
I thank the referees for their helpful comments. I have addressed all the
issues they have raised in the following. The full reviews are copied hereafter
and my responses are inserted where appropriate.

Referee #1

This work presents essentially two different, though related, pieces
of research.

There is indeed a theoretical part and a practical one, but they are not two
different pieces of research: they are not more different than a conclusion is from
an introduction. This misunderstanding may actually originate from the way
the asbtract was built (the two parts were just linked by ”More generally”) and
I have made it reflect the structure of the paper better in the revised version by
putting the arguments in the same order than in the core of the text (theory
first, then practice).

The first argues that the current pipeline used to derive optimal
flux estimates from satellite measurements of column CO2 (XCO2)
are fundamentally flawed. They are flawed because different prior
assumptions are used in the retrieval as compared to the inversion,
and the author argues that this inconsistency could bias inversion
results. The author then argues that using a strong prior constraint
(as most inverse models would suggest) in the GOSAT retrieval al-
gorithm seems to yield better agreement between the XCO2 in his
MACC (v13.1) model, than do comparisons with the standard ACOS
(v3.5) XCO2 retrievals. He also states that ACOS - MACC XCO2
differences appear to be correlated with surface albedo, though only
upon visual inspection of difference maps.

This paper, while certainly thought-provoking, suffers from a se-
vere logical deficiency that must be addressed before publication.

The reviewer’s remarks have given me the opportunity to clarify a few points,
but not to change the paper logic, as I will explain below.

Regarding the first point, of the basic inconsistency between the
GOSAT retrieval’s prior CO2 covariance assumption and that of the
model, it is worth stating that retrieval groups use a loose prior pri-
marily because they want to be maximally consistent with any model
prior covariance. A sufficiently loose covariance is always consistent
with a tighter one, but not necessarily the other way around.

This statement is actually a misconception that this paper tries to correct.
The requirement of statistical consistency expressed by Eq. (7) in the paper
indicates that a loose covariance is never consistent with a tighter one within
an assimilation system that uses averaging kernels. Actually, we can find the
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same requirement in the alternative (and heavier) approach of Migliorini (2012,
doi:10.1175/MWR-D-10-05047.1, bottom right of p. 263), a paper that I found
after the present one was published in ACPD. I have added a paragraph in
Section 3 to summarise his findings.

Therefore, it is not clear to me that using a tighter covariance is
required to yield formal mathematical consistency upon assimilation
of the satellite-retrieved XCO2, assuming the averaging kernels are
fairly applied.

The way the averaging kernels are applied makes the retrieval prior disappear
from the equation, but not the retrieval prior error statistics. Intuitively, we
can understand that retrieval prior error statistics that are different from what
the inversion system assumes, prevent the inversion equation from looking like
radiance assimilation and therefore corrupt the optimality of the system.

My strongest concern, however, regards the author’s evaluation
of the GOSAT XCO2 retrieval quality via the comparison to a sin-
gle model. Disagreement does not necessarily mean the GOSAT
retrievals are biased. Models have many sources of error: transport
model error, imperfect prior fluxes, and the assimilation of datasets
that are sparse in many regions of the world.

This remark has been anticipated and is actually written in many places of
the original paper (e.g., abstract, l. 7-8; p. 11, l. 24-25; conclusion, p. 17, l.
12-13).

The author’s only serious argument

The reviewer dismisses the other parts of the discussion in Section 4.1, but
it would have been helpful to substantiate this opinion.

is that the difference map between the model-predicted and satel-
literetrieved XCO2 should not have sharp spatial gradients because
these should be smoothed out by transport effects (page 1900, line
8). But this argument problematic for at least two reasons:

• He does not specifically demonstrate that there is no way such
a spatial gradient can be supported by transport, even if the
underlying flux was large and itself contained a strong spatial
boundary, as of course happens in some ecotones as well as at
land/ocean interfaces; and

We are discussing here column-integrated CO2 concentrations, not surface
concentrations. For instance, a megacity like Los Angeles forms an emission
hotspot that enhances χ

CO2 by 3.2 ppm on average only (Kort et al. 2012,
doi:10.1029/2012GL052738). Land/ocean interfaces cannot have a comparable
effect in magnitude. For ecotones, the paper already discusses the impact of the
Corn Belt on χ

CO2, which is found indeed very small.
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• One certainly cannot make this argument on maps that con-
tain variable spatio-temporal sampling all plotted on the same
map. For example, in the seasonally dry African Sahel region,
the satellite has strong seasonality in its ability to monitor this
region (namely due to wet vs. dry seasons), and this in and
of itself could cause apparent spatial gradients because, in fact
different times are plotted on the same map.

This is exactly why monthly maps are also shown in Fig. 3. The reviewer
can see that the patterns are indeed robust.

Secondly, the author states that in certain regions of large (1-2
ppm) model-satellite disagreement, the fault likely lies in the satellite
data. While this is certainly possible, the reverse is of course also
possible in the lack of additional information.

The former sentence is correct, but not the latter. The regions where the
fault is attributed to the satellite data are the regions where models are very
unlikely wrong that way, as discussed in the paper. The discussion clearly states
that the models can be wrong for other patterns.

Even though the author admits a few times in the text that the
model may be imperfect, he does not comment about the general
agreement (or disagreement) between the XCO2 of different carbon
inverse model systems.

Indeed this is not the purpose of the paper. The maps of Figs. 1-3 aim at
showing and discussing some regional suspicious patterns of the retrievals before
the misfits are binned by more abstract retrieval increment size.

These differences exist and they have been shown to be notable
especially in regions where the models are not well constrained by in-
itu data. For example, Kulawik et al. (AMTD, 2015) and Lindqvist
et al. (ACPD, 2015) have recently shown that inversion models can
have major differences in the seasonal magnitude of their optimized
XCO2 values both latitudinally and longitudinally. Most of the re-
gions with large retrieval-to-model differences in Fig. 2a are, inter-
estingly, the same regions where also model-to-model differences in
XCO2 can be notable: for example, in the African savannas, in sea-
sonally dry forest/grassland regions in South America, in India, and
in the high northern latitudes there can be up to 1-3 ppm differences
in monthly averages between different inverse models constrained by
in-situ measurements.

Kulawik et al. and Lindqvist et al. indeed show large differences between
models but they do not show that models can reproduce some of the gradi-
ents that are discussed as unphysical in my paper. Incidently, I note that
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MACCv13r1 has the best latitudinal fit to ACOS-GOSAT in the Tropics and in
the high latitudes (Lindqvist et al., Fig. 7, which they comment with ”ACOS
is in excellent agreement to MACC from 0 to 50◦N”): I interpret this feature
as a likely low noise level of this product in these latitudes, that should help
isolating local retrieval errors.

Ultimately, of course, we would like to know what is driving these
persistent model differences. Nevertheless, the author’s conclusions
would be on much more solid ground if independent model data
sets were shown to support the author’s arguments both about the
surface albedo effect on retrievals and over-fitting of the radiances.

The reviewer’s recommendation would be on much more solid ground if it
came after a discussion of the detailed arguments of Sections 4. Analysing one
model is already challenging. Suggesting analysing two or more models without
further motivation may be a side step.

The author argues that the differences between the model and
the retrieval over land at high latitudes are likely due to retrieval
errors over dark surfaces. While this argument might have some
truth to it (as retrieved XCO2 is indeed sensitive to the surface
albedo in all three bands, and to its changes within each band), it is
not entirely supported by the figures shown: the map of the mean
surface albedo (Fig. 4) shows that the darkest land regions are in
Scandinavia and the westernmost Russia while the largest positive
differences are most continuous and consistent in central and eastern
Russia.

The paper does not claim that the bias is a monotoneous function of the
surface albedo, at least because surface albedo is not the only variable that
interferes with the retrieval of χ

CO2.

Moreover, the author says that the regions with the largest posi-
tive differences correspond to the evergreen needle leaf forest biome
type, which is not true especially for central Russia where differences
in June vary from -1.5 to 1.5 ppm inconsistently (Fig. 3b) and parts
of Alaska.

I am referring to the classification of http://www.esa-landcover-cci.org/,
but do not claim that the correspondance is systematic. The pattern is just
strikingly similar (see the land cover map viewer at
http://maps.elie.ucl.ac.be/CCI/viewer/index.php).

The author finds substantial model-to-retrieval differences in the
African savanna/Sahel region, and attributes these differences to
”systematic errors in the retrievals”, speculating about averaging
kernels not peaking low enough in the atmosphere due to too loose
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retrieval prior error variances. However, the author does not spec-
ulate more about the reason for such regionally constrained errors:
why would the prior error variances have more impact in that par-
ticular region compared to elsewhere?

My statement was not rigorous enough and I apologize for it. Rather than
loose retrieval prior error variances, some of the fault should lie in inappropriate
prior error correlations. The sentence has been corrected.

He suggests that CO2 from fires inaccurately represented in the
MACC model might be another cause for the differences but consid-
ers this unlikely.

Indeed, ”if the model was underestimating the intensity of the fire, we would
expect the mean difference to take the shape of a plume, i.e. to spread down-
stream the source region, but this is not the case.” (p. 12, l. 20-25, of the
original paper).

However, a look at this particular region’s optimized, natural
CO2 fluxes inverted by different models reveals extremely large dif-
ferences in the fluxes, and also that similar differences are reflected
in that region’s XCO2. As long as the model differences in this
region are unexplainably large, one of the models cannot be fairly
used to speculate about biases in the satellite retrievals in that region
without some kind of additional information.

The reviewer does not explain how any model would have so high values
of χ

CO2 over this specific land region. Actually the same difference pattern
between ACOS-OCO-2 and the GEOS-5 model was shown at the first OCO-2
Science Team Meeting (Pasadena, CA, USA, February 2015) by Baker et al.

Page 11901 line 21. It is mentioned that ”boreal forests are
covered with needle-leaved trees”. It is safer to say ”are largely
covered”. Apart from the widespread light coniferous larch and pine
forests, dark coniferous needle-leaved trees can not dominate the
landscape and often appear in mosaic patches with broad-leaved
trees mostly due to post-fire successional dynamics (eg Shvidenko
and Nilsson, Tellus, 2003).

I have made the change.

The author presents in Figs. 5-8 an interesting metric for evalu-
ating overfitting in the retrievals (i.e., too tight a prior), and shows
that increasing the weight of the prior XCO2 could make the re-
trievals statistically more consistent with the model. However, he
does not show any spatial patterns of this metric; therefore it re-
mains unclear if the suggested change in the retrieval prior errors
would lead to worse misfits in some currently well-matched regions
in addition to the likely improvements in the model-retrieval misfits
in the regions where the differences are large.
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The reviewer seems to suggest re-drawing the mean difference map of Fig.
2 with x̆

a,r. However, x̆
a,r is not bias-corrected and this map could not be

interpreted in terms of better or worse misfits. The argument made with Fig. 6
relies on the standard deviation of the misfit distribution, not on its mean. For
this reason, the original conclusion states that ”the optimal-estimation retrieval
process and, consequently, its posterior bias correction need retuning”.

And even if he did, it would still suffer from the problem of
comparing to a single model,

As explained in p. 14 l. 17-19, of the original version, what matters here,
while discussing about random differences (standard deviations) is that the
model errors are uncorrelated with the retrieval errors and with the retrieval-
prior errors. This hypothesis is further discussed in p. 15 l. 10-13 of the
original version. I have completed the discussion by excluding the possibility
that subgrid scale variability plays a role in the results: ”at the sub-grid scale,
the variability of χ

CO2 is usually well below the ppm (Alkhaled et al. 2008,
Corbin et al. 2008), i.e. one order of magnitude smaller than the prior-to-
retrieval degradation”. I have also added a sentence about the relevant results
from Kulawik et al.: ”Some, but not all, of the degradation is purely random
and disappears after enough averaging (see Fig. 6 of Kulawik et al. 2015)”.

and the fact that it couldn’t be accounted for by faithfully using
the column averaging kernel in the assimilation.

This fact just comes from the maths (Eq. (7) of Section 3).

Overall, by counting too much on the results obtained by this
metric, we risk the possibility of both the model and the prior XCO2
being wrong

Again, what matters is that they are not similarly wrong (correlated errors),
which is the case.

and the satellite observations the truth. The satellite retrievals
are certainly not (yet) completely free of retrieval biases, but it is
fruitful to remind oneself why they are being carried out: because
neither our prior knowledge nor our models are perfect.

This question actually forms the first sentence of the introduction: ”CO2 sur-
face fluxes at the Earth’s surface can be inferred from accurate surface measure-
ments of CO2 concentrations, but the sparseness of the current global network
still leaves the flux horizontal and temporal gradients, and even their latitudinal
distribution, very uncertain (Peylin et al. 2013)”.

Even if similar results were obtained based on comparisons to
other models, this philosophical dilemma would still remain in the
background but the reasons that support to change the current re-
trieval procedure would be stronger.
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Adding models would not change the maths (Section 3). Our study with a
single model, in particular Figs. 5-8, is just an illustration of this theoretical
section.

Detailed comments:

- Page 11893, line 21. The author should state that the use of a
rather loose prior CO2 covariance is not specific to ACOS, with some
examples. For instance: 1) The RemoTeC retrieval has a formally
unconstrained XCO2 (Butz et al., Applied Optics, 2009), and 2) the
BESD retrieval uses a prior error on XCO2 of 15.6 ppm (Reuter et
al, AMT, 2010). etc.

This section is about ACOS and the two references would not fit there,
but I have added them in Section 2 after ”This condition is not achieved by
current satellite retrieval algorithms, at least because they artificially maximize
the measurement contribution in the retrievals through the use of very large
prior error variances”.

- Page 11896, line 3: ”H a linearized” −→ H is a linearized

I have corrected it.

- Page 11896, line 12: ”inversion window for the inversion” −→

inversion window

I have replaced the first ”inversion” by ”assimilation”.

- Page 11897, Eq. (4): might be more informative to simply show
the derivation of Eq. (4) instead of describing it in the previous
paragraph.

I agree with the reviewer and have revised the demonstration in the following
way. I have redefined ŷ

′ in order to express the elimination of x̆
b directly at this

level rather than in Eq. (4). To help the reader, I have also put the formula of

Ĥ
′

rather than defining it with words. That was made possible by stating that,
without loss of generality in our linear framework, we consider the assimilation
of a single sounding using its averaging kernel.

I have noticed a misplaced prime in Eq. (4), that induced missing primes
in Eq. (6-7). Additionally, I have also noticed that, when we make Eqs. (5-

6) consistent, the requirement of Equation (7) can be relaxed to H̆B̆H̆
T

=

H̆ĤB̂Ĥ
T

H̆
T

, which means that consistency needs only to be satisfied at the
resolution (information content) of the retrieval. I have corrected these equa-
tions and updated the text accordingly.

- Page 11899, line 16: ”long-tern” −→ long-term
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I have corrected this.

- Page 11899, lines 17-18: variability in the XCO2 field is ∼ 8
ppm in Fig. 1, retrieval-to-model differences are most typically less
than 1 ppm (Fig. 2a). Therefore, the retrieval-model difference is
”much less” than the variability within the modeled or retrieved
XCO2 field.

I have removed this statement.

- Page 11900, lines 10-11: it is incorrect to say that the local
spatial gradients mostly reflect the retrieval gradients. For example,
the gradients in Fig. 3a for South Africa, South America, and the
latitudinal gradients in the oceans are not obviously wrong in the
retrievals (Fig. 1a).

The text does not say that the retrieval gradients are wrong there, but that
they explain the gradients of the differences there. Wether they are right or
wrong is the topic of the rest of the section.

- Page 11900, lines 23-25: The surprising discontinuity in XCO2
on the NW coast of the U.S. compared to the adjacent ocean data
is more clearly seen in the model (Fig. 1b) than in the retrieval.

I have removed the statement.

- The benefits of showing Tables 1 & 2 are not clear. Because the
paper otherwise concentrates on the GOSAT data years 2009-2013,
it might be more helpful to the reader to see a map of where the
in-situ data were collected during these years.

The tables follow a request from a station PI to have the name of his station
appear publicly. It takes 1.5 pages on the ”printer-friendly” version, which seems
reasonable to me, but adding a map may be too much. I leave this question to
the editor.

- Figures 5-8 need a more informative y-axis label. For example
”XCO2ˆ a - XCO2ˆ model (ppm), mean(—) or
sigma ( )”, or something similar.

I have replaced the label by ”mean or σ of the χ
CO2 misfits (ppm)”.

- Figure 6: the two blue shades look very similar in the printed
version. Consider colors with a larger contrast.

I have replaced the light blue by gold.
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Referee #2

Author provides arguments on desirable improvements in over-
all consistency in a two-step process of estimating CO2 fluxes us-
ing firstly the atmospheric χ

CO2 retrievals from satellite observa-
tions, and secondly CO2 flux inversions. The discussion points at
an inflated prior uncertainty for retrievals as a factor contributing
to retrieval product deficiencies. It was found that tightening re-
trieval uncertainties can reduce posterior misfit between concentra-
tions optimized with inversion and retrieved χ

CO2 values. It is also
mentioned that possible posterior adjustments to uncertainties are
making empirical bias correction inconsistent. The methods and
materials applied in the analysis appear valid, and the discussion
and conclusions are valuable for those working on concentration re-
trievals and inverse modeling of the surface fluxes. Several minor
changes are recommended before publication.

Suggestions on the text

Page 11896 line 19. The derivation of Eq. (4), with elimination
of x̆

b should be included, to convince the reader that there is no
omission or use of simplifying assumptions on the way.

I have developed the demonstration as suggested. In practice, I have rede-
fined ŷ

′ in order to express the elimination of x̆b directly at this level rather than

in Eq. (4). To help the reader, I have also put the formula of Ĥ
′

rather than
defining it with words. That was made possible by stating that, without loss
of generality in our linear framework, we consider the assimilation of a single
sounding using its averaging kernel.

I have noticed a misplaced prime in Eq. (4), that induced missing primes
in Eq. (6-7). Additionally, I have also noticed that, when we make Eqs. (5-

6) consistent, the requirement of Equation (7) can be relaxed to H̆B̆H̆
T

=

H̆ĤB̂Ĥ
T

H̆
T

, which means that consistency needs only to be satisfied at the
resolution (information content) of the retrieval. I have corrected these equa-
tions and updated the text accordingly.

Page 11898 line 3. It is mentioned ”if enough intermediate vari-
ables were saved by the retrieval schemes, it would be possible to
reconstruct the retrievals with a different prior”. Reader may get
impression that Level 2 products do not carry ”enough intermediate
variables”, while the reality is that a number of products include
prior and posterior matrixes, as well as column averaging kernel and
prior profile x̆b. As author wrote, the information is not sufficient
to reconstruct the retrievals with a different prior error covariance
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matrix B̆, but it is sufficient for a) getting approximation to x̆a for

B̆ modified by multiplying it by scaling factor,

The gain matrix K̆ depends on both B̆ and R̆. Scaling x̆
a from a scaled B̆

would not be a good approximation. Further, B̆ is made of both variances, that
indeed can be scaled, and correlations that cannot be changed with a scaling
factor.

b) replacing the prior profile x̆b with any other.

Atmospheric inversions are insensitive to x̆
b provided that x̆

a is assimilated
with its averaging kernel (Eq. (4)). Therefore, we are not interested in changing
x̆

b.

Thus if one wants to have the retrieval with deflated prior un-
certainty as suggested in the manuscript, it can be done. For the
sake of clarity it is better to mention that although we can not get
retrieval result for different prior error covariance B̆, simple scaling
should work.

This proposition is similar to what is done in the paper with x̆
a,r, but I do

not recommend it because it does not improve the correlations in B̆.
I have made it clearer that we need to change both variances and correlations

by replacing ”matrix” by ”variances and correlations”.

Page 11898 line 19. The comment that with large prior uncer-
tainties for retrievals, ”the retrieval averaging kernel would not peak
low enough in the vertical” is not supported by discussion or refer-
ence.

I have made the sentence more general by changing it to ”In particular, the
sub-optimality of K̆ affects the retrieval averaging kernel, that may not peak at
the right height.”

Page 11901 line 21. It is mentioned that ”boreal forests are
covered with needle-leaved trees”. It is safer to say ”are largely
covered”. Apart from the widespread light coniferous larch and pine
forests, dark coniferous needle-leaved trees can not dominate the
landscape and often appear in mosaic patches with broad-leaved
trees mostly due to post-fire successional dynamics (eg Shvidenko
and Nilsson, Tellus, 2003).

I have removed this mistake. The text a few lines later (”dominated by”)
was more cautious.

Page 11903 line 15. The test results introduced on Fig. 6 are
most impressive, and show advantage of mixing retrieval with prior
χ

CO2. Here it is worth mentioning that making weighted average of
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prior and posterior has similar effect with reducing prior uncertainty
for retrieval. The result needs more discussion, as long as a) mixing
proportion of 1/2 is chosen arbitrarily; b) the prior performed worse
than retrievals on Fig.5 so it is not clear why mixing with it would
improve the mismatch.

The interpretation is that the retrieval scheme overshoots the truth, i.e. that
the increments are in the right direction but are too large. I have added this
clarification in the paragraph.
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Abstract 9 

The extending archive of the Greenhouse Gases Observing SATellite (GOSAT) measurements 10 

(now covering about six years) allows increasingly robust statistics to be computed, that 11 

document the performance of the corresponding retrievals of the column-average dry air-mole 12 

fraction of CO2 (XCO2). Here, we demonstrate that atmospheric inversions cannot be 13 

rigorously optimal when assimilating current XCO2 retrievals, even with averaging kernels, in 14 

particular because retrievals and inversions use different assumption about prior uncertainty. 15 

Wwe look for some practical evidence of this sub-optimality from the view point of 16 

atmospheric inversion by comparinge a model simulation constrained by surface air-sample 17 

measurements with one of the GOSAT retrieval products (NASA’s ACOS). The retrieval-18 

minus-model differences result from various error sources, both in the retrievals and in the 19 

simulation: we discuss the plausibility of the origin of the major patterns. We find systematic 20 

retrieval errors over the dark surfaces of high-latitude lands and over African savannahs. More 21 

importantly, we also find a systematic over-fit of the GOSAT radiances by the retrievals over 22 

land for the high-gain detector mode, which is the usual observation mode. The over-fit is 23 

partially compensated by the retrieval bias-correction. These issues are likely common to other 24 

retrieval products and may explain some of the surprising and inconsistent CO2 atmospheric 25 

inversion results obtained with the existing GOSAT retrieval products. We suggest that 26 

reducing the observation weight in the retrieval schemes (for instance so that retrieval 27 

increments to the retrieval prior values are halved for the studied retrieval product) would 28 

significantly improve the retrieval quality and reduce the need for (or at least reduce the 29 

complexity of) ad-hoc retrieval bias correction. More generally, we demonstrate that 30 

atmospheric inversions cannot be rigorously optimal when assimilating XCO2 retrievals, even 31 

with averaging kernels. 32 



 33 

  34 



1. Introduction 35 

CO2 surface fluxes at the Earth’s surface can be inferred from accurate surface measurements 36 

of CO2 concentrations, but the sparseness of the current global network still leaves the flux 37 

horizontal and temporal gradients, and even their latitudinal distribution, very uncertain (Peylin et 38 

al. 2013). This limitation has provided a major incentive to develop the monitoring of CO2 39 

concentrations from space. First retrievals were obtained from existing instruments measuring 40 

either the thermal infrared radiation emitted by the atmosphere (Chédin et al. 2003) or the 41 

reflected sunlight in the near-infrared (NIR)/ shortwave infrared (SWIR) spectral regions 42 

(Buchwitz et al. 2005). The latter technique allows retrieving XCO2 while the former is not 43 

sensitive to CO2 in the lower atmosphere, near the CO2 sources and sinks. Since active (lidar) 44 

measurement techniques for XCO2 from space are still in development (e.g., Ingmann et al. 2009), 45 

NIR/SWIR measurements currently offer the best prospect to provide “retrievals of CO2 of 46 

sufficient quality to estimate regional sources and sinks”, as phrased by objective A.8.1 of the 47 

Global Climate Observing System programme (GCOS, 2010), in the short term. However, they 48 

are hampered by uncertain knowledge about scatterers in the atmosphere at the corresponding 49 

wavelengths (aerosols and cirrus clouds) with an effect that varies with surface albedo, which is 50 

itself uncertain (e.g., Aben et al. 2007). Such interference in the XCO2 signal seen in the 51 

NIR/SWIR measurements is of concern because even sub-ppm systematic errors (corresponding 52 

to less than 0.25% of the signal) can severely flaw the inversion of CO2 surface fluxes (Chevallier 53 

et al. 2007, Miller et al. 2007). This risk motivated dedicated developments of the retrieval 54 

algorithms in order to de-convolve the spectral signatures of the involved compounds as much as 55 

possible (e.g., Reuter et al. 2010, Guerlet et al. 2013b).  56 



The Japanese GOSAT, launched in January 2009, and the USA second Orbiting Carbon 57 

Observatory (OCO-2), launched in July 2014, observe the NIR/SWIR radiation with 58 

unprecedented spectral resolution in order to specifically address this remote sensing challenge. 59 

The GOSAT archive already covers nearly six years and can provide good insight into the 60 

adequacy of NIR/SWIR retrievals for CO2 source-sink inversion. In terms of random errors, raw 61 

GOSAT retrievals now reach single shot precision better than 2 ppm (one sigma) in favourable 62 

fair measurement conditions (e.g., Nguyen et al. 2014). This performance is better than what pre-63 

launch studies suggested: for instance Maksuytov et al. (2008) expected 2.5-10 ppm single shot 64 

precision only. Systematic errors are difficult to quantify or else they would be removed. They 65 

are likely state-dependent with absolute values varying in time and space about the ppm before 66 

any bias correction (Nguyen et al. 2014). They also depend on the retrieval algorithm (e.g., 67 

Oshchepkov et al. 2013). As expected, the remaining uncertainty has profound impact on CO2 68 

source-sink inversions (Basu et al. 2013, Chevallier et al. 2014), but  XCO2 retrievals have 69 

already served as a basis to study the carbon budgets of some regions (Guerlet et al. 2013a, Basu 70 

et al. 2014, Reuter et al. 2014). For instance, 25 scientists analysed several XCO2 retrievals over 71 

continental Europe and concluded that the current understanding of the European carbon sink 72 

brought by bottom-up inventories had to be revisited (Reuter et al. 2014).  73 

This paper aims at contributing to the debate about the relevance of current GOSAT retrievals 74 

for atmospheric inversions. Our starting point is a critical review of the basic principles behind 75 

the current processing chains that go in successive steps from GOSAT measured radiance spectra 76 

to surface flux estimates (Section 3). We then focus on the GOSAT retrievals provided by 77 

NASA's Atmospheric CO2 Observations from Space project (ACOS, build 3.4, described in 78 

Section 2) for the period between June 2009 and May 2013. They are of particular interest 79 

because they have been processed in a way that prefigures the official OCO-2 retrievals in terms 80 



of spectral bands and available simultaneous observations (O’Dell et al. 2012). In Section 4, we 81 

analyse the residuals between the ACOS-GOSAT retrievals and the simulated CO2 concentration 82 

fields of the Monitoring Atmospheric Chemistry and Climate atmospheric inversion product 83 

(MACC, version 13r1, also described in Section 2) that assimilated surface air sample 84 

measurements from various networks. Concluding discussion follows in Section 5.  85 

 86 

2. Retrievals and model  simulation 87 

 88 

2.1. ACOS-GOSAT retrievals 89 

 90 

GOSAT is a joint venture by the Japan Aerospace Exploration Agency (JAXA), the National 91 

Institute for Environmental Studies (NIES) and the Ministry of the Environment (MOE) in Japan. 92 

This spacecraft is operated in a sun-synchronous polar orbit that crosses the Equator at about 93 

13:00 local time during daytime and that repeats every 3 days. As described by O’Dell et al. 94 

(2012) and Osterman et al. (2013), the ACOS algorithm retrieves XCO2 from a selection of 95 

GOSAT measurements of reflected sunlight made in the same spectral bands than OCO-2. Over 96 

land, such measurements are made by pointing the instrument to the Earth on both sides of the 97 

satellite track. Given the low reflectivity of water surfaces, ocean measurements are only possible 98 

when the instrument is pointed to the sun-glint spot, which is only done within 40° from the 99 

Equator in the summer hemisphere. GOSAT also carries a cloud and aerosol imager that can help 100 

filtering difficult scenes out, but unlike other GOSAT retrieval algorithms, ACOS does not use it 101 

since OCO-2 does not contain a similar instrument.  102 

Following Boesch et al. (2006) and Connor et al. (2008), the ACOS algorithm relies on 103 

optimal estimation (i.e. Bayesian methods) to retrieve the vertical profile of the CO2 dry air mole 104 



fraction together with variables interfering in the measurements: the surface pressure and the 105 

surface albedo, some variables describing temperature, water vapour, clouds and aerosols in the 106 

atmosphere, and channel offsets for the instrument. The retrieved XCO2 is simply obtained by 107 

integrating the retrieved CO2 profile. In this Bayesian formulation of the retrieval, prior 108 

information about CO2 is given an artificially small weight in order to maximize the observation 109 

contribution to the result: for instance, the standard deviation of the uncertainty assigned to the 110 

prior XCO2 is larger than 10 ppm (O’Dell et al., 2012), i.e. larger than typical variations of XCO2 111 

at the continental scale (e.g., Keppel-Aleks et al. 2011). We will discuss the impact of this choice 112 

later and for simplicity, we will call XCO2
b and XCO2

a the prior (background) and the retrieved 113 

(analysed) XCO2, respectively. XCO2
a can be compared with model simulations, as will be done 114 

here, or with other measurements via the associated CO2 averaging kernel profiles and prior 115 

profiles (e.g., Connor et al., 1994). For nadir viewing, XCO2
a is representative of a volume that 116 

has a circular footprint at the Earth’s surface of diameter about 10 km.   117 

Previous comparisons between XCO2
a and model simulations or reference ground-based 118 

XCO2 measurements from Total Carbon Column Observing Network (TCCON) highlighted 119 

some systematic dependency of the error of XCO2
a as a function of a series of internal variables 120 

of the algorithm (Wunch et al. 2011b). This feature reveals some limitations of the algorithm but 121 

also allows correcting them empirically, for instance before they are assimilated in atmospheric 122 

inversion systems (Crisp et al. 2012). We will call XCO2
a,c the bias-corrected retrievals.  123 

 124 

2.2. MACC CO2 inversion 125 

 126 

Since year 2011, the MACC pre-operational service (www.copernicus-atmosphere.eu) has 127 

been delivering a CO2 inversion product with biannual updates. Release 13r1 primarily describes 128 
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the CO2 surface fluxes over more than three decades, from 1979 to 2013, at resolution 3.75° × 129 

1.9° (longitude-latitude) and 3-hourly, based on 131 CO2 dry air mole fraction station records 130 

from three large databases: 131 

• the NOAA Earth System Research Laboratory archive (NOAA CCGG, 132 

http://www.esrl.noaa.gov/gmd/ccgg/index.html), 133 

• the World Data Centre for Greenhouse Gases archive (WDCGG, 134 

http://ds.data.jma.go.jp/gmd/wdcgg/), 135 

• the Réseau Atmosphérique de Mesure des Composés à Effet de Serre database (RAMCES, 136 

https://www.ramces.lsce.ipsl.fr/). 137 

The three databases include both in situ measurements made by automated quasi-continuous 138 

analysers and irregular air samples collected in flasks and later analyzed in central facilities. The 139 

detailed list of sites is provided in Tables 1 and 2. 140 

The MACC Bayesian inversion method is formulated in a variational way in order to estimate 141 

the CO2 surface fluxes at the above-described relatively high resolution over the globe 142 

(Chevallier et al. 2005, 2010). For v13r1, the system used a single 35-year inversion window, 143 

therefore enforcing physical and statistical consistency in the inverted fluxes. Fluxes and mole 144 

fractions are linked in the system by the global atmospheric transport model of the Laboratoire de 145 

Météorologie Dynamique (LMDZ, Hourdin et al. 2006) with 39 layers in the vertical and with the 146 

same horizontal resolution than the inverted fluxes. LMDZ is nudged to ECMWF-analysed winds 147 

for flux inversion.  148 

The MACC inversion product also contains the 4D CO2 field that is associated to the inverted 149 

surface fluxes through the LMDZ transport model. Simulating the GOSAT retrievals from this 150 

field is nearly straight-forward. The only difficulty lies in the interpolation from the LMDZ 39-151 

level vertical grid to the 20-level vertical grid of the retrievals, before the retrieval averaging 152 



kernels are applied. Indeed, the model orography at resolution 3.75° × 1.9° significantly differs 153 

from the high-resolution orography seen by the retrievals. For the interpolation, we assume that 154 

CO2 concentrations vary linearly with the pressure in the vertical. When the model surface 155 

pressure is smaller than the retrieved surface pressure, the profile is artificially extended at 156 

constant value below the model surface. In the opposite case, model levels below the sounding 157 

surface are ignored. We compensate this artificial change of mass in the profile by systematically 158 

adjusting the interpolated profile so that its pressure-weighted mean equals that of the profile 159 

before the interpolation. 160 

 161 

3. Theoretical aspects 162 

 163 

Like the other retrieval and inversion systems (see, e.g., Oshchepkov et al., 2013, and Peylin et 164 

al., 2013), ACOS-GOSAT and MACC both follow the Bayesian paradigm in its Gaussian linear 165 

form (e.g., Rodgers, 2000) in order to estimate the most likely state, in a statistical sense, of the 166 

CO2 profile and of the CO2 surface fluxes, respectively. In mathematical terms, given x the vector 167 

that gathers the variables to be inferred (either a 1D CO2 profile or 2D+1D CO2 surface fluxes), 168 

given xb an a priori value of x (coming from a climatology or from a model), and given y the 169 

vector that gathers all relevant observations (either radiances or retrievals), the most likely state 170 

of x is written: 171 

xa = xb + K(y – H xb )         (1) 172 

H is a linearized observation operator that links variables x and y (i.e. essentially a radiative 173 

transfer model or a transport model). K is the following “Kalman gain” matrix: 174 

K = B HT(HBHT + R)-1        (2) 175 

B and R are the error covariance matrices of xb and y, respectively. 176 



The error covariance matrix of xa is obtained by: 177 

A = (I – KH) B         (3) 178 

with I the identity matrix with appropriate dimension. 179 

For simplicity, Eq. (1) does not make other variables that are simultaneously inferred appear, 180 

like clouds, aerosols or surface variables for the retrievals, or the 3D state of CO2 at the start of 181 

the inversion assimilation window for the inversion.  182 

The current processing chains that go from radiances to surface fluxes are two-step processes 183 

(let aside some attempts to introduce an additional intermediate step in the form of a short-184 

window analysis of the 3D concentrations; Engelen et al. 2009). We now distinguish the retrieval 185 

process and the inversion process by putting breves ˘ on all symbols related to the former and 186 

hats ˆ on all symbols related to the latter. In a first step, the CO2 profiles and their uncertainty 187 

{𝐱�𝒂𝐱�,𝐀�}  are retrieved for each sounding {𝐲�,𝐑�}  separately. The resulting ensemble forms the 188 

observations to be simultaneously assimilated {𝐲�,𝐑�} for the second step. The presence of prior 189 

information xb in both steps complicates the transition between the two. Following Connor et al. 190 

(1994) and the current practice, we can technically eliminate the influence of 𝐱�𝒃 (but not of its 191 

uncertainty) by the following adaptation of Eq. (1) in the second step: we assimilate 𝐲�′ = 𝐱�𝒂 −192 

(𝐈 − 𝐊�𝐇�)𝐱�𝒃 = 𝐊�  𝐲�  rather than 𝐲�  and change the observation operator from 𝐇�   to 𝐇�′ = 𝐊�𝐇�𝐇� . 193 

𝐊�𝐇�   is called subtract the retrieval prior 𝐱�𝒃  from each CO2 profile simulated by the transport 194 

model at the sounding location 𝐇�  𝐱�𝑏, we multiply the result by the retrieval averaging kernel 195 

matrix 𝐊�𝐇�   and finally add 𝐱�𝒃 . The retrieval error covariance matrix should consistently be 196 

diminished (e.g., Connor et al., 2008, paragraph 37) and is then. We called 𝐇�′ the convolution of 197 

the transport model operator with the individual retrieval averaging kernels and 𝐑�′ hereafter.  198 

Mis en forme :
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For simplicity, and without loss of generality in our linear framework, let us consider the 199 

assimilation of a single sounding {𝐲�,𝐑�}  using its averaging kernel. By definition, given the 200 

changes made to 𝐇�   and 𝐑�, the gain matrix changes as well and we call adjusted retrieval error 201 

covariance matrix𝐊�′ the new one. By applying Eq. (1) twicein this configuration, the analysed 202 

surface fluxes can be directly expressed  and after accounting for the above adaptation, the 203 

processing chain can be written in a concise form: 204 

 𝐱�𝑎      =  𝐱�𝑏 + 𝐊�′ 𝐊�  (𝐲� − 𝐇�  𝐇�′𝐱�𝑏)        (4) 205 

If we neglect the influence of the averaging kernel, tThis equation has the desired shape of Eq. 206 

(1), i.e. the sum of the prior value and of a linear function of model-minus-measurement misfits. 207 

By construction, it does not depend on the retrieval prior 𝐱�𝒃. However, to follow the optimal 208 

estimation framework, we still need to be able to develop the product of the gain matrices 209 

consistently with Eq. (2), i.e. like (neglecting errors in the observation operators):   210 

𝐊 = 𝐁� 𝐇�𝑇𝐇�𝑇(𝐇�  𝐇�  𝐁� 𝐇�𝑇𝐇�𝑇  + 𝐑�)−1        (5) 211 

In practice, we see that: 212 

𝐊�′ 𝐊� = 𝐁� 𝐇�′𝑇(𝐇�′ 𝐁� 𝐇�′𝑇  + 𝐑�′)−1 𝐁� 𝐇�𝑇(𝐇�  𝐁� 𝐇�𝑇  + 𝐑�)−1     213 

 (6) 214 

Eqs. (5-6) can be made consistent in general provided 215 

𝐇�  𝐁� 𝐇�𝑇   = 𝐇�  𝐇�  𝐁� 𝐇�𝑇𝐇�𝑇          (7) 216 

and (by developing 𝐇�′ and using Eq. (7)) 217 

 𝐇�𝑇𝐊�𝑇(𝐊�  𝐇�  𝐁� 𝐇�𝑇 𝐊�𝑇𝐇�  𝐁� 𝐇�𝑇  + 𝐑�′)−1 𝐁�𝐇�  𝐁� 𝐇�𝑇 = 𝐈      218 

 (8) 219 

Equation (7) simply expresses consistency between the prior error statistics within the 220 

information content of the retrievals: the uncertainty of the retrieval prior and of the flux prior 221 



should correspond be the same to the uncertainty of the flux prior projected in the profile 222 

spaceradiance space. This condition is not achieved by current satellite retrieval algorithms, at 223 

least because they artificially maximize the measurement contribution in the retrievals through 224 

the use of very large prior error variances (see Section 2.1 or Butz et al. 2009, Reuter et al. 2010). 225 

However, if enough intermediate variables were saved by the retrieval schemes, it would be 226 

possible to reconstruct the retrievals with a different appropriate prior error covariance matrix 227 

𝐁�.variances and correlations. 228 

Equation (8) can obviously only be satisfied in general if the retrieval error variances are 229 

negligible compared to the flux prior error variances projected in the same space (which would 230 

actually relax the previous requirement as well)averaging kernel 𝐊�𝐇� is close to unity. Typically, 231 

the standard deviation of the uncertainty (1 σ) in the de-trended columns simulated by free 232 

models is not larger than a couple of ppm, at least for broad scale statistics (Chevallier and 233 

O’Dell 2013; Peng et al. 2015), i.e. about the current GOSAT retrieval uncertainty (Oshchepkov 234 

et al., 2013). Note that the situation is more favourable when considering TCCON retrievals, 235 

because of their better precision. In practice, the retrieval averaging kernel for profiles is far from 236 

unity because current radiance measurements do not provide any vertical resolution for CO2. The 237 

situation is better if the state vector 𝐱� is the integrated column (in that case 𝐇�  includes an operator 238 

to distribute the column in the vertical).  239 

As a consequence of deviations from Eqs (7-8), the effective gain matrix 𝐊�′ 𝐊� significantly 240 

differs from the optimal one for GOSAT, resulting in a wrong balance between prior flux 241 

information and measured radiances. Overall, 𝐊� pulls too much towards the measured radiances 242 

and 𝐊�′ pulls too much towards the prior. This suboptimality very likely flaws the 4D information 243 

flow from the radiance measurements to the surface flux estimates. FurtherIn particular, the sub-244 



optimality of 𝐊�  also affects the retrieval averaging kernel that is part of 𝐇�′, meaning that the 245 

model-data- misfits in Eq. (4) are not computed correctly, for instance because the retrieval 246 

averaging kernel wouldmay not peak low enough in the verticalat the right height. 247 

Migliorini (2012) proposed a sophisticated alternative to the averaging kernel assimilation of 248 

Connor et al. (1994), where the retrievals are assimilated after a linear transformation of both the 249 

retrievals and the observation operator. The transformation is heavier to implement than the 250 

above approach because it involves the retrieval signal-to-noise matrix 𝐑�−1/2𝐇�  𝐁�1/2. It avoids 251 

the requirement of Eq. (8), but still requires consistent prior error statistics (Eq. (7)). 252 

The situation complicates even further if we account for the facts that inversion systems 253 

assimilate the retrieved profiles as vertical integrals (because XCO2 is less sensitive to vertical 254 

transport model errors than the CO2 profile), that these vertical integrals are empirically bias-255 

corrected retrievals (thereby implicitly re-introducing 𝐱�𝒃 that had been neutralised by the use of 256 

averaging kernels, in the equations), and that 𝐇�  and 𝐇�  are imperfect operators, the uncertainty of 257 

which should be reported in 𝐑�, following Eq. (5), and that 𝐇�  is usually non-linear. The need to 258 

report all observation operator uncertainties in 𝐑�  means that retrieval configuration should in 259 

principle be tailored to the retrieval end-application, i.e. to the precision of the observation 260 

operator that is used in this end-application. For flux inversion, the transport model uncertainty in 261 

XCO2 space is about 0.5 ppm (1 σ, Houweling et al. 2010). When optimizing parameters of a flux 262 

model rather than for the flux themselves (in Carbon Cycle Data Assimilation Systems, Rayner et 263 

al. 2005), the uncertainty of the flux model equations has also to be reported in 𝐑�: when projected 264 

in the space of XCO2, they are comparable to transport model uncertainties (Kuppel et al. 2013). 265 

 266 

4. Practical aspects 267 



 268 

Given the particular concerns raised about the optimality of XCO2 retrievals themselves and of 269 

their averaging kernels in the previous section, we now focus on one specific retrieval product, 270 

ACOS-GOSAT, in order to look for some practical evidence of this sub-optimality. 271 

 272 

4.1. Mean differences 273 

 274 

Fig. 1 shows the mean bias-corrected retrievals XCO2
a,c and the mean corresponding posterior 275 

XCO2 field of the MACC inversion over the June 2009 – May 2013 period per 3.75° × 1.9° grid 276 

cell. All retrievals are used, provided they are found good by the ACOS standard quality control. 277 

The data density (Fig. 2b) follows the frequency of favourable retrieval conditions: more sunlight 278 

in the Tropics, less cloud over desert areas or over subsidence ocean regions. The long-tern term 279 

mean of the retrieval-minus-model differences (Fig. 2a) is usually about the ppm, i.e. not much 280 

less than the variability of the mean XCO2 field (Fig. 1). Interestingly, it appears to be organized 281 

spatially. Over land, large positive values (> 0.5 ppm, ACOS-GOSAT being larger) are seen over 282 

boreal forests, over most of South America, over grassland/cropland regions in Central Africa 283 

and over the West coast of the USA. Negative values occur over most of the other lands, with 284 

smaller values (up to ~ -1 ppm) mostly over South and East Asia. Over the oceans, values are 285 

mostly positive north of 30°N and south of 10°S, and negative in between. Both errors in ACOS-286 

GOSAT and errors in the model simulations contribute to these differences, which complicates 287 

the interpretation of Fig. 2a. For instance, the zonal structure of the differences over the oceans 288 

could well be caused by the model, either because of too few surface air-sample sites in the 289 

Tropics or because the LMDZ transport model would not represent the inter-hemispheric 290 

exchange well enough (Patra et al. 2011). Alternatively, misrepresented clouds around the 291 



convergence zones could also induce them in the retrievals. Some of the patterns of Fig. 2a are 292 

similar to the surface cover, like the gradient between the Sahel and the African savannahs, or the 293 

one between the equatorial Atlantic and the African savannahs, while we expect the true XCO2 294 

fields to be first driven by large-scale horizontal advection (Keppel-Aleks et al. 2011). The main 295 

local spatial gradients in the mean differences are also seen on monthly means despite less data 296 

density (Fig, 3). They mostly reflect the retrieval gradients (Fig. 1a), because the model XCO2 297 

simulation is spatially smoother (Fig. 1b), even though it uses the retrieval averaging kernels (that 298 

change from scene to scene as a function, among other factors, of surface conditions) and even 299 

though it is sampled like the retrievals (i.e. with a spatially heterogeneous data density, also 300 

varying as a function, among other things, of surface conditions).  301 

The jump of the long-term mean difference from the African savannahs to Sahel or equatorial 302 

Atlantic (while there is no jump between subtropical Atlantic and Western Sahara for instance) 303 

mostly corresponds to data from March (Fig. 3a), at the end of the savannah burning season (e.g. 304 

van der Werf et al. 2010). The model shows elevated values (Fig. 1b), but much less than the 305 

retrievals (Fig. 1a). If the model was underestimating the intensity of the fire, we would expect 306 

the mean difference to take the shape of a plume, i.e. to spread downstream the source region, but 307 

this is not the case. This suggests that the retrievals are affected by systematic errors over this 308 

region. Similarly, we note a surprising discontinuity of the mean difference on the north-western 309 

coast of the US in Fig. 2a. 310 

The positive differences of Fig. 2a in Eurasia notably follow the boreal forests, while negative 311 

values are found over the neighbouring regions of sparse tundra vegetation north of Siberia, or 312 

those of grassland/cropland south of them. The same remark applies to North America. The link 313 

with boreal forests is less obvious when looking at one isolated year because of the relatively 314 

small number of retrievals in these regions (not shown). The misfit pattern in Siberia and in North 315 



America contains many values larger than 1 ppm corresponding to relatively large retrieved 316 

XCO2 (Fig. 1a). These large values are all the more surprising that retrievals in these high 317 

latitudes are obtained during the growing season and that boreal forests in Eurasia are identified 318 

as large carbon sinks by bottom-up inventories (Pan et al. 2011, Dolman et al. 2012). By 319 

comparison, we can look at agricultural regions, where the model could miss gradients during 320 

crop growth, both because the MACC inversion prior fluxes do not explicitly represent 321 

agricultural practices and because the location of the assimilated surface air-sample 322 

measurements only provides rough information about crop fluxes: the differences are marginal (-323 

0.1 ppm on average, whether we compute the mean at the global scale or only for latitudes above 324 

40oN) for retrievals located in crop regions, as identified by the high-resolution land cover map of 325 

ESA’s Land Cover Climate Change Initiative project (http://www.esa-landcover-cci.org/). In the 326 

Corn Belt, the intensively agricultural region in the Midwest of the USA, differences are negative, 327 

but they are much smaller in absolute value (the differences are larger than -0.4 ppm) than over 328 

the boreal forests, and the Corn Belt boundaries do not sharply appear, in particular on its eastern 329 

side. The Corn Belt does not particularly appear in monthly means either (e.g., Fig. 3b). These 330 

elements suggest that the long-term mean differences over boreal forests come from a retrieval 331 

artifact rather than from the MACC inversion product.  332 

From a radiative transfer point of view, boreal forests are largely covered with needle-leaved 333 

trees with low albedo in the strong CO2 spectral band of GOSAT near 2.1 μm (Fig. 4): these low 334 

values hamper the XCO2 retrieval. O’Dell et al. (2012) already showed that large positive biases 335 

can occur for needle-leaved evergreen forests, with the retrieval exchanging surface albedo for 336 

very thin cloud or aerosol. Extreme cases are filtered out by the ACOS-GOSAT quality control, 337 

but Fig. 2a suggests that the remaining retrievals over boreal forests, including the region in 338 

Siberia East of 100oE which is dominated by deciduous needle-leaved trees with slightly larger 339 
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albedos, are still biased. In temperate regions, south of 50oN, the differences for needle-leaf cover 340 

(mainly in Southeast USA and Southeast China) have the opposite sign, but they do not show up 341 

distinctly in the difference map like the boreal forests. Tropical forests in South America and in 342 

Africa also have low albedo and correspond to negative differences. They are more identifiable in 343 

Fig. 2a, but could be explained by an insufficient carbon sink in the model as well as by a 344 

retrieval artifact.  345 

 346 

4.2. Link to the retrieval increment 347 

 348 

We now look at the XCO2 misfit statistics over land and for the high-gain mode as a function 349 

of the size of the retrieval increment to its prior information (XCO2
a - XCO2

b) in Fig. 5. We look 350 

at the misfits of the model to XCO2
a, to XCO2

a,c and to XCO2
b, in order to visualize the added 351 

value brought by the retrieval process and by the bias correction, successively, on top of the prior 352 

estimate. This prior estimate about atmospheric CO2 has been provided to the retrieval scheme by 353 

a data-driven empirical model (Wunch et al. 2011a). In Fig. 5, each bin along the abscissa 354 

encompasses a large diversity of times during the four years and a large diversity of locations 355 

over the globe, over which the model simulation should be overall more accurate (smaller root 356 

mean square error)  than XCO2
b, XCO2

a and even XCO2
a,c (Chevallier and O’Dell 2013). Further, 357 

we expect the model error to be uncorrelated with the error of XCO2
b, XCO2

a and XCO2
a,c so that 358 

a smaller standard deviation of the misfits (e.g., using XCO2
a rather than XCO2

b) can be 359 

interpreted in terms of better precision of the corresponding retrieval quantity.   360 

The mean difference significantly varies with the increment size: starting at 0.7 ppm for the 361 

smallest increments it reaches about 2 ppm and -1 ppm, for XCO2
b and XCO2

a respectively. As 362 



expected, the mean difference is systematically better with XCO2
a than with XCO2

b. The bias 363 

correction (XCO2
a,c) further reduces the mean difference to a small extent.  364 

The standard deviation for XCO2
b is 1.1 ppm for small increments and smoothly increases to 2 365 

ppm for retrieval increments of size 6 ppm. This trend demonstrates some skill of the retrieval 366 

algorithm to characterize the error of XCO2
b from the GOSAT radiances and to generate a 367 

sizeable increment accordingly. By comparison, the model variability for a given increment size 368 

over the four years ranges between 3 and 4 ppm (1 σ), the prior variability is about 3 ppm and the 369 

retrieval variability ranges between 3 and 7 ppm. The standard deviation that uses XCO2
a is 1.1 370 

ppm for small increments. It smoothly increases to 4 ppm for retrieval increments of size 6 ppm: 371 

it is systematically larger than the standard deviation that uses XCO2
b (despite a smaller mean 372 

difference). The standard deviation that uses XCO2
a,c is also 1.1 ppm for small increments and is 373 

also systematically larger than the standard deviation that uses XCO2
b, but it performs better than 374 

XCO2
a. The worse standard deviation of the misfit of XCO2

a and XCO2
a,c to the model compared 375 

to XCO2
b cannot be explained by a common lack of variability in the model and in XCO2

b, (that 376 

would correlate the model error with the that of XCO2
b), because (i) at the large scale, thinning 377 

the retrievals (for instance by keeping only one retrieval every nine model grid boxes for a given 378 

day) only marginally changes the figure (not shown), and (ii) at the sub-grid scale, the variability 379 

of XCO2 is usually well below the ppm (Alkhaled et al. 2008, Corbin et al. 2008), i.e. one order 380 

of magnitude smaller than the prior-to-retrieval degradation. Some, but not all, of the degradation 381 

is purely random and disappears after enough averaging (see Fig. 6 of Kulawik et al. 2015).  382 

The fact that the standard deviation smoothly increases with increment size suggests that the 383 

increment size is systematically overestimated. Fig. 6 presents an simpleempirical test where we 384 

halve the retrieval increments, without any bias correction: we call XCO2
a,r = XCO2

b + (XCO2
a - 385 

XCO2
b)/2 the result. The reduction is seen to cancel most of the dependency of the statistics of 386 



the observation-minus-model misfits to the increment size: the standard deviation and the mean 387 

are then stable around 1.1 ppm and -0.3 ppm, respectively for increments up to 4 ppm without 388 

any bias correction. The standard deviation is systematically better than for XCO2
b, which shows 389 

added value brought by the radiance measurements, in contrast to the previous results. This result 390 

also empirically confirms that the initial increments are in the right direction but are too large. 391 

For the medium-gain retrievals (Fig. 7) and for the ocean glint retrievals (Fig. 8), the standard 392 

deviation of the misfits using XCO2
a,c is not significantly larger than that using XCO2

b. 393 

 394 

5. Discussion and conclusions 395 

 396 

Small uncertainties in aerosols, cirrus cloud or surface albedo are known to heavily affect the 397 

quality of the XCO2 satellite retrievals and to propagate into biases in the fluxes inverted from 398 

them, even when the parasite signal in XCO2 is sub-ppm. This weakness lead the science team of 399 

NASA’s OCO, a satellite that failed at launch in February 2009, to conclude that the space-based 400 

NIR/SWIR measurements of XCO2 could not be used alone for CO2 source-sink inversions and 401 

that they had to be combined with observations from a reasonable number of surface stations 402 

(Miller et al. 2007). However, so much improvement has been obtained in these issues by various 403 

institutes during the last few years, that it is sometimes thought that the space-borne XCO2 404 

retrievals have reached sufficient quality for source-sink inversion. The present paper discusses 405 

where we stand in this respect both from general theoretical considerations and from one of the 406 

most advanced GOSAT retrieval products.  407 

From the theory, we have shown that a two-step approach to infer the surface fluxes from the 408 

GOSAT measured radiances, with CO2 retrievals as an intermediate product, cannot be optimal. 409 

This suboptimality corrupts the 4D information flow from the radiance measurements to the 410 



surface flux estimates. It is amplified by the current retrieval strategy where prior errors are much 411 

larger (by an order of magnitude in terms of variances) than the performance of prior CO2 412 

simulations used in atmospheric inversions. Indeed, the use of averaging kernels makes 413 

atmospheric inversion insensitive to the choice of a particular retrieval prior CO2 profile (Connor 414 

et al. 1994) if retrievals are assimilated without any bias correction, but it does not make the 415 

retrieval prior error statistics disappear from the inverse modelling equations. The current 416 

strategy likely generates retrieval averaging kernels that are inappropriate for atmospheric 417 

inversions in their default configurations, with a wrong vertical distribution and an excessive 418 

weight towards the measured radiances. Paradoxically, empirical bias correction of the retrievals 419 

(e.g., Wunch et al., 2011b) also contributes to the degradation of the 4D information flow, 420 

because it carries the imprint of the retrieval prior and of the retrieval prior error statistics. Direct 421 

assimilation of the measured radiances would solve the inconsistency, but would increase the 422 

computational burden of atmospheric inversions by several orders of magnitude. Alternatively, 423 

we could adapt the inversion systems to the current retrieval configuration by using minimal prior 424 

information about the surface fluxes, typically a flat prior flux field, but the result would still 425 

over-fit the measured radiances due to the absence of other (compensating) information. We note 426 

that the situation is more favourable when assimilating TCCON retrievals, as has been done by 427 

Chevallier et al. (2011), or possibly future OCO-2 retrievals, due to better measurement precision 428 

than for GOSAT.  429 

We have compared the ACOS-GOSAT retrievals with a transport model simulation 430 

constrained by surface air-sample measurements in order to find some evidence of retrieval sub-431 

optimality. Flaws in this transport model and in these inverted surface fluxes necessarily flaw the 432 

simulation in many places over the globe and at various times of the year. We therefore carefully 433 

selected some of the relatively large discontinuities in the XCO2 fields that the simulation 434 



unlikely generated. We found some evidence of retrieval systematic errors over the dark surfaces 435 

of the high-latitude lands and over African savannahs. We note that the mean differences over the 436 

African savannahs during the burning season could be explained by retrieval averaging kernels 437 

not peaking low enough in the atmosphere further to the assignment of loose 438 

retrievalinappropriate prior error correlationvariances. Biomass burning aerosols that would not 439 

be well identified by the retrieval scheme could also play a role. We also found some evidence 440 

that the high-gain retrievals over land systematically over-fit the measured radiances, as a 441 

consequence of the prior uncertainty overestimation and of an underestimation of the observation 442 

uncertainty (as seen by the underlying radiative transfer model). This over-fit is partially 443 

compensated by the bias correction. An empirical test indicates that halving the retrieval 444 

increments without any posterior bias correction actually cancels the dependency of the statistics 445 

of the observation-minus-model misfits to the increment size and makes the standard deviation 446 

systematically better than for the retrieval prior XCO2
b, which shows added value brought by the 447 

radiance measurements, in contrast to the previous results. We argue here that the optimal-448 

estimation retrieval process and, consequently, its posterior bias correction need retuning.  449 

Given the diversity of existing satellite retrieval algorithms, our conclusions cannot be easily 450 

extrapolated to other GOSAT retrieval products and even less to XCO2 retrievals from other 451 

instruments, but we note that such mistuning like the one highlighted here is common practice, 452 

both because the errors of the retrieval forward model are difficult to characterize and because 453 

satellite retrievals are usually explicitly designed to maximize the observation contribution, at the 454 

risk of over-fitting radiance and forward model noise. A primary consequence of this mistuning is 455 

the usual underestimation of retrieval errors: for instance, O’Dell et al. (2012) recommended 456 

inflating this error by a twofold factor for ACOS-GOSAT b2.8. More importantly, our results 457 

show that the mistuning generates excessive (unphysical) space-time variations of the retrievals 458 



up to ~1%. This noise level would not matter for short-lived species, but for CO2 it is enough to 459 

significantly degrade the assimilation of the retrievals for flux inversion and may explain some of 460 

the inconsistency seen between GOSAT-based top-down results and bottom-up results for CO2 461 

(Chevallier et al. 2014, Reuter et al. 2014). Therefore, with the current mistuning, we reiterate 462 

previous recommendations to take GOSAT-based CO2 inversion results particularly cautiously. 463 

But we also suggest that this situation may dramatically improve by simply retuning the retrieval 464 

schemes. Ultimately, internal statistical consistency of the retrievals and of the inversion schemes 465 

is needed to establish the credibility of their end product.  466 
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Locality (indentifier) Period  Source 

Alert, Nunavut, CA (ALT) 1988-2012 WDCGG/ EC 

Amsterdam Island, FR (AMS) 1981-2011 LSCE 

Argyle, Maine, US (AMT) 2003-2011 NOAA/ ESRL 

Anmyeon-do, KR (AMY)  1999-2012 WDCGG/ KMA 

Barrow, Alaska, US (BRW) 1979-2013 NOAA/ ESRL 

Candle Lake, CA (CDL) 2002-2012 WDCGG/ EC 

Monte Cimone, IT (CMN) 1996-2010 WDCGG/ IAFMS 

Cape Ochi-ishi, JP (COI) 1995-2002 WDCGG/ NIES 

   

Cape Point, SA (CPT) 1993-2013 WDCGG/ SAWS 

Egbert, CA (EGB) 2005-2012 WDCGG/ EC 

East Trout Lake, CA (ETL) 2005-2012 WDCGG/ EC 

Frasedale, CA (FSD) 1990-2012 WDCGG/ EC 

Hateruma, JP (HAT) 1993-2002 WDCGG/ NIES 

Hegyhatsal tower, 115m level, HU 

(HUN0115) 1994-2013 WDCGG/ HMS 

Tenerife, Canary Islands, ES (IZO) 1984-2013 WDCGG/ AEMET 

Jubany, Antartica, AR (JBN) 1994-2009 WDCGG/ ISAC IAA 

Jungfraujoch, CH (JFJ) 2004-2013 

WDCGG/ Univ. Of 

Bern 

K-puszta, HU (KPS) 1981-1999 WDCGG/ HMS 

Park Falls, Wisconsin, US (LEF) 2003-2011 NOAA/ ESRL 

Mace Head, County Galway, IE 

(MHD) 1992-2012 LSCE 



Mauna Loa, Hawaii, US (MLO) 1979-2013 NOAA/ ESRL 

Minamitorishima, JP (MNM) 1993-2013 WDCGG/ JMA 

Pallas-Sammaltunturi, GAW 

Station, FI (PAL) 1999-2013 WDCGG/ FMI 

Plateau Rosa, IT (PRS) 2000-2013 

WDCGG/ CESI 

RICERCA 

Puy de Dome, FR (PUY) 2000-2010 LSCE 

Ryori, JP (RYO) 1987-2013 WDCGG/ JMA 

Tutuila, American Samoa (SMO) 1979-2013 NOAA/ ESRL 

Sonnblick, AU (SNB) 1999-2013 WDCGG/ EEA 

South Pole, Antarctica, US (SPO) 1979-2013 NOAA/ ESRL 

Tsukuba tower, 200m level, JP 

(TKB) 1986-2000 WDCGG/ MRI 

Westerland, DE (WES) 1979-2013 WDCGG/ UBA 

 Moody, Texas, US (WKT) 2003-2011 NOAAA/ ESRL 

Yonagunijima, JP (YON) 1997-2013 WDCGG/ JMA 

 689 

Table 1: List of the continuous sites used in the MACC CO2 inversion v13r1 together with 690 

the period of coverage (defined as the period between the first sample and the last one), and 691 

the data source. Each station is identified by the name of the place, the corresponding 692 

country (abbreviated) and the code used in the corresponding database.  693 
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Locality (indentifier) Period  Source 

Alert, Nunavut, CA (ALT) 1985-2013 NOAA/ ESRL 

Amsterdam Island, FR (AMS) 1979-1990 NOAA/ ESRL 

Amsterdam Island, FR (AMS) 2003-2013 LSCE 

Ascension Island, GB (ASC) 1979-2013 NOAA/ ESRL 

Assekrem, DZ (ASK) 1995-2013 NOAA/ ESRL 

St. Croix, Virgin Islands, USA 

(AVI) 1979-1990 NOAA/ ESRL 

Terceira Island, Azores, PT (AZR) 1979-2013 NOAA/ ESRL 

Baltic Sea, PL (BAL) 1992-2011 NOAA/ ESRL 

Bering Island, RU (BER) 1986-1994 WDCGG/ MGO 

Begur, ES (BGU) 2000-2013 LSCE /IC·3 

Baring Head, NZ (BHD) 1999-2013 NOAA/ESRL 

Baring Head, NZ (BHD) 1979-2011 WDCGG/ NIWA 

Bukit Kototabang, ID (BKT) 2004-2013 NOAA/ESRL 

St. Davids Head, Bermuda, GB 

(BME) 1989-2009 NOAA/ ESRL 

Tudor Hill, Bermuda, GB (BMW) 1989-2013 NOAA/ ESRL 

Barrow, Alaska, US (BRW) 1979-2013 NOAA/ ESRL 

Portsall, FR (BZH) 1998-2001 CarboEurope/LSCE 

Cold Bay, Alaska, US (CBA) 1979-2013 NOAA/ ESRL 

Cape Ferguson, AU (CFA) 1991-2013 WDCGG/ CSIRO 

Cape Grim, Tasmania, AU (CGO) 1984-2013 NOAA/ ESRL 

Christmas Island, Republic of 

Kiribati (CHR) 1984-2013 NOAA/ ESRL 



Cape Meares, Oregon, US (CMO) 1982-1998 NOAA/ ESRL 

Crozet Island, FR (CRZ) 1991-2013 NOAA/ ESRL 

Cape St. James, CA (CSJ) 1979-1992 WDCGG/ EC 

Casey Station, AU (CYA) 1996-2013 WDCGG/ CSIRO 

Drake Passage (DRP) 2003-2013 NOAA/ ESRL 

Easter Island, CL (EIC) 1994-2013 NOAA/ ESRL 

Estevan Point, British Columbia, 

CA (ESP) 1992-2012 WDCGG/ EC 

Estevan Point, British Columbia, 

CA (ESP) 1993-2001 WDCGG/ CSIRO 

Finokalia, Crete, GR (FIK) 1999-2013 LSCE 

Mariana Islands, Guam (GMI) 1979-2013 NOAA/ ESRL 

Dwejra Point, Gozo, MT  (GOZ) 1993-1999 NOAA/ ESRL 

Halley Station, Antarctica, GB 

(HBA) 1983-2013 NOAA/ ESRL 

Hohenpeissenberg, DE (HPB) 2006-2013 NOAA/ ESRL 

Hegyhatsal, HU (HUN) 1993-2013 NOAA/ ESRL 

Storhofdi, Vestmannaeyjar, IS 

(ICE) 1992-2013 NOAA/ ESRL 

Grifton, North Carolina, US (ITN) 1992-1999 WDCGG/ ESRL 

Tenerife, Canary Islands, ES (IZO) 1991-2013 NOAA/ ESRL 

Key Biscayne, Florida, US (KEY) 1979-2013 NOAA/ ESRL 

Kotelny Island, RU (KOT) 1986-1993 WDCGG/ MGO 

Cape Kumukahi, Hawaii, US 

(KUM) 1979-2013 NOAA/ ESRL 



Sary Taukum, KZ (KZD) 1997-2009 NOAA/ ESRL 

Plateau Assy, KZ (KZM) 1997-2009 NOAA/ ESRL 

Lulin,  TW (LLN) 2006-2013 NOAA/ ESRL 

Lampedusa, IT (LMP) 2006-2013 NOAA/ ESRL 

   

Ile grande, FR (LPO) 2004-2013  LSCE 

Mawson, AU (MAA) 1990-2013 WDCGG/ CSIRO 

Mould Bay, Nunavut, CA (MBC) 1980-1997 NOAA/ ESRL 

Mace Head, County Galway, IE 

(MHD) 1991-2013 NOAA/ ESRL 

Mace Head, County Galway, IE 

(MHD) 1996-2013 LSCE 

Sand Island, Midway, US (MID) 1985-2013 NOAA/ ESRL 

Mt. Kenya, KE (MKN) 2003-2011 NOAA/ ESRL 

Mauna Loa, Hawaii, US (MLO) 1979-2013 NOAA/ ESRL 

Macquarie Island, AU (MQA) 1990-2013 WDCGG/ CSIRO 

Gobabeb, NA (NMB) 1997-2013 NOAA/ ESRL 

Niwot Ridge, Colorado, US 

(NWR) 1979-2013 NOAA/ ESRL 

Olympic Peninsula, WA, USA 

(OPW) 1984-1990 NOAA/ ESRL 

Ochsenkopf, DE (OXK) 2003-2013 NOAA/ ESRL 

   

Pallas-Sammaltunturi, GAW 

Station, FI (PAL) 2001-2013 NOAA/ ESRL 



Pic du Midi, FR (PDM) 2001-2013 LSCE 

Pacific Ocean, 0N (POC000) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 5N (POCN05) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 10N (POCN10) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 15N (POCN15) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 20N (POCN20) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 25N (POCN25) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 30N (POCN30) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 5S (POCS05) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 10S (POCS10) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 15S (POCS15) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 20S (POCS20) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 25S (POCS25) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 30S (POCS30) 1987-2011 NOAA/ ESRL 

Pacific Ocean, 35S (POCS35) 1987-2011 NOAA/ ESRL 

Palmer Station, Antarctica, US 

(PSA) 1979-2013 NOAA/ ESRL 

Point Arena, California, US (PTA) 1999-2011 NOAA/ ESRL 

Puy de Dome, FR (PUY) 2001-2013 LSCE 

Ragged Point, BB (RPB) 1987-2013 NOAA/ ESRL 

South China Sea, 3N (SCSN03) 1991-1998 NOAA/ ESRL 

South China Sea, 6N (SCSN06) 1991-1998 NOAA/ ESRL 

South China Sea, 9N (SCSN09) 1991-1998 NOAA/ ESRL 

South China Sea, 12N (SCSN12) 1991-1998 NOAA/ ESRL 

South China Sea, 15N (SCSN15) 1991-1998 NOAA/ ESRL 



South China Sea, 18N (SCSN18) 1991-1998 NOAA/ ESRL 

South China Sea, 21N (SCSN21) 1991-1998 NOAA/ ESRL 

Mahe Island, SC (SEY) 1980-2013 NOAA/ ESRL 

Southern Great Plains, Oklahoma, 

US (SGP) 2002-2013 NOAA/ ESRL 

 Shemya Island, Alaska, US 

(SHM) 1985-2013 NOAA/ ESRL 

Ship between Ishigaki Island and 

Hateruma Island, JP (SIH) 1993-2005 

WDCGG/ Tohoku 

University 

Shetland, Scotland, GB (SIS) 1992-2003 WDCGG/ CSIRO 

   

Tutuila, American Samoa (SMO) 1979-2013 NOAA/ ESRL 

South Pole, Antarctica, US (SPO) 1979-2013 NOAA/ ESRL 

Ocean Station M, NO (STM) 1980-2009 NOAA/ ESRL 

Summit, GL (SUM) 1997-2013 NOAA/ ESRL 

Syowa Station, Antarctica, JP 

(SYO) 1986-2013 NOAA/ ESRL 

Tae-ahn Peninsula, KR (TAP) 1991-2013 NOAA/ ESRL 

Tierra Del Fuego, Ushuaia, AR 

(TDF) 1994-2013 NOAA/ ESRL 

Trinidad Head, California, US 

(THD) 2002-2013 NOAA/ ESRL 

Tromelin Island, F (TRM) 1998-2007 LSCE 

Wendover, Utah, US (UTA) 1993-2013 NOAA/ ESRL 

Ulaan Uul, MN (UUM) 1992-2013 NOAA/ ESRL 



Sede Boker, Negev Desert, IL 

(WIS) 1995-2013 NOAA/ ESRL 

Sable Island, CA (WSA) 1979-2012 WDCGG/ EC 

Mt. Waliguan, CN (WLG) 1990-2013 NOAA/ ESRL 

Western Pacific Cruise (WPC) 2004-2013 NOAA/ ESRL 

Ny-Alesund, Svalbard, Norway 

and Sweden (ZEP) 1994-2013 NOAA/ ESRL 

Table 2: Same as Table 1 but for the flask-sampling sites.  695 
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 697 

Fig. 1. (a) Mean ACOS-GOSAT bias-corrected retrievals in the model grid over 4 years 698 

(June 2009-May 2013). (b) Corresponding mean CO2 4D field associated to the MACC CO2 699 

inversion (computed using the averaging kernels and the prior profiles of the retrievals). 700 
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 702 

 703 

Fig. 2. (a) Mean difference between the maps of Fig. 1 (retrievals minus model). (b) 704 

Corresponding number of retrievals. 705 
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 707 
Fig. 3. Same as Fig. 2(a) (retrievals minus model), but focussing on the months of March 708 
and June. 709 



 710 

Fig. 4. Mean surface albedo retrieved in the strong CO2 band by ACOS-GOSAT in the 711 

model grid over 4 years (June 2009-May 2013). The blue scale focuses on the values less 712 

than 0.1. 713 
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 717 

Fig. 5. Mean and standard deviation of the retrieval-minus-model misfits between June 718 

2009 and May 2013 for the high-gain mode retrievals over land as a function of the retrieval 719 

increment size. The statistics are also shown for the prior-minus-model misfit. The model 720 

values are raw pressure-weighted columns and do not account for the averaging kernels in 721 

order not to correlate the two axes (in practice, using the averaging kernels actually does 722 

not significantly affect the standard deviations shown). The grey shade shows the 723 

distribution of the retrieval density (axis not shown). 724 
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 727 

Fig. 6. Same as Fig. 5 (high-gain mode over the lands) but we reduce the retrieval increment 728 

size by 50% without any bias correction (we call XCO2
a,r the result). The abscissa shows the 729 

unperturbed increment. 730 
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Fig. 7. Same as Fig. 5 for the medium-gain mode. 735 
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 737 

Fig. 8. Same as Fig. 5 for the glint mode over the ocean. 738 
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