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Abstract

With the densification of surface observing networks and the development of remote
sensing of greenhouse gases from space, estimations of methane (CH4) sources and
sinks by inverse modelling gain additional constraining data but face new challenges.
The chemical transport model (CTM) linking the flux space to methane mixing ratio
space must be able to represent these different types of atmospheric constraints for
providing consistent flux estimations.
Here we quantify the impact of sub-grid scale physical parameterization errors on the
global methane budget inferred by inverse modelling. We use the same inversion set-
up but different physical parameterizations within one chemical-transport model. Two
different schemes for vertical diffusion, two others for deep convection, and one ad-
ditional for thermals in the planetary boundary layer are tested. Different atmospheric
methane datasets are used as constraints (surface observations or satellite retrievals).
At the global scale, methane emissions differ, on average, from 4.1 TgCH4 per year
due to the use of different sub-grid scale parameterizations. Inversions using satellite
total-column mixing ratios retrieved by GOSAT satellite are less impacted, at the global
scale, by errors in physical parameterizations. Focusing on large-scale atmospheric
transport, we show that inversions using the deep convection scheme of Emanuel
(1991) derive smaller interhemispheric gradients in methane emissions indicating a
slower interhemispheric exchange. At regional scale, the use of different sub-grid scale
parameterizations induces uncertainties ranging from 1.2% (2.7%) to 9.4% (14.2%) of
methane emissions when using only surface measurements from a background (re-
spectively an extended) surface network. Moreover, spatial distribution of methane
emissions at regional scale can be very different depending both on the physical pa-
rameterizations used for the modelling of the atmospheric transport and on the obser-
vation datasets used to constrain the inverse system.
When using only satellite data from GOSAT, we show that the small biases found in
inversions using a coarser version of the transport model are actually masking a poor

2



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

representation of the stratosphere-troposphere methane gradient in the model. Improv-
ing the stratosphere-troposphere gradient reveals a larger bias in GOSAT-CH4 satellite
data, which largely amplifies inconsistencies between surface and satellite inversions.
A simple bias correction is proposed. The results of this work provide the level of con-
fidence one can have for recent methane inversions relative to physical parameteriza-
tions included in chemical-transport models.

1 Introduction

Inverse modelling techniques are a way to derive sources and sinks of methane us-
ing atmospheric measurements as constraints. Today, large uncertainties still affect
the recent methane budget estimated by inverse modelling, even at the global scale.
For example, Kirschke et al. (2013) estimated methane sources between 526 and 569
TgCH4.year−1 during the 2000-2009 period. The two major causes of uncertainties
of methane inversions are the limited and uneven coverage of atmospheric observa-
tions and the errors made in the representation of atmospheric transport. However, the
increasing number of satellite data retrieving greenhouse gas atmospheric columns
and the densification of surface networks in space and time gradually solve the is-
sue related to atmospheric observations. Consequently, the quality of the representa-
tion of atmospheric transport becomes the leading issue in order to improve estima-
tions by inverse modelling. Indeed, inverse modelling requires a model to link methane
emissions to methane mixing ratios in the atmosphere. Such a model is generally a
chemical transport model (CTM) or a chemistry-climate model (CCM). Then, an at-
mospheric inversion scheme is applied to greenhouse gas observations to derive the
optimal methane source and sink scenario which satisfactorily fits both atmospheric
observations, given a CTM or CCM, a prior scenario of sources and sinks, and errors
for observations, model and emission scenarios (Enting, 2002). The optimal character
of such approaches assumes that these errors are properly estimated in magnitude
and are unbiased. Indeed, inversions are largely sensitive to any sorts of bias impact-
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ing simulated or measured methane mixing ratio. These biases may be related to the
CTM and/or the observation datasets, and they directly perturb the optimization of
methane fluxes by inverse modelling. Biases in measurements, especially in satellite
retrievals, are very likely (Frankenberg et al., 2005; Monteil et al., 2013; Houweling
et al., 2014; Bergamaschi et al., 2013). For example, the first release of SCIAMACHY
data in 2005 were largely biased producing very large tropical emissions (Franken-
berg et al., 2005). A major revision has been done to the SCIAMACHY satellite re-
trievals (Frankenberg et al., 2008) based on a revisit of the spectroscopic parame-
ters for methane, but inversions using SCIAMACHY retrievals still need to carry out
large bias corrections up to several tens of ppb (Bergamaschi et al., 2013; Houwel-
ing et al., 2014). Systematic errors in CTM also have significant impacts on inverse
estimates. In Locatelli et al. (2013), it was shown that transport model errors are re-
sponsible for an uncertainty of 27 TgCH4.year−1 in the estimations of methane fluxes
by inverse modelling at the global scale. Moreover, Locatelli et al. (2015) showed that
stratosphere/troposphere exchanges are systematically too fast in the version of LMDz
(Laboratoire de Météorologie Dynamique model with Zooming capability) using a low
vertical resolution (19 levels), which could largely impact the estimation of gas fluxes,
like N2O, whose stratospheric mixing ratios influence tropospheric mixing ratios. Be-
sides, following Patra et al. (2011), Locatelli et al. (2013) showed that a bad represen-
tation of the interhemispheric exchange in an ensemble of state-of-the-art CTMs can
explain most of the discrepancies in the global methane fluxes derived by inverse mod-
elling using these different CTMs.
Inconsistencies in inversions due to CTM errors may have multiple origins: vertical/horizontal
resolution, meteorological fields used to nudge horizontal winds, sub-grid scale physi-
cal parameterizations, advection schemes, numerical methods, etc. Among the differ-
ent contributions to CTM errors, the quality of vertical mixing appears to be a key point
to improve (Stephens et al., 2007; Geels et al., 2007; Patra et al., 2011). In the ver-
tical, in global models, transport processes such as planetary boundary layer mixing
or deep convection have to be parameterized, being on sub-scales of the model grid.
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Here, we propose to assess the impact of different parameterizations of sub-grid scale
transport on the inverted methane emissions for the year 2010. Consequently, we run
an ensemble of inversions using different versions of the LMDz model. These LMDz
versions differ only by the physical parameterizations they use. Two parameterizations
of vertical diffusion (Louis, 1979; Yamada, 1983), one parameterization of the thermals
(Hourdin et al., 2002) and two deep convection schemes (Tiedtke, 1989; Emanuel,
1991) are tested in three different versions of LMDz. As the impact of model param-
eterizations can be different when either assimilating surface data or satellite column
data, we evaluate this impact for three observational systems: two surface networks
and one dataset of GOSAT satellite retrievals.
As a result, this paper is not to be taken as an assessment of the global and regional
methane budget for 2010 but more as a study on the sensitivity of this budget to atmo-
spheric transport errors. In the following, Section 2 presents the set-up of the ensemble
of inversions performed. The consistency between surface-based and satellite-based
inversions is then presented and a bias correction is proposed for the satellite data
(Section 3). The impacts of the different parameterizations used are then analyzed
through the estimates of methane emissions at the global scale (Section4) and at re-
gional scales (Section 5).

2 Set-up of variational methane inversions

2.1 PYVAR-LMDz-SACS

The PYVAR-LMDz-SACS (Python variational-Laboratoire de Météorologie Dynamique
model with Zooming capability-Simplified atmospheric chemistry system) system (Cheval-
lier et al., 2005; Pison et al., 2009) is based on a variational data assimilation system
to derive the optimal state of CH4 fluxes given CH4 observations and a background es-
timate of CH4 fluxes. Variational data assimilation involves minimizing a cost function J,
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which is a measure of both the discrepancies between measurements and simulated
mixing ratios and between the background fluxes and the estimated fluxes, weighted by
their respective uncertainties, expressed in the covariance matrices R (observations)
and B (prior fluxes), defined as follows:

J(x) = (y−Hx)TR−1(y−Hx) + (x−xb)TB−1(x−xb) (1)

x is the state vector that contains the variables to be optimized during the inversion
process. In PYVAR, methane fluxes are optimized over eight day periods in all the
grid cells of the model. The vector xb represents the prior state of x. Likewise, the
vector y contains the observations of CH4. B is the prior error covariance matrix and
its characteristics are mainly based on the work of Cressot et al. (2014):

– its diagonal is filled in with the variances set to 70% of the square of the maximum
of emissions over the nine model grid cells, which contain and surround each grid
cell during each month.

– its off diagonal terms of B (covariances) are based on correlation e-folding lengths
(500 km over land and 1000 km over sea)

– no temporal correlations are considered in the B matrix

Furthermore, the prior information included in the B matrix have several origins:

– CH4 anthropogenic emissions are based on EDGAR v4.2-FT2010 estimates (Olivier
and Janssens-Maenhout , 2012)

– CH4 biomass burning emissions are based on GFED3 inventory (Randerson et al.,
2013)

– wetland emissions are based on the personal communication of Kaplan (2007)
(Bergamaschi et al., 2007)
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The CH4 initial concentration is also optimized with a 1-sigma uncertainty of ± 10
ppb in the inverse process in order to not alias its error into flux errors. However, only
the initial CH4 atmospheric columns at each grid cell are optimized for saving valuable
computational time. The R matrix accounts for all errors contributing to mismatch be-
tween measurements and simulated CH4 mixing ratios. R is usually considered as a
diagonal matrix because considering covariance dramatically slows down the optimisa-
tion and the knowledge about these covariances is too poor. The main contributions to
variances are intrumental and model errors. In surface-based inversions, instrumental
errors are considered equal to 3 ppb and model errors are computed at each site as
the residual standard deviation (RSD) of the measurements on a smooth curve fitting
them. The RSD at each site is considered as a proxy of the transport model errors.
Previous studies using PYVAR-LMDz-SACS have used this approach (Bousquet et al.,
2006; Yver et al., 2011; Locatelli et al., 2013). In satellite-based inversions, GOSAT re-
trieval random errors are estimated to be about 0.6% of satellite measurements (Cres-
sot et al., 2014) and a transport model error of 1% of the observation values is added
according to the results of Cressot et al. (2014) on tuning of error statistics. H is the
observation operator that projects the state vector x into the observation space. H is
represented here by the offline version of LMDz complemented by a simplified chem-
istry module (SACS) to represent the main reactions of the oxidation chain of methane
(Pison et al., 2009). Here, OH and O(1D) fields are prescribed. They come from a full-
chemistry simulation of the chemistry-climate model LMDz-INCA (Szopa et al., 2013).
The different characteristics of the OH field used here (for example, the global mean
concentration is 11.5 x 105 molec.cm−3 between surface and 100 hPa) are in the range
of the current knowledge on the radical hydroxyl (see the ACCMIP experiment ; (Naik
et al., 2013)). No inter-annual variability is applied to the OH field in this study.
The iterative minimizing process implies calculating the gradient of the cost function,
which is implemented using the adjoint technique, iteratively solved with the M1QN3
algorithm developed by Gilbert and Lemaréchal (1989) until the gradient norm gets re-
duced by more than 99%.

7



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

We also propose an analysis of the posterior flux uncertainties based on the work of
Cressot et al. (2014). Indeed, our inversion set-up is similar to Cressot et al. (2014),
who led a large work on error statistics in methane inversions inferred from different
satellite and surface measurements, using the same transport model. Consequently,
we apply here the uncertainties reductions found in Cressot et al. (2014) to our inver-
sions to provide an estimate of the posterior flux uncertainties (see Section 5.2).

2.2 Three different versions of LMDz: LMDz-TD, LMDz-SP and LMDz-NP

LMDz is the general circulation model (GCM) of the IPSL earth system model (Hourdin
et al., 2006, 2012b). Here we use an offline version of LMDz implemented in the vari-
ational inverse system described in Section 2.1. The computation of air mass fluxes
used by the offline model is performed using the full LMDz GCM nudged on the anal-
ysed horizontal components of the wind from ERA-Interim (Dee et al., 2011). Only the
mass balance equation is solved within the variational system, based on the stored air
mass fields. In the following, LMDz refers to the offline version of the GCM embedded
in the variational system.
In this study, we use three different versions of LMDz using different physical parame-
terizations (LMDz-TD, LMDz-SP and LMDz-NP) to simulate the atmospheric transport.
LMDz-TD uses the physical parameterizations included in the original version of the
inverse system of Chevallier et al. (2005): vertical diffusion is parameterized by a local
approach from Louis (1979) and deep convection processes are parameterized by the
Tiedtke (1989) scheme. LMDz-SP uses also a local approach to parameterize verti-
cal diffusion but the Emanuel (1991) scheme parameterizes deep convection. LMDz-
NP uses a combination of the Yamada (1983) scheme and the thermal plume model
of Hourdin et al. (2002) to simulate atmospheric mixing in the boundary layer. Atmo-
spheric transport by deep convection is parameterized according to Emanuel (1991).
The horizontal resolution of these three different versions of LMDz is 3.75 ˚ x1.875 ˚ and
the vertical discretisation has 39 layers. Some results coming from an old version of
LMDz-TD using 19 layers and a horizontal resolution of 3.75 ˚ x2.5 ˚ are also presented
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in Section 3.
More details on the characteristics of these three versions of LMDz concerning the
modelling of atmospheric transport and the impact of the different versions of LMDz
on the the methane concentrations can be found in Locatelli et al. (2015). Briefly,
LMDz-TD is characterized by a low variability in the PBL due to an over-estimation
of the PBL mixing. It leads to an under-estimation of the strong gradient observed near
sources. On the other hand, LMDz-NP simulates the diurnal cycle of the PBL quite
well. The modelling of large-scale atmospheric transport has also been improved with
the Emanuel (1991) deep convection scheme. The interhemispheric (IH) exchange,
which is known to be too fast in LMDz-TD, agrees better with the indirectly measured
IH exchange when using the Emanuel (1991) scheme, as is done in LMDz-SP and
LMDz-NP. However, the Tiedtke (1989) convection scheme is still used in the scien-
tific community, which justify its inclusion as well in this work. Finally, it is important
to remember that these 3 different versions of LMDz simulate different CH4 lifetime
(Locatelli et al., 2015). LMDz-NP derives a lifetime 0.2 years longer than LMDz-TD,
which consequently contributes to uncertainties in the estimation of methane sources
and sinks by inverse modelling based on these different versions of LMDz.

2.3 Three different observation datasets

Different observation datasets exist to constrain methane atmospheric inversions. Sur-
face observations have been assimilated for years, mostly for background or coastal
locations. However, more and more continuous and/or continental sites have appeared
in the recent years, which largely increase the space and time density of surface obser-
vations. These observations are precise and accurate although unevenly distributed in
space and time at the surface. Since 2003, satellite data for total methane weighted-
columns also exist, largely increasing spatio-temporal coverage of observations but at
the cost of a lower precision of individual measurements.
In this study, two surface observation datasets (Section 2.3.1) and one GOSAT satellite
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dataset (Section 2.3.2) are used to constrain our inversions.

2.3.1 Two surface observation datasets

Two networks of surface stations have been used in the different inversions of this
study: the ”background” and the ”extended” networks. Red circles on the Figure 1 rep-
resent the location of surface stations in the ”background” network. The ”background”
(BG) network is mainly representative of ”background” air since most of the surface
stations of this network are located far away from the main methane sources. The
”extended” (EXT) network is an extension from the ”background” network, where 24
stations are added to the ”background” network (blue circles on the Figure 1). These
addtitional stations have been selected for their continental footprint, closer to methane
emissions than most of the background sites and therefore providing more direct infor-
mation on methane emissions. However, being closer to emission areas, and generally
located inland, they show more variable mixing ratios and are more sensitive to trans-
port errors (Locatelli et al., 2013). In the following, we use BG and EXT to respectively
refer to surface measurements in the background and extended configuration of the
surface network.
Inversions using these surface observations datasets have been run between 2006
and 2012, but we mainly present results for 2010 to be consistent with the satellite
inversions.

2.3.2 One satellite dataset: GOSAT satellite

Methane total weighted-columns retrieved by GOSAT satellite are also used in our
study to constrain methane inversions. Version 4.0 of the TANSO-FTS XCH4 proxy re-
trievals performed at the University of Leicester (Parker et al., 2011) are used with
associated averaging kernels and a priori profiles. In the ”proxy” method, it is consid-

10



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

ered that the CO2 and CH4 spectral absorption bands are close enough to assume that
light path perturbations affecting CO2 total-column mixing ratio are similar to those af-
fecting CH4 total-column mixing ratio. Thus, the ratio between the measured CH4 and
CO2 vertical mixing ratio is not affected by any perturbations due to aerosol scattering
and clouds. Consequently, the total column of CH4 (XCH4) is computed according to:
XCH4 = [CH4]meas

[CO2]meas
×XCO2mod, where [CH4]meas and [CO2]meas are respectively the

CH4 and CO2 measured mixing ratio, and XCO2mod is a model-derived estimate of
XCO2 coming from Chevallier et al. (2010).
In the following this dataset is referred as PR-LEI standing for ”Proxy-Leicester”.
Data from July 2009 to June 2011 are used in the inverse procedure to extract the
inferred methane fluxes for the year 2010 with limited time side effects.

3 Consistency between surface-based and satellite-based inversions

The use of total column CH4 retrievals from satellite is fundamental for global inversions
as it provides constraints within regions not sampled by surface stations. In particular,
satellite data provide information in tropical regions, which are known to largely con-
tribute to global methane budget and where few surface measurements are available.
However, random and systematic errors may be significant in satellite datasets. For ex-
ample, Houweling et al. (2014) and Bergamaschi et al. (2013) have shown that SCIA-
MACHY satellite retrievals were usable in methane inversions only if a bias correction
algorithm was added. Monteil et al. (2013) has also shown inconsistencies between
surface and GOSAT satellite inversions, which could be explained by space or time
dependant biases in the GOSAT retrievals. Another reason could be due to discrep-
ancies in the modelling of methane vertical transport in the atmosphere. Here, using
the different versions of the LMDz model, we estimate the inconsistencies between
surface-based and satellite-based inversions and we investigate the impact of the rep-
resentation of vertical transport on these inconsistencies.
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Four inversions are perfomed using GOSAT data without any bias correction using the
three versions of LMDz (LMDz-TD, LMDz-SP, LMDz-NP as described in Section 2.2)
and the former 19-layer model version (LMDz-19) related to LMDz-TD (Chevallier et al.,
2005). The optimized atmosphere is then sampled at surface stations and compared
to surface observations for the four different versions of the LMDz model (Figure 2).
Methane surface mixing ratios simulated from optimized fluxes using GOSAT satellite
retrievals do not fit methane mixing ratios directly measured at surface stations (Figure
2). The different 39-layer versions of the LMDz model show a bias of about +40 ppb,
with a small latitudinal dependency. This means that, at the surface, the optimized at-
mospheric methane concentrations seen by GOSAT are on average 40 ppb higher on
average than the observed conentrations. Such a bias can be due to satellite retrievals
and/or transport model errors. For comparison, Monteil et al. (2013) found lower but
still significant global mean biases of +6.9 and +16.9 ppb in two different GOSAT in-
versions. Few information are given on the latitudinal distribution of these biases, even
though they also seem slightly larger in the Southern hemisphere as in our study. Af-
ter analysing the scaling of the optimized initial condition, we found that aroud 15-20
ppb of the 40 ppb are explained by an increase of the initial condition, the rest being
explained by an increase in the CH4 emissions.

The similarity of biases derived by LMDz-TD, LMDz-SP and LMDz-NP (Figure 2)
highly suggests that sub-grid scale parameterizations of vertical transport only play a
minor role on inconsistencies between surface and simulated (based on satellite re-
trievals constraints) methane mixing ratio. Monteil et al. (2013) found similar results
performing different sensitivity tests to explain inconsistencies between surface-based
and satellite-based inversions. As a result, we can conclude that parameterizations of
deep convection and diffusion are likely not the cause of these inconsistencies.
Interestingly, we find a very different result with the 19-layer version of LMDz (LMDz-
19). Indeed, LMDz-19 derives a smaller bias (up to +15 ppb in the high latitudes of
the southern hemisphere decreasing to down to -10 ppb in the northern hemisphere).
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LMDz-19 differs from LMDz-TD only by a coarser vertical resolution. Therefore, a
higher vertical resolution seems to degrade the bias of GOSAT inversions, despite the
improvement of the large-scale transport shown in Locatelli et al. (2015) for this new
version of LMDz.
In order to understand this large difference between the two vertical resolutions of
the LMDz model, we compare the simulated vertical profiles of methane mixing ratios
using LMDz-TD with 19 (LMDz-19) and 39 (LMDz-39) vertical levels (Figure 3). Both
simulated profiles use the corresponding optimized methane fluxes derived by inver-
sions using the same atmospheric constraints (GOSAT PR-LEI). Figure 3 shows that
the CH4 profile is very sensitive to the vertical resolution. The largest differences are
found in the stratosphere: LMDz-19 simulates much higher stratospheric methane mix-
ing ratios compared to LMDz-39. On the contrary, and consistently with mass balance,
LMDz-19 tropospheric mixing ratios are smaller than LMDz-39. As found in Locatelli
et al. (2015), the two versions of the model have very different abilities to reproduce
stratosphere/troposphere exchange (STE). STE is particularly fast in LMDz-19 com-
pared to LMDz-39, due to a coarser resolution inducing more vertical diffusion. This in-
duces stronger methane mixing ratio in the stratosphere in LMDz-19. One could think
that LMDz-19 simulates a more consistent methane vertical distribution than LMDz-
39 as biases on Figure 2 are smaller for LMDz-19 than for LMDz-39. However, we
have compared the modelled methane mixing ratio vertical gradients with the clima-
tology from the HALOE instrument (Grooß and Russel III, 2005), and we have found
extremely similar gradients between LMDz-39 and HALOE data. Indeed, the methane
gradient between 200 and 3 hPa is 2.2, 5.5 and 5.3 ppb/hPa for respectively LMDz-19,
LMDz-39 and HALOE. As a result, we find that the relative contribution of each vertical
layer to the total column is very different in LMDz-39 and LMDz-19 (lines with cross
markers on Figure 3). Stratospheric (Tropospheric) layers in LMDz-39 contribute much
less (more) than in LMDz-19. Consequently, the inverse system derives lower methane
fluxes with LMDz-19 to simulate a lower tropospheric methane mixing ratio, compensat-
ing the over-contribution of the stratospheric methane mixing ratio to the total-column.
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The relatively small bias found in the validation of LMDz-19 satellite-based fluxes by
surface measurements is unfortunately due to an inadequate representation of the tro-
posphere/stratosphere methane mixing ratio gradient. LMDz-39 derives a stronger bias
between simulated and surface measurements, but one can assert that this bias is not
due to errors in the modelling of the troposphere/stratosphere gradient, which is im-
proved compared to LMDZ-19. One way to sort out this issue would be to compare to
another model such as TM5 model (with 25 vertical levels), which was found to simu-
late a slower STE than LMDz-19 in Patra et al. (2011) and infers a global mean bias of
+6.9 and +16.9 ppb depending on the GOSAT satellite version dataset.
Overall, to determine the reason for such biases in satellite inversions still needs more
attention on the model side, but most probably also on the data side.

To overcome these model/data inconsistencies, satellite–based inversions are per-
formed in two steps. Firstly, we run inversions using GOSAT data without adding any
bias corrections. Secondly, we remove the latitudinal bias found when we compute the
difference of the concentrations simulated at each surface stations using the optimized
methane fluxes coming from the first inversion with the surface observations consid-
ered as unbiased. One could argue that the constant part of the bias (∼ 40 ppb) could
be absorbed by the initial conditions. This is indeed partly the case for 15-20 ppb. But
the remaining bias translates into additional surface emissions what justify to remove
the bias and perform a second inversion.
In the following, in addition to surface-based inversions, we focus on and present only
results associated with these two-step satellite-based inversions.

4 Impact of physical parameterizations on global methane fluxes

Figure 4 displays the sensitivity of the global methane budget to physical parameteri-
zations by showing the global methane estimates from nine inversions using the three
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different versions of the model (Section 2.2) and the three different datasets (Section
2.3). Using the BG, EXT, and PR-LEI datasets to constrain methane inversions, we find
that the spread (maximum - minimum) in derived methane emissions due to changes
in physical parameterizations is respectively 2.7, 7.5, and 2.1 TgCH4 in 2010. It respec-
tively represents 0.5%, 1.4% and 0.4% of methane global emissions. However, these
spreads are lower than when taking the point of view of changes in atmospheric ob-
servations: using TD, SP and NP model versions with the different datasets, we find
spreads of 5.0, 6.7 and 10.3 TgCH4. Therefore, the choice of atmospheric observa-
tions gives more spread in the results than changing model parameterizations, at least
in our case. This can be understood as changing the physical parameterization only
accounts for part of the total transport uncertainty. Indeed, the parameterization-based
spreads of 2.1 to 7.5 TgCH4 are much lower than the 27 TgCH4.year−1 found in the
pseudo-experiment of Locatelli et al. (2013), which was assumed as an estimate for
”total” transport model errors. ”Total” here refers to all the possible causes of transport
errors. The use of different physical parameterizations within the same CTM integrated
in the same inverse system has a significant impact on global methane emissions, al-
though logically smaller than using different CTMs as done in Locatelli et al. (2013).
Indeed, we only test here few parameterizations of the vertical transport in one model.
Transport models can also differ in their horizontal resolution and horizontal advection,
in their meteorological forcings and the way they constrain atmospheric transport, and
in the coupling between their different characteristics.

The largest spread (7.5 TgCH4) for one given dataset is found for the EXT inversions.
It is especially due to the EXT-NP inversion, which estimates global methane emissions
of 539.8 TgCH4 in 2010 compared to 532.3 and 533.3 TgCH4 for respectively EXT-TD
and EXT-SP. In particular, this large estimation is due to a specific region, China. The
impact of the parameterizations on the methane flux estimates for China is further dis-
cussed in Section 5.
We find that, at the global scale, the spread in GOSAT satellite inversions (2.1 TgCH4) is
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lower than both BG (2.7 TgCH4) and EXT (7.5 TgCH4) surface-based inversions. First,
sub-grid scale parameterizations in chemistry-transport models mainly impact the mod-
elling of vertical transport. An inaccurate representation of methane vertical distribution
has larger impacts on simulated mixing ratios at the surface than on the simulated total
column. Indeed, a simulation of surface methane mixing ratios, which takes place at
a specific level of the atmosphere, could miss or underestimate a methane plume if,
for example, methane is transported too quickly in the upper atmosphere. On the con-
trary, the simulated total column would not miss this methane plume since it would stay
in the atmospheric column, even if the methane plume is simulated at a wrong level.
Secondly, surface sources induce weaker signatures in the total column amounts than
in surface concentrations (Rayner and O’Brien, 2001), which could result in a smaller
sensitivity of the inverse system to the total column than to surface measurements.

Discrepancies in global methane estimates derived by inverse modelling are usually
largely explained by large-scale characteristics of the modelling of interhemispheric
(IH) exchanges. For example, the overestimation of the north/south gradient in methane
mixing ratios in the a priori simulations of the TM5 model have been assumed to be
caused by too slow IH exchanges in TM5 (Houweling et al., 1999; Bergamaschi et al.,
2009; Monteil et al., 2013). Furthermore, in Patra et al. (2011), LMDz-TD (using a
coarser horizontal and vertical resolutions than the version of LMDz-TD used here)
is in the range of CTMs simulating a too fast IH exchange, which has been shown
to induce a positive (negative) bias in methane emissions in the Northern (Southern)
Hemisphere (Locatelli et al., 2013) after inversion.
In order to investigate the representation of IH exchange in our inversions, we present
in Table 1 the methane estimates in the Northern and the Southern Hemispheres, and
IH methane emission gradient for the common year (2010) of the different inversions.
Whatever the constraints used in our inversions, the hemispheric differences simu-
lated by LMDz-TD are larger compared to those simulated by LMDz-SP. Indeed, BG,
EXT, and PR inversions using LMDz-TD respectively derive hemispheric differences of
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21.2, 31.5 and 1.0 TgCH4 higher than in inversions using LMDz-SP. These results con-
firm the conclusion of Locatelli et al. (2015) who have shown that LMDz-SP simulates
IH exchange slower than LMDz-TD based on an analysis of SF6 simulations. Indeed,
LMDz-SP simulating slower IH exchange finds, on average, higher (smaller) methane
mixing ratios in the Northern (Southern) Hemisphere than in LMDz-TD. In response,
the inverse system using LMDz-SP derives smaller (higher) methane emissions in the
Northern (Southern) Hemisphere to fit the oberved mixing ratio. This leads to a smaller
hemispheric difference in methane emissions compared to what the inverse system
derives when it uses LMDz-TD.
Concerning LMDz-NP, results are slightly different. In surface inversions, the hemi-
spheric differences simulated by LMDz-NP are also smaller than those simulated by
LMDz-TD, even if the difference is smaller between LMDz-NP and LMDz-TD than be-
tween LMDz-SP and LMDz-TD. However, these results are in agreement with the study
of Locatelli et al. (2015), which has shown that the thermal plume model implemented
in LMDz-NP was responsible for a faster IH exchange in LMDz-NP than in LMDz-SP.
Thus, it is not surprising to simulate a hemispheric difference of 6.0 TgCH4 (BG inver-
sions) and 25.6 TgCH4 (EXT inversions) higher in LMDz-NP than in LMDz-SP. More-
over, the larger difference in EXT compared to BG inversions can be explained by the
higher number of stations located closer to methane sources, where the thermal plume
model strongly affects the boundary layer mixing (Locatelli et al., 2015).
However, the higher hemispheric difference simulated by PR-LEI-NP was not expected
from the study of Locatelli et al. (2015). Indeed, PR-LEI-NP simulates a hemispheric
difference of 262.0 TgCH4, which is surprisingly higher than PR-LEI-TD (249.9 TgCH4).
Large methane emissions are derived in tropical regions for the year 2010. These
regions are across the equator and experience important vertical mixing during the
year (e.g. moonsoon in India). Therefore, they are sensitive to the parameterization
of this transport. A small but incorrect repartition of emissions between the Northern
and Southern hemispheres can strongly affect the hemispheric difference computed
here. Moreover, satellite inversions generally derive stronger methane emissions in
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the Tropics than surface-based inversions (Bergamaschi et al., 2013; Monteil et al.,
2013; Houweling et al., 2014). For example, Houweling et al. (2014) found a shift in the
emissions from the extra-tropics to the tropics of 50± 25 TgCH4.year−1. Thus, one can
expect that the hemispheric difference can be changed in satellite-based inversions be-
cause emissions can easily be attributed to Southern or Northern hemisphere. On the
contrary, surface inversions do not have enough constraints to derive accurate tropical
emissions which are expected to be high due to strong wetlands and biomass burning
methane emissions. The ”missing” amount of methane emissions in tropical regions
derived by surface inversions are generally shifted to the extra-tropics, which lead to
less ambiguous definition of the interhemispheric gradient since emissions are clearly
attributed to one of the two hemispheres. Moreover, we expect that PR-LEI-NP would
simulate a smaller hemispheric difference for a year without such large emissions in
the Tropics (Houweling et al., 2014).

Overall and across the different datasets assimilated, the largest spread in methane
global emission estimations due to parameterization errors reaches 7.5 TgCH4.year−1,
representing 1% of the total global of methane emissions. The choice of the deep con-
vection scheme has a significant impact on the relative distribution of methane emis-
sions between extra-tropical and tropical regions because deep convection strongly im-
pacts large-scale atmospheric transport. Versions of LMDz using the deep convection
of Emanuel (1991), like LMDz-SP and LMDz-NP, produce a smaller interhemispheric
gradient in methane emissions, improving one of the PYVAR inverse system’s flaws
identified in Patra et al. (2011) and Locatelli et al. (2013). Among datasets, the impact
of parameterization uncertainties on methane emission estimations is smaller when
using satellite total-column data compared to surface observations, suggesting that er-
rors related to the modelling of vertical transport have less impact on estimations when
considering total-column data.
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5 Impact of physical parameterizations on regional methane flux estimates

Figure 5 gives a representation of methane flux estimations derived by the nine inver-
sions for 11 continental regions in 2010. Estimations using LMDz-TD (LMDz-SP and
LMDz-NP) are plotted with different colors (see figure’s legend). The prior estimates
for each region are plotted in grey with the associated prior error bars. Posterior error
bars are plotted for LMDz-TD inversions only, based on the posterior (residual) errors
computed by Cressot et al. (2014) with the same set-up and same model (see Section
2.1). Comparing emission estimates derived by the different inversions allows us to
quantify the impact of sub-grid scale parameterizations on regional inverted estimates
(Section 5.1) and to assess its significance compared to total model errors, to residual
errors returned by the inversion, and to the choice of observation dataset (Section 5.2).

5.1 Quantification of the impact of physical parameterizations on regional methane
flux estimates

Surface-based inversions (BG and EXT datasets)
In the BG configuration of surface-based inversions (the first three barplots for each
region), larger differences are found between inversions using different deep convec-
tion schemes than between inversions using different parameterizations of boundary
layer mixing. In tropical regions, where deep convection is predominant, like in South
America Tropical, South East Asia or India, it is expected that BG-SP and BG-NP, which
both use the deep convection scheme of Emanuel (1991), derive similar estimate, while
BG-TD, which uses the deep convection scheme of Tiedtke (1989) derive slightly dif-
ferent estimations. For example, BG-SP and BG-NP derive respectively estimates of
79.0 and 79.2 TgCH4.year−1 in South East Asia, compared to 76.5 TgCH4.year−1 for
BG-TD. However, these changes remain small compared to the residual uncertainties
(plotted for LMDz-TD inversions on the Figure 5).
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For extra-tropical regions, where deep convection is less directly predominant, like in
North America Temperate, Europe or China, the representation of interhemispheric
exchange can have large impacts on regional estimates. Indeed, BG inversions are
mainly constrained by remote stations (see Section 2.3.1), where simulated concentra-
tions are largely impacted by the representation of large scale transport (like interhemi-
spheric exchange). However, as mentioned in Section 4, the deep convection scheme
of Emanuel (1991) has improved the representation of interhemispheric exchange in
LMDz. Thus, LMDz-SP and LMDz-NP both using the Emanuel (1991) scheme derive
similar estimates in regions like North American Temperate, Europe or China. Flux es-
timations for boreal regions (like North America Boreal and Eurasia Boreal) are also
strongly dependent on the modelling of large-scale atmospheric transport since they
are far from the main sources of methane. Thus LMDz-SP and LMDz-NP logically de-
rive similar estimates in these two boreal regions.
Combining the extended dataset (EXT inversions) with the thermal plume model and
the Yamada (1983) scheme, LMDz-NP appears to have large impacts. Indeed, this
scheme plays a key role on the mixing in the boundary layer and can produce large dif-
ferences in methane mixing ratio simulated for stations located close to high methane
sources as in the EXT network. Thus, large impacts are found in China (5 stations have
been added close to China in the EXT network) where EXT-NP derives emissions of
74.7 TgCH4.year−1 significantly higher compared to 68.2 and 67.2 TgCH4.year−1 for
respectively EXT-SP and EXT-TD. Tropical regions (like in South America Tropical) are
also affected by the thermal plume model, even if the reasons are less obvious than
in China, although the thermals play an important role at the base of deep convection
layers (Locatelli et al., 2015). However, there are still very few stations constraining
tropical emissions in the EXT network.

GOSAT-based inversions (PR-LEI datasets)
On the contrary, in PR-LEI inversions, GOSAT data bring strong constraints in tropical
regions where methane sources are supposed to be large. Thus, it is not surprising
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to see large impacts on tropical region estimates in satellite-based inversions due to
the implementation of the thermal plume model (see the rightmost three barplots for
each region on Figure 5). Indeed, PR-LEI-TD and PR-LEI-SP derive methane emis-
sions of 68.3 and 67.0 TgCH4.year−1 in South East Asia, while PR-LEI-NP derives
methane emissions of 80.7 TgCH4.year−1 in the same region, out of the uncertainty
bounds given for PR-LEI-TD inversion. In South America, PR-LEI-TD and PR-LEI-
SP derive larger methane emissions (68.4 and 67.7 TgCH4.year−1) compared to PR-
LEI-NP which derives methane emissions of 62.0 TgCH4.year−1. As a consequence,
satellite-based inversions derive different spatial distribution in methane emissions be-
tween the different tropical regions (compated to surface-based inversions), although
their total methane emissions in the Tropics remain close.

Quantification for all regions
More quantitatively, Table 2 summarizes the spread (difference between the maximum
and the minimum of methane emission estimations) in BG, EXT and PR-LEI inversions
due to changes in physical parameterizations. The spread is expressed in percent-
age and in TgCH4.year−1. The numbers are relative to the common year of inversions,
which is 2010. However, average spreads between 2007 and 2011 are also shown for
BG and EXT inversions (inside the brackets in Table 2) since surface-based inversions
have been run for several years (2006-2012). First, one can notice that the spreads (in
percentage) at regional scales caused by changes in sub-grid scale parameterizations
appear larger compared to what was found at the global scale (see Section 4). Indeed,
at regional scales, spreads range from 1% to 11% (0.2 to 8.0 TgCH4.year−1), 3% to
18% (0.4 to 12.8 TgCH4.year−1) and 2% to 17% (0.1 to 12.4 TgCH4.year−1) for respec-
tively BG, EXT and PR-LEI inversions. Across the networks, the largest spreads (in
TgCH4.year−1) are found in China, South East Asia, Europe, South America Tropical
and South America Temperate. Furthermore, spreads in surface-based inversions are
larger in EXT compared to BG configuration of the surface network, similarly to what
we found at the global scale. Indeed, constraints added in EXT inversions are located
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closer to large methane mixing ratio gradients, which makes EXT inversions more sen-
sitive to the modelling of the boundary layer mixing. Yet, skills of the different LMDz
versions (LMDz-TD, LMDz-SP and LMDz-NP) to simulate PBL mixing can be highly
different (Locatelli et al., 2015). Thus, the different configurations of the inverse sys-
tem induce larger spreads in EXT compared to BG inversions. On average, the mean
regional spread is 5%, 11% and 8% for respectively BG, EXT and PR-LEI inversions.
This gives a mean error of 8% at regional scales considering the three types of inver-
sions.

5.2 Significance of the impact of physical parameterizations at regional scales

A question raising from the previous section is the significance of the spread due
to physical parameterizations compared to others errors: total transport error, residual
error from the inversion and spread in methane emissions due to the choice of the
observing network. Thus, we compare here the impact of physical parameterization
uncertainties on methane inversions with these 3 sources of errors.

Physical parameterizations versus total transport error
Similarly to results found for the global scale, spreads at regional scales when us-
ing different parameterizations in LMDz are smaller than spreads between inversions
using different atmospheric transport models as in Locatelli et al. (2013). Indeed, in Lo-
catelli et al. (2013), spreads between inversions using different CTMs range from 23%
for Europe to 48% for South America, with an average of 33%. Here, we found that
the mean error in methane estimates due to parameterization errors is 8% at regional
scales (Section 5.1). Consequently, if one assumes that the spread given in Locatelli
et al. (2013) is representative of the total error due to the modelling of transport, er-
rors related to physical parameterizations explain, on average 24% (corresponding to
the ratio of ”8/33”) of the total transport model errors, but it can reach more than 50%
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in some specific regions. Therefore, the different parameterizations used within LMDz
span relatively more of the transport error at regional scales than at the global scale.

Physical parameterizations versus residual errors
One can compare the spreads in methane emission estimates due to parameterization
uncertainties in different regions on Figure 5 to the amplitudes of posterior (residual)
uncertainties estimated by Cressot et al. (2014). A spread in methane inversion esti-
mates that is larger than the amplitude of the posterior uncertainties is found for three
regions only: South America Tropical, Europe and China. Consequently, one can inter-
pret that the impact of parameterization uncertainties in these three regions is mean-
ingful. An improvement of the representation of sub-grid processes could significantly
increase the confidence in methane emission estimates in these regions. In the oth-
ers regions, the spreads in inverted estimates are found similar (Boreal Eurasia, North
America Temperate, South America Temperate) or smaller (Africa and India) than the
amplitudes of posterior uncertainties, indicating that changes due to the use of different
parameterizations are less meaningful for these regions.

Physical parameterizations versus the choice of observation networks
As already mentioned at the global scale, the spread in methane inverted regional es-
timates is in general smaller when one considers inversions constrained by the same
observation dataset (Figure 6). Comparing the spread in inversions using a same ob-
servation dataset but different versions of LMDz (green barplots on Figure 6) with
inversions using the same version of LMDz but different observation datasets (blue
barplots), shows that the choice of observation dataset has a larger impact on in-
verted regional estimates. Spreads in inversions based on different versions of LMDz
are similar (or slightly smaller) than spreads in inversions based on different observa-
tion datasets in South America Temperate, Africa, Boreal Eurasia, India and Australia.
But, in all the others regions, the spreads in inversions based on different observation
datasets are much larger. It is especially obvious in Europe, China and South Amer-
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ica Tropical. Indeed, information provided by the different datasets is different but can
also be differently interpreted by the different versions of LMDz. A good example of
this assessment is found in tropical regions for inversions constrained by the PR-LEI
dataset. The inverse system based on LMDz-NP derives a very different spatial dis-
tribution: larger emissions in South East Asia but lower emissions in South America
Tropical compared to inversions based on LMDz-TD and LMDz-SP.

Overall, we find that if the choice of the observation dataset used to constrain the
inversion generally remains a larger source of uncertainty than the change in physical
parametrizations for one given dataset, both can generate significantly different spatial
distributions of methane emissions, especially within the Tropics and for Europe and
China. For example, the partition of methane emissions within the Tropics can shift
from South-East Asia to South America and methane emission estimates derived by
BG and PR-LEI inversions differ by 15 and 22 TgCH4.year−1 in Europe and China re-
spectively (Figure 5).

6 Conclusions

This study presents the sensitivity of the recent methane budget estimated by the PY-
VAR inversion system to different LMDz sub-grid scale physical parameterizations for
vertical transport, crossed with different observation datasets. Three versions of LMDz
(LMDz-TD, LMDz-SP and LMDz-NP) have been used within the PYVAR system to
simulate atmospheric transport of methane emitted at the surface. Three methane ob-
servation datasets (two surface datasets and one GOSAT satellite dataset) have been
assimilated to constrain these different atmospheric inversions. Finally, the comparison
between these 9 inversions quantifies the impact of LMDz sub-grid scale parameteri-
zations on methane inverted estimates.
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Satellite-based inversions generate atmospheric mixing ratios, which are inconsis-
tent with surface observations when no bias correction is applied. These inconsisten-
cies are not related to the physical parameterizations of the vertical transport for LMDz.
The relative agreement between methane concentrations simulated by the former ver-
sion of LMDz and GOSAT data masks a poor representation of the methane gradient
at the tropopause in the former version of the LMDz model. On the contrary, our results
based on different new versions of LMDz, reproducing properly the vertical gradient
of methane in the upper troposphere/lower stratosphere, suggest a large bias in the
GOSAT satellite data (∼ 40 ppb), with a small latitudinal dependency. This bias is cor-
rected to analyze and compare the different inversions performed.

At the global scale, we find that the spread due to physical parameterization uncer-
tainties is 0.5%, 1.4% and 0.4% of global methane emissions. Besides, the analysis of
the north/south gradient in inferred emissions confirms that the Emanuel (1991) deep
convection scheme improves the representation of IH exchange, as already mentioned
in Locatelli et al. (2015).
At regional scales, the spreads due to physical parameterization are larger than at the
global scale (5-11%) but remains generally lower than the spread due to the choice of
observation dataset and always lower (24% on average) than the total uncertainty due
to the modelling of atmospheric transport as estimated by Locatelli et al. (2013). Com-
paring these spreads to the residual regional inversion uncertainties given in Cressot
et al. (2014) indicates that they are significant for few but key regions of the methane
cycle: South America, China and Europe. Indeed, changing the parameterizations can
lead to significantly different spatial partitions of methane emissions for (or between)
these regions. One important additional result is that the thermal plume model com-
bined with the vertical diffusion scheme of Yamada (1983) implemented in LMDz-NP
largely impact regional estimations, especially when considering atmospheric con-
straints located close to high methane sources (like in tropical regions for satellite-
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based inversions).

After the quantification of transport model errors in global and regional methane flux
estimates based on a TransCom intercomparison (Locatelli et al., 2013) and the evalu-
ation of new parameterizations in LMDz to simulate trace gas concentrations (Locatelli
et al., 2015), this paper goes one step further in the understanding and the quantifi-
cation of causes and impacts of model errors in methane inversions. In these different
studies, precisions have been given on the degree of confidence in the global and
regional methane estimations using inverse modelling relatively to transport model er-
rors. At the global scale, the impact of transport model errors (5% of global methane
emissions) and physical parameterizations errors (0.8%) are acceptable. However, the
picture is different at regional scales with possible significant impact of transport er-
rors on the attribution of regional methane emission estimated by inverse modelling. A
striking finding of our work is the possibility to change the partition of methane tropical
emissions depending on the combination of observation dataset and physical param-
eterizations used, even after correcting probable biases of satellite datasets. Our work
provides elements to understand why the different inversions recently published lacks
regional consistency with eachother in their attribution of the renewed increase of at-
mospheric methane since 2007. Our results push towards carrying more efforts for the
improvement of transport models in order to damp transport errors. A way to achieve
this is to strength collaborations between experts in atmospheric dynamics and experts
in tracer transport on the one hand, and to develop measurement campaigns and to
use specific tracers in order to better evaluate transport models on the other hand.
Finally, inconsistencies between surface-based and satellite-based inversions have to
receive more attention in the future.
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Table 1. Annual hemisperic methane fluxes (TgCH4 year−1) for the common year of simulation
(2010).

Northern Southern Difference
hemisphere (NH) hemisphere (SH) NH - SH

PRIOR 387.0 126.2 260.8
BG-TD 383.2 113.1 270.1
BG-SP 370.6 121.7 248.9
BG-NP 374.7 119.8 254.9
EXT-TD 386.7 111.4 275.3
EXT-SP 370.0 126.2 243.8
EXT-NP 387.1 117.7 269.4
PR-LEI-TD 376.1 126.2 249.9
PR-LEI-SP 375.4 126.5 248.9
PR-LEI-NP 382.4 120.3 262.0
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Table 2. Spreads of regional methane flux (maximum - minimum of CH4 emissions) in BG, EXT
and PR-LEI inversions due to changes in physical parameterizations. The spread is expressed
in percentage and in TgCH4 year−1. The numbers are relative to the common year of inversions,
which is 2010. However, average spreads between 2007 and 2011 are also shown for BG and
EXT inversions (inside the brackets) since surface-based inversions have been run for several
years.
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BG EXT PR-LEI
% Tg.yr−1 % Tg.yr−1 % Tg.yr−1

North America Boreal 5.0 0.7 9.4 1.0 2.2 0.3
(4.5) (0.6) (7.7) (0.9)

North America Temperate 3.7 1.3 10.2 3.8 7.0 2.9
(3.4) (1.2) (9.9) (3.7)

South America Tropical 5.6 3.3 10.4 6.1 9.8 6.4
(7.2) (4.0) (9.1) (5.1)

South America Temperate 9.0 3.1 15.3 5.3 10.1 3.8
(8.7) (3.0) (12.5) (4.3)

Africa 1.3 0.8 3.5 2.1 1.8 1.1
(1.2) (0.7) (2.7) (1.6)

Eurasia Boreal 9.4 1.9 13.1 2.6 7.5 1.5
(9.4) (1.9) (14.2) (2.8)

South East Asia 3.1 2.4 2.9 2.3 17.2 12.4
(4.0) (3.1) (3.8) (2.9)

Australia 5.5 0.2 9.6 0.4 2.6 0.1
(6.6) (0.3) (9.8) (0.4)

Europe 4.6 1.9 18.1 7.4 9.6 4.8
(9.0) (3.9) (13.7) (5.8)

China 10.8 8.0 17.0 12.8 6.3 3.4
(8.6) (6.2) (10.5) (7.5)

India 2.2 0.7 8.8 3.1 12.8 4.1
(4.8) (1.5) (6.4) (2.2)

Middle East 2.5 0.6 10.0 2.8 9.4 2.7
(2.7) (0.7) (9.2) (2.4)
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Fig. 1. Location of the surface stations in the ”background” (red circles only) and ”extended”
network (blue and red circles).
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Fig. 2. Latitudinal distribution of the bias between simulated methane mixing ratio using an
optimized flux distribution coming from a satellite-based inversion and methane mixing ratio
measured at different surface stations.
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Fig. 3. Vertical profiles of methane mixing ratio in ppb (lines with stars) for LMDz-39 (red) and
LMDz-19 (black) and compared with HALOE climatology (green). These profiles have been
averaged between 60˚N and 60˚S for 2010. Only The contribution (in percentage) of each
layer of the satellite retrievals to the total column (lines with cross) is also shown for the two
versions of the model. The computation of the model contributions to the total column does not
account for the averaging kernel of the satellite retrievals.
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Fig. 4. Methane flux estimates (in TgCH4.year−1) for 2010 at the global scale for each inversion
(surface inversions using the background and the extended networks, and0 inversions using
Proxy products provided by Leicester institute relative to GOSAT satellite). Inversions using
LMDz-TD, LMDz-SP and LMDz-NP as CTM are respectively plotted in red, green and blue.
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Fig. 5. Estimations of methane fluxes (in TgCH4.year−1) for 11 regions in three versions of
the model. Estimations based on LMDz-TD, LMDz-SP and LMDz-NP models are respectively
represented in red, green and blue.
NAB: North America Boreal ; NATm: North America Temperate ; SATr: South America Tropical
; SATm: South America Temperate ; Afr: Africa ; EurB: Eurasia Boreal ; SEAs: South East Asia
; Aus: Australia ; Eur: Europe ; Chi: China ; Ind: India

43



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

NAB NATm SATr SATm Afr EurB SEAs Aus Eur Chi Ind
Regions

0

20

40

60

80

In
ve

rt
ed

 C
H

4 
flu

xe
s 

in
 T

g 
pe

r 
ye

ar
Observation dataset spread
Model spread
Total spread

Fig. 6. Spreads (maximum - minimum) in regional methane estimates (in TgCH4.year−1) due
to the choice of the observation dataset (blue error bars) and due to the choice of the model
version (green error bars). The total spreads in the 9 inversions run in this work are plotted in
red.
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