001; Zhang andgtasio, 2003; Mace et al., 2003a) and can be
found in high concentrations in soil and desert.dlise continental contribution was evaluated by
Mace et al. (2003b), who found that biogenic an@oimls were present in the fine particles and that
coarse particles contained amino acids from maamthropogenic sources. The anthropogenic
sources currently identified are tobacco smoke éBGal., 2011), incinerators, waste collection
centers and sewage treatment plants (Leach et989). Zhang and Anastasio (2002) identified
livestock farming as the main source of amino amidthine in Californian aerosols. Matsumoto
and Uematsu (2005) describe how long-range trahspfrences the concentration of amino acids
in the North Pacific Ocean, while an evident marsoeirce was verified by Weydan and Preston
(2008) in the South Atlantic Ocean. Several studtigestigated the free dissolved amino acids in
marine aerosols (Gorzelska and Galloway, 1990; Mit@aet al., 1998; Mace et al., 2003;
Matsumoto and Uematsu, 2005; Kuznetsova et al5;20@dyan and Preston; 2008; Mandalakis et

al., 2011) but few studies have been conducteldrpblar regions. Schmale et al. (2013) conducted
9



257 a complete study on the characterization of Sulaftit marine aerosols and they identified
258  hatching penguins as a source of amino acids iad¢hesol of Bird Island in the Southern Atlantic
259 Ocean. To our knowledge, this paper is the firsineestigate the different compositions and
260 particle-size distributions of amino acids in Awtér aerosols.

261  Chirality is an important feature of amino acidsdahe homochirality of life on Earth occurs
262 because L-amino acids are the only enantiomers dseidg the biosynthesis of proteins and
263  peptides (Cronin and Pizzarello, 1997). The priacipiochemical source of D-amino acids are
264  peptidoglycans, the main structural components axdtdrial cell walls (Voet and Voet, 1999).
265 Chiral information can be useful in revealing themary and secondary origins of aerosol
266 components as demonstrated by several recent stKieznetsova et al, 2005; Wedyan and
267 Preston, 2008; Noziére et al., 2011; Gonzalez et2@l11; Gonzalez et al., 2014). Amino acid
268  enantiomeric ratios can be powerful markers foratt@rizing nitrogenous materials (McCarthy et
269 al., 1998). Kuznetsova et al. (2005) indicated that relative enrichment in L-amino acids may
270 result from planktonic particles that concentratettee sea surface while D-enantiomers come
271 predominantly from bacteria (Wedyan and Presto8820Therefore the presence of free D-isomers
272 isindicative of a larger proportion of bacteriaaierosols (Wedyan and Preston, 2008).

273 The aims of this study are to investigate the aerwe and concentration levels of dissolved free L-
274  and D-amino acids in the Antarctic aerosols, tedeine how these compounds produced from the
275  seawater surface are distributed in size-segregageasols, and to study their compositional and
276  distribution changes after long-range atmosphegitsport.

277  Due to their long distance from anthropogenic aotioental emission sources, polar regions are
278  excellent natural laboratories for conducting stgdbn the behavior, evolution and fate of marine
279 aerosols. In Antarctica, long-range atmospherionspart of anthropogenic pollutants is minimal
280 because the continent is surrounded by the Soutbeean. This means that natural sources are the
281 | main contributors to atmospheric aerosols (Barg&§)08,Bourcier et al., 2010Dur aim is to

282 | study concentrations of airborne amino acids, winigy be related to aerosol growth in Antarctica
10




283 | in_some circumstance®ur investigation was carried out over three défeé Antarctic summer _ - -| Eliminato: Our aim s to study aerosol
”””””””””””””””””””””””””””””””””” particle formation and growth in Antarctici
. . . . . ) . because there is minimal interference frol
284  campaigns, including two consecutive field campsgif011-2012 and 2012-2013) on the Antarctic | confounding anthropogenic sources.. 1
1

285 plateau at the Italian-French base of Concordiad®tgdDC). One sampling period (2010-2011) was
286  carried out at the Italian coastal base MZS andllfinaerosols were sampled from the R/V ltalica

287  on the Southern Ocean, between Antarctica and Neakadd (2012).

288 2. Experimental section

289 2.1 Sample collection

290 Aerosol sampling was carried out over three differ&ntarctic expeditions during the austral
291  summer period, in the framework of the “Progettiaale di Ricerche in Antartide” (PNRA).

292 | The sampling sites are shown in Figobtained using Google Earth maps

293  During the first expedition one sampling campaigtiected five aerosol samples from the Italian
294  base MZS from 28November 2010 to 18January 2011. The sampling site was at the Faraglio
295 Camp (74° 42S — 164° 06E), about 3 km south of MZS in Victoria Land. T$ige is a promontory
296 at 57 m asl. It was chosen because it is locatedvialley that is physically separated from themmai
297  station area by a hill, to reduce as much as plessitentual pollution from the research station.

298 During the second expedition four aerosol sampleswollected from the f9December 2011 to
299 28" January 2012 at the Italian-French base Conc@tifion located at Dome C (DC) on the East
300 Antarctic plateau (75° 06’ S — 123° 20’ E), andesewther samples retrieved from the Ross Sea
301 (Antarctica) on the R/V ltalica during the ocearaggric sampling campaign from 13 January to 19
302 February 2012 (Fig 1).

303 In the third expedition, five aerosol samples waltained from 07 December 2012 to 3&January
304 2013 at Dome C. The sampling site at Dome C dubioily expeditions was located about 1 km
305 south-west of the Concordia Station buildings, uplvof the dominant wind direction (from the

306 south-west). Aerosol samples from the terrestriedels (MZS and DC) were collected using a TE-

11
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6070, PM10 high-volume air sampler (average flo2dIn? min™) equipped with a Model TE-235
five-stage high-volume cascade impactor (Tisch Emvhental Inc.) fitted with a high-volume
back-up filter (quartz fiber filter Media 8” x 109nd a 5.625" x 5.375" slotted quartz fiber filter
collecting particle size fractions in the followingnges: 10.0 - 7.2 um, 7.2 — 3.0 um, 3.0 — 1.5 pum,
1.5- 0.95 um, 0.95 - 0.49 um, < 0.49 um. The sangpderiod for each sample was 10 days, for a

total air volume of ~15,000 fiper sample.

(SKC Inc., Eighty Four, To-13 model) using a TE 60Bligh Volume Air Sampler (Tisch
Environmental Inc.) to determine the TSP (totapsumsled particulate) fraction, defined as particles
with a diameter >1um. To avoid contamination frohe tship’s exhaust, air samples were
automatically taken under wind sector control. Baenpler was located at the bow and sampling
only took place when the wind came from betweerb21® 135° relative to the bow and ship
direction and when the relative wind speed was >4'ifihe sample collection was set to five days,
but the actual sampling time varied, subject todnvgector and speed control aswell as cruise
events. Due to these events the actual aerosollisgmplumes varied from between 511 and 2156
m>. The sea voyage track chart is reported in Fig. 1.

All filters were pre-combusted (4 h at 400°C in affte furnace),to avoid contamination they were
wrapped in two aluminum foils, after sampling thvegre re-wrapped in clean double aluminum foil
and were stored at —20°C prior to analysis. Fidgdahkb samples were collected by loading, carrying

and installing the filter holder into the instrunievith the air pump closed.
2.2 Sample processing

To avoid contamination from laboratory air part&cknd from the operator, samples were handled
under a clean laminar flow bench (class 100). Theegmalytical and sample extraction protocol has

been previously described in detail by Zangrandal€2013) for other compounds. The same

12
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protocol is summarized below and was applied toideatification of amino acids in Antarctic
samples.

Each quartz fiber filter was cut in half using stess steel scissors that were previously washed
with methanol. Filters were broken into small peeeing clean tweezers, and were placed into
50mL conical flasks. Slotted quartz fiber filtédrem the cascade impactor and circular quartz fibe
filters from the TSP samplers were treated in raesway. They were spiked with 100 pL'3E
isotopically-labelled amino acid standard soluigwith concentrations ranging between 2 and 3
pg mLY), they were then ultrasonically extracted twice 6 minutes in an ice bath with 5 mL and
then 2 mL of ultrapure water. The extracts were lmioed and filtered through a 0.45 um PTFE
filter in order to remove particulate and filteades before instrumental analysis.

The larger high volume back-up filters were spikéth 400 pL of internal standard solution and
were extracted with 25 mL then 5 mL of ultrapuretevan an ultrasonic ice bath as described

above.

2.3 Instrumental analysis

The enantiomeric determination of free L- and D+aomacids by HPLC-MS/MS has been described
in detail by Barbaro et al. (2014). This instrunaémbethod has been applied to the aqueous extracts
of the aerosol samples collected during this study.

An Agilent 1100 Series HPLC Systems (Waldbronn, n@ery; with a binary pump, vacuum
degasser, autosampler) was coupled with an APl 4D@fle Quadrupole Mass Spectrometer
(Applied Biosystem/MSD SCIEX, Concord, Ontario, @da) using a TurboV electrospray source
that operated in positive mode by multiple reactimmitoring (MRM).

Chromatographic separation was performed usingla 250 mm CHIROBIOTIC TAG column
(Advanced Separation Technologies Inc, USA) wittwa mobile eluents. Eluent A is ultrapure

water with 0.1% v/v formic acid and eluent B isralpure methanol with 0.1% v/v formic acid.

13
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A binary gradient elution program was followed aflew rate of 0.2 mL miff: 0-15 min, an
isocratic step with 30% of eluent B; 15-20 min, rdient from 30 to 100% B; 20-25 min an
isocratic washing step with 100% of eluent B; 278, re-equilibration to30% eluent B. The
injection volume was 10 pL.

In this work the amino acids were quantified usithg isotope dilution method where an
isotopically labeled standard was available. Ftyentamino acids, where a labeled standard was
unavailable, an internal standard was used to dyahé analytes. A detailed description of which
analytes are quantified with which method can henébin Barbaro et al. (2014). In both cases, the
results were corrected for daily instrumental @i variations by evaluating the instrumental
response factors.

Reagents and materials used for this study aretegpm the Supplement.

2.4 Quality control

The entire analytical procedure was validated biyregion of trueness, repeatability and efficiency
(vield%) of the sample treatment process as demstiity Bliesner (2006). To ensure that it was fit
for purpose for the enantiomeric determination mire acids in Antarctic aerosol, the validation
was carried out by spiking five cleaned quartzfdt (for each type of filter) with 100 pL of a
solution containing all the native L and D amindadagwith concentrations ranging between 2 and
4 pg mLY) and 100 pL of a solution containing all the igmtally-labeled®C amino acids
(concentrations ranging between 2 and 3 pg*miThe filters were subsequently extracted as
described above in section 2.2 “Sample processing”.

Tables S1, S2 and S3 report a summary of the yidldeness and relative standard deviations
(n=5) for each type of filter used in this studyefage yields of 61%, 56% and 56% were obtained
from the circular, slotted and backup filters, edjvely. In some cases, these values are lowar tha
those reported in the literature (Mandalakis et2010; Barbaro et al., 2011).Trueness is the most

important parameter to determine during a methdidatéon; it refers to the degree of closeness of
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the determined value to the known "true" valués léxpressed as an error, calculated as (Q -T)/T
x100, where Q is the determined value and T iSttoe value".
For the circular filters, all D- and L-amino acidsnsidered in this work were validated with an

error percentage ranging from -13% (D-Leu/D-lle)88&6 (L-Tyr).

compounds were excluded from the quantificatione ©ther amino acids considered in this study
were quantified with an accuracy ranging from-9%\et) to+9% (D-Ala, L-Thr).

Some amino acids (D-Ala, L-Asn, D-Asn, D-Glu, D-PheSer, D-Ser, and D-Val) were excluded

from the quantification using the slotted quartkefi filters as very higtpercent errorgvere - -{ Eliminato: error percentages

calculated. We believe that this behavior is prdpatue to the different mode of use of this

sampling support: the slotted quartz fiber filtevere used as impact supports while the other

between -13% (D-Tyr) and +13% (D-Leu/D-lle) andthe method was fit for purpose for their
quantification.

The repeatability is determined as the relativedaiad deviation of the analytical results for the 5
spiked filters. For each type of filter used irstbtudy, the repeatability was always below 10%.
The method detection limit (MDL) for the analyticatocedure is defined as three times the
standard deviation of the average values of thd béank (n=3). Tables S1, S2 and S3 report the

relative MDLs for each quantified amino acid in theee different sampling supports, the absolute

the following sections below are based upon blarkected values.
A comparison between previously published data l{8ar et al.,2011; Matsumoto and Uematsu,
2005) and the MDLs obtained for each type of filterthis work shows that we obtained lower

blank values than those previously reported.

2.5 Back-trajectory calculation and satellite imagey
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Backward air trajectories arriving at MZS, Dome 1@l &/V Italica were computed using a Hybrid
Single Particle Lagrangian Integrated TrajectoryY@PLIT) transport and dispersion models
(Draxler and Rolph, 2013). The meteorological dated for computing all the backward
trajectories were the NCEP/NCAR Global Reanalys&aD For MZS data, a vertical velocity
model was used while an isoentropic model was eyepldor the analysis of DC air masses, as
suggested by Stohl et al (2010).

240 hoursof back-trajectories beginning at MZS and DC were wated for each sampling
campaign period. Four runs were computed for egampling day at six hour intervals and the
resulting multiple trajectories were “mean-clusteeggregated” into 6 groups, based on the scree-
plot analyses of total spatial variance.

A sensitivity study has been performed to verife thtability of the HYSPLIT back trajectory
calculations. We calculated the back-trajectoriegitming at 10 m agl (above ground level), 100
m, 500 m and 1000 m at MZS and DC to evaluate Howtiajectories varied with height. The
results are shown in Supplementary Fig. S1-S3aft lse seen that the clusters of simulated air
masses have similar trajectories although withedéfit percentages of the total number of
calculated back trajectories. For this study weduke 500 m back trajectories because we want to
evaluate long range transport. This is becausenttn mixed-layer height is 250—-400 m agl at DC
(Argentini et al., 2005) while the boundary-layeidht is usually below 50 m at the Antarctic coast
(Handorf et al., 1999).

We have also estimated the stability of the HYSPhiddel by varying the position of source at
MZS as well as DC using al21 point matrix builtdziding or subtracting one degree of latitude or
longitude from the real source for each sampling ddese back-trajectories calculated from the
121 simulated sources have the same behavior (Quppt Fig. S4-S6), thus confirming the
stability of the HYSPLIT calculations.

For the oceanographic cruise, trajectory matricesewperformed in order to simulate the ship’s

itinerary. In this case, for each 24-h sampling¢yve-day backward trajectories were computed.
16
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The data related to chlorophyll were obtaingd an Aqua/MODIS NASA satellite continually

orbiting the globe (http://neo.sci.gsfc.nasa.gov/).

3. Results and Discussion

3.1 Free amino acid determination in the coastal &a

Nine L-amino acids (L-Ala, L-Asp, L-Arg, L-Glu, Like, L-Pro, L-Tyr, L-Thr) and Gly had blank
corrected concentrations higher than the MDLs (8mpntary Tables S2 and S3), while all D-
amino acids had values below the MDLs, probably ua negligible presence of bacteria in the
aerosol source (Kuznetsova et al., 2005; WedyanPRaadton, 2008). The total concentration of
amino acids, calculated as the sum of their si digtributions in all aerosol samples, has a nmedia
value of 5 pmol rif and a mean value of 11 pmolrdue to the higher amino acid concentrations
in the first sample (29 November-9 December), asvshin Fig. 2.

The mean total concentration of free amino aciderdened in this study was very similar to those
found in the literature for marine aerosols in régrareas. Matsumoto and Uematsu (2005) reported

a mean free amino acid concentration of 10.7 pmdimaerosol samples abotle Pacific Ocean,

while Gorzelska and Galloway (1990) and Wedyan Rreston (2008) observed means of 3 pmol
m2and 20 pmol ni respectively in the Atlantic Ocean. Scalabrin le{2012)determined a mean

concentration of 2.8 pmol fhusing the sameaerosolsampling method reported here at an Arctic

coastal station.

Higher mean concentrations of amino acids wereddarthe Mediterranean. Barbaro et al. (2011)
determined a mean value of 334 pmof rin the Venice Lagoon (ltaly); Mandalakis et al.
(2010,2011) found 166 pmol Tnand 172 pmol i in two studies in the Eastern Mediterranean
around Greece, respectively. In the Southern hdmaigp Mace et al. (2003b) performed several
studies on the coast of Tasmania (Australia), amchd mean free total amino acid concentrations

that ranged from between 15 and 160 pmdl m
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In this work, we found that the predominant commsinwere Gly and Arg, which together
constituted 66-85% of the total amino acid cont&ly. and Arg had different proportions in the
five samples, and the other compounds were présesimilar proportions in all the samples, with
average percentages of 9% for Glu, 7% for Ala, %Thr, 4% for Asp, 2% for Val while 1% for
other amino acids (Phe, Tyr and Pro). In Fig.2it be seen that the first sample collected between
29 November and 09 December had a high proportiolrg (74%), compared to Gly (11%). In
contrast to this, in the other samples, Gly was ghedominant compound, with a percentage
between 48 to 56%, while Arg was present as18%efdtal.

Scheller (2001) demonstrated that high quantitfe&rg were closely linked with plant growth, but
the cluster means backward trajectories (Fig. Rutated for our samples show that 1% of the air
masses come from open-ocean areas whilst the pajor(99%) principally come from the interior
of theAntarctic continent, areas that are charextdrby alack of vegetation. This suggests that the
local marine influence was probably the main sowfc@mino acids in the aerosol collected at MZS
and that the concentration of coastal atmosphenin@ acids is probably linked to local primary
production in the Ross Sea, as suggested by stidiether areas (Meskhidze and Nenes, 2006;
Vignati et al., 2010; Yoon et al., 2007; Mulleradt, 2009). We hypothesize that the main source of
Arg in the aerosols collected at the coastal Atiagtation MZS was probably a diatom bloom as
Arg is involved in their urea cycle (Bromke, 2013)he MODIS data (Fig. 4) show higher
chlorophyll concentrations during the period codeby the first sampling period, while a strong
decrease in the biomass production index was obdem the other sampling times. This
relationship between marine primary production &mg concentration suggests that this amino
acid may have a marine biological origin and that doncentration is closely linked to algae
growth.

Meteorological conditions play an important roleaerosol formation processes. The first sampling
period (29 November-09 December) was charactebyeg@mperatures ranging between -10°C and

-1.5°C, while in the successive sampling periodi® &ir temperature was always above-2°C
18
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(PNRA-ENEA, 2014). Studies conducted on the sedaser microlayer (Grammatika and
Zimmerman, 2001; Knulst et al., 2003)established #ir temperatures<-5°C create surface slurries
which may result in the expulsion of salts and ipatate organic matter. Under such conditions,
near-surface turbulence was increased, leading toaease of material in the microlayer, where
bubble formation and bursting actively contributedthe transport mechanisms. Leck and Bigg
(2005) showed that the main occurrences of finesrformation in the arctic atmosphere were
observed when the ice pack is cracking formingdethdt melt and refreeze. Our first sample was
collected when the pack ice was melting and refnrgezand we did in fact observe the highest
concentration of total amino acids in the fine aets during this period.

The hypothesis of a local marine source for thesws collected at the coastal station MZS was
also confirmed by the distribution of the aminodacin the different particle size fractions. Fig. 2
shows that 98%of the total free amino acids areeggly found in the fine particles (<lum,

combined S5 and B filters). While the remaining &/gvenly distributed over the other coarser

fractions >1 um (filter stages S1 to S4). Our expental datds consistent witlthe observations of _ - -{ Eliminato: supports

O'Dowd et al. (2004) and Keene et al.(2007) whowstb that WSOC in sea spray submicron
particles are mostly associated with the smallés¢ $raction (0.1-0.25 pm). Other authors
(Facchini et al., 2008b; Modini et al., 2010) hatewn that WSOC were present in all aerosol size
fractions and confirm that the greatest enrichnrga in the fine fraction. Our observations are in
line with this literature data as amino acids aaet pf the WSOC family of compounds and so

should have the same behavior in sea spray submenicles.

3.2 The determination of free amino acids at a rente continental area.

Concordia Station at Dome C is an ideal site fadging the chemical composition of remote
Antarctic aerosol. Several studies (Fattori et 2005; Jourdain et al., 2008; Becagli et al., 2012;

Udisti et al., 2012) have investigated the disttitou of inorganic compounds and of a few organic
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molecules (e.g., methanesulfonic acid) in aerobal, the free amino acid concentration and

compositionhadnot yet been studied. __— { Etiminato:

has

Fig. 5 presents the concentrations of free amindsacollected during both field campaigns, and
shows a similarity between the trends and compostiof the analyzed compounds between the
various size fractions. Ten amino acids (L-Ala, tgAL-Asp, L-Glu, L-Leu, Gly, L-Phe, L-Thr, L-
Tyr, L-Val) had concentrations above MDLs (Suppletaey Tables S2 and S3) in all samples
collected in both field campaigns. The concentretiof D-amino acids were always below MDLs,
as seen in our coastal results. It was observed@ha L-Asp and L-Ala together accounted for
about 80% of the total amino acid content. Theltot@an free amino acid concentrations, as the
sum of the free amino acid concentrations in &lsample stages , were 0.8 pmélfor the 2011-
2012 campaign and 0.7 pmol*for2012-2013 campaign (Fig. 5). To our knowleddmse mean
concentrations areas are lower than those reportin literature (Gorzelska and Galloway, 1990;
Milne and Zika, 1993; Mace et al., 2003b; Kuznetset al., 2005; Matsumoto and Uematsu, 2005;
Wedyan and Preston, 2008; Mandalakis et al., 2B&agharo et al., 2011; Mandalakis et al., 2011;
Scalabrin et al., 2012), suggesting that this agrmemposition may describe the amino acid global
background concentration .

In Fig. 5B, the sample collected from 27 Decemhb@t22to 06 January 2013 shows an altered

concentration profile, with the highest concentnasi in one of the coarse fractions(S4 stage 1.5-

summer campaigns, we believe that these samples w@mtaminated by human activity at

Concordia station (Supplementary Fig. S7).

/{ Spostato (inserimento) [1]

)/ { Eliminato:
y

of aerosol

The meartoncentratios of free amino acids in the coaraerosabarticle

Ao e A L

r the /Zﬁ/// {Eliminato:

had mean

p { Eliminato:

values of

two field campaignsvere 407 and 421fmol M (see Fig. 5)At our coastakite, themean free,i:/,{enminato:

for the two field campaigns

NS <
N ‘[ Eliminato:

,while

amino acids concentratiQin the coarse fraction wag4 fmol n® (Fig. 2). At DC, the free aming \{E"minam

: data had a

R~
N

" | Eliminato:
N \\[

of

acid concentration in the coarse aerosol, expressedfraction percent of thetal free amino acids

{ Eliminato:

The aerosols collected a

)
J
)
J
)
)
J
)
J

20



552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

concentrationwas found to be 13% in 2011-12 and 23% in the 2@ Zampaign. Conversely,

during our 2010-2011 sampling campaign at MZS, Wisclocated near the marine aerosol source,

we found that only 2% of the total free amino agdhcentration was present in the coarse fragtion.-

aerosols produced on the ocean’s surface can hspteted through the upper troposphere to\\the

Antarctic plateawhere they are easily mixed down to the surfacef@gham and Zoller, 1981).\\\

\ \

Eliminato: were characterized by a
prevalence of free amino acids in the fine
fraction, witha notable increase of amino
acids percentage (related to the total ami
acids concentration detected in the
PM;caerosol samples) enrichment of ami
acids in the coarse particles (13% of the
total in 2011-12 and 23% of the total in

2012-13 campaigns) compared to coastal

aerosol. In fact, during our 2010-2011
sampling campaign at MZS, which is
located near the marine aerosol source,

observed only 2% of total free amino acids

in the coarse particles.

There are alsp transfer mechanisms from the lowatosphere to the upper troposphere that ocour

\

near the coast of the Antarctic continent. Aerdsoin different sources mixes into the upp\er\
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troposphere, and this air descends uniformly dverAntarctic plateau due to surface cooling flows'
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off the plateau causing the katabatic wind. Thisunsthatduring the summer, there is a continuous',|

Eliminato: The most likely explanation
for this enrichment of amino acids in the

coarse fraction, is that the fine fraction has

no
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been subjected to processes that increased

the particle size of the aerosol. The most
likely process is ice nucleation during
long-range transport promoted by
theintense cold over the plateau and
presence of amino acids in the aerosol
particles (Szyrmer and Zawadzki, 1997).
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long range transport (Cunningham and Zoller, 19&HiSand Sodemann, 2010).

Cluster means backward trajectories analysis ofttedl samples collected during both summer

campaignsat DC revealed a prominent marine source (Fig. Bl. 3 shows that the 10-days

backward trajectories came from the Southern Ogelaere there are no land based man made- Eliminato: without influences by
””””””””””””””””” anthropized inland
influences ——
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Antarctic continent. Aerosol from differen
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transport (Cunningham and Zoller,
1981;Stohl and Sodemann, 2010).
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(Matsumoto and Ueamatsu, 2005), or from soil destrge mode particles (Mace et al., 2003).

Particles and their chemical constituents can tréwe many weeks in the upper troposphere

without being lost provided they are not subject to wet depositionthat the compounds are

reacting in the aerosol phase. The second hypstlie$hat amino acids hada marine sowand

that these

theseaerosolsunderwentseveral physico-chemicakransformationsduring long-range transport. - '{Eliminato: the transformationmechanisrj\s

Our results suggest that amino acids were presetid fine particles over the surface of the [ Efiminato: undergo

Southern Ocean from bubble bursting processesaifhirasses subsequently passed into the upper

troposphere and then over the continent where theyained for several days before descending

(coagulation) (Petzold and Karcher, 2012;Roigerakt 2012). Howeverthese processes a[e/‘[Eliminato: this is ]

unlikely in Antarctica due to the very clean coradis. The most likely explanation is that the fine - ‘{Eliminato: for this increase of percenta%e
””””” of amino acids in the coarse fraction,

fraction has been subjected dther processes that increased the particle size of éhgsal. The

most likelyremainingprocess is ice nucleation during long-range trarigmomoted by théentense

cold over the plateau and presence of amino anidlsei aerosol particles (Szyrmer and Zawadzki,,{E“minatm this enrichment ]
7 /{ Eliminato: s ]
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/| Spostato in su [1]: The concentration
clear, based on the available data. In our future ingasitns, we will also evaluate the aerpsol /| of free amino acids in the coarse particles of
~ /| aerosols collected at DC had meanvalues of
/1| 407 and 421fmol f(see Fig. 5) for the
mass, which is probably a key parameter to meathae will help explain thigncrease of | | twofield campaigns, while our coastal data
******** d had a mean free amino acids concentration
/ of 264 fmol n? (Fig. 2). The aerosols
concentration in the coarse partlcles // collected at DC were characterized by a
/ prevalence of free amino acids in the fine|
/ fraction, witha notable enrichmentof aminp
acids in the coarse particles (13% of the
e total in 2011-12 and 23% of the total in
2012—13_) compared to coastal ae_rosol. In
The chemical composition of aerosols may changeingulong-range transport due to | fact during our 2010-2011 sampling
campaign at MZS, which is located near the
aerosol source,we _obs_erved only 2% of
photochemical, chemical and ionic reactions (Mitmel Zika, 1993; Noziére and Cordova, 2008; | total free amino acids in the coarse
particles.The most likely explanation for
this enrichment of amino acids in the coafse
De Haan et al., 2009). Milne and Zika (1993)vedfifiat amino acids are destroyedreactions fraction, is that the fine fraction has been
subjected to processes that increased the
particle size of the aerosol. The most likely
with photochemically formed oxidants such as hygitamdicals, to form products such as the | processis ice nucleation during long-range
transportpromoted by theintense cold over
the plateau and presence of amino acidsin

ammonium ion, amides and keto-acids. However, éenujpper atmosphere, the chemical processes g]:wg;;o'lggf;i)c'es (Szyrmer and
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take place at slower rates than in the boundargrigRoiger et al., 2012). In aqueous-phase
aerosols, glyoxal can react with amino acids, legdb scavenging processes (De Haan et al.,
2009). Recent studies on organic aerosol growthham@sms (Maria et al., 2004) underlined that
oxidation processes that remove hydrophobic orgamicpounds, are slower in large carbonaceous
aerosols.

From the physicochemical proprieties of amino ac@s‘hydropathy” index can be made, as
suggested by Pommie et al. (2004). This classifiesamino acids as hydrophilic (Asp, Hyp, Glu,
Asn, Lys, GIn, Arg), hydrophobic (Ala, Val, LeugllMet, Phe) or neutral (Gly, Pro, Ser, Thr, Tyr,
Hys). This helps in evaluating the contributionezfch kind of amino to each class of aerosols
collected over the three different field campaighig. 6 shows that the hydrophilic components
were predominant in the locally produced marin@sels released into the atmosphere near MZS,
while hydrophobic compounds were dominant in theosas collected at the continental station
(DC). The low abundance of hydrophobic amino adidsoastal aerosols was also observed by
Mandalakis et al. (2011), and is probably causethbiy lower tendency to dissolve in the aqueous
particles contained in coastal aerosols. This ifleagon allows us to hypothesize that a higher
proportion of hydrophilic amino acids reflects glnér water content in the aerosol.

A comparison between the concentrations of hydrbjgzhéla at the two sampling sites(MZS and
DC) shows a very similar average concentrationf(i6l m?) in the coarse particles. This is an
interesting behavior that confirms the hypothegiinsited atmospheric reactivity as proposed by
Maria et al. (2004),who suggested a longer hydrbjgheerosol lifetime as a result of the slower ;’J‘
oxidation rates. Thanks to this phenomenon, Alai@antly contributes to the amino acid content‘j““
in these “remote aerosols” as it does not degradegilong range transport. |
Fig. 6 shows that the main difference between e campaigns is mainly in the percentage ‘j‘“‘of

I

hydrophilic and neutral amino acids presgitlonger transportation time from the source to;“the

N

decreasing the concentration of hydrophilic amicidsathus modifying the composition so that the
23

Spostato in su [3]: Fig. 5 shows that
the concentration of amino acids for the
2011-2012 summer Antarctic campaign
higher than the values reported for the
2012-2013 Antarctic campaign, and
underlines that the main difference betwel
the two campaignsis mainlyin the
percentages of hydrophilic and neutral
amino acids present. We suggest that the
transport processes of the air
masseswerethe main cause of these
variationsasthe time spent inland by the g

as

en

ir

masses in the 2011-2012 summer was about

36 hours (Fig. 3) whilstin 2012-2013 the
time range was between 4 and 7 days (F
3).

Eliminato: (in 2012-2013 summers the
time spent inland by the air masses was
ranged between 4 and 7 days while in the
2011-2012 it was 36 hours)
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more stable Gly (a neutral component) becomes taie mompound (Fig. 6)n the 2012-2013

summer, the time spent inland by the air massegethfrom between 4 and 7 days whist in the

2011-2012 summer it was only 36 hours.

Looking at the acid-base proprieties of the amicidss some differences can be observed between
two different types of aerosol. As described abdve predominant amino acid in the MZS aerosols
was Arg, which contributed considerably to the patage of basic compounds (53%). The pH
neutral components represented an important pegeni0% and 68% for coastal and inland
aerosols respectively). Gly is mainly present ngdéaquantities in these aerosols because of its ver
low atmospheric reactivity (half life of 19 day$j¢Gregor and Anastasio, 2001) and its presence is

usually considered an indicator of long-range adrtransport (Milne and Zika, 1993; Barbaro et

the two different stations: with a low percentagehe coastal samples at MZS (7%) that was in
contrast with the higher content in the aerosasnfiDC (33% and 26% respectively for the two
consecutive field campaigns). This result can haaéed by a study conducted by Fattori et al.
(2005) on the DC aerosol, where high acid contextt fsund. High concentrations of hydrochloric,
nitric and sulfuric acids were found in the aerdswo fraction, promoting numerous series of acid-
base atmospheric reactions that neutralize the lobasapounds. In the atmosphere, amino acids are
present in very low quantities so it is thoughtttti®ey do not influence the pH of aerosols.

However, the pH of aerosols, can influence the é¢balinform of the amino acids present.

3.3 Free amino acids during an oceanographic cruise

Measurements of free amino acids were carried nuerosol samples collected on the Southern
Ocean onboard the R/V ltalica from 13th Januar{Qth February 2012. Aerosols were sampled
using a TSP sampler that collects particles wittisaneter above 1 pum. The first and second
samples covered the track between New Zealand (frgttelton harbor) and MZS (Antarctica),

and the sixth and last samples were collected guhe return journey between Antarctica and New
24
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Zealand. Samples 3, 4 and 5 were collected on tss Bea near the Antarctic continent (Fig. 1).
Five L-amino acids (L-Asp, L-Arg, L-Glu, L-Phe, Lr® and Gly were present in the samples,
while other L- and D-amino acids had concentratioel®w MDLs (Supplementary Table S1). The
total concentrations of free amino acids varieavieen 2 and 12 pmol th

The first and last samples had the highest coratonis of free amino acids (Fig. 7), and their
relative sampling periods were characterized byptmatures ranging between -1°C and 18°C
(sample 1), in contrast, temperatures during theameing sampling periods were always below -
1°C, with a lowest value of -8°C (sample 4). Higtemperatures can facilitate metabolic processes
and accelerate atmospheric chemical reactions,edisaw promote bubble bursting from the sea
surface. This is probably the main source of amacms in our on-ship samples. This is also
supported by the back-trajectory analysis (Suppfgarg Fig. S8a-g), that demonstrate only a
marine influence for that period. The concentrattbramino acids was strongly influenced by sea
conditions during sampling. The field report (Ragpaulla campagna Antartica, 2012), noted that
during navigation from New Zealand to the ice-peadion, the winds were always above 30 knots,
with maximum values of 60 knots with wave heightg@bfmeters. This probably explains the higher
total concentration of free amino acids in thetfiveo samples (12 pmol . Along the same track,
but under calmer sea conditions (sample 7), wergede slight reduction in the total concentration
of free amino acids (8 pmol M These values were very similar to those repobied/atsumoto
and Uematsu (2005) in the Pacific Ocean and toetheported by Gorzelska and Galloway
(1990)and Wedyan and Preston (2008) in the AtlaBean. The lowest concentrations were
observed in samples 2 and 6, probably due to ttteHat they were collected far from Oceania and
from the Antarctic coast, in an area characterkageéxpansive pack ice and by temperatures below
-1°C, where the bubble bursting process was reduced

The samples collected near the Antarctic coast{gzs8,4 and 5) were the most interesting ones
because the results could be compared with thecatid values detected in the coastal station

MZS. The mean total concentration in the sampléeated on the Ross Sea was 3.5 pmd, m
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about half of the values detected in our Southecea® samples. Such values are similar to the
concentrations observed in the aerosols collectédZs station (median 5 pmol H However,

this is not a true comparison: for the sampling gaign at MZS, a cascade impactor was used to
collect aerosol samples with a particle-size beldvum, whereas the data collected during the
cruise was for aerosols with a particle diametevahl um. However, if we exclude data from the
back-up and the fifth slotted filters, the cascadmpler covers a particle size between 0.95 um and
10 um (stages 1 to 4), making a comparison betweetwo data sets more feasible. In the MZS
aerosols, the median value of the amino acids cdraten in the aerosols collected on stages 1 to
4 was 1 pmol i and this concentration was lower than that measir¢he cruise’s aerosols (3.5
pmol m3). So we suspect that the aerosols with a dianzdteve 10 pm, that were collected with
theTSP sampler but not the cascade impactor, dmilthe main source of the difference in amino
acid concentration values in the samples collestethe R/V ltalica.

The back-trajectory analysis (Supplementary FigC-&3 demonstrated that the air masses came
from inland Antarctica, where no vegetation is prégs The biological material present in the
atmosphere with a size > 10 um includes pollenchvhyjpically vary between 17-58 um, fungal
spores between 1-30 um, and algal spores betwed2Qpim. Instead bacteria have a diameter
between 0.25-8 um, and viruses have diametersatteatypically less than 0.3 um (Jones and
Harrison, 2004). For this reason, we propose thet biological materials influenced the
concentration of the total free amino acids inghipboard aerosols.

In these samples, the presence of algal sporesalsasconfirmed by the detection of Pro at 4%
(mean value) of the total concentration of aminmscFisher et al. (2004) measured the relevant
concentration of Pro in ascospores, demonstratiagthis amino acid can be used to identify the
presence of spores in aerosols. In the MZS aerad@gpresence of spores could not be evaluated
because the sampler did not sample the particl8gml This is probably the reason why the Pro

concentration was always below MDLs at MZS.
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Asp was detected in only one sample (sample 5, avitoncentration of 502 fmolmThis value is
very similar to those measured in the two field pamgns on the Antarctic plateau (DC),
considering only the slotted filter stages aboveni (446 e 382 fmol i respectively for the |
summer field campaigns of 2011-12 and 2012-13). Baek-trajectory analysis (Supplementary
Fig. SBE) demonstrated that this air mass came fitoenplateau, where aspartic acid was a
predominant component of the amino acid content.

In the aerosols collected during the cruise, thg Aoncentration was very low because the
sampling conducted on board R/V ltalica during twenmer of 2012 excluded fine particles,
whereas Arg was one of the most abundant compoaimslsrved in the coastal station found in the

fine fraction.

4. Conclusions

This first study on the size distribution of amiacids in Antarctica has identified possible sources
of marine aerosols in this region and has charaettisome chemical and physical transformations
that take place during transport to the interiothef Antarctic continent.

Marine emissions of fine particles occurreid bubble bursting processes on the surface of the
Southern Ocean. The mean total amino acid condiemtrdetected at MZS was 11 pmoPnwith a
higher percentage of amino acids found in the fiiaetion. The aerosol samples collected at Dome
C had the lowest amino acid values (0.7 and 0.8 pmi and the coarse particles were found to be
enriched with amino acids compared to the coadal Blumerous chemical and photochemical
events may have contributed to a decrease in theeotration in amino acids in the fine fraction,
and the chemical reactions were faster for hydi@phompounds than for hydrophobic ones, as
suggested by an observed Ala enrichment.

The presence of only the L-enantiomers of free angioids in Antarctic aerosols suggests that

27



844

845

846

847

848

849

850

can be modified when transported to the interiothef continent. Gly and Ala, are the most stable
compounds, and may be used as biogenic markersngfringe marine aerosols. The back-

trajectory analysis demonstrated that the diffeesnm the transport time of air masses inside
Antarctica can result in modifications to the patege of amino acids in the coarse patrticles.

The study of aerosols with diameters>10 pum indat#tat bubble bursting processes can also emit

microorganisms that are composed of a higher nuwibeutral amino acids.
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Figure captions

Figure 1. The sampling sites: the Italian base iM&ucchelli Station” (MZS) (74° 42'S — 164°
06’ E), the Italian-French base “Concordia Statigpome C) ( 75° 06’ S — 123° 20’ E) and the
track chart of the R/V ltalica.

Figure 2. Amino acid size distribution in the saagptollected during the summer of 2010-11 at

Mario Zucchelli Station (Antarctica).

Figure 3. Cluster means backward trajectories aealyat 500 m aglat the coastal base “Mario
Zucchelli Station” (MZS) during the summer of 202011 and cluster means backward trajectories
at the Italian-French base Dome C (DC) during tirarsers of 2011-2012 and 2012-2013.

Figure 4. Distribution of chlorophyll concentrat®nn the Ross Sea for each sampling period
obtained through the Aqua/MODIS NASA satellite.

Figure 5. Size distributions of amino acid concatiins in the samples collected during the
summer of 2011-12 (A) and during the summer of 2032(B) at the Italian French base

“Concordia Station” (Dome C).

Figure 6. Comparison between percentages of hydigpheutral and hydrophobic amino acid

contributions of the aerosols sampled at the Maudcchelli Station and at Dome C.

Figure 7. Amino acid distribution in the aerosolampled on the R/V ltalica during the

oceanographic cruise on the Southern Ocean duregummer of 2012.
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Figure 1. The sampling sites: the Italian base iMaucchelli Station” (MZS) (74° 42’S — 164°
06’ E), the Italian-French base “Concordia Statigpbme C) ( 75° 06" S — 123° 20" E) and the
track chart of the R/V ltalicésource Google Earth)
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Figure 2. Amino acid size distribution in the saegptollected during the summer of 2010-11 at

Mario Zucchelli Station (Antarctica).
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1076  Figure 3.Cluster means backwarrajectories analyses at 500 m agltta¢ coastal base “Mar
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1088 Figure 6. Comparison between percentages of hydimpheutral and hydrophobic amino acid
1089  contributions of the aerosols sampled at the Maucchelli Station and at Dome C.
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1091 Figure 7. Amino acid distribution in the aerosolampled on the R/V lItalica during the

1092  oceanographic cruise on the Southern Ocean durengummer of 2012.
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