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Mexico City, August 3, 2015 

This document includes: 

i)  A point-by-point response to the reviewers. 

ii) A list of all relevant changes made in the manuscript  

iii) A marked-up manuscript version showing the changes made in the manuscript 

 

i) A point-by-point response to the reviewers. 

First, I would like to thank the anonymous referees for their comments that will 
improve the quality of the paper. Our revised version will include several of their 
suggestions. 
 
Anonymous referee # 1: “No changes are advised. The overall strategy of using 

problem-specific constraints to overcome the curse of dimensionality is reminiscent of 

the method purportedly used to break the Enigma code according to the movie The 

Imitation Game. Thus it appears to be common knowledge, so there should be a 

citable reference. I don’t know of any, but if the author can find one, it might be 

cited.” 

 

Response to Anonymous Referee # 1 
The curse of dimensionality (Bellman, R.; 1961) is a problem of both the data and 
the algorithm being applied. Solutions to this problem involve changing the 
algorithm or processing the data into a lower dimensional form. This can be done 
in many problems since high dimensional data sets can be reduced to lower-
dimensional without significant information loss. For example, in Bayesian statistics 
where posterior distributions have multiple dimensions, this problem was overcome 
with the implementation of the Markov Chain Monte methods. A new reference is 
added.  
 
Reference: 
Bellman, R. (1961), Adaptive Control Processes: A Guided Tour, Princeton 
University Press. 

Anonymous Referee # 2. 

Anonymous referee # 2: “The author claims that the major advantage of his method is 

that it is the first one to account for correlations in probabilities of system states 

(paragraphs near the end of Sec. 1). However, a numerical method developed by 

Gillespie (Gillespie D. T., J.Atmos. Sci. 32 (10), 1977-1989, 1975), contrary to what the 

author suggests, also accurately reproduces master equation. In Gillespie’s method, 

the master equation is not solved directly, but a single stochastic trajectory following 

this equation is obtained. Temporal evolution of probability distributions of different 

states can be obtained by averaging over many runs. Seeßelberg proposed a variation 

of Gillespie’s method in which droplet mass is discretized into bins, which makes the 

algorithm applicable to significantly larger systems than the one proposed in the 

discussed paper (Seeßelberg et al., Atmospheric Research 40(1), 33-48, 1996). In my 

opinion a comparison of results and efficiency with Gillespie’s method is necessary. 
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The author should clearly outline what are the advantages of his method over the 

Gillespie’s one and in which situations should it be used.” 

 
Response to Anonymous Referee # 2 
All the referee’s observations regarding the Stochastic Simulation Algorithm (SSA) 
of Gillespie (1975a) will be incorporated in the revised version of the paper. 
In our paper we did just want to remark the fact that in Gillespie (1972), the 
evolution equation for the probability of finding a given number of m-drops of a 
particular size at time t, does not allow to solve for );,( tmnP . This is due to the fact 

that the right hand side contains a set of unknown conditional probabilities 
(Gillespie, 1972). Then, the simplest way to proceed in order to close the system 
was to ignore the correlations.  

1. Comparison between the Gillespie’s SSA and the numerical algorithm. 

As we know, in the Gillespie’s SSA, the ensemble mean for the number of droplets 
of each droplet mass is calculated from the expression (Gillespie, 1975a): 
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where Nr is the number of realizations of the stochastic algorithm, );( tmN i  is the 

number of droplets of mass m in the i-realization at time t, and );( tmN is the 

ensemble mean. From expression (1), it is clear that in order to obtain the correct 
expected values ));(( tmN at the large end of the droplet size distribution; we will 

need a huge number of realizations of the stochastic algorithm (> 109). 
To further investigate this question, the evolution of a cloud system with an initial 
monodisperse droplet size distribution of N0=30 droplets of 14 μm in radius (droplet 
mass 1.1494×10-8g) at t0, and a volume of 1cm3 was calculated with both the 
numerical algorithm and the SSA of Gillespie.  
The results obtained by the two methods, were then compared with the analytical 
solution of the master equation (Eq.(13) our paper) obtained by Tanaka and 
Nakazawa (1993) for the same conditions.  
The averages calculated from the Gillespie’s method for Nr=103 realizations, and 
the analytical solution at t=1200 are displayed in Fig. 1. As can be observed both 
the Monte Carlo averages and the analytical solution are closely coincident for the 
small end of the droplet size distribution. However, due to the small number of 
realizations, the SSA fails to reproduce the distribution for the expected values at 
the large end (See Table 1).    
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FIG. 1. For the sum kernel, size distribution obtained from the analytical solution of 

the master equation (line) and the SSA of Gillespie for 10
3
 realizations (circles) at 

t=1200 sec. Calculations were performed with the initial condition 1)0;0,...,0,0,0,30( P  

and the sum kernel ( , ) ( )i jK i j B x x  , with B=8.82×10
2 
cm

3
 sec

-1
. 
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FIG. 2. For the sum kernel, size distribution obtained from the analytical solution of 

the master equation (line) and the numerical algorithm proposed in this paper 

(circles) at t=1200 sec. Calculations were performed with the initial condition 

1)0;0,...,0,0,0,30( P  and the sum kernel ( , ) ( )i jK i j B x x  , with B=8.82×10
2 

cm
3
 sec

-1
. 

For a more detailed analysis, the expected number of particles for each droplet 
size calculated from the analytical solution, the numerical algorithm and the SSA of 
Gillespie (for 1000 and 10,000 realizations) are displayed in Table 1. As can be 
checked in the table, the size distributions are almost identical for the small end, 
but they differ substantially at the large end since the SSA produces no particles 
larger than 12v0 and 16v0 for 1000 and 10,000 realizations respectively (v0 
=1.1494×10-8g, mass of a 14 μm droplet). 
For 1000 realizations, the Monte-Carlo averages differ from the analytical solution 
for bin numbers larger than 8. For 10,000 realizations we have the same situation 
for bin numbers larger than 13.  
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Table 1. Expected values for each droplet mass obtained at t=1200 sec. for the 

analytical solution, the numerical algorithm proposed in this work, and the Gillespie’s 

SSA (for 1000 and 10,000 realizations). Calculations were performed with the initial 

condition 1)0;0,...,0,0,0,30( P  and the sum kernel ( , ) ( )i jK i j B x x  , with B=8.82×10
2 

cm
3
 sec

-1
. 

Expected values for each droplet size: <ni> 

t=1200 sec. 
   Bin Number               Analytical Solution                   Numerical algorithm               SSA                         SSA 

                                                                                                                                    (Nr= 1000)      (Nr= 10,000) 

1.000 1.5633E+01 1.5622E+01 1.5612E+01 1.5619E+01 

2.000 3.5302E+00 3.5303E+00 3.5250E+00 3.5425E+00 

3.000 1.1754E+00 1.1762E+00 1.1870E+00 1.1712E+00 

4.000 4.5543E-01 4.5609E-01 4.4800E-01 4.5050E-01 

5.000 1.9017E-01 1.9057E-01 2.2300E-01 1.9600E-01 

6.000 8.2592E-02 8.2824E-02 7.2000E-02 8.2000E-02 

7.000 3.6583E-02 3.6709E-02 3.6000E-02 3.6800E-02 

8.000 1.6320E-02 1.6387E-02 1.6000E-02 1.6100E-02 

9.000 7.2696E-03 7.3034E-03 3.0000E-03 6.5000E-03 

10.000 3.2117E-03 3.2284E-03 2.0000E-03 3.5000E-03 

11.000 1.3997E-03 1.4077E-03 1.0000E-03 1.2000E-03 

12.000 5.9891E-04 6.0263E-04 0.0000E+00 4.0000E-04 

13.000 2.5049E-04 2.5216E-04 0.0000E+00 4.0000E-04 

14.000 1.0197E-04 1.0269E-04 0.0000E+00 3.0000E-04 

15.000 4.0229E-05 4.0529E-05 0.0000E+00 0.0000E+00 

16.000 1.5312E-05 1.5431E-05 0.0000E+00 1.0000E-04 

17.000 5.5954E-06 5.6404E-06 0.0000E+00 0.0000E+00 

18.000 1.9526E-06 1.9687E-06 0.0000E+00 0.0000E+00 

19.000 6.4672E-07 6.5217E-07 0.0000E+00 0.0000E+00 

20.000 2.0189E-07 2.0361E-07 0.0000E+00 0.0000E+00 

21.000 5.8917E-08 5.9419E-08 0.0000E+00 0.0000E+00 

22.000 1.5913E-08 1.6048E-08 0.0000E+00 0.0000E+00 

23.000 3.9295E-09 3.9622E-09 0.0000E+00 0.0000E+00 

24.000 8.7349E-10 8.6634E-10 0.0000E+00 0.0000E+00 

25.000 1.7127E-10 1.7176E-10 0.0000E+00 0.0000E+00 

26.000 2.8809E-11 2.8765E-11 0.0000E+00 0.0000E+00 

27.000 3.9922E-12 3.9906E-12 0.0000E+00 0.0000E+00 

28.000 4.2746E-13 4.2803E-13 0.0000E+00 0.0000E+00 

29.000 3.1450E-14 3.1525E-14 0.0000E+00 0.0000E+00 

30.000 1.1930E-15 1.1962E-15 0.0000E+00 0.0000E+00 

 
 
 
As expected, for 1000 and 10000 realizations, no states with droplets 30 times 
larger than monomer-sized ones were realized. A minimum number of Nr 
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realizations must be performed in order to obtain expected values larger or equal 
to 10-Nr. 
At the same time, the numerical algorithm performed very well, with expected 
values that are very close to the analytical solution. 
We can conclude that our method will be suitable if we need to accurately calculate 
the large end of the droplet spectrum for small systems, with <50 monomer 
droplets in the initial state. As for that case the SSA requires a large number of 
realizations, it will be computationally very expensive. Then, our method will be a 
good alternative, as it provides the desired accuracy to detect the possible small 
differences between different numerical approaches. It can also work as a 
benchmark for different Monte Carlo methods for the collision coalescence 
process. 
A comparison of results and efficiency with Gillespie’s method will be 
included in the revised version of the paper. 
Anonymous referee # 2: “Other thing that would be beneficial is a short discussion of 

how do results presented in the paper actually relate to cloud development. From Figs. 

6, 7 and 9 one can conclude that fluctuations and correlations tend to delay formation 

of large droplets in small volumes (in comparison with the deterministic equation). 

However, these results cannot be extrapolated to larger systems. Such a small volume 

would not remain undisturbed for time of the order of 1000s. Does the author expect 

that fluctuations in small volumes can have significant impact on development of 

clouds.” 

 
2. On Seeβelberg’s variation of Gillespie’s SSA. 

In its original version, the Gillespie’s Stochastic Simulation Algorithm (Gillespie, 
1975a) was formulated as a particle accounting algorithm, as it keeps track of 
every individual particle in the system. Unfortunately, this type of algorithm can be 
computationally very demanding, as a system of N particles requires storage of 

2/)1( NN  transition probabilities. Then, although it yields exact realizations of the 

coalescence process, the requirements of computational storage strongly limit its 
applicability. 
The algorithm of Seeβelberg’s et al. (1996) found a way to overcome this problem 
by dividing the drop population into classes and storing only the transitional 
probabilities between classes.  The problem with that approach was the method of 
removal of the coalescing drops from “colliding classes”, a process that introduces 
an error. 
The numerical difficulties of Gillespie (1975a) were significantly overcome in the 
modified version proposed by Laurenzi et al. (2002). Within their approach, they 
define collisions between species (that are hydrometeors with the same attributes: 
mass and composition).By using this framework, there is only the need to store the 
probabilities of “aggregation reaction” between species, with a considerable 
reduction of computer memory requirements. After a collision, the reactant 
(colliding) and product species are updated without any approximation, and not any 
kind of systematic errors are introduced. 

3. On the applicability of the finite volume approach 
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In defense of the finite system approach, it might be argued that, in the early 
stages of precipitation formation, due to small terminal velocities of the droplets, 
the coalescence process is a fairly localized process. Then, two droplets in widely 
separated parts of the cloud are not going to be coalescing with each other. This 
was the approach followed by Bayewitz et al. (1974) (and endorsed in Gillespie, 
1975a). In their paper, for comparing the stochastic and kinetic approaches, they 
partitioned the cloud into many sub-volumes, with no collisions being permitted for 
two droplets of different sub-volumes. 
A more complex model that uses the master equation formalism, and introduces 
the interactions between the sub-volumes was developed by Merkulovich and 
Stepanov (1990, 1994). This model is based on a scheme proposed by Nicolis and 
Prigogine (1984). Within this theory, the whole system is subdivided into 
subsystems that can be considered spatially homogeneous, and interactions 
between neighbors occur through particle exchange. That leads to a very complex 
set of master equations for each sub-volume. Although very complex, it could be a 
starting point in order to consider the interactions between cells through 
sedimentation or other processes. 

4. On the impact of fluctuations on cloud development  

As was discussed, in systems of small populations statistical fluctuations become 
important and the outcome from kinetic equations may differ from the stochastic 
means. However, fluctuations will also be very important when the system is near a 
critical point. In the cloud physics context, a critical point could be related with the 

formation of a droplet with mass comparable to the mass of the initial system (Alfonso et al., 
2013; Lushnikov, 2004). This could be a mechanism responsible for the formation 
of droplet embryos that trigger precipitation formation. 
At this moment, fluctuations will have a significant impact in the development of the 
system and the total mass predicted by the KCE will start to decrease. This is 
usually interpreted to mean that a super particle has formed (known as a gel) and 
the system exhibits a sol-gel transition (also called gelation).  
Because the master equation employs the stochastic approach without any 
approximations, it can predict the behavior of the collection process at all times. 
This way, the expected values at the large end of the droplet size distribution can 
be calculated after the total mass predicted by the KCE starts to decrease 
(Lushnikov, 2004). By using this method, an accurate comparison between the 
kinetic and stochastic methods can be performed after the super particle is formed. 
Then, for this case, it is expected to obtain broader droplet mass distributions by 
using the stochastic approach. 
All this questions will be discussed in the revised version of the paper, as 
suggested by the referee. A follow-up paper (that is under preparation) will be 
devoted to a more detailed analysis of all this problems.  

5. Minor comments: 

a) Referee Comment: In Section 2, l. 14 author writes that to solve master 

equation directly, arrays of the size of 3 x 1020 elements would have to be 

used, where does this number come from? 
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Answer to the comment:  
The number of elements in the array will be 1.34 x 1016, and not 3 x 1020 as was 
written in the paper. This number will be corrected in the revised version. The 
explanation follows: 
If we attempt to solve the master equation by brute force by using a typical 
discretization, then, for an initial monodisperse droplet distribution with N 
monomers, we will need to define an N-dimensional array (due to the fact that we 

have configurations of the form ),...;,...,,( ,21 tnnnP k ). If we have n1 =N monomers of 

size k=1 at t=0, then, the maximum number of particles for size k=2 will be [N/2], 
for size k=3, [N/3], and so on, where [N/k] denotes the closest smaller integer. (For 
example, the maximum possible number of droplets of size k=N is [N/N]=1). Of 
course, due to the mass conservation relation: 

1

N

i i T

i

x n M


                                                                      (2) 

these maximum values for each droplet size can be attained only if the number of 
droplets for the rest of the bins are set equal to zero or close to zero. The number 
of elements of the resulting array then will be the product:

]/[*)]1/([*]3/[*]2/[* NNNNNNN  . If evaluate this expression for N=50, the value 

of 1.34x1016 will be obtained. 
b) Referee Comment: - In the Abstract it should be more clearly stated that 

the kinetic collection equation and Smoluchowski coagulation equation are 
different names for the same equation. 

 
Answer to the comment: The corresponding correction will be made in the 
revised version as suggested. 
 

6. Technical Comments: 
 
The corresponding modifications will be made. 
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ii) A list of all relevant changes made in the manuscript  

 

Modifications to paper ACP-2015-144 

1. Reviewer # 2: “In the Abstract it should be more clearly stated that the kinetic 

collection equation and Smoluchowski coagulation equation are different names for 

the same equation.” 

Now this fact is clearly stated in the abstract: 

“In cloud modeling studies, the time evolution of droplet size distributions due to 

collision-coalescence events is usually modeled with the Smoluchowski coagulation 

equation, also known as the kinetic collection equation (KCE)”. 

2.  Reviewer # 2: “The author claims that the major advantage of his method is that it 

is the first one to account for correlations in probabilities of system states 

(paragraphs near the end of Sec. 1). However, a numerical method developed by 

Gillespie (Gillespie D. T., J. Atmos. Sci. 32 (10), 1977-1989, 1975), contrary to 

what the author suggests, also accurately reproduces master equation”. 

 

The corresponding additions were made in section 1 following referee’s suggestion: 

“It is noteworthy to mention that the Stochastic Simulation Algorithm (SSA) 

developed by Gillespie (1975) also accurately reproduces the master equation. In 

Gillespie’s method, the master equation is not solved directly, but a statistically 

correct trajectory (possible solution) of the master equation is generated. At any time, 

expected values at each droplet size can be obtained by averaging over many runs. 

However, a large number of realizations are necessary in order to obtain the desired 
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accuracy at the large end of the droplet size distribution. A detailed comparison 

between the two methods will be made in section 3”. 

3. Reviewer # 2: “In my opinion a comparison of results and efficiency with 

Gillespie’s method is necessary. The author should clearly outline what are the 

advantages of his method over the Gillespie’s one and in which situations should it 

be used.” 

 

In the new, revised version, following referee’s suggestion a new section is added at 

page 10 of the manuscript (3.2 Comparison with the SSA of Gillespie.) with a 

detailed comparison of the numerical method with Gillespie’s stochastic simulation 

algorithm: 
 

3.2 Comparison with the SSA of Gillespie. 

“As was mentioned in the introduction, the algorithm of Gillespie generates a 

statistically correct trajectory of the stochastic master equation. It was presented in 

Gillespie (1975), and popularized in Gillespie (1977) were it was used to simulate 

chemical systems. As we know, in Gillespie’s SSA, the ensemble mean for the number 

of droplets at each droplet mass is calculated from the expression (Gillespie, 1975): 





rN

i

i

r

tmN
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tmN
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);(                                                (14) 

where Nr is the number of realizations of the stochastic algorithm, );( tmN i  is the 

number of droplets of mass m in the i-realization at time t, and );( tmN is the ensemble 

mean. From expression (14) it is clear that in order to obtain the correct expected 

values ));(( tmN at the large end of the droplet size distribution; we will need a large 

number of realizations of the SSA. 

To further investigate this question, the evolution of a cloud system with an initial 

mono-disperse droplet size distribution of N0=30 droplets of 14 μm in radius (droplet 

mass 1.1494×10
-8

g) at t0, and a volume of 1cm
3
 was calculated with both the numerical 

algorithm and the Gillespie’s SSA for the sum kernel ( ( , ) ( )i jK i j B x x  , with 

B=8.82×10
2 

cm
3
 sec

-1
) . The results obtained by the two methods, were then compared 

with the analytical solution of the master equation (Eq. (13)) obtained by Tanaka and 

Nakazawa (1993) for the same conditions.  
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The averages calculated from the Gillespie’s method for Nr=10
3
 realizations, and the 

analytical solution at t=1200 are displayed in Fig. 5. As can be observed, both the 

Monte Carlo averages and the analytical solution are closely coincident for the small 

end of the droplet size distribution. However, due to the small number of realizations, 

the SSA fails to reproduce the distribution for the expected values at the large end 

(See Table 1).    

For a more detailed analysis, the expected number of particles for each droplet size 

calculated from the analytical solution, the numerical algorithm and the SSA of 

Gillespie (for 1000 and 10,000 realizations) are displayed in Table 1. As can be checked 

in the table, the size distributions are almost identical for the small end. However, they 

differ substantially at the large end since the SSA produces no particles larger than 

12v0 and 16v0 for 1000 and 10,000 realizations respectively (v0 =1.1494×10
-8

g, mass of a 

14 μm droplet). 

For 1000 realizations, the Monte-Carlo averages differ from the analytical solution for 

bin numbers larger than 8. For 10,000 realizations we have the same situation for bin 

numbers larger than 13.  

As expected, for 1000 and 10000 realizations, no states with droplets 30 times larger 

than monomer-sized ones were realized. The numerical algorithm described in this 

paper performed very well at the large end, with expected values that are very close to 

the analytical solution (see Fig5 and Table 3). 

It can be concluded that our method will be suitable if we need to accurately calculate 

the large end of the droplet spectrum for small systems (with <50 monomer droplets 

in the initial state). As the SSA requires a large number of realizations, it will be 

computationally very expensive. Then, for a small number of particles, our algorithm 

will be a good alternative, as it provides the desired accuracy to detect the possible 

small differences between different numerical approaches. It can also work as a 

benchmark for different Monte Carlo methods for the collision coalescence process. “ 

4. Reviewer # 2: Other thing that would be beneficial is a short discussion of how do 

results presented in the paper actually relate to cloud development. From Figs. 6, 7 

and 9 one can conclude that fluctuations and correlations tend to delay formation of 

large droplets in small volumes (in comparison with the deterministic equation). 

However, this results can not be extrapolated to larger systems. Such a small 
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volume would not remain undisturbed for time of the order of 1000s. Does the 

author expect that fluctuations in small volumes can have significant impact on 

development of clouds? 

A short discussion on the applicability of the finite volume stochastic approach was added 

in section 5: 

“Can be a topic of discussion the limits of applicability of the finite volume approach 

to problems of precipitation formation, since such small volumes would not remain 

undisturbed for a long time in a real cloud. However, in defense of the finite system 

approach, it might be argued that, in the early stages of cloud development, due to 

small terminal velocities of the droplets, the coalescence process is a fairly localized 

process. Then, two droplets in widely separated parts of the cloud are not going to be 

coalescing with each other. This was the approach followed by Bayewitz et al. (1974) 

(and endorsed in Gillespie (1975)). In their paper, for comparing the stochastic and 

kinetic approaches, they partitioned the cloud into many sub-volumes, with no 

collisions being permitted for two droplets of different sub-volumes. However, 

interactions between sub-volumes through sedimentation, diffusion or other physical 

processes were not considered. 

For a constant collection kernel, a more complex model that uses the master equation 

formalism, and introduces the interactions between the sub-volumes was developed by 

Merkulovich and Stepanov (1990, 1991). This model is based on a scheme proposed by 

Nicolis and Prigogine (1977) for chemical reactions. Within this theory, the whole 

system is subdivided into sub-volumes (coalescence cells) that can be considered 

spatially homogeneous. Coalescence events are permitted only between droplets from 

the same sub-volume, and interactions between neighbors occur through the diffusion 

process.  That leads to a set of master equations for each sub-volume. Although very 

complex, it could be a starting point in order to consider the interactions between 

small coalescence volumes through sedimentation or other physical mechanisms.  

However, fluctuations will be also very important, if the collection kernel K(i,j) 

increases sufficiently rapidly with i and j and a giant droplet with mass comparable to 

the total mass of the system is formed. In that case, the total mass predicted by the 

KCE starts to decrease. This is usually interpreted to mean that the system exhibits a 

phase transition (also called gelation). After this moment, the true averages calculated 
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from the master equation will differ from the averages obtained from Eq. 1, and there 

is a transition from a system with a continuous droplet distribution to one with a 

continuous distribution plus a giant cluster (Alfonso et al., 2013). After the sol-gel 

transition the KCE breaks down: the second moment of the size distribution diverges 

at the gel point, and, as was remarked, the first moment decays, i.e., mass is not 

conserved. 

The limitation of the KCE equation arises from the fact that it is a deterministic 

equation with no fluctuations or correlations included. Then it describes an inherently 

stochastic process with a single metric, the mean cluster distribution (Matsoukas, 

2015). Then, in order to model properly the system behavior after the giant cluster is 

formed, the role of fluctuations should be considered. 

By using the finite volume approach, the expected values at the large end of the 

droplet size distribution can be obtained in the post-gel region (Lushnikov, 2004; 

Matsoukas, 2015), and be compared with the expected values obtained from the 

kinetic approach. As a result, it is expected to obtain broader droplet mass 

distributions by using the stochastic approach. A follow-up paper will be devoted to a 

more detailed analysis of all these problems”. 

 

5. New Table added to the paper: Table 3 is now added to the revised version in 

section: 3.2 Comparison with the SSA of Gillespie. 

Table 3.  Expected values for each droplet mass obtained at t=1200 sec. for the analytical 

solution, the numerical algorithm proposed in this work, and the Gillespie’s SSA (for Nr= 

1000, 10000 realizations). Calculations were performed with the initial condition 

1)0;0,...,0,0,0,30( P , and the sum kernel ( , ) ( )i jK i j B x x   with B=8.82×10
2 

cm
3
 sec

-1
. 

Expected values for each droplet size: <ni>,  t=1200 sec. 

 

Bin Number Analytical Solution Numerical algorithm SSA 

(Nr= 1000) 

SSA 

(Nr= 10,000) 

1.000 1.5633E+01 1.5622E+01 1.5612E+01 1.5619E+01 

2.000 3.5302E+00 3.5303E+00 3.5250E+00 3.5425E+00 
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3.000 1.1754E+00 1.1762E+00 1.1870E+00 1.1712E+00 

4.000 4.5543E-01 4.5609E-01 4.4800E-01 4.5050E-01 

5.000 1.9017E-01 1.9057E-01 2.2300E-01 1.9600E-01 

6.000 8.2592E-02 8.2824E-02 7.2000E-02 8.2000E-02 

7.000 3.6583E-02 3.6709E-02 3.6000E-02 3.6800E-02 

8.000 1.6320E-02 1.6387E-02 1.6000E-02 1.6100E-02 

9.000 7.2696E-03 7.3034E-03 3.0000E-03 6.5000E-03 

10.000 3.2117E-03 3.2284E-03 2.0000E-03 3.5000E-03 

11.000 1.3997E-03 1.4077E-03 1.0000E-03 1.2000E-03 

12.000 5.9891E-04 6.0263E-04 0.0000E+00 4.0000E-04 

13.000 2.5049E-04 2.5216E-04 0.0000E+00 4.0000E-04 

14.000 1.0197E-04 1.0269E-04 0.0000E+00 3.0000E-04 

15.000 4.0229E-05 4.0529E-05 0.0000E+00 0.0000E+00 

16.000 1.5312E-05 1.5431E-05 0.0000E+00 1.0000E-04 

17.000 5.5954E-06 5.6404E-06 0.0000E+00 0.0000E+00 

18.000 1.9526E-06 1.9687E-06 0.0000E+00 0.0000E+00 

19.000 6.4672E-07 6.5217E-07 0.0000E+00 0.0000E+00 

20.000 2.0189E-07 2.0361E-07 0.0000E+00 0.0000E+00 

21.000 5.8917E-08 5.9419E-08 0.0000E+00 0.0000E+00 

22.000 1.5913E-08 1.6048E-08 0.0000E+00 0.0000E+00 

23.000 3.9295E-09 3.9622E-09 0.0000E+00 0.0000E+00 

24.000 8.7349E-10 8.6634E-10 0.0000E+00 0.0000E+00 

25.000 1.7127E-10 1.7176E-10 0.0000E+00 0.0000E+00 

26.000 2.8809E-11 2.8765E-11 0.0000E+00 0.0000E+00 

27.000 3.9922E-12 3.9906E-12 0.0000E+00 0.0000E+00 

28.000 4.2746E-13 4.2803E-13 0.0000E+00 0.0000E+00 

29.000 3.1450E-14 3.1525E-14 0.0000E+00 0.0000E+00 

30.000 1.1930E-15 1.1962E-15 0.0000E+00 0.0000E+00 
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6. New Figures added to the paper: The figures 5a and 5b are now added to the 

revised version: 

 

 

(a)                                                                      (b) 

Fig. 5.  At t=1200 sec., comparison between the droplet size distributions obtained from the 

analytical solution of the master equation (line) and a) the SSA of Gillespie for 10
3
 

realizations (circles), b) the numerical algorithm (circles). Calculations were performed 

with the initial condition 1)0;0,...,0,0,0,30( P  for the sum kernel ( , ) ( )i jK i j B x x  , with 

B=8.82×10
2 

cm
3
 sec

-1
. 
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Abstract 

In cloud modeling studies, the time evolution of droplet size distributions due to collision-

coalescence events is usually modeled with the Smoluchowski coagulation equation, also 

known as the kinetic collection equation (KCE). However, the KCE is a deterministic 

equation with no stochastic fluctuations or correlations. Therefore, the full stochastic 

description of cloud droplet growth in a coalescing system must be obtained from the 

solution of the multivariate master equation, which models the evolution of the state vector 

for the number of droplets of a given mass. Unfortunately, due to its complexity, only 

limited results were obtained for certain type of kernels and monodisperse initial 

conditions. In this work, a novel numerical algorithm for the solution of the multivariate 

master equation for stochastic coalescence that works for any type of kernels, multivariate 

initial conditions and small system sizes is introduced.  The performance of the method was 

checked by comparing the numerically calculated particle mass spectrum with analytical 

solutions of the master equation obtained for the constant and sum kernels. Correlation 

coefficients were calculated for the turbulent hydrodynamic kernel, and true stochastic 

averages were compared with numerical solutions of the kinetic collection equation for that 

case.  The results for collection kernels depending on droplet mass demonstrates that the 
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magnitude of correlations are significant, and must be taken into account when modeling 

the evolution of a finite volume coalescing system. 

1. Introduction 

The evolution of the size distribution of coalescing particles has often been described by the 

kinetic collection (hereafter KCE) or Smoluchowski coagulation equation, known under a 

number of names (“stochastic collection”, “coalescence”). The discrete form of this 

equation has the form (Pruppacher and Klett, 1997): 

i-1

j=1 j=1

N(i,t) 1
= K(i-j,j)N(i-j)N(j)-N(i) K(i,j)N(j)

t 2




                                       (1) 

where N(i,t) is the average number of droplets with mass xi, and K(i,j) is the collection 

kernel related to the probability of coalescence of two droplets of masses xi and xj.  In Eq. 

(1), the time rate of change of the average number of droplets with mass xi is determined as 

the difference between two terms: the first term describes the average rate of production of 

droplets of mass xi due to coalescence between pairs of drops whose masses add up to mass 

xi, and the second term describes the average rate of depletion of droplets with mass xi due 

to their collisions and coalescence with other droplets. 

Within the kinetic approach (Eq. (1), it is assumed that fluctuations are negligible small. 

This assumption can only be correct if the volume and the number of particles are infinitely 

large. An alternative approach considers the coalescence process in a system of finite 

number of particles, with fluctuations that are no longer negligible. This finite-volume 

description is intrinsically stochastic and has been pioneered by Marcus(1968), Bayewitz et 

al. (1974) and studied in detailed by Lushnikov (1978, 2004) and Tanaka and Nakazawa 

(1993).  
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Within the finite volume description a system of particles whose total mass is MT is 

considered. The mass distribution of the particles is described by giving the number ni of 

particles with mass i, i.e. n1, n2, n3,…,nN. Then, the state of the mass distribution of the 

particle system is described by the N dimensional state vector 1 2( , ,..., )Nn n n n . The time 

evolution of the joint probability 1 2( , ,..., ; )NP n n n t  that the system is in state 

1 2( , ,..., )Nn n n n  at time t is calculated according to the equation (Tanaka and Nakazawa, 

1993): 

                            
1 1

( )
( , )( 1)( 1) (..., 1,..., 1,..., 1,...; )

N N

i j i j i j

i j i

P n
K i j n n P n n n t

t


  


     


  

                                       
2

1

1
( , )( 2)( 1) (..., 2,..., 1,...; )

2

N

i i i i

i

K i i n n P n n t


         

     
1 1 1

1
( , ) ( ; ) ( , ) ( 1) ( ; )

2

N N N

i j i i

i j i i

K i j n n P n t K i i n n P n t
   

                (2) 

The master equation (2) is a gain-loss equation for the probability of each state

1 2( , ,..., )Nn n n n . The sum of the first two terms is the gain due to transition from other 

states, and the sum of the last two terms is the loss due to transitions into other states. The 

gain terms show that the system may be reached from any state with an i-mer and a j-mer 

more, and one (i+j)-mer less. In Eq. (2) ( , )K i j  is the collection kernel and the transition 

rates are  ( , )( 1)( 1)i jK i j n n   if i j and ( , )( 1)( 2)i iK i i n n   if i j . From conservation 

of the total probability, ( ; )P n t  must satisfy the relation: 

( ; ) 1
n

P n t                                                                (3) 

where the sum is taken over all states. Moreover, the total mass MT of the system must be 

conserved, and the particle number ni should be non-negative for any mass xi: 
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1

N

i i T

i

x n M


 ,    0, 1,...,in i N                                   (4) 

Exact solutions of Eq. (2) are only known for a limited number of cases (constant, sum and 

product kernels) and for monodisperse initial conditions. For these special cases the master 

equation has been solved by Lushnikov (1978, 2004) and Tanaka and Nakazawa (1993) in 

terms of the generating function of ( ; )P n t .  For general, multidisperse initial conditions, the 

solution of Eq. (2) is not known.  

Additionally, for stochastic coagulation, approximate solutions were calculated by using the 

Van Kampen’s system size expansion or Ω-expansion (Van Dongen and Ernst, 1987; Van 

Dongen, 1987) which permits to find solutions of Eq. (2) valid in the limit of a large 

system. However, the system size expansion gives less reliable results when applied to 

systems with a low number of particles or small volumes. 

Then, in order to obtain solutions for more realistic kernels (Brownian motion, differential 

sedimentation etc.), a small number of particles and general multidisperse initial conditions, 

it has to be solved numerically. In this paper, we present an algorithm that can be applied to 

obtain the solution of Eq. (2) for any type of kernels and initial conditions. By applying this 

method, numerical solutions of the master equation were obtained for realistic kernels 

relevant to cloud physics, along with calculation of the correlations for the number of 

droplets for different sizes.  

It is noteworthy to mention that the Stochastic Simulation Algorithm (SSA) developed by 

Gillespie (1975) also accurately reproduces the master equation. In Gillespie’s method, the 

master equation is not solved directly, but a statistically correct trajectory (possible 

solution) of the master equation is generated. At any time, expected values at each droplet 

size can be obtained by averaging over many runs. However, a large number of realizations 
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are necessary in order to obtain the desired accuracy at the large end of the droplet size 

distribution. A detailed comparison between the two methods will be made in section 3. 

The problem of calculation of correlation coefficients was also addressed by Wang et al. 

(2006), who  derived which they called the “true stochastic collection equation” (TSCE), 

which is a mean field equation at the  first order and contains correlations among 

instantaneous droplets of different sizes. The problem with this equation and similar is that 

the rate change of moments of order n depends on moments of order (n+1), as was 

remarked by Marcus (1968).  

In our work, we overcome this drawback by calculating the true stochastic averages directly 

from the solution of the master equation.  The main idea is to reduce the dimensionality by 

restricting the state space only to those states which have a finite probability of being 

accessed. It turns out that this provides a considerable improvement in numerical 

efficiency. 

The paper is organized as follow: In section 2, the numerical algorithm is explained in 

detail. Numerical solutions for the sum and constant kernels with a comparison with 

analytical solutions and with the method of Gillespie (1975) are presented in section 3. The 

numerical results for mass dependent kernels along with calculation of correlations for 

different droplet sizes are presented in section 4. Finally, in section 5 we briefly discuss the 

results and the possible applications of the numerical algorithm. 

 

2. The numerical algorithm 

To solve Eq. (2) by brute force, the joint probability 1 2( , ,..., ; )NP n n n t  must be discretized 

into a multidimensional array. The main drawback of this approach is its susceptibility to 
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the curse of dimensionality (Bellman, 1961), i.e. the exponential growth in memory and 

computational requirements in the number of problem dimensions. 

For example, for a system with a mono-disperse initial condition (50,0,0,...,0;0) 1P  , even 

considering the restriction (4), we would be in need to define a 50 dimensional array with 

about 1.34x10
16

 elements, which is computationally prohibitive. 

2.1 Calculation of all possible states. 

Instead of the brute force discretization of the multi-dimensional joint probability 

distribution, the solution for this problem lies on the generation of all possible states from 

an initial configuration, and the posterior calculation of the time evolution of the probability 

( ; )P n t  for each generated configuration by using the master equation. From an arbitrary 

initial condition 01 02 0( , ,..., ;0) 1NP n n n   all possible states can be generated numerically. 

This can be performed by taking into account that the only allowed transitions are of the 

form: 
( )

1 1n n  if i j   and
( )

2 2n n   if i j , where
( )

1n 
, 1n  and

( )

2n 
, 2n  are the state 

vectors:  

( )

1 1( ,..., 1,..., 1,..., 1,..., )i j i j Nn n n n n n

                                         (5a) 

1 1( ,..., ,..., ,..., ,..., )i j i j Nn n n n n n                                                      (5b) 

( )

2 1 2( ,..., 2,..., 1,..., )i i Nn n n n n                                                      (5c) 

2 1 2( ,..., ,..., ,..., )i i Nn n n n n                                                                (5d) 

For a system consisting of N monomers at t=0,  ( )R N   states (or N-dimensional vectors) 

can be realized, where ( )R N  is the number of solutions in integers n of the Eq. (4) for 

conservation of mass. The number of possible configurations can be approximated from the 

equation (Hall, 1967):  
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  1/21
( ) exp 2 / 3

4 3
R N N

N
                                                (6) 

Note that, although R(N) increases very quickly with N (for example, R(50)=217590 and 

R(100)=190 569 232), a number of states that is manageable with an average computer is 

obtained (compare with the 50 dimensional array with 1.34x10
16

 elements required for 

N=50). Although the formula (6) slightly overestimates the number of states, it gives 

estimates that can be used in order to check the performance of the algorithm. For N=6, 10, 

20, 30 we obtained 11, 42, 627, and 5604 with the numerical algorithm, and 13, 48, 692 

and 6078 by using the formula (6). As an example, the 11 possible configurations generated 

from the initial state (6,0,0,0,0,0)  are displayed in Fig. 1.  

2.2 Time evolution of the probabilities ( ; )P n t  for each state. 

At t0=0, for the initial state 01 02 03 04 0( , , , ,...,; ) 1P n n n n t  , and the probabilities for the rest of 

the states are set equal to 0. The probabilities of all generated configurations are updated 

according to the first order finite difference scheme:  

   0 0

1 1
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2 0
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, 1

0
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; ;

( , )( 1)( 1)

(..., 1,..., 1,..., 1,...; )
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i j
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                                           (7) 



   24 

It is clear from Eq. (7) that the state probabilities  0;P n t t  at t=t0+Δt will increase if 

the states from which transitions are allowed, have a non-zero probability at t = t0 (second 

and third terms in the right-hand size of Eq. (6)), and will decrease due to collisions of 

particles from the same state at t = t0 (fourth term and fifth terms in the right-hand side of 

Eq. (7)) if 0( ; )P n t  is positive. The finite difference equation for (1,0,0,0,1,0)P was written 

to illustrate the method. As can be checked from the generation scheme displayed in Figure 

1, the only allowed transitions to (1,0,0,0,1,0)  are from the states (1,1,1,0,0,0)  and

(2,0,0,1,0,0) . Consequently, at t=t0+Δt, 0(0,1,0,1,0,0; )P t t  will increase if 

0(1,1,1,0,0,0; )P t  and 0(2,0,0,1,0,0; )P t  are positive at t = t0. On the other hand, 

0(1,0,0,0,1,0; )P t t  will decrease due to collisions from particles within the same state at 

t = t0 if  0(1,0,0,0,1,0; )P t  is positive. Then, 0(1,0,0,0,1,0; )P t t  is calculated from the 

equation: 

   0 0

2 3 0

1 4 0

1 5 0

1,0,0,0,0,1,0; 1,0,0,0,0,1,0;

(2,3)( 1)( 1) (1,1,1,0,0,0; )

(1,4)( 1)( 1) (2,0,0,1,0,0; )

- (1,5)( )( ) (1,0,0,0,1,0; )

P t t P t

tK n n P t

tK n n P t

tK n n P t

  

  

   



                         (8) 

In the second term of the right-hand side of (8), n2+1 and n3+1 are set equal to 1, as they 

are the number of particles in the second and third bins in the configuration (1,1,1,0,0,0)  at 

t = t0. In the third term, n1+1=2 and n4+1=1 as they are defined from the state (2,0,0,1,0,0) , 

and finally n1=n5=1 in the fourth and last term. As an exercise, the time evolution of each 

state probability was calculated for the coalescence kernel 1/2 1/2( , ) ( ) / 40K i j i j   from 

Marcus (1968). The results for 5 of the 11 possible configurations are displayed in Fig. 2. 

2.3.   Calculation of the expected values of the number of particles for each particle mass. 
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The number of particles for a given mass n1, n2, …,nN  are discrete random variables whose 

probability distributions can be obtained from:  

 1 2( , ; ) , ,..., ,... ;
m

m N

Except n

P n m t P n n n n n t                                        (9) 

Usually, the numerical implementation of Eq. (9) would involve calculating the sum of all 

elements of a multidimensional array, which is computationally very expensive. Our 

approach is simpler: Once the probabilities of all possible states are determined for all 

times, ( , ; )P n m t  can be calculated just by summing over all states that have nm=n: 

 1 2( , ; ) , ,..., ,... ;m N

m

P n m t P n n n n n t

All states with n n

 


                  (10) 

The expected values mn for the number of particles of mass m are then calculated from 

the equation: 

( , ; )m

n

n nP n m t                                                    (11) 

As an example, for the system from Fig. 1, the probability distribution ( ,1; )P n t  of having n 

particles with mass m=1 is displayed in Table 1.  

 

3. Comparison with analytical solutions and the Stochastic Simulation Algorithm 

(SSA) of Gillespie. 

3.1 Comparison with analytical solutions 

The expected values for each particle mass calculated with the numerical algorithm, were 

tested against the analytical solutions of the master equation reported in Tanaka and 

Nakazawa (1993) for the constant (Eq. (12)) and sum (Eq. (13)) kernels ( ( , )K i j A ,
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( , ) ( )i jK i j B x x  ) obtained for the mono-disperse initial condition 0( ,0,0,...,0;0) 1P N  . 

They are: 
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                              (13) 

In Eqs. (12) and (13), N0 is the initial number of particles, 0N

mC is the binomial coefficient 

and mn are the true stochastic averages for each particle mass m at time t. In (12) τ=AN0t, 

where A=1.2×10
-4 

cm
3
 sec

-1
 is the constant collection kernel. Finally, in (13), 0 0T BN v t  

where v0 is the initial volume of droplets and B=8.82×10
2 

cm
3
 g

-1
 sec

-1
. Turning to a 

concrete numerical example, the evolution of a cloud system with an initial monodisperse 

droplet size distribution of N0=10 droplets of 10 μm in radius (droplet mass 4.189×10
-9

g) at 

t0 , and a volume of 1cm
3
 was calculated with the numerical algorithm.  The time step was 

set equal to Δt=0.1 sec. A comparison between the numerical and analytical results for both 

the sum and constant kernels at t=1200 are shown in Figs. 3 and 4 with an excellent 

agreement between the two approaches. 

3.2 Comparison with the SSA of Gillespie. 

As was mentioned in the introduction, the algorithm of Gillespie generates a statistically 

correct trajectory of the stochastic master equation. It was presented in Gillespie (1975), 

and popularized in Gillespie (1977) were it was used to simulate chemical systems. As we 
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know, in Gillespie’s SSA, the ensemble mean for the number of droplets at each droplet 

mass is calculated from the expression (Gillespie, 1975): 





rN

i

i

r

tmN
N

tmN
1

);(
1

);(                                                (14) 

where Nr is the number of realizations of the stochastic algorithm, );( tmN i  is the number 

of droplets of mass m in the i-realization at time t, and );( tmN is the ensemble mean. From 

expression (14) it is clear that in order to obtain the correct expected values ));(( tmN at the 

large end of the droplet size distribution; we will need a large number of realizations of the 

SSA. 

To further investigate this question, the evolution of a cloud system with an initial mono-

disperse droplet size distribution of N0=30 droplets of 14 μm in radius (droplet mass 

1.1494×10
-8

g) at t0, and a volume of 1cm
3
 was calculated with both the numerical 

algorithm and the Gillespie’s SSA for the sum kernel ( ( , ) ( )i jK i j B x x  , with 

B=8.82×10
2 

cm
3
 sec

-1
) . The results obtained by the two methods, were then compared with 

the analytical solution of the master equation (Eq. (13)) obtained by Tanaka and Nakazawa 

(1993) for the same conditions.  

The averages calculated from the Gillespie’s method for Nr=10
3
 realizations, and the 

analytical solution at t=1200 are displayed in Fig. 5. As can be observed, both the Monte 

Carlo averages and the analytical solution are closely coincident for the small end of the 

droplet size distribution. However, due to the small number of realizations, the SSA fails to 

reproduce the distribution for the expected values at the large end (See Table 1).    

For a more detailed analysis, the expected number of particles for each droplet size 

calculated from the analytical solution, the numerical algorithm and the SSA of Gillespie 
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(for 1000 and 10,000 realizations) are displayed in Table 1. As can be checked in the table, 

the size distributions are almost identical for the small end. However, they differ 

substantially at the large end since the SSA produces no particles larger than 12v0 and 16v0 

for 1000 and 10,000 realizations respectively (v0 =1.1494×10
-8

g, mass of a 14 μm droplet). 

For 1000 realizations, the Monte-Carlo averages differ from the analytical solution for bin 

numbers larger than 8. For 10,000 realizations we have the same situation for bin numbers 

larger than 13.  

As expected, for 1000 and 10000 realizations, no states with droplets 30 times larger than 

monomer-sized ones were realized. The numerical algorithm described in this paper 

performed very well at the large end, with expected values that are very close to the 

analytical solution (see Fig5 and Table 3). 

It can be concluded that our method will be suitable if we need to accurately calculate the 

large end of the droplet spectrum for small systems (with <50 monomer droplets in the 

initial state). As the SSA requires a large number of realizations, it will be computationally 

very expensive. Then, for a small number of particles, our algorithm will be a good 

alternative, as it provides the desired accuracy to detect the possible small differences 

between different numerical approaches. It can also work as a benchmark for different 

Monte Carlo methods for the collision coalescence process.  

 

4. Kinetic vs. stochastic approach: Calculation of correlation coefficients and 

numerical results for mass dependent collection kernels.  

4.1 Numerical calculation of correlation coefficients 
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The evolution equation for the expected values of the random variables can be obtained by 

multiplying Eq. (7) by kn  and summing over all states (see Bayewitz et al. (1974)): 

   , ,k

1
( , ) - - ( , ) -

2
k i j i i j j k j j

i j k j

n K i j n n n K j n n n n
t

 
 





             (15) 

The KCE is obtained from (15) by assuming that
i j i jn n n n , i.e. that the correlation 

between the random variables is zero. A form of Eq. (15) was deduced in Tanaka and 

Nakazawa (1993) and in Wang et al. (2006) for a general type of kernels. Bayewitz et al. 

(1974) have quantified the deviation of the size distributions calculated with the KCE from 

the exact distribution obtained from the master equation for a constant kernel. From Eq. 

(15) it can be concluded that as long as the correlations remain appreciable, the results of 

the KCE will not match the true stochastic averages. The correlation (or correlation 

coefficient) between two random variables ni and nj denoted as 
,i j  is 

,

cov( , )

( ) ( )

i j

i j

n ni j

i j

n ni j

n n

Var n Var n




 
                                              (16)  

In (16), the covariance ( cov( , )i jn n ) is calculated according to 

    cov(n ,n )i j i i j j i j i jE n n n n E n n n n     
 

                    (17) 

Where  i jE n n  is the expected value of the product i jn n , which, for the bivariate case is: 

  ( , )
i j

i j i j i j

n n

E n n n n f n n                                              (18) 

In Eq. (18), ( , )i jf n n  is the two dimensional joint probability mass function (pmf) which 

was calculated similarly to how it was done in the univariate case (See Eq. 10): 
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  1 2( , ) ( , ; , ; ) , ,..., ,..., ,..., ;i j N

i j

f n l P n i l j t P n n n n n l n t
All states with

n n and n l

   

 

       (19) 

In the former equation, ( , ; , ; )P n i l j t is the probability of having n droplets of mass i and l 

droplets of mass j.  

4.2 Numerical results for the constant, sum and product kernels. 

Correlation coefficients (
1,2   and  

2,3  ) were obtained by Wang et al. (2006) using the 

analytical solution obtained by Bayewitz et al. (1974) for a constant collection kernel. They 

found that, even for this case, the magnitude of correlations could be quite large. We will 

extend their analysis by calculating the time evolution of the correlation coefficients 1,2  

and 2,3  for the constant, sum and product kernels (see Fig. 6). For each case, the 

simulations were conducted for two systems containing 10 and 40 droplets of 14 μm in 

radius respectively, and a volume of 1cm
-3

. As can be observed in the figure, in all the cases 

we have non-zero correlations. From the evolution of 1,2  for all the kernels, we can infer 

that the random variables n1 and n2 are, at the beginning of the simulation, strongly 

anticorrelated. This is due to the fact that in the initial stage of evolution of the system we 

have mainly collisions between size 1 droplets to form size 2 droplets. On the other hand, 

the random variables n2 and n3 are also anticorrelated, because a decrease of n2 due to 

collisions with size 1 droplets will increase the number of size 3 droplets (Wang et al., 

2006).  

At t=1800 sec., the true stochastic averages (see Eq. 11) obtained numerically from the 

master equation are displayed in Fig. 7, together with the mean values for each droplet 

mass calculated from the analytical solutions of the KCE (See Table 2.). For the three cases, 
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at the large end of the spectrum, results differ substantially. This is in agreement with the 

analytical study of Tanaka and Nakazawa (1994), who demonstrated that the true stochastic 

averages coincide well with those obtained from the kinetic collection equation (1) if the 

bin mass k satisfies the inequality 2

0k M , where M0 is the total mass of the system.   

4.3 Numerical results for the turbulent hydrodynamic collection kernel. 

Collisions between droplets under pure gravity conditions are simulated with a collection 

kernel of the form: 

2( , ) ( ) ( ) ( ) ( , )  g i j i j i j i jK x x r r V x V x E r r                               (20) 

The hydrodynamic kernel (Eq. 19) doesn’t take into account the turbulence effects and 

considers that droplets with different masses (xi and xj and corresponding radii, ri and rj) 

have different settling velocities. In Eq. 20, E(xi ,xj) are the collection efficiencies 

calculated according to Hall (1980). In turbulent air, the hydrodynamic kernel should be 

enhanced due to an increase in relative velocity between droplets (transport effect) and an 

increase in the collision efficiency (the drop hydrodynamic interaction).  These effects were 

taken into account by implementing the turbulence induced collision enhancement factor 

( , )Turb i jP x x  calculated in Pinsky et al. (2008) for a cumulonimbus cloud with dissipation 

rate, ε=0.1 m
2
s

-3
and Reynolds number, Reλ=2×10

4
 for cloud droplets with radii ≤ 21 µm. 

Then, the turbulent collection kernel has the form:  

( , ) ( , ) ( , )Turb i j Turb i j g i jK x x P x x K x x                                           (21) 

In the simulation for turbulent air, a system corresponding to a cloud volume of 1cm
3
 and a 

bidisperse droplet distribution was considered: 20 droplets of 14 μm in radius and another 

10 droplets of 17.64 μm in radius, corresponding to a liquid water content (LWC) of 0.436 

gm
-3

. For the turbulent collection kernel the true stochastic averages at t=200, 1800 sec. are 
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displayed in Fig.8, and compared with the mean values for each droplet mass calculated 

numerically from the kinetic collection equation (KCE) with kernel (20). Also, for this case, 

at the large end of the spectrum, results obtained from the KCE differ substantially from the 

stochastic means. The time evolution of the correlation coefficients 
1,5  and 

1,3 displayed 

in Fig. 9 confirms the fact that correlations cannot be neglected.  

Finally, the time variation of 1n , 5n , 15n  and 20n  were calculated and compared with 

the time evolution of the averages calculated from the KCE with the same initial conditions 

and coalescence rate. We can see from Fig. 10 that for the small masses k=1 and 5, both 

solutions are closely coincident up to 1800 sec., and that for the larger masses k=15 and 20, 

the results are different at all times. 

 

5. Discussion and conclusions. 

The full stochastic description of the growth of cloud droplets in a coalescing system is a 

challenging problem. For finite volume systems or in systems of small populations, 

statistical fluctuations become important and the mathematical description relies on the 

master equation which has analytical solutions for a limited number of cases. In an effort to 

solve this problem, we have introduced a new approach to numerically calculate the 

solution of the coalescence multivariate master equation that works for any type of kernels 

and initial conditions.  

For the constant, sum and product kernels, the true stochastic averages calculated 

numerically were compared with analytical solutions of the master equation, with an 

excellent agreement between the two approaches.  
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A numerical procedure to calculate the correlation coefficients was implemented, which 

were calculated for mass dependent kernels (sum, product, and kernels modified by 

turbulent processes). Also numerical solutions of the master equation for bivariate initial 

conditions and collection kernels modified by turbulent processes were obtained and 

compared with size distribution obtained from the numerical integration of the KCE. The 

two equations give different values at the large end of the droplet size distribution. It was 

also shown that, for small k, the true stochastic averages kn  and the solution of the KCE 

are closely coincident up to 1800 sec. For larger masses, the results are different at all 

times.  

Can be a topic of discussion the limits of applicability of the finite volume approach to 

problems of precipitation formation, since such small volumes would not remain 

undisturbed for a long time in a real cloud. However, in defense of the finite system 

approach, it might be argued that, in the early stages of cloud development, due to small 

terminal velocities of the droplets, the coalescence process is a fairly localized process. 

Then, two droplets in widely separated parts of the cloud are not going to be coalescing 

with each other. This was the approach followed by Bayewitz et al. (1974) (and endorsed in 

Gillespie (1975)). In their paper, for comparing the stochastic and kinetic approaches, they 

partitioned the cloud into many sub-volumes, with no collisions being permitted for two 

droplets of different sub-volumes. However, interactions between sub-volumes through 

sedimentation, diffusion or other physical processes were not considered. 

For a constant collection kernel, a more complex model that uses the master equation 

formalism, and introduces the interactions between the sub-volumes was developed by 

Merkulovich and Stepanov (1990, 1991). This model is based on a scheme proposed by 
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Nicolis and Prigogine (1977) for chemical reactions. Within this theory, the whole system is 

subdivided into sub-volumes (coalescence cells) that can be considered spatially 

homogeneous. Coalescence events are permitted only between droplets from the same sub-

volume, and interactions between neighbors occur through the diffusion process.  That 

leads to a set of master equations for each sub-volume. Although very complex, it could be 

a starting point in order to consider the interactions between small coalescence volumes 

through sedimentation or other physical mechanisms.  

However, fluctuations will be also very important, if the collection kernel K(i,j) increases 

sufficiently rapidly with i and j and a giant droplet with mass comparable to the total mass 

of the system is formed. In that case, the total mass predicted by the KCE starts to decrease. 

This is usually interpreted to mean that the system exhibits a phase transition (also called 

gelation). After this moment, the true averages calculated from the master equation will 

differ from the averages obtained from Eq. 1, and there is a transition from a system with a 

continuous droplet distribution to one with a continuous distribution plus a giant cluster 

(Alfonso et al., 2013). After the sol-gel transition the KCE breaks down: the second 

moment of the size distribution diverges at the gel point, and, as was remarked, the first 

moment decays, i.e., mass is not conserved. 

The limitation of the KCE equation arises from the fact that it is a deterministic equation 

with no fluctuations or correlations included. Then it describes an inherently stochastic 

process with a single metric, the mean cluster distribution (Matsoukas, 2015). Then, in 

order to model properly the system behavior after the giant cluster is formed, the role of 

fluctuations should be considered. 
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By using the finite volume approach, the expected values at the large end of the droplet size 

distribution can be obtained in the post-gel region (Lushnikov, 2004; Matsoukas, 2015), 

and be compared with the expected values obtained from the kinetic approach. As a result, 

it is expected to obtain broader droplet mass distributions by using the stochastic approach. 

A follow-up paper will be devoted to a more detailed analysis of all these problems. 
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Table 1. Probability distribution ( ,1; )P n t of finding n particles of size m=1 at time t, for a 

system with the initial condition (6,0,0,0,0,0;0) 1P  . 

 Probability distribution ( ,1; )P n t  

n=0 (0,1; ) (0,1,0,1,0,0, ) (0,0,2,0,0,0) (0,0,0,0,0,1)P t P t P P    

n=1 (1,1; ) (1,1,1,0,0,0, ) (1,0,0,0,1,0)P t P t P   

n=2 (2,1; ) (2,2,0,0,0,0; ) (2,0,0,0,1,0; )P t P t P t   

n=3 (3,1; ) (3,0,1,0,0,0; )P t P t  

n=4 (4,1; ) (4,1,0,0,0,0; )P t P t  

n=5 (5,1; ) 0P t   

n=6 (6,1; ) (6,0,0,0,0,0; )P t P t  
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Table 2. Analytical size distributions of the kinetic collection equation (KCE) calculated 

with monodisperse initial conditions.  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Note: Parameters β, B and C are constants, x and y are the masses of the colliding drops. N0 

is the initial concentration and v0 is the initial volume of droplets. The index i represents the 

bin size. 
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Table 3.  Expected values for each droplet mass obtained at t=1200 sec. for the analytical 

solution, the numerical algorithm proposed in this work, and the Gillespie’s SSA (for Nr= 

1000, 10000 realizations). Calculations were performed with the initial condition 

1)0;0,...,0,0,0,30( P , and the sum kernel ( , ) ( )i jK i j B x x   with B=8.82×10
2 

cm
3
 sec

-1
. 

Expected values for each droplet size: <ni>,  t=1200 sec. 

 

Bin Number Analytical Solution Numerical algorithm SSA 

(Nr= 1000) 

SSA 

(Nr= 10,000) 

1.000 1.5633E+01 1.5622E+01 1.5612E+01 1.5619E+01 

2.000 3.5302E+00 3.5303E+00 3.5250E+00 3.5425E+00 

3.000 1.1754E+00 1.1762E+00 1.1870E+00 1.1712E+00 

4.000 4.5543E-01 4.5609E-01 4.4800E-01 4.5050E-01 

5.000 1.9017E-01 1.9057E-01 2.2300E-01 1.9600E-01 

6.000 8.2592E-02 8.2824E-02 7.2000E-02 8.2000E-02 

7.000 3.6583E-02 3.6709E-02 3.6000E-02 3.6800E-02 

8.000 1.6320E-02 1.6387E-02 1.6000E-02 1.6100E-02 

9.000 7.2696E-03 7.3034E-03 3.0000E-03 6.5000E-03 

10.000 3.2117E-03 3.2284E-03 2.0000E-03 3.5000E-03 

11.000 1.3997E-03 1.4077E-03 1.0000E-03 1.2000E-03 

12.000 5.9891E-04 6.0263E-04 0.0000E+00 4.0000E-04 

13.000 2.5049E-04 2.5216E-04 0.0000E+00 4.0000E-04 

14.000 1.0197E-04 1.0269E-04 0.0000E+00 3.0000E-04 

15.000 4.0229E-05 4.0529E-05 0.0000E+00 0.0000E+00 

16.000 1.5312E-05 1.5431E-05 0.0000E+00 1.0000E-04 

17.000 5.5954E-06 5.6404E-06 0.0000E+00 0.0000E+00 

18.000 1.9526E-06 1.9687E-06 0.0000E+00 0.0000E+00 

19.000 6.4672E-07 6.5217E-07 0.0000E+00 0.0000E+00 

20.000 2.0189E-07 2.0361E-07 0.0000E+00 0.0000E+00 

21.000 5.8917E-08 5.9419E-08 0.0000E+00 0.0000E+00 

22.000 1.5913E-08 1.6048E-08 0.0000E+00 0.0000E+00 

23.000 3.9295E-09 3.9622E-09 0.0000E+00 0.0000E+00 

24.000 8.7349E-10 8.6634E-10 0.0000E+00 0.0000E+00 

25.000 1.7127E-10 1.7176E-10 0.0000E+00 0.0000E+00 

26.000 2.8809E-11 2.8765E-11 0.0000E+00 0.0000E+00 

27.000 3.9922E-12 3.9906E-12 0.0000E+00 0.0000E+00 

28.000 4.2746E-13 4.2803E-13 0.0000E+00 0.0000E+00 

29.000 3.1450E-14 3.1525E-14 0.0000E+00 0.0000E+00 

30.000 1.1930E-15 1.1962E-15 0.0000E+00 0.0000E+00 
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Fig. 1. States space obtained from the initial condition (6,0,0,0,0,0;0) 1P   with the 

constraint
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Fig. 2. Time evolution of the probability for 5 of the 11 the states for the initial condition

(6,0,0,0,0,0;0) 1P   and the collection kernel 1/2 1/2( , ) ( ) / 40K i j i j  . 
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Fig. 3. For the sum kernel, size distribution obtained from the analytical solution of the 

master equation (triangles) and the numerical algorithm (squares) at t=1200 sec. 

Calculations were performed with the initial condition (10,0,0,...,0;0) 1P   and the sum 

kernel ( , ) ( )i jK i j B x x  , with B=8.82×10
2 

cm
3
 sec

-1
. 
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Fig. 4. Same as Fig. 3 but for the constant kernel   4( , ) 1.2 10K i j   cm
-3

. 
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(b)                                                                      (b) 

Fig. 5.  At t=1200 sec., comparison between the droplet size distributions obtained from the 

analytical solution of the master equation (line) and a) the SSA of Gillespie for 10
3
 

realizations (circles), b) the numerical algorithm (circles). Calculations were performed 

with the initial condition 1)0;0,...,0,0,0,30( P  for the sum kernel ( , ) ( )i jK i j B x x  , with 

B=8.82×10
2 

cm
3
 sec

-1
. 
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(a)                                                                    (b) 

 

       (c) 

Fig. 6. Time evolution of the correlation coefficients 1,2  and 2,3  for the constant, sum and 

product kernels (in figures (a), (b) and (c) respectively) for two systems with a volume of 1 

cm
-3

 and containing 10 and 40 droplets of 14 μm. 
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(a)                                                                   (b) 

 

           (c) 

Fig. 7. Comparison of the size distributions obtained from the stochastic master equation 

(solid line) with that to the KCE (dashed line) at t=1800 sec. for a 1cm
3
 system containing 

initially 40 droplets of 14 μm. The expectation values are shown for the constant, sum and 

product kernels (in figures (a), (b) and (c) respectively). For the small end the size 

distributions are closely coincident, for the large end the two equations give different 

values. 
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(a)                          (b) 

Fig. 8. For the turbulent hydrodynamic kernel, comparison of the size distributions obtained 

from the stochastic master equation (solid line) with that to the KCE (dashed line) at t=200, 

1800 sec. for a 1cm
3
 system containing initially 20 droplets of 14 μm and 10 droplets of 17 

μm. For the small end the size distributions are closely coincident, for the large end the two 

equations give different values. 
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Fig. 9. Time evolution of the correlation coefficients 1,3  and 1,5  for a 1cm
3 

system 

modeled with the turbulent hydrodynamic kernel and containing initially 20 droplets of 14 

μm and 10 droplets of 17 μm. 
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(a)                             (b) 

 

                                    (c)                                                                       (d)  

Fig. 10. For the turbulent hydrodynamic kernel, comparison of the expected values 
kn

obtained from the stochastic master equation (solid line) with that to the KCE (dashed line), 

for a  1cm
3
 system containing initially 20 droplets of 14 μm and 10 droplets of 17 μm. The 

time evolution of the expected values are shown for k=1, 5, 15 and 20 (figures (a), (b), (c) 

and (d) respectively). For the small masses k=1 and 5, both solutions are closely coincident 

up to 1800 sec. For the larger masses k=15 and 20, the results are different at all times. 
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