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Abstract.  10 

Ambient volatile organic compounds (VOCs) were measured using an online system, gas 11 

chromatography-mass spectrometry/flame ionization detector (GC-MS/FID), in Beijing, China, 12 

before, during and after Asia-Pacific Economic Cooperation (APEC) China 2014, when 13 

stringent air quality control measures were implemented. Positive matrix factorization (PMF) 14 

was applied to identify the major VOC contributing sources and their temporal variations. The 15 

secondary organic aerosols potential (SOAP) approach was used to estimate variations of 16 

precursor source contributions to SOA formation. The average VOC mixing ratios during the 17 

three periods were 86.17, 48.28, and 72.97 ppbv, respectively. The mixing ratios of total VOC 18 

during the control period were reduced by 44%, and the mixing ratios of acetonitrile, 19 

halocarbons, oxygenated VOCs (OVOCs), aromatics, acetylene, alkanes and alkenes decreased 20 

by approximately 65%, 62%, 54%, 53%, 37%, 36%, and 23%, respectively. The mixing ratios 21 

of all measured VOC species decreased during control, and the most affected species were 22 

chlorinated VOCs (chloroethane, 1,1-dichloroethylene, chlorobenzene). PMF analysis 23 

indicated eight major sources of ambient VOCs, and emissions from target control sources were 24 

clearly reduced during the control period. Compared with the values before control, 25 

contributions of vehicular exhaust were most reduced, followed by industrial manufacturing 26 

and solvent utilization. Reductions of these three sources were responsible for 50%, 26%, and 27 

16% of the reductions in ambient VOCs. Contributions of evaporated or liquid gasoline and 28 

industrial chemical feedstock were slightly reduced, and contributions of secondary and long-29 
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lived species were relatively stable. Due to central heating, emissions from fuel combustion 30 

kept on increasing during the whole campaign; because of weak control of liquid petroleum gas 31 

(LPG), the highest emissions of LPG occurred in the control period. Vehicle-related sources 32 

were the most important precursor sources likely responsible for the reduction in SOA 33 

formation during this campaign.  34 

 35 

1 Introduction 36 

Beijing, the capital of China, is one of the megacities in the world, with a population of more 37 

than 20 million and a vehicle fleet of more than 5 million (Beijing Statistical Yearbook, 2014). 38 

High levels of coal consumption, thousands of active construction sites, and rapid increases in 39 

vehicles have resulted in high emissions of fine particles (PM2.5), sulfur dioxides (SO2), 40 

nitrogen oxides (NOx), and volatile organic compounds (VOCs) in Beijing (Tang et al., 2009; 41 

Han et al., 2013; Wang et al., 2014a).  42 

In November 2014, China hosted the Asia-Pacific Economic Cooperation (APEC) Meeting 43 

in Beijing, including the Concluding Senior Officials' Meeting  on 5–6 November, the 26th 44 

APEC Ministerial Meeting  on 7–8 November, and the 22nd APEC Economic Leaders' 45 

Meeting  on 10–11 November. As the host city, Beijing has set rigorous plans to reduce 46 

emissions of air pollutants in Beijing and neighboring regions from 1 to 12 November 2014, 47 

resulting in a period of air quality control. The target sources included vehicles, paint and 48 

solvent use, steel factories, chemical factories, power plants, etc. A detailed description of the 49 

control measures is provided in Table S1. As a result, air quality was greatly improved, and the 50 

phrase "APEC blue" was coined on social media to describe the clear sky. The city’s daily PM2.5 51 

concentration during the control period fell to 43 μg m-3, a 55% reduction compared with the 52 

same dates the prior year, and daily average levels of SO2, nitrogen dioxide (NO2), and PM10 53 

(aerosol particles with an aerodynamic diameter of less than 10 µm) decreased by 57%, 31% 54 

and 44%, respectively (Beijing Municipal Environmental Protection Bureau, 55 

http://www.bjepb.gov.cn/). However, sufficiently detailed information of ambient VOC mixing 56 

ratios and chemical compositions, as well as variations in their sources before, during, and after 57 

the control period has not been reported.  58 

Many VOCs adversely affect public health (The Clean Air Act Amendments of 1990, 59 

http://www.epa.gov/oar/caa/caaa_overview.html), and high levels of ambient VOCs have been 60 

detected in Beijing, likely associated with rapid economic development. For example, during 61 
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1980–2005, VOC emissions increased at an annual average rate of 10.6% in Beijing (Bo et al., 62 

2008). Ambient VOC measurements during 2002–2003 at six sites in Beijing revealed an 63 

average total VOC concentration of 132.6±52.2 μg m-3 with contributions from alkanes (35%), 64 

alkenes (17%), and aromatics (22%;Liu et al., 2005). A recent study has shown that non-65 

methane hydrocarbon (NMHC) concentrations in Beijing are more than twice as high as in 66 

other cities (Wang et al., 2014b). Therefore, it is very necessary to formulate a cost-effective 67 

policy for reducing VOC emissions in Beijing. 68 

VOCs play an important role in the formation of secondary organic aerosol (SOA) (Johnson 69 

et al., 2006; Ran et al., 2011; Zhang et al., 2014). PM2.5 is a key air pollutant in terms of adverse 70 

human health effects and visibility degradation (Tao et al., 2014). The severe haze pollution in 71 

Beijing was driven to a large extent by secondary aerosol formation, which contributed 30%–72 

77% and 44%–71% of PM2.5 and of organic aerosol concentrations, respectively (Huang et al., 73 

2014). Detailed information on VOC characteristics before, during, and after the control period 74 

will help future study on SOA formation mechanisms. Assessing VOC source variations will 75 

be essential to understanding the effect of abatement measures for VOCs and SOA formation. 76 

 To quantitatively assess the contributions of different sources to ambient VOC levels, we 77 

can use a combination of direct VOC measurements and receptor models. Receptor models are 78 

statistical tools used to identify and quantify sources of ambient air pollution at a given location 79 

by analyzing concentration data obtained at a receptor site without emission inventories. Source 80 

apportionment tools such as principal component analysis, Unmix, chemical mass balance, and 81 

positive matrix factorization (PMF) have been previously developed (Paatero et al., 1994; 82 

Watson et al., 2001). The latter is widely used to study VOC source contributions in urban areas 83 

because only time series of observed concentrations are used for the input parameters of the 84 

PMF calculation, which means that PMF results are not affected by uncertainties in emission 85 

profiles (Bon et al., 2011; McCarthy et al., 2013). With PMF, it is also possible to calculate 86 

contributions from unknown emission sources. The concept of secondary organic aerosol 87 

potential (SOAP) has been developed to reflect the propensity of each organic compound to 88 

form SOA on the basis of an equal mass emitted relative to toluene (Derwent et al., 1998; 89 

Derwent et al., 2010).By combining the SOAP scale with contributions from different sources 90 

to ambient VOC levels, it has been possible to evaluate the effect of abatement measures for 91 

SOA formation. 92 
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 In this study, we measured 102 VOC species using online instruments at an observatory at 93 

Peking University in 2014, from 18 October to 22 November. The hourly mixing ratios and 94 

chemical compositions of ambient VOCs before, during and after the control period were 95 

investigated. A PMF model was used to extract the VOC sources for this campaign, and 96 

comparison of the source contributions before, during and after the control period help to 97 

evaluate the effect of the control measures on VOCs. SOAP-weighted mass contributions of 98 

each VOC source were used to estimate variations of precursor source contributions to SOA 99 

formation. 100 

 101 

2 Methodology 102 

2.1 Sampling site  103 

We sampled on the roof of the technical physics building at Peking University (PKU) (39.99°104 

N, 116.33° E), ~20 m above ground. PKU is located in a primarily residential and commercial 105 

area in northwestern Beijing (Fig. 1). Local VOC emission sources within 1 km of PKU include 106 

vehicular traffic and fuel combustion for cooking; additionally, a fourth ring road that carries 107 

very heavy traffic is located directly south of the site. 108 

Samples were collected at an interval of 1 h from 18 October to 22 November，2014. To 109 

determine the effect of the control plans, we divided the whole study into three parts: before 110 

APEC China 2014 (18–31 October), during APEC China 2014 (control period; 3– 12 111 

November.) and after APEC China 2014 (13–22 November). We did not use samples collected 112 

on 1 or 2 November because they represented a transition from the non-source control to the 113 

control period. The average temperatures before, during, and after the control period were 114 

12.63°C,7.37°C, and 5°C, respectively. The average wind speeds were 3.86, 6.85, and 5m s-1, 115 

respectively. Meteorological data were collected from the NOAA Satellite and Information 116 

Service (http://www7.ncdc.noaa.gov/CDO/cdo).  117 

2.2 Sampling and analysis  118 

Ambient VOCs were collected and analyzed continuously and automatically using a custom-119 

built online system, GC-MS/FID, with a time resolution of 1 h (TH-PKU 300B, Yuan et al., 120 

2012b; Li et al., 2014). The online system combines a sampling system, electronic refrigeration 121 

http://www7.ncdc.noaa.gov/CDO/cdo
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technology, and GC-MS/FID to sample, pre-concentrate, and analyze VOC samples. Moisture 122 

and CO2 are removed before VOC analysis. The system uses dual columns and dual detectors 123 

to simultaneously analyze C2–C12 VOCs, and the VOC species measured by GC-MS/FID are 124 

listed in Table S2. Most C2-C5 hydrocarbons were separated on a PLOT-Al2O3 column 125 

(15m×0.32mm ID×3μm, J&W Scientific, USA), and measured by the FID channel. Other 126 

compounds were separated on a semi-polar column (DB-624, 60m×0.25mm ID×1.4μm, J&W 127 

Scientific, USA) and quantified using a quadrupole MS detector. 128 

These chemical analyses were subjected to rigorous quality assurance and quality control 129 

procedures. We used an external standard method for the quantification of C2–C5 hydrocarbons, 130 

and an internal standard method for MS quantification of VOCs. Four compounds were used 131 

as internal standards: bromochloromethane, 1,4-difluorobenzene, chlorobenzene-d5, and 132 

bromofluorobenzene. We used two sets of certificated standards, a mixture of 55 NMHCs 133 

(provided by the Environmental Technology Center, Canada), and a mixture of oxygenated 134 

VOCs (OVOCs) and halocarbons (provided by Linde Electronics and Specialty Gases, USA). 135 

Five concentrations (0.4–8 ppbv) were used to perform both calibrations. R2 values for 136 

calibration curves were all above 0.999 and 0.99 for NMHCs and other species, respectively, 137 

indicating that integral areas of peaks were proportional to concentrations of target compounds. 138 

We performed daily calibrations, and the variations in target species responses were within ± 139 

10% of the calibration curve. The definitions of the method detection limit (MDL) for each 140 

compound are given in US Environmental Protection Agency (U.S. EPA) document TO-15, 141 

and the MDL of the online GC-MS/FID system for each species ranged from 0.002 to 0.070 142 

ppbv (Yuan et al., 2012).Detailed information of this system can be found in Li et al. (2014). 143 

2.3 Source apportionment 144 

The US PMF 5.0 (U.S.EPA, 2014) was applied to identify major VOC sources and their 145 

temporal variations. PMF assumes that measured concentrations at receptor sites are linear 146 

combinations of contributions from different factors (Paatero et al., 1994). Based on the 147 

uncertainties inherent in each observation, the PMF solution minimizes the objective function 148 

Q, as shown in Eq. (1): 149 

𝑄 = ∑ ∑ [

𝑥
𝑖𝑗−∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗
]𝑛

𝑗=1
𝑚
𝑖=1

2

  ,                                         (1) 150 

where u is the uncertainty estimate of source j, measured in sample i. 151 
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The detailed calculation method of uncertainty is shown in Reff et al. (2007). The best PMF 152 

solution should make the value of Q identical to that of Qtheoretical. Qtheoretical can be calculated 153 

as Eq. (2): 154 

𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 𝑖 × 𝑗 − 𝑝 × (𝑖 + 𝑗),                                         (2) 155 

where i is the number of samples, j is the number of species, and p is the number of factors.  156 

There is a rotational ambiguity in PMF results, and one way to choose among possible 157 

solutions is to use the Fpeak parameter. “Fpeak” is used to rotate an incorrect solution back to the 158 

real solution. The U.S.EPA PMF 5.0 has added two key components to the 3.0 version: two 159 

additional error estimation methods and source contribution constraints (Norris et al., 2014). 160 

2.4 Calculation of SOAP-weighted mass contributions of each VOC source 161 

SOAP-weighted mass contributions of each VOC source were used to estimate variations of 162 

precursor source contributions to SOA formation. The SOAP represents the propensity for an 163 

organic compound to form SOA when an additional mass emission of that compound is added 164 

to the ambient atmosphere expressed relative to that SOA formed when the same mass of 165 

toluene is added (Derwent et al., 2010). SOAPs are expressed as an index relative to toluene = 166 

100. Toluene was chosen as the basic compound for the SOAP scale because its emissions are 167 

well characterized and it is widely recognized as an important man-made precursor to SOA 168 

formation (Johnson et al., 2006b; Kleindienst et al., 2007; Hu et al., 2008). SOAPs, expressed 169 

relative to toluene=100, for 100 organic compounds are listed in Table S3, which are derived 170 

from Derwent et al. (2010).  171 

We hypothesized that all measured VOC species would have the greatest effect on SOA 172 

formation. The SOAP-weighted mass contribution of each VOC source can be calculated using 173 

Eq. (3): 174 

𝑆𝑂𝐴𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = ∑(𝑉𝑂𝐶𝑠)(𝑖) × 𝑆𝑂𝐴𝑃(𝑖)                       (3) 175 

where (VOCs)(i) is the mass contribution of a VOC source to species i (μg cm-3), estimated by 176 

PMF analysis (linking with the molar mass of VOC species and basing on ideal gas law, we 177 

converts the unit of VOC species from ppbv to ug m-3); SOAP(i) is the SOA formation potential 178 

for species i (unitless, Table S3). 179 

SOA formation is dependent on background environmental conditions, particularly NOx 180 

levels, which make it difficult to accurately quantify absolute SOA emissions. However, 181 
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because the SOAP approach references the SOA increments to toluene, it removes much of the 182 

influence of the uncertainties in the absolute SOA concentrations. Although SOAPs were 183 

obtained using highly idealized test conditions, this approach can be used to evaluate the 184 

relative contribution of each VOC source to the reduction of SOA during the air quality control 185 

period. 186 

3 Results and discussion 187 

3.1Mixing ratios and chemical speciation                                                          188 

Ambient VOC mixing ratios and chemical compositions at PKU are summarized in Table 1. 189 

Before the control period, the mixing ratios of total VOCs averaged 86.17 ppbv and ranged 190 

from 17.05 to 247.93 ppbv. During control, this was reduced to 48.28 ppbv, with a range of 191 

9.39–147.95 ppbv. After the control period, the mixing ratios of total VOCs increased to an 192 

average of 72.97 ppbv. Thus, the mixing ratios of total VOCs were reduced by 43.97% during 193 

the control period compared with the period before control. Compared with the period after 194 

control, the mixing ratios were 33.16% lower during control. 195 

Alkanes were the most abundant VOC group in all three periods, comprising 37%, 42% and 196 

36%, respectively. Although lower, the contribution of alkenes increased over time, with this 197 

group comprising 11%, 15% and 20% of total VOCs before, during, and after the control period, 198 

respectively. Compared with the period before control, the mixing ratios of alkanes, alkenes, 199 

aromatics, acetylene, OVOCs, halocarbons and acetonitrile decreased by approximately 36%, 200 

23%, 53%, 37%, 54%, 62%, and 65%, respectively, during control (Fig. 2). Notably, 201 

acetonitrile, halocarbons, OVOCs and aromatics were reduced by more than 50%. After the 202 

control period, alkanes and acetylene increased to the greatest extent, and mixing ratios were 203 

twice as high as those during control. The mixing ratios of other VOC groups increased by ~30% 204 

after the control period.  205 

As each source type has its own fingerprint, variations in chemical compositions differed 206 

(Wang et al., 2010a). The average mixing ratio of the 102 measured species are listed in Table 207 

2. Ethane, ethylene, acetylene, propane and acetone are the five most abundant species during 208 

all the three periods. Compared with the period before control, the mixing ratios of all species 209 

decreased (Table 3). Tracers of industrial sources decreased most, including some halocarbons 210 

and esters. 2,2-Dimethylbutane, a tracer of motor vehicle exhaust (Chang et al., 2004), was one 211 

of the top 20 most decreased species. 212 
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3.2 Temporal distribution of ambient VOCs  213 

Figure 3 displays the time series of total VOCs together with meteorological parameters 214 

observed at the PKU site during this campaign. This clearly shows two major pollution episodes, 215 

characterized by significantly elevated VOC concentrations. The first occurred during 18–19 216 

October (before control) and the second during 19–20 November (after control). During the 217 

first episode, the highest VOC mixing ratios were recorded at midnight on 18 October, when 218 

wind speed was relatively low (∼2 ms-1), and VOC levels sharply increased from ∼80 ppbv to 219 

∼250 ppbv within 12 h. During the second episode, the peak VOC mixing ratio was more than 220 

270 ppbv, when wind speed was an average of 2 m s-1, and VOC levels rose gradually from 221 

∼90 ppbv to ∼270 ppbv, perhaps caused by the accumulation of pollutants. During the control 222 

period, no heavy pollution occurred, but we found episodes of light pollution with elevated 223 

VOC mixing ratios: at midnight on 5 November and during the morning of 10 November. Both 224 

had peak values below 150 ppbv, significantly lower than those found before and after the 225 

control period.  226 

To investigate pollution origins and transport pathways, 72-h air mass back trajectories 227 

arriving at an elevation of 100, 200, and 500 m were calculated at 12:00 am (16:00 UTC) on 19 228 

October and 4, 9, and 19 November for the PKU site using the NOAA Hybrid Single-Particle 229 

Lagrangian Integrated Trajectory (HYSPLIT) model (Fig. 4). This method showed that the air 230 

masses on 19 October originated from south China, and passed through Henan and Hebei 231 

Provinces, before reaching PKU (Fig. 4a). The air masses on 4 November originated from the 232 

northwest part of Inner Mongolia, and passed through Hebei Province, before reaching PKU 233 

(Fig. 4b). The air masses on 9 November originated from Mongolia and then passed through 234 

Inner Mongolia (Fig. 4c). The air mass on 19 November came from the south, passing through 235 

Shandong and Henan provinces (Fig. 4d). 236 

The diurnal variations of ambient NMHCs and OVOCs before, during, and after the control 237 

period are shown in Fig. 5. NMHC values for the three periods showed similar daily variations: 238 

stable during the night, decreasing after sunrise, at a minimum in the afternoon (14:00–16:00 239 

LT), then increasing at night. This is likely caused by the descending boundary layer and 240 

possible night emissions (Li et al., 2014). In the control period, diurnal variations of NMHCs 241 

were less clear than those during the other periods, perhaps due to lower night emissions. There 242 

were no obvious daily variations in OVOCs. Because of secondary formation during the 243 
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daytime, photolysis loss, and variation in the boundary layer, ambient OVOC levels were stable 244 

(Chen et al., 2014). 245 

During the period after control, nighttime NMHC mixing ratios were much higher than those 246 

before control, suggesting that nighttime emission sources may differ. We also found some 247 

evidence for the higher nighttime VOC mixing ratios in the period after control. Figure 6 shows 248 

the hourly average diurnal profiles for 2,2-dimethylbutane (2,2-DMB) and acetylene before, 249 

during, and after the control. 2,2-DMB is considered a typical tracer for vehicular emissions 250 

(Chang et al., 2004), and acetylene is a tracer for vehicular and other combustion processes 251 

(Baker et al., 2008). Before the control period, the highest-/lowest-value ratios (the highest 252 

average hourly mixing ratio of one VOC species divided by the lowest average hourly mixing 253 

ratio of this species) of acetylene and 2, 2-DMB were very similar with the values of 2.32 and 254 

2.13, respectively. During control, the highest-/lowest-value ratio of acetylene (3.05) became 255 

larger than the value of 2, 2-DMB (2.13). After control, the highest-/lowest-value ratio of 256 

acetylene (4.08) was significantly higher than the value of 2, 2-DMB (2.08). The highest-257 

/lowest-value ratios of acetylene increased over time during the three periods, but the values of 258 

2, 2-DMB were relatively stable .So the influence from the planetary boundary layer and 259 

vehicular emissions on the higher nighttime mixing ratios of acetylene can be eliminated. Coal 260 

combustion was found to be an important source for ambient VOCs during winter in Beijing 261 

(Wang et al., 2013b). We speculate that combustion may have been an important nighttime 262 

source of VOCs during the second and the third periods. 263 

3.3 Variations of source emissions 264 

3.3.1 Identification of VOC sources 265 

Source apportionments were performed using a PMF model to calculate reductions in source 266 

emissions. We did not use species that were below MDL for more than 50% of the time or 267 

showed a significantly smaller signal to noise ratio (S/N). An S/N ratio was calculated for each 268 

species via PMF. After screening, 64 compounds, accounting for 90% of the total mixing ratios 269 

of the 102 VOC species, were used in the PMF analysis; the final data set comprised 695 270 

samples. Modeling was performed for 4–11 factors and the eight-factor solution was deemed 271 

to be most representative. 272 

To attribute PMF factors to emission sources, we compared PMF profiles and reference 273 

profiles from the literature. Eight sources were identified: (1) LPG, (2) industrial manufacturing, 274 
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(3) industrial chemical feedstock, (4) fuel combustion, (5) solvent utilization, (6) evaporated or 275 

liquid gasoline, (7) vehicular exhaust, and (8) secondary and long-lived species. Modeled 276 

source profiles together with the relative contributions of individual sources to each analyzed 277 

species are shown in Fig. 7. 278 

The first source shown in Fig. 7 is characterized by a significant amount of propane, i-butane, 279 

and n-butane, which are representative species in LPG samples in China (Lu et al., 2004). LPG 280 

is an important domestic cooking source in Beijing. In 2012, the annual use of LPG was 281 

~391,200 to，of which 340,000 tons were used for cooking. Unlike in other large cities, LPG 282 

vehicle use is not widespread in Beijing, and the annual consumption of LPG in the transport 283 

sector in 2012 was only 3400 tons (China Energy Statistical Yearbooks, 2013). Therefore, this 284 

source likely represented emissions from residential LPG consumption, and was identified as 285 

“LPG”. 286 

Both the second and third sources were industry-related. The second and third source profiles 287 

shown in Fig. 7 were characterized by high concentrations of chlorinated VOCs, which are 288 

tracers of industries (Scheff and Wadden, 1993; Jiun et al., 2008). The second source was also 289 

characterized by significant amounts of cyclopentane and methylmethacrylate. Cyclopentane is 290 

used in the manufacture of synthetic resins and rubber adhesives and as a blowing agent in the 291 

manufacture of polyurethane insulating foam; Methylmethacrylate is a transparent 292 

thermoplastic and often used as a lightweight or shatter-resistant alternative to soda-lime glass 293 

(Nagai et al., 2001). Therefore, this source was identified as “industrial manufacturing”. Key 294 

species of the third source profile include chloromethane, chloroform, n-hexane and acetone, 295 

all of which are widely used as feedstock in organic synthesis (U.S.EPA, 1994). The third 296 

source was identified as “industrial chemical feedstock”. 297 

The fourth source profile shown in Fig. 7 was associated with over 50% of the total measured 298 

ethylene and acetylene mixing ratios, both of which were major species emitted from 299 

combustion process (Liu et al., 2008), and is therefore the believed to be from the combustion 300 

process. It was also characterized by significant amounts of ethane, propane, C3-C4 alkenes, 301 

and benzene. Ethane is a tracer of natural gas usage, and the source profiles of resident fuel 302 

combustion measured in China contained significant alkenes (Wang et al., 2013a). Moreira dos 303 

Santos et al. (2004) found that coal combustion can release significant amounts of benzene into 304 

the atmosphere. Therefore this source is believed to encompass combustion, and may include 305 

different fuel types, such as coal, straw and natural gas and was identified as “fuel combustion”. 306 
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The fifth source profile shown in Fig. 7 was rich in aromatic species (benzene, toluene, 307 

ethylbenzene, xylenes, BTEX) and esters (ethylacetate and n-butylacetate), and includes a 308 

certain amount of halocarbons (1,2-dichloroethane and 1,2-dichloropropane). BTEX is a major 309 

constituent of paints (Seila et al., 2001). Esters and halocarbons are used as industrial solvents 310 

or adhesives found in paint strippers, varnishes, and furniture (Cai et al., 2010). Thus, this 311 

source was considered to be a composite of emissions from solvent use and industrial coatings 312 

(Seila et al., 2001). Some major VOC emission sources—such as car manufacturing, printing, 313 

furniture manufacturing, shoe making and toy making—are mainly associated with painting 314 

and adhesive use and are included in this source category of “solvent utilization”. 315 

Both the sixth and seventh source profiles included high mixing ratios of 2,2,4-316 

trimethylpentane and MTBE. 2,2,4-Trimethylpentane is a fuel additive used to gain higher 317 

octane ratings (McCarthy et al., 2013). MTBE is a common gasoline additive in Beijing (Song 318 

et al., 2007). The two sources are both related to vehicle activities. The sources differ in ethane 319 

and acetylene mixing ratios, which are higher in the seventh source but are very low in the sixth 320 

source. Ethane and acetylene can be formed during the combustion process (Song et al., 2007), 321 

so the sixth factor may be an evaporated or liquid gasoline factor and source seven may be a 322 

mixture of evaporated or liquid gasoline and vehicular exhaust with rich BTEX, OVOCs, and 323 

heavy alkanes, which are tracers of gasoline and diesel exhaust (Liu et al., 2008). This was 324 

confirmed by a comparison with typical VOC ratios determined for vehicular exhaust. The 325 

mean toluene/benzene ratio of the seventh source profile was 1.50, and Jobson et al. (2004) 326 

observe a ratio of 1.59 for vehicular exhaust from several tunnel studies, thus it was identified 327 

as “vehicular exhaust”. 328 

The eighth source profile, as shown in Fig. 7, is characterized by 52% of the total Freon113 329 

mixing ratios, 47% of the total 1,1,2,2-tetrachloroethane mixing ratios, and 41% of the total 330 

tetrachloromethane mixing ratios. These chemicals have a long lifespan in the atmosphere 331 

(McCarthy et al., 2007). The eighth source profile also consists of most carbonyls: acetone, 332 

propanal, n-pentanal, n-butanal and n-Hexanal. Considering the abundances of long lifetime 333 

compounds and carbonyls, we believe that the loadings of VOC species in this source were 334 

related to secondary formation and background levels. With a relatively constant contribution, 335 

this source was identified as “secondary and long-lived species”. 336 
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3.3.2 Estimation of source contributions 337 

The hourly mixing ratio contributions of each VOC source are presented in Fig. 8. Compared 338 

with the non-control periods, the reconstructed mixing ratios of most sources were lower during 339 

the control period, including those of industrial manufacturing, industrial chemical feedstock, 340 

solvent utilization, evaporated or liquid gasoline, and vehicular exhaust. In contrast, the mixing 341 

ratio contributions of LPG showed higher values during the control period. The contributions 342 

of fuel combustion increased continuously over time, and the contributions of secondary and 343 

long-lived species were relatively constant.  344 

Figure 9 illustrates source contribution percentages before, during and after control, and table 345 

4 lists the source mixing ratio contributions during the three periods. Before control, vehicular 346 

exhaust was the largest contributor (35%) to VOC mixing ratios, contributing 27.82 ppbv, 347 

followed by industrial manufacturing (13.51 ppbv, 17%) and solvent utilization (9.68 ppbv, 348 

12%). Fuel combustion, LPG, evaporated or liquid gasoline, secondary and long-lived species, 349 

and industrial chemical feedstock contributed 7.05, 6.21, 6.09, 4.47, and 4.01 ppbv, accounting 350 

for 9%, 8%, 8%, 6%, and 5% of the total VOC mixing ratios, respectively. The vehicle-related 351 

emission sources, (vehicle exhaust and evaporated or liquid gasoline) together accounted for 352 

43% of the VOC mixing ratios. The industrial-related emissions, (industrial manufacturing and 353 

chemical feedstock) together accounted for 22% of the VOC mixing ratios. This indicated that 354 

traffic and industry sources were major VOC sources before the control period.  355 

During the control period, the largest contributor was fuel combustion, with 12.70 ppbv, 356 

accounting for 27% of total VOCs. The second largest contributor was vehicular exhaust, with 357 

8.17 ppbv, accounting for 17% of total VOCs. Contributions from LPG and secondary and 358 

long-lived species were 7.55 and 5.00 ppbv, respectively. Contributions from industrial 359 

chemical feedstock, solvent utilization and evaporated or liquid gasoline were 3.66, 3.48, and 360 

3.24 ppbv, accounting for 8%, 7%, and 7% of total VOCs, respectively. The contribution from 361 

industrial manufacturing was relatively low, at 3.22 ppbv.  362 

After control, the city turns to the central heating period and the largest contributor was fuel 363 

combustion, with 31.77 ppbv, accounting for 45% of total VOCs. Vehicular exhaust, solvent 364 

utilization, industrial manufacturing, secondary and long-lived species, evaporated or liquid 365 

gasoline, industrial chemical feedstock and LPG contributed 9.98, 8.05, 6.10, 4.05, 3.72, 3.50, 366 

and 3.01 ppbv, accounting for 14%, 11%, 9%, 6%, 5%, 5%, and 4% of total VOCs, respectively.  367 
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Compared with the period before the control, the contributions of vehicular exhaust during the 368 

control were reduced to the greatest extent, with a value of 19.65 ppbv, followed by industrial 369 

manufacturing (10.29 ppbv) and solvent utilization (6.20 ppbv).Evaporated or liquid gasoline 370 

and industrial chemical feedstock were slightly reduced, with the values of 2.85 and 0.35 ppbv. 371 

Reductions of vehicular exhaust, industrial manufacturing, solvent utilization, evaporated or 372 

liquid gasoline, and industrial chemical feedstock were responsible for 50%, 26%, 16%, 7%, 373 

and 1% of the reductions in ambient VOCs, indicating that the control measures on traffic were 374 

most effective. The contributions of secondary and long-lived species were relatively stable. In 375 

contrast, due to central heating and weak control on fuel combustion and LPG, contributions 376 

from these sources were elevated by 80% and 22%, respectively. November is a transition 377 

month for central heating in northern China, which means that fuel combustion contributions 378 

would increase with time. Because of a lack of relative control measures for LPG, the peak 379 

contribution of this source occurred during the control period. The temperature difference 380 

during this campaign is relatively low, the influence from meteorological variability on VOC 381 

evaporation were not considered in this study. 382 

3.4 Precursor source contributions to SOA    383 

It is reported that during control the concentration of PM2.5 reduced a lot (Beijing Municipal 384 

Environmental Protection Bureau, http://www.bjepb.gov.cn/). SOA constitute a significant 385 

fraction of PM2.5 in China (Ding et al., 2012; Guo et al., 2012; Huang et al., 2014) and VOCs 386 

play an important role in the formation of SOA. The large reduction of VOCs may lead to the 387 

reduction of SOA and contribute to the PM2.5 reduction. SOAP-weighted mass contributions of 388 

each VOC source were used to estimate the influence of variations of precursor emissions on 389 

SOA. The SOAP-weighted mass contributions of each VOC source before, during, and after 390 

the control period are listed in Table 5.  391 

Before the control period, the SOAP-weighted mass contribution of vehicular-related sources 392 

was much higher than other VOC source with a value of 1613 μg cm-3, accounting for 43% of 393 

the total. In contract, the SOAP-weighted mass contribution of each VOC source was very 394 

similar during the control period. Because of the abatement measures for pollutant emissions 395 

during the control period, the SOAP-weighted mass contributions of vehicular-related sources 396 

were most reduced compared with the period before control, with the value of 1013 μg cm-3, 397 

explaining the 52% reduction in SOA.  398 
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Solvent utilization was the second largest source of man-made SOA precursors before 399 

control with the SOAP-weighted mass contributions of 1132 μg cm-3, accounting for 43% of 400 

the total. During the control period, the reduction in SOAP-weighted mass contributions from 401 

solvent utilization was 725 μg cm-3, explaining the 37% reduction in SOA. The reductions in 402 

other VOC sources were much smaller. Thus, vehicle and solvent utilization controls were the 403 

most important measures taken to reduce SOA during APEC Chain 2014 in Beijing. 404 

Current knowledge about formation mechanisms of SOA is still very limited (Guo et al., 405 

2012). We have to point out that the SOAP is computed to understand the potential to form 406 

SOA for VOC species, which cannot estimate the SOA formation from VOCs actually in certain 407 

atmospheric conditions. In this study, we used SOAP approach to discuss the effectiveness of 408 

the air quality controls. Detailed VOC data in this work will provide useful information for 409 

further study on the formation mechanisms of SOA. 410 

4 Conclusions 411 

Mixing ratios of C2–C12 VOCs were measured at an urban site in Beijing before, during and 412 

after the APEC China 2014. Total VOC mixing ratios were reduced by 44% during the control 413 

period, and the mixing ratios of acetonitrile, halocarbons, OVOCs, aromatics, acetylene, 414 

alkanes, and alkenes decreased by approximately 65%, 62 %, 54%, 53%, 37%, 36%, and 23%, 415 

respectively. The mixing ratios of all 102 measured species decreased, with that of chloroethane 416 

decreasing the most substantially. PMF analysis shows that contributions from controlled 417 

sources, i.e., vehicle-related sources, industrial manufacturing, and solvent utilization, were 418 

significantly reduced under air quality regulations. Among these, controls on vehicles were 419 

most effective, causing more than half of the reductions in ambient VOCs, and resulting in 420 

significant decreases in SOA. Industrial manufacturing controls were the second most 421 

important cause of ambient VOC reductions; control on solvent utilization appears to be the 422 

second important cause of SOA reductions. Fuel combustion was found to be an important 423 

source of ambient VOCs during the central heating period in Beijing. 424 

Our results indicate that the stringent air quality restrictions implemented during APEC 425 

China 2014 were successful, and that controls on vehicles were the most important measures to 426 

ambient VOCs. As severe haze pollution events in China are mainly driven by secondary 427 

aerosol formation, these findings will also provide cost-effective solutions for lessening fine 428 

particle pollution. The detailed VOC provided here will provide information for further studies 429 

on the SOA formation and human health. 430 
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Figure and Table captions: 604 

Table 1. Volatile organic compound (VOC) mixing ratios (ppbv), measured in Beijing. 605 

Table 2. Average mixing ratios (ppbv) of volatile organic compound (VOC) species measured 606 

in Beijing. 607 

Table 3. The top 20 volatile organic compound (VOC) species with the highest decreasing 608 

ratios.  609 

Table 4. Source contributions (ppbv) derived by PMF analysis. 610 

Table 5. SOAP-weighted mass contributions (ug cm-3) of each VOC source before, during, 611 

and after the control period during APEC China 2014.  612 

Figure 1. The location of Beijing city in China and the sampling site in Beijing. 613 

Figure 2. Mixing ratios of volatile organic compound (VOC) groups before, during, and after 614 

the control period during APEC China 2014.  615 

Figure 3. Time series of total measured volatile organic compounds (VOCs), temperature, wind 616 

direction, and speed at PKU site during this study. 617 

Figure 4. Three-day backward trajectories ending at 12:00 am (16:00 UTC) 19 October, 4, 9, 618 

and 19 November 2014. 619 

Figure 5. Diurnal variations in mixing ratios of non-methane hydrocarbons (NMHCs) and 620 

oxygenated volatile organic compounds (OVOC) at the PKU site before, during, and after the 621 

control period during APEC China 2014. 622 

Figure 6. Diurnal variations of mixing ratios of 2,2-dimethylbutane and acetylene at the PKU 623 

site before, during, and after the control period during APEC China 2014. 624 

Figure 7. Eight source profiles (bars; ppbv ppbv-1) resolved from PMF model, and contribution 625 

percentages (dots) from each source factor. 626 

Figure 8. Time series of hourly contributions from each identified source from 18 October to 627 

22 November 2014. 628 

Figure 9. Over all contributions (%) for the eight sources identified by PMF analysis before, 629 

during, and after the control period during the APEC China 2014.  630 
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Table 1. Volatile organic compound (VOC) mixing ratios (ppbv), measured in Beijing.  631 

VOC groups 
Before(Na=240;17/10-31/10b) During(N=234;3/11-12/11) After(N=221;13/11-22/11) 

Rang Average± sd Rang Average± sd Rang Average± sd 

Alkanes 3.39-109.87 32.1±18.89 2.21-66.48 20.39±15.45 5.25-90.54 26.57±19.09 

Alkenes 0.66-31.05 9.39±5.42 0.26-25.39 7.22±6.30 0.92-63.50 14.58±12.99 

Aromatics 1.00-46.5 9.55±5.97 0.46-16.81 4.52±3.59 0.85-32.75 7.14±6.30 

Acetylene 0.36-23.7 6.41±4.17 0.24-15.24 4.04±3.34 0.70-32.31 8.27±7.04 

OVOCs 4.29-40.49 15.27±7.08 2.15-20.79 7.09±3.67 2.70-35.08 9.36±6.28 

Halocarbons 4.71-34.14 12.37±5.28 1.89-14.33 4.64±2.35 1.84-46.89 6.54±5.85 

Acetonitrile 0.20-19.71 1.09±2.37 0.08-4.35 0.38±0.40 0.11-1.50 0.49±0.33 

Total VOCs 17.05-247.93 86.17±43.67 9.39-147.95 48.28±33.87 0.85-271.91 72.97±55.69 

a Sampling number;  632 

b Sampling date. 633 

634 
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Table 2. Average mixing ratios (ppbv) of VOC species measured in Beijing. 635 

Species Before During After Species Before During After 

Ethane 10.80  7.71  11.31  Trichloroethylene 0.14  0.07  0.08  

Propane 6.38  4.44  5.40  1,2-Dichloropropane 1.01  0.36  0.67  

Isobutane 2.32  1.57  1.75  Bromodichloromethane 0.00  0.00  0.00  

n-Butane 3.27  1.89  2.25  trans-1,3-Dichloropropene 0.02  0.01  0.01  

cyclopentane 0.35  0.09  0.14  cis-1,3-Dichloropropene 0.01  0.00  0.00  

Isopentane 2.16  1.14  1.41  1,1,2-Trichloroethane 0.10  0.04  0.06  

n-Pentane 1.61  0.74  0.99  Tetrachloroethylene 0.17  0.08  0.09  

2,2-dimethylbutane 0.07  0.02  0.03  1,2-Dibromoethane 0.00  0.00  0.00  

2,3-dimethylbutane 0.25  0.14  0.18  Chlorobenzene 0.05  0.01  0.02  

2-methylpentane 0.73  0.44  0.54  Bromoform 0.00  0.00  0.00  

3-methylpentane 0.49  0.25  0.27  1,1,2,2-Tetrachloroethane 0.23  0.14  0.14  

n-hexane 0.93  0.66  0.62  1,3-Dichlorobenzene 0.00  0.00  0.00  

2,4-dimethylpentane 0.06  0.03  0.03  1,4-Dichlorobenzene 0.09  0.08  0.08  

methylcyclopentane 0.44  0.23  0.27  Benzylchloride 0.00  0.00  0.00  

2-methylhexane 0.20  0.09  0.12  1,2-Dichlorobenzene 0.00  0.00  0.00  

cyclohexane 0.41  0.13  0.18  acrolein 0.30  0.17  0.27  

2,3-dimethylpentane 0.12  0.05  0.07  Propanal 0.61  0.30  0.31  

3-methylhexane 0.21  0.10  0.14  Acetone 4.29  2.19  2.48  

2,2,4-trimethylpentane 0.18  0.09  0.11  Methylacetate 1.02  0.39  0.56  

n-heptane 0.26  0.12  0.18  MTBE 0.88  0.39  0.42  

methylcyclohexane 0.23  0.08  0.12  Methacrolein 0.06  0.02  0.05  

2,3,4-trimethylpentane 0.09  0.04  0.05  Vinylacetate 0.02  0.01  0.04  

2-methylheptane 0.08  0.04  0.06  n-Butanal 0.15  0.07  0.08  

3-methylheptane 0.05  0.02  0.03  Methylvinylketone 0.36  0.18  0.23  

octane 0.13  0.07  0.10  Methylethylketone 1.79  0.59  0.76  

n-nonane 0.10  0.05  0.08  Ethylacetate 2.12  0.88  1.39  

n-decane 0.10  0.06  0.07  2-pentanone 0.07  0.03  0.04  

Udecane 0.06  0.04  0.05  n-Pentanal 0.11  0.07  0.08  

Dodecane 0.05  0.05  0.04  3-pentanone 0.02  0.01  0.01  

Ethylene 7.18  5.51  11.23  Methylmethacrylate 1.73  0.97  1.37  

Propene 1.33  1.16  2.42  n-Hexanal 0.46  0.25  0.28  

trans-2-Butene 0.12  0.10  0.15  n-Butylacetate 1.28  0.57  1.00  

1-Butene 0.35  0.22  0.42  Acetylene 6.41  4.04  8.27  

cis-2-Butene 0.16  0.09  0.17  Acetonitrile 1.09  0.38  0.49  

trans-2-pentene 0.06  0.03  0.05  benzene 1.98  1.02  1.87  

isoprene 0.11  0.06  0.07  toluene 3.31  1.57  2.37  

cis-2-pentene 0.03  0.01  0.02  ethylbenzene 1.13  0.49  0.74  

1-hexene 0.05  0.03  0.05  m/p-xylene 1.01  0.48  0.71  

Bromomethane 0.01  0.01  0.01  o-xylene 0.71  0.32  0.49  

Chloroethane 0.10  0.02  0.04  styrene 0.24  0.11  0.21  

Freon11(CFCl3) 3.61  0.58  0.85  isopropylbenzene 0.05  0.02  0.03  

Freon113(C2F3Cl3) 0.09  0.08  0.08  n-propylbenzene 0.09  0.04  0.06  

1,1-Dichloroethylene 0.01  0.00  0.00  3-ethyltoluene 0.25  0.10  0.16  

Dichloromethane 3.76  2.00  2.60  4-ethyltoluene 0.13  0.05  0.08  

1,1-Dichloroethane 0.26  0.11  0.15  1,3,5-trimethylbenzene 0.09  0.04  0.06  

cis-1,2-Dichloroethylene 0.03  0.02  0.04  2-ethyltoluene 0.10  0.04  0.07  

Chloroform 0.93  0.42  0.62  1,2,4-trimethylbenzene 0.29  0.13  0.19  

1,1,1-Trichloroethane 0.01  0.00  0.00  1,2,3-trimethylbenzene 0.08  0.04  0.06  

tetrachloromethane 0.16  0.11  0.12  1,3-diethylbenzene 0.02  0.01  0.01  

1,2-Dichloroethane 1.58  0.49  0.87  1,4-diethylbenzene 0.06  0.04  0.04  
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Table 3. The top 20 volatile organic compound (VOC) species with the highest decreasing 636 

ratios. 637 

Species Decreasing ratio Species Decreasing ratio 

Chloroethane 80.34% 1,2-dichloropropane 64.27% 

1,1-dichloroethylene 76.46% Methylcyclohexane 63.67% 

Chlorobenzene 74.24% cis-1,3-dichloropropene 62.49% 

Cyclopentane 72.58% 
trans-1,3-

dichloropropene 
62.36% 

1,2-dichloroethane 69.14% Methylacetate 61.67% 

Cyclohexane 68.13% 2,3-dimethylpentane 61.23% 

Methylethylketone 66.91% Ethylacetate 58.80% 

Methacrolein 65.12% 4-ethyltoluene 58.39% 

Acetonitrile 65.12% 3-ethyltoluene 58.25% 

2,2-dimethylbutane 64.79% 1,1-dichloroethane 58.23% 

638 
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Table 4. Source contributions (ppbv) derived by PMF analysis. 639 

Source 
Average source contribution  

Before During After 

LPG 6.21 7.55  3.01  

Fuel combustion 7.05 12.70 31.77  

Industrial manufacturing 13.51 3.22  6.10  

Industrial chemical feedstock 4.01  3.66  3.50 

Solvent utilization 9.68  3.48  8.05  

Evaporated or liquid gasoline 6.09  3.24 3.72 

Vehicular exhaust 27.82 8.17 9.98  

Secondary and long-lived species 4.47  5.00  4.05 

Total 78.85  47.02  70.18  

  640 
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Table 5. SOAP-weighted mass contributions (ug cm-3) of each VOC source before, during, and 641 

after the control period during APEC China 2014.   642 

Source 
Source contribution   

Before During After 

LPG 143 174 69  

Fuel combustion 158 285  711  

Industrial manufacturing 494 118  223 

Industrial Chemical feedstock 131 120  114  

Solvent utilization 1132 407 941 

Evaporated or liquid gasoline 526 280 321 

Vehicular exhaust 1087 320 390 

Secondary and long-lived species 89 99 80 

643 
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   644 

Figure 1. The location of Beijing in China and the sampling site in Beijing. 645 

646 
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 647 

Figure 2. Mixing ratios of volatile organic compound (VOC) groups before, 648 

during, and after the control period during APEC China 2014.   649 
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650 

Figure 3. Time series of total measured volatile organic compounds (VOCs), temperature, wind direction, and speed at the PKU site during this 651 

study.652 
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 653 

Figure 4. Three-day backward trajectories ending at 12:00 am (16:00 UTC) 19 654 

October, and 4, 9, and 19 November 2014. 655 
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656 

657 

 658 

Figure 5. Diurnal variations in mixing ratios of 659 

non-methane hydrocarbons (NMHCs) and 660 

oxygenated volatile organic compounds (OVOC) 661 

at the PKU site before, during, and after the control 662 

period during APEC China 2014. 663 
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664 

 665 

Figure 6. Diurnal variations of mixing ratios 666 

of 2,2-dimethylbutane and acetylene at the 667 

PKU site before, during, and after the control 668 

period during APEC China 2014. 669 
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 670 
Figure 7. Eight source profiles (bars; ppbv ppbv-1) resolved from the PMF model, and contribution 671 

percentages (dots) from each source factor672 
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 673 

Figure 8. Time series of hourly contributions from each identified source from 18 October to 674 

22 November 2014. 675 
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  677 
Figure 9. Overall contributions (%) for the eight sources identified 678 

by PMF analysis before, during, and after the control period during 679 

the APEC China 2014. “V” stands for vehicular exhaust; “I” stands 680 

for Industrial manufacturing; “S” stands for Solvent utilization; “F” 681 

stands for fuel combustion; “LPG” stands for liquid petroleum gas; 682 

“ELG” stands for Evaporated or liquid gasoline; “SL” stands for 683 

secondary and long-lived species; “ICF” stands for industrial 684 

chemical feedstock.  685 
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