Response to Anonymous Referee #1

The referee's comments are in italics, our responses in plain font.

While not explicitly stated in the manuscript (except indirectly in the title), it appears to me that this paper is an introduction article to the ATTO special issue rather than a regular research article. At such, the paper is very well written and easy to read. I do not find any errors in the paper, so my comments are mainly related to structural and technical issues. Once the authors have addressed the comments given, I recommend accepting this paper for publication in ACP.

We thank the referee for his/her constructive comments. We have added a paragraph at the end of the introduction that makes it clear that this paper is intended as introduction and overview for a special issue.

General issues

The objectives, given in the end of section 1, remain a bit unclear when reading the paper for the first time. What are these objectives representing? Objectives of the whole research being done in ATTO, or even more generally in the Amazon basin? Objective of the research planned to be published in this special issues, or something else? Please define this clearly in the text. The current list of objectives ranges from aiming to solve purely scientific questions to mainly technical issues (carrying out various kinds of measurement). The whole paper would definitely be more appealing to readers if the authors could somehow divide the list of objective into 2-3 separate categories (e.g. "scientific aims", "technical goals" etc.).

We have now made it clear that these are the scientific objectives of the ATTO project. We have reorganized and tightened up the description of the objectives, reducing their number to seven. At this point, there are no objectives of a purely technical nature, so that a division of the list, as proposed by the reviewer, is not practical.

The type of this paper should be reflected in the section titles. Therefore, I do not think that the titles of sections 4 and 5 are appropriate. For example, some of the subsections in section 4 do not contain results at all (e.g. 4.1.2) but rather describe what is being done in practice. I suggest renaming the title of section 4 something like "4. Ongoing research and preliminary results". Likewise, the conclusions made from the ongoing measurements are preliminary rather than end products of this project. I would be more comfortable with the title "5. Summary and future outlook".

We have adopted the headings proposed by the reviewer.

While I am in favor of keeping section 3 as brief as possible, some addition information might be useful for the readers. Section 3.4: what is the accuracy of trace gas measurements, especially in terms of the detection limit for concentrations? Sections 3.6.1 and 3.6.2: Are the instruments measuring aerosol number size distributions, optical properties and CCN under regular quality control and have any of these instruments been in instrument inter-comparison experiments?

Section 3.4: Information on the precision and detection limits has been added.

Sections 3.6.1 and 3.6.2: We are conducting regular quality checks with all aerosol sizing instruments and CPCs, including flow checks, zero tests, and intercomparisons with ambient aerosol and monodisperse PSL cells. Exemplary plots are already included in the manuscript (Fig. 26). In general, all instruments are calibrated frequently as part of the maintenance routines, e.g., the CCNC with size selected monodisperse ammonium sulfate particles and the nephelometer with CO₂ as reference gas. The MAAP and aethalometer are subject to frequent intercomparisons with the other optical instruments. For example, two aethalometers and the MAAP were operated side-by-side during an intensive campaign in Nov/Dec 2014. The BC concentrations from the individual instruments agreed well. The SP2 instrument was carefully intercalibrated with another SP2 during the GoAmazon-2014 campaign. This information has been added to the text.

Technical issues

Page 11634 and Figs. 8-11: What does SD function mean? Please define.

SD means standard deviation. We had that spelled out in the manuscript, but ACP changed it to SD without telling us!

Pages 11637 and 11638: The authors use terms "intermittent events" and "GW events" and sometimes simply events (line 14 on page 11638). What is the difference? Is one of those subset of the other, or are they totally different phenomena.

Oscillatory behavior in the nocturnal boundary layer (Van de Wiel et al., 2002) can be generated by intermittent turbulence, for example due to downward bursts from turbulence created aloft (Mahrt, 1999), or by the action of gravity waves upon the turbulent flow (Zeri and Sá, 2011). The first case is discussed in section 4.2.4, where the term "intermittent events" is used (or sometimes just "events", where the context is clear). The second case, the effect of gravity waves on the stable boundary layer, is discussed in section 4.2.5, where the term "gravity wave events" is used. These two sections have been reorganized to make this distinction clear and definitions have been added.

In principle, the figure captions should be understandable by themselves. Therefore, I recommend spelling out SD, TKE and GW in the captions of fFgs. 8-11, 13 and 14.

Done

There is a very large number of figures. Are all of them necessary and could some of them combined together (for example, Figs. 17-19 could form 3 panels of one figure).

We combined Figs. 8-10 and Figs. 17-19 into one Figure each.

Response to Anonymous Referee #2

The referee's comments are in italics, our responses in plain font.

This manuscript states that it provides an overview of the first results from the Amazon Tall Tower Observatory (ATTO). The ACPD short title is "ATTO overview".

Ongoing and future ATTO results will be an incredible addition to Amazonian science. That said, the manuscript in its present form in my own view does not do justice to the project, and I give a rating of "fair" to this ACPD manuscript.

The present version of the manuscript appears to me to lack a simple statement as to its purpose. Why do we need this manuscript? The absence of this motivational statement makes preparation of the review quite difficult because I do not know exactly what criteria to evaluate in deciding if the authors have achieved their purpose. Based on the title, a logical inference is to formulate criteria based on the quality of a description of the need for a tall tower and a presentation of early results. The actual manuscript, however, is much different from such criteria, especially with regard to the description of a need.

We thank the referee for his/her constructive comments. We have added a paragraph at the end of the introduction that makes it clear that this paper is intended as an introduction to and overview for a special issue. The Amazon Tall Tower Observatory is actually more than the tall tower itself, rather, it comprises several smaller towers for pilot and process studies as well as the ecosystem surrounding the towers. This paper is intended to provide the scientific context of ATTO and to serve as an overview paper for the pilot studies. A future paper will discuss the details of the tall tower.

Here are some suggestions:

1. Foremost, there should be a description of the tall tower and its motivation. The actual manuscript emphasizes long-term measurements. This is not a new theme for Amazonia. Those efforts have been under way through many projects, most notably LBA for climate change as well as multiple forestry studies.

As stated above, there will be a future paper with the details of the tall tower. Nevertheless, we have added some text regarding the motivation for the construction of the tall tower in the introduction.

2. The motivation for the tall tower is really marginalized in the actual manuscript. Only the sections on turbulence (sections 4.2.x) provide some intellectual motivation for the tallness of the tower. I think instead the introduction should do this job. Why do we need a 325 m tower and what do we get out of it? The manuscript does not presently answer this question. As an example, how about to show the fetch of a 325 m compared to shorter towers in Amazonia, and how about to discuss what that means for a definitive answer about CO2 uptake or release?

See the response to comment 1) above.

3. This manuscript does not discuss measurements from the tall tower. The manuscript states that the tall tower will be completed in 2015. Again, the entire motivation for the manuscript is not clear.

See the response to the introductory comment above.

4. The introduction of the manuscript reads like a review paper, a book chapter, or perhaps the introduction to a proposal, rather than a research article. ATTO itself is not mentioned until the end of the long introduction, at which point a list of 9 objectives is summarily presented. How about a complete deletion of the present introduction with a re-work toward a clear motivation for what a tall tower can and will accomplish (this is what is novel), with a downgrade on emphasis of long-term measurements (which are needed but not novel, i.e., this idea is common place and there are various type of long-term measurements already underway for years to decades at other sites).

The introduction serves to introduce the reader of the special volume to the scientific background and context of the ATTO project. Therefore, to provide this background to a broad range of scientists from many disciplines it is written as a "mini-review". It is also meant as a common point of reference for the specialist papers in the special issue. While the need for long-term measurements may be well known, it is nevertheless important to emphasize this point for a site that is intended to operate for decades. Besides, to our knowledge there are no continuous long-term high-accuracy measurements of trace gases and aerosols in the Amazon region. The

introduction now contains a section discussing the motivation and concept of the tall tower and an improved description of the objectives.

5. Parts of section 2 are strange for a research article. Sections 2.2, 2.3, and 2.5 seem to be drawn from a narrative of a travel report. I would suggest for consideration that these sections can be entirely removed and that the manuscript would be focused and improved in consequence.

As mentioned before, this paper is meant to be a common resource for specialist papers in the ATTO Special Issue. As such, the description of logistical details is appropriate. The text has been tightened up somewhat, however.

6. Subsections of section 3 are highly heterogeneous in content and quality. Some of them go into much more detail than would be needed in an overview paper, such as repeating in full paragraphs what are standard operating procedures for instruments and techniques (e.g., consider using just a single reference in place of a paragraph). In my view, section 3 should only going into details about aspects that are unique and different to ATTO.

Here, there is a divergence of opinions among reviewers. While reviewer 1 feels that the methods section is quite brief and requests some more details, this reviewer thinks there is too much detail in some sections. Given that this paper is a team effort and contains contributions from many disciplines, a certain degree of heterogeneity seems unavoidable. For example, the discussion of the $CO_2/CH_4/CO$ analyzers needs to be quite detailed, because the performance of the analyzers is specific to individual instruments and traceability is essential to quality assurance of these key data. Similarly, inlet setups are described in detail as they are crucial to the validity of the measurements, and a detailed discussion here allows common referencing in the specialist papers. The methods section was edited throughout for brevity and clarity.

7. Section 4 relates to results and discussion. Again, these sections are highly heterogeneous in presentation and quality.

7a. Section 4.2.4 is an example of what in my view was really done well. This section provides new information based on measurements that are specific to the ATTO site. Sections 4.2.5, 4.2.6, and 4.2.7 are also exemplarily positive in that they provide new and specific information about the ATTO site that promise to be useful as studies there continue in the future, as

well as interesting at present to a reader. Each of these sections has a nice concluding takehome statement for the reader about ATTO specific information.

We thank the reviewer for these positive remarks.

7b. Let me now give a negative example. Section 4.1.2 essentially provides no research information. It should be deleted.

At the time the ACPD version of the manuscript was written, this project was in its very early stages. Many of the measurements reported here therefore represent an attempt to define an initial baseline against which the extended records can be evaluated in the future. Nevertheless, significant results have been obtained in the meantime, which are briefly presented in the revised version.

7c. My quick review is that helpful, informative sections with new research results include: 4.3.2 and 4.3.3. Sections that really do not say anything by way of new data or new insights compared to existing literature (as cited in the manuscript itself) include: 4.3.1, 4.3.4, 4.3.5, 4.3.6, 4.3.7, and 4.3.8.

In the following, we point out what is new in terms of data and insights in those sections that the reviewer did not feel contained enough novel material:

4.3.1: There are no previously published high-accuracy measurements of CO_2 , CH_4 , or CO in the Amazon forest (or any tropical forest that I am aware of) that span more than the time of an intensive campaign. Even these campaign data are usually not continuous measurements. For CO, for example, only some fragmentary profiles with outdated techniques are in the literature. There are also no continuous data from any mid-continental tropical site for these trace gases. The only comparable data are from flask sampling programs. The ATTO results present clear evidence for a CO source at ground level in the rainforest, something that was only speculated about earlier. They also indicate strong episodic CH_4 sources that remain unexplained.

4.3.4: Systematic measurements of the aerosol optical properties in the central Amazon are still scarce. The only comparable data set is that of Rizzo et al. (2013). Since their site has a significantly greater likelihood of contamination from the Manaus area, having a more remote site for comparison is very important. This section also contains a discussion of the absorption Ångstrom exponent, for which no systematic previous data exist from a remote tropical forest

region. We also present the first results of measurements of refractory black carbon by the SP2 instrument in this type of environment, which produce some quite surprising and not yet fully explained results. Our measurements suggest very strong absorption enhancements in Amazonian particles relative to fresh soot particles, which are likely related to thick coatings with biogenic or pyrogenic organic matter.

4.3.5: Compared to the huge amounts of data available from, for example, Europe and North America, the moist tropics are still a highly undersampled region. Previous studies were limited to short campaign periods and did not cover the full seasonal and intraseasonal variability of size distributions. While this section contains a significant amount of confirmatory information, it is nevertheless important to document that the comprehensive data sets obtained at ATTO agree with the more spotty information obtained previously. Furthermore, this section contains some aspects of the long-term measurements of fluorescent biological particles, which are unique for the Amazon ecosystem. It emphasizes the dominance of fluorescent supermicron bioaerosols in the coarse mode size range in the Amazon. These are the first reported measurements of fluorescent particles with the WIBS system from the Amazon.

4.3.6: Again, there are no previous measurements from Amazonia by an aerosol mass spectrometer that extend over more than a few weeks in the wet season. In the revised manuscript, we include monthly average ACSM data that show the changes in aerosol composition and concentration throughout the annual cycle.

We present here the first measurements of iron oxidation states and solubility in aerosols from a comparable environment. The measurements of crustal elements reported here may be more of a confirmation of previous work, but are reported to provide a comprehensive overview of work going on at ATTO.

4.3.7: In general, there are only a small number of studies that focus on the microstructure of Amazonian aerosols, which is important for understanding their micro-physical properties. Moreover, the previous single-particle studies in central Amazonia have focused on the wet season. Here we present exemplary results that show dry-season aerosols with significant contributions from aged biomass burning and fossil fuel burning. The data presented here show the high degree of mixing and atmospheric aging of the particles. It further emphasizes the thick coating on BC cores, with important implications for the optical properties of the aerosol. The STXM

images from the wet season show the characteristics of coarse-mode primary biological particles. These types of results have not been published previously.

4.3.8: We are surprised that the reviewer feels that this section does not contain new information. We are not aware of a previous publication that quantifies the amounts of monoterpene and sesquiterpene oxidation products in tropical forest aerosols. However, to better point out the new scientific aspects this section has been revised and updated.

7d. Figure 1 is essential. Figure 2 seems extraneous. And so on. Are 35 figures justified? Or could a very nice job be done with half as many or fewer? Some of the figures represent statistical studies of a full season (which seems appropriate to an overview manuscript) while other figures seem anecdotal to a single or a few days studies (which seems inappropriate to an overview manuscript).

We disagree with the reviewer concerning Figure 2. Since ATTO is intended to be an observatory with the objective of detecting large-scale, long-term trends, it is important to show the potential sources and sinks of biogenic and anthropogenic species in the fetch region. We represent the anthropogenic sources by mapping population density and the biogenic sources by ecosystem type. The mapped region has been deliberately kept fairly large to provide context. For example, how does the populated region in NE Brazil, which is in the normal fetch of ATTO during the dry season compare to the Sao Paulo region, which rarely affects the central Amazon?

Having figures that display long-term measurements as well as results from intensive campaigns reflects the concept of the ATTO observatory to be both a long-term monitoring site and to host intensive campaigns. Given the large number of studies ongoing at ATTO, we feel that the most effective way of providing an overview is to present a relatively short text and one or a few plots for each program component. We did combine some of the figures into a single plot, however.

7e. I expect the authors will disagree on some of my classifications of good and bad examples and provide good explanations, but I think they will agree with at least some of the classifications and recognize in all cases opportunities for significant improvements. My point here is not really to attempt to be directive in any way about what should stay in or what should go out in a seriously revised manuscript. Rather, I hope that the authors will make revisions with an eye toward cutting the length of the text significantly and focusing on what is really new and different for an overview of the first results from ATTO. The manuscript probably would have benefited from a few more rounds of internal revisions before being sent to peer review. I would encourage the new flavor of the manuscript to emphasize why a TALL tower is motivated or interesting.

We hope that the revised version will have addressed at least most of the reviewer's concern. Producing a synthesis with such a large number of co-authors and such a large and diverse portfolio is not an easy task. As pointed out before, the motivation for the tall tower has now been included, but specifics and results from the tall tower will be provided in a future paper.

The ATTO project will be a source of excellent observations and associated science in the years and decades ahead. It would be valuable to the ATTO community for this first manuscript to be really streamlined and focused if it is to continue to ACP so that it can be of a final quality equal to the ATTO project itself. Please accept my criticisms in that context.

Response to Referee #3 (D. Fitzjarrald)

We thank the referee for his constructive comments. The referee's comments are in italics, our responses in plain font.

Having labored in the Amazon rainforest environment at intervals during a period of 30 years, I can well appreciate the remarkable effort that went into the making of this facility.

I have worked personally with many of the authors on other projects. I think that too many topics and indeed, many separate potential papers or notes, were combined in this mighty one-hundred-and-twenty-seven-page manuscript. This is more than an "Overview", but less than a proper publication for each topic. Releasing these half-results now runs the risk of preventing the original scientists from presenting their specialized work separately.

Given the large number of studies ongoing at ATTO, we feel that the most effective way of providing an overview is to present a relatively short text and one or a few plots for each program component. This is the "standard" way of producing an overview paper for a special issue. There would be no objective basis for arbitrarily excluding some of the ATTO subprojects. The authors see no risk of this publication precluding future specialized papers. The overview is also intended to provide a broad context for readers unfamiliar with work in the disciplines other than their own.

This is compounded by the distinct impression this journal gives that the paper is essentially already accepted, even as it remains in some odd limbo as it awaits some correction and blessing.

It appears that the reviewer is not familiar with the two-stage publication and open review process of ACPD/ACP. Please see

http://www.atmospheric-chemistry-andphysics.net/peer_review/interactive_review_process.html

One mystery about this paper it may be too soon to report on results from ATTO, since no data has been obtained from the ATTO centerpiece, the 325 m tower. Why is this paper with preliminary results coming out before the tall tower is commissioned? Why not simply describe the project, justify its siting, instrumentation and height, and pass lightly over both the boilerplate justification and early finding from the smaller towers? We apologize for not having made the purpose of this paper more transparent. As pointed out in the response to Reviewer 1, the Amazon Tall Tower Observatory is actually more than just the tall tower itself, rather, it comprises several smaller towers for pilot and process studies as well as the ecosystem surrounding the towers. This paper is intended to provide the scientific context of ATTO and to serve as an overview paper for the pilot studies. A future paper will discuss the details of the tall tower. We have added a paragraph at the end of the introduction that makes it clear that this paper is intended as an introduction and overview for a special issue.

The justifications as to why there is a need for long-term continuous measurements in the first thirteen pages are not clearly focused on the ATTO concept. The authors take side trips to explain details of the importance of the Amazon Basin to global biodiversity and climate change; these should be dealt with by references to other review articles already in the literature.

The introduction serves to introduce the reader of the special volume to the scientific background and context of the ATTO project. Therefore, it is written as a "mini-review", to provide this background to a broad range of scientists from many disciplines. It is also meant as a common point of reference for the specialized papers in the special issue. While the need for long-term measurements may be well known, it is nevertheless important to emphasize it for a site that is intended to operate for decades.

The reader deserves a more specific argument—more than generalities highlighting the importance of the Amazon Basin—that defends the idea that a 328-m tall tower be installed in such a hostile environment. It is necessary, but not sufficient to note that there are other tall towers monitoring the lower atmosphere at other parts of the world. The reader deserves to know why the ATTO tower was sited at this particular, relatively remote site.

The introduction now contains a section discussing the motivation and concept of the tall tower, the site selection criteria, and an improved description of the objectives.

What is the purpose of the smaller towers around the tall one? (The local canopy data presented in this paper all come from these towers.)

They were established to conduct process studies with minimal disturbance of the forest ecosystem, as is unavoidable with a large structure such as the tall tower, and to begin research

during the time that it took to get the tall tower constructed. This enabled about four years of process studies and pilot research at the ATTO site, which are being introduced in this overview.

Why is the local topography and map of adjacent water bodies only included deep into the manuscript, as part of one finding about gravity waves? These topics need to be presented right at the beginning, so that this paper can serve its rightful purpose as a reference to papers that follow, so that this information need not be endlessly repeated.

We agree, and have added a map with local topography and a brief discussion of the soils and geology earlier in the paper (Section 2.1).

To repeat: The authors would be well served to make a short description of the vertical structure of the atmosphere—and its diurnal variability—is presented. Such at least would allow the reader to understand why one has to make such a tall tower.

Boundary-layer phenomena that can be investigated using the tall tower are now discussed in the introduction. For a description of the boundary layer behavior we included a reference to Fisch et al. (2004).

The reader sees no reference to the successes and difficulties that have occurred at other tall tower installations (BAO, Cabauw, ZOTTO in Russia).

This will be included in a future paper specifically addressing the tall tower.

One important issue is the likely percentage of good turbulence data that has been obtained from tall towers in other 'remote' sites. This reader sees no reference to what degree the preliminary measurements have been continuous. (In the preliminary results, many findings based on 2-3 weeks of work are presented at representative.)

Continuous micrometeorological measurements have been made since September 2012, with some interruptions due to technical problems. This information has been included in Section 3.3.

What this reader found here resembles a forced marriage collection of 'white papers' written over some time to accompany meetings planning this tower and/or (perhaps) selling the concept to funding agencies.

In fact, all the text contained in this manuscript was specifically written for this paper.

In short, the reader gets a heavy dose of interesting, perhaps important facts, but facts that are tangential to the issue at hand. The authors need to describe the site, explain why it was placed where it was, and what peculiarities it exhibits. I'm thinking of vegetation diversity, geographical diversity, and behavior of local wind systems. As one example, does proximity to the large Balbina dam and reservoir perturb any measurements? How would the authors know?

We have described the site in quite some detail and have now added additional detail on site selection and characteristics. Vegetation diversity is described in 4.1.1; geomorphology in section 2.1 (new text); local wind systems in 4.2.1. The influence of the Balbina Reservoir has not been detected in chemical tracers (e.g., CH_4) or wind measurements.

Perhaps the size of the text is merely a symptom of the enthusiasm that led to the tower's construction, but the founds ought to be restrained a little, to avoid the hubris that leads to 'monumental science'. There is not yet enough output to justify a celebration. The reader deserves to receive an overview that discusses ATTO, not an encyclopedia of everything all shoved together as it would be in a loosely gathered notebook. If the fifty-six authors want to write such a tome, they should write a book, with chapters for the sundry specialties OR they should commandeer a journal for a dedicated issue.

In fact, this is a paper that introduces just such a dedicated issue, and that is intended to serve as a common reference for the specialized papers.

I hope that in revision the paper more closely resembles a reference work that allows the reader to understand why the tower was placed where it was, how the height of the tower was determined, what thinking went behind the construction of the smaller, satellite towers.

This has been included in the revised manuscript (see above).

I imagine that the revised paper will make a reasonable assessment of the percentage of time that continuous measurements can be achieved.

Such an assessment would be different for all the variables measured at the site and would dramatically increase the size of this already large paper.

Such a paper would lighten the load of the many authors who will follow and report on their new findings. The justification for the ATTO and how it came to be at this site can simply be referred to. Only some of these findings—perhaps long-term concentration measurements of trace gases and aerosols—will be relevant to the Basin as a whole; many more will be of necessity local area case studies.

Indeed, ATTO is meant to be both a site for long-term measurements and local process studies.

Specific comments.

Any subsequent drafts should provide line numbers to aid the harried reviewer.
 We don't understand. The ACPD version has both line and page numbers.

p. 7. "Efforts to upscale local measurements to larger scales have also lead to inconclusive and often contradictory results." Where do the authors explain how adding a single point measurements will improve this situation?

This statement is part of a general discussion on carbon cycle investigations. We did not imply that ATTO by itself would be the answer to this problem. But the establishment of long-term mid-continental baseline stations has been shown to significantly reduce uncertainties in the carbon budget. See the paper by Gloor et al. (2001), now discussed in the Introduction section 1.5.

p. 8. "Seen together, these studies suggest that the Amazon Basin teeters on a precarious balance..." Again, these generalizations would be interesting if they were not distracting from the mission at hand. They belong in an overview paper; perhaps they come from one.

This is the overview paper.

p. 8. "While remote sensing can provide important information on the response of the Amazon forest to changing climate and ecological factors, the recent controversy about the effects of seasonal change and drought on the "greenness" of the forest illustrates how important long-term ground based observations are to our understanding of the Amazon system..." This is a true statement, as far as it goes. Much of this 'green-up' controversy has to do with the situation further east in the Basin, where the dry season is more intense and prolonged. The authors are 'selling' the utility of a tall tower in the central Basin. They are justifying it in much the same way as one would justify having a much smaller tower, of the type that is in use in this region already. What they need to do is emphasize the scientific riches that are in store for those who have long-term observations at 325 meters, about one fourth of the thickness of the daytime convective boundary layer.

This is now discussed in section 1.5, and will be included in more detail in a forthcoming paper specifically addressing the tall tower.

5. p. 15. Suggested changes to the objectives, all designed to rein in hyperbole: The Objectives have been tightened up and rewritten.

1) To understand the carbon budget of one specific site in the Amazonian rain forest under changing climate conditions and anthropogenic influences.

Actually, because the tall tower has a CO_2 concentration footprint on the order of 10^6 km², it represents more than one specific site. See new text in Section 1.5.

2) To continuously observe anthropogenic and biogenic greenhouse gases in the lower troposphere, within the planetary boundary layer by day and outside it at night, in order to help constrain inverse methods for deriving continental source and sink strengths and their changes over time.

Changed as suggested.

3) To continuously measure trace gases and aerosols for improvement of our understanding of atmospheric chemistry and physics in the Amazon and further allow a continuous assessment of the effects of land use change that occur upwind of ATTO on the atmosphere and climate.

Now part of the newly formulated Objective 1.

4) To simultaneously measure anthropogenic and biogenic trace gases, contributing to our understanding of natural and anthropogenic effects on the atmosphere and climate. Measurements of isotopic composition will be made to help distinguish anthropogenically and biologically induced fluxes.

OK

5) To investigate key atmospheric processes, with emphasis on the atmospheric oxidant cycle, the trace gas exchange between forest and atmosphere, and the life cycle of the Amazonian aerosol. 6) To determine vertical trace gas and aerosol gradients from the tower top to the ground to estimate biosphere-atmosphere exchange rates.

7) To study turbulence and transport processes in the lower atmospheric boundary layer, as well as to understand the extent and characteristics of the roughness sublayer over the forest.

8) To develop and validate dynamic vegetation models, atmospheric boundary layer models, and inverse models for the description of heat, moisture, aerosol, and trace gas fluxes.

9) To provide single-point ground truth to help evaluate satellite estimates of greenhouse gas concentrations and temperature and humidity profiles

Modified to reflect the point that this is one site.

6. p. 20. Are raw turbulence and trace gas data archived? Will these be available to the community?

Yes. This is now stated in section 3.3.

7. p. 31. "The variation of the wind roses between daytime and nighttime was insignificant." This reader doesn't believe this. Please present hourly hodographs to show possible breeze influences.

This statement was based on an initial analysis of wind roses for daytime and nighttime. We have now plotted hourly wind roses for each season (see Figure 1 below, time in UTC) and cannot detect a lake breeze system. Such a system would be characterized by dominant flows from the north-western sector (Balbina reservoir) during daytime, which is clearly not the case. However, the wind roses show a slight diurnal variation with small contributions from the North, West and South during nighttime, when the nocturnal boundary layer is decoupled, in both seasons. In contrast, during daytime the wind blows nearly all the time from the East (dry season) and Northeast (wet season) with much higher wind speeds.

Figure 1: Half-hourly wind roses at 80 m at the ATTO site. The upper diagram shows the dryseason average, the lower diagram the rainy season average.

8. p. 32. (Figure 6) I don't see that the vertical spacing of temperature sensors is adequate to describe the stability regimes within the canopy. One cannot properly resolve the stability at canopy top and near the forest floor with the observation levels shown. How will this be addressed in the long term? The referee is right in that the vertical spacing of the temperature sensors (6 levels throughout the canopy) might not be sufficient to resolve the shape of the temperature profile and, therefore, the exact heights of the diurnal maxima and minima. Nevertheless, the observed minima and maxima reflect the regimes of cooling and heating of the canopy as described in the text, which are in agreement with general observations in forest canopies. Nevertheless, our concept for upgrading the measurements within the framework of equipping the ATTO tower includes a higher vertical resolution of the profile throughout the canopy.

9. p. 40. Text following: "Figure 15a shows a topographic image of the experimental site with colors ranging from blue to red representing the altimetry values in meters above sea level." It turns out that the forest floor topography has an important influence on the CO2 balance, at length scales well smaller than 30 km, as the work of co-author Julio Tóta has shown. Somewhere in the site description this information should show up. Indeed, one shouldn't have to wait until p. 40 to learn of this site peculiarity.

We have added a new Figure (Fig. 1b) and some text in the manuscript (Section 2.1) to introduce this topic earlier in the revised version. The topography surrounding ATTO is actually not a site peculiarity, but the dominant landscape form in the central Amazon Basin. Regrettably, but unavoidably, this is not an ideal type of terrain from the perspective of micrometeorological flux measurements, because it induces significant upslope and downslope circulations (Tota et al., 2012). The effects of local topography on the local flux measurements from the small towers are the subject of ongoing investigations.

It must be pointed out, however, that the main objective of the tall tower with respect to greenhouse gas and aerosol monitoring is the measurement of concentrations above the level of local circulations. In this context, measurements from tall towers, such as ATTO, have the advantage of being less influenced by the surface layer variability due to diurnal changes in photosynthesis and respiration, as well as ecosystem and terrain heterogeneity. This results in smoothening of the large daily cycles of near-surface signals and efficiently integrates over daily cycles and small-scale heterogeneities, and facilitates the detection of long-term changes in the back-ground atmospheric composition.

Tota, J., Fitzjarrald, D. R., and da Silva Dias, M. A. F., Amazon rainforest exchange of carbon and subcanopy air flow: Manaus LBA Site - A complex terrain condition: Scientific World Journal, 2012, 165067, doi:10.1100/2012/165067, 2012.

The Amazon Tall Tower Observatory (ATTO): 1 **Overview of pilot measurements on ecosystem** 2 ecology, meteorology, trace gases, and aerosols 3 4 M. O. Andreae^{1,2}, O. C. Acevedo³, A. Araùjo⁴, P. Artaxo⁵, C. G. G. 5 Barbosa⁶, H. M. J. Barbosa⁵, J. Brito⁵, S. Carbone⁵, X. Chi¹, B. B. L. 6 Cintra⁷, N. F. da Silva⁷, N. L. Dias⁶, C. Q. Dias-Júnior^{8,11}, F. Ditas¹, R. 7 Ditz¹, A. F. L. Godoi⁶, R. H. M. Godoi⁶, M. Heimann⁹, T. Hoffmann¹⁰, J. 8 Kesselmeier¹, T. Könemann¹, M. L. Krüger¹, J. V. Lavric⁹, A. P. 9 Lopes¹⁵, A. O. Manzi¹¹, D. L. Martins¹⁵, E. F. Mikhailov^{1,20}, D. Moran-10 Zuloaga¹, <u>B. W. Nelson¹⁵</u>, A. C. Nölscher¹, D. Santos Nogueira¹², M. T. 11 F. Piedade⁷, C. Pöhlker¹, U. Pöschl¹, C. A. Quesada¹⁵, L. V. Rizzo⁵, C.-12 U. Ro¹³, N. Ruckteschler¹, L. D. A. Sá¹⁴, M. de Oliveira Sá¹⁵, C. B. 13 Sales^{11,16}, R. M. N. dos Santos¹⁷, J. Saturno¹, J. Schöngart^{1,7}, M. 14 Sörgel¹, C. M. de Souza^{11,18}, R. A. F. de Souza¹⁷, H. Su¹, N. Targhetta⁷, 15 J. Tóta^{17,19}, I. Trebs^{1,*}, S. Trumbore⁹, A. van Eijck¹⁰, D. Walter¹, Z. 16 Wang¹, B. Weber¹, J. Williams¹, J. Winderlich^{1,9}, F. Wittmann¹, S. 17 Wolff^{1,11}, A. M. Yáñez-Serrano^{1,11} 18 19 ¹Max Planck Institute for Chemistry, Biogeochemistry, Multiphase Chemistry, 20 and Air Chemistry Departments, P. O. Box 3060, 55020, Mainz, Germany 21 ²Scripps Institution of Oceanography, University of California San Diego, La Jol-22 la, CA 92037, U. S. A. 23 24 ³Universidade Federal Santa Maria, Dept. Fisica, BR-97119900 Santa Maria, RS, 25 Brazil 26 ⁴Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Trav. Dr. Enéas 27 Pinheiro, Belém-PA, CEP 66095-100, Brasil 28 ⁵Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, Travessa R, 29 187, CEP 05508-900, São Paulo, SP, Brasil

- ⁶Department of Environmental Engineering, Federal University of Paraná UFPR,
- 31 Curitiba, PR, Brazil

Deleted: The Amazon Tall Tower Observatory (ATTO) in the remote Amazon Basin: Overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements¶

38	⁷ Instituto Nacional de Pesquisas da Amazônia (INPA), MAUA group, Av. André
39	Araújo 2936, Manaus-AM, CEP 69067-375, Brasil
40	⁸ Instituto Nacional de Educação, Ciência e Tecnologia do Pará (IFPA/Bragança),
41	Pará, Brazil
42	⁹ Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena,
43	Germany
44	¹⁰ Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
45	¹¹ Instituto Nacional de Pesquisas da Amazônia (INPA), Clima e Ambiente
46	(CLIAMB), Av. André Araújo 2936, Manaus-AM, CEP 69083-000, Brazil
47	¹² Centro Gestor e Operacional do Sistema de Proteção da Amazônia
48	(CENSIPAM), Belém, Pará, on leave from Amazon Regional Center, Na-
49	tional Institute for Space Research (INPE), Belém, Pará
50	¹³ Department of Chemistry, Inha University, Incheon 402-751, Korea
51	¹⁴ Centro Regional da Amazônia, Instituto Nacional de Pesquisas Espaciais
52	(INPE), Belém, Pará, Brazil
53	¹⁵ Instituto Nacional de Pesquisas da Amazônia (INPA), LBA, Av. André Araújo
54	2936, Manaus-AM, CEP 69067-375, Brazil
55	¹⁶ Centro de Estudos Superiores de Parintins (CESP/UEA), Parintins, Amazonas,
56	Brazil
57	¹⁷ Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
58	¹⁸ Universidade Federal do Amazonas (UFAM/ICSEZ-Parintins), Parintins, Ama-
59	zonas, Brazil
60	¹⁹ Universidade Federal do Oeste do Pará – UFOPA, Santarém, Pará, Brazil
61	²⁰ Atmospheric Physics Department, Institute of Physics, St. Petersburg State Uni-
62	versity, St. Petersburg, Russia
63	* now at: Luxembourg Institute of Science and Technology, Environmental Re-
64	search and Innovation (ERIN) Department, L-4422 Belvaux, Luxembourg.
65	Correspondence to: M. O. Andreae (<u>m.andreae@mpic.de</u>)
66	

67 Abstract

68	The Amazon Basin plays key roles in the carbon and water cycles, climate	
69	change, atmospheric chemistry, and biodiversity. It has already been changed sig-	Deleted: has
70	nificantly by human activities, and more pervasive change is expected to occur in	
71	the next decades. It is therefore essential to establish long-term measurement sites	
72	that provide a baseline record of present-day climatic, biogeochemical, and at-	
73	mospheric conditions and that will be operated over coming decades to monitor	
74	change in the Amazon region, as human perturbations increase in the future.	
75	The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine	
76	rain forest region in the central Amazon Basin, about 150 km northeast of the city	
77	of Manaus. Two 80-m towers have been operated at the site since 2012, and a	Moved (insertion) [1]
78	<u>325-m tower is nearing completion in mid-2015.</u> An ecological survey including a	
79	biodiversity assessment has been conducted in the forest region surrounding the	
80	site. Measurements of micrometeorological and atmospheric chemical variables	Moved up [1]: Two 80-m towers
81	were initiated in 2012, and their range has continued to broaden over the last few	2012, and a 325-m tower is nearing completion in mid-2015.
82	years. The meteorological and micrometeorological measurements include tem-	
83	perature and wind profiles, precipitation, water and energy fluxes, turbulence	
84	components, soil temperature profiles and soil heat fluxes, radiation fluxes, and	
85	visibility. A tree has been instrumented to measure stem profiles of temperature,	
86	light intensity, and water content in cryptogamic covers. The trace gas measure-	
87	ments comprise continuous monitoring of carbon dioxide, carbon monoxide, me-	
88	thane, and ozone at 5 to 8 different heights, complemented by a variety of addi-	
89	tional species measured during intensive campaigns (e.g., VOC, NO, NO2, and	
90	OH reactivity). Aerosol optical, microphysical, and chemical measurements are	
91	being made above the canopy as well as in the canopy space. They include aerosol	
92	light scattering and absorption, fluorescence, number and volume size distribu-	Deleted: aerosol
93	tions, chemical composition, cloud condensation nuclei (CCN) concentrations,	
94	and hygroscopicity. In this paper, we discuss the scientific context of the ATTO	
95	observatory and present an overview of results from ecological, meteorological,	Deleted: Initial
96	and chemical <u>pilot</u> studies at the ATTO site	Deleted: are presented in this paper
97		

106 **1** Introduction

107 A little over thirty years ago, Eneas Salati and Peter Vose published a 108 landmark paper entitled "Amazon Basin: A System in Equilibrium" (Salati and Vose, 1984). Since then, a paradigm shift has occurred in the minds of the public 109 110 at large as well as the scientific community, which is reflected in the title of a recent synthesis paper by a group of prominent Amazon researchers, "The Amazon 111 Basin in transition" (Davidson et al., 2012). Despite its reassuring title, Salati and 112 Vose's paper had already pointed at growing threats to the integrity of the Ama-113 114 zon ecosystem, mostly resulting from ongoing large-scale deforestation. Since 115 then, deforestation has indeed continued and has only begun to abate in recent years (Lapola et al., 2014; Tollefson, 2015). It goes hand in hand with road con-116 117 struction and urbanization (Fraser, 2014), affecting ecosystems and air quality in 118 many parts of the Basin. And, whereas Salati and Vose were concerned with cli-119 mate change as a regional phenomenon driven by deforestation and its impact on 120 the hydrological cycle, the focus now is on the interactions of global climate 121 change with the functioning of the Amazon forest ecosystem (Keller et al., 2009). 122 In the following sections, we will present the key roles the Amazon is playing in 123 the global ecosystem, which form the rationale for setting up a long-term measuring station, including a tall tower, for monitoring its functioning and health. 124

125 **1.1 Carbon cycle**

126 The Amazon Basin covers about one third of the South American continent and extends over about $6.9 \cdot 10^6 \text{ km}^2$, of which about 80% is covered with rain 127 128 forest (Goulding et al., 2003). It contains 90-120 Pg C in living biomass, repre-129 senting about 84% of the aboveground biomass in Latin America and ca. 40% of 130 all tropical forests worldwide (Baccini et al., 2012; Gloor et al., 2012). Another 131 160 Pg C are stored in the Amazon Basins's soils – putting this in perspective, the 132 Amazon holds about half as much carbon as was in the Earth's atmosphere before 133 the industrial revolution (Gloor et al., 2012). Given the magnitude of this carbon 134 reservoir, it is clear that tropical forests in general, and the Amazon forest in par-135 ticular, have the potential to play a crucial role in climate change because of their 136 potential to gain or lose large amounts of carbon as a result of land use and cli-137 mate change. A recent study shows a strong correlation between climate change

141 On the dopical continents and the rate at which CO ₂ increases in the atmosphere,	141	on the tropical continents and the rate at which CO_2 increases in the atmosphere	•
--	-----	---	---

142 and indicates that the strength of this feedback has doubled since the 1970s (Wang

143 et al., 2014). The interaction between physical climate and the biosphere repre-

- sents one of the largest uncertainties in the assessment of the response of the cli-
- 145 mate system to human emissions of greenhouse gases.

146 Depending on the path land use change takes and the interactions between 147 the forest biota and the changing climate, the Amazon can act as a net source or 148 sink of atmospheric CO₂. The most recent global carbon budget estimates indicate 149 that in the decade of 2004-2013 land use change worldwide resulted in a net carbon release of 0.9 ± 0.5 Pg a⁻¹, or about 9% of all anthropogenic carbon emissions 150 (Le Quéré et al., 2014). This represents a significant decrease since the 1960s, 151 when land-use carbon emissions of 1.5 ± 0.5 Pg a⁻¹ accounted for 38% of anthro-152 pogenic CO₂. Part of this decrease in the relative contribution from land use 153 154 change is of course due to the increase in fossil fuel emissions, but there has also 155 been a significant decrease in deforestation in recent years, particularly in the Bra-156 zilian Amazon (Nepstad et al., 2014). 157 The "net" land use emissions, as presented above, are the sum of "gross" 158 release and uptake fluxes, where deforestation represents the dominant gross source, whereas afforestation, regrowth, and uptake by intact vegetation, are the 159 160 main gross sinks. Using an approach based on forest inventories and land use 161 budgeting, Pan et al. (2011) estimated that tropical land use change represented a net carbon source of 1.3 ± 0.7 Pg a⁻¹ in the 1990s and early 2000s, consisting of a 162 gross tropical deforestation carbon emission of 2.9±0.5 Pg a⁻¹ partially compen-163 sated for by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg a⁻¹. A more 164 165 recent comprehensive analysis of the role of land vegetation in the global carbon 166 cycle concluded that carbon sources and sinks in the tropics are approximately 167 balanced, with regrowth and CO₂-driven carbon uptake compensating the large 168 deforestation source (Schimel et al., 2015). For the South American continent, a 169 detailed budgeting study also concluded that, at present, carbon uptake by the bio-

- 170 sphere approximately compensates the emissions from deforestation and fossil
- 171 fuel burning, with a slight trend <u>of the continent becoming a <u>carbon</u> source in the</u>

172 most recent period (Gloor et al., 2012).

Deleted: always

Deleted: and Deleted:

Deleted: at present

Deleted: in

178 Attempts to verify these carbon budgets with measurements have remained 179 inconclusive so far. The largest spatial scale is represented by global inversion 180 models, which derive fluxes from concentration measurements and global 181 transport models. An early attempt deduced a large tropical sink from inverse 182 modeling (Stephens et al., 2007), whereas a more recent analysis suggests a net tropical carbon source of 1.1 ± 0.9 Pg a⁻¹ (Steinkamp and Gruber, 2013). Gloor et 183 184 al. (2012) have reviewed the numerous attempts to deduce the South American carbon budgets from inverse modeling and came to the conclusion that they are 185 186 not adequately constrained to produce meaningful results, a conclusion that they 187 extend to the application of digital global vegetation models for larger time and space scales. 188

189 Efforts to upscale local measurements to larger scales have also lead to in-190 conclusive and often contradictory results. Flux measurements using the eddy covariance technique initially suggested a fairly large carbon sink $(1-8 \text{ t} \text{ ha}^{-1} \text{ a}^{-1})$ in 191 192 intact Amazon forests (e.g., Grace et al., 1995; Carswell et al., 2002; de Araújo et 193 al., 2002). But as more studies were conducted, this uncertainty range expanded, 194 reaching from a sink of 8 tha⁻¹ a⁻¹ to a source of 1.4 tha⁻¹ a⁻¹. It thus became clear that issues related to nighttime fluxes and terrain effects make upscaling of CO₂ 195 196 fluxes from eddy covariance measurements difficult to impossible (de Araujo et 197 al., 2010, and references therein). Nevertheless, such flux measurements are es-198 sential for understanding micrometeorological and ecological processes and for 199 monitoring changes in the functioning of the forest ecosystem.

200 An alternative approach to upscaling from local to regional carbon balanc-201 es is followed in the RAINFOR project, where initially some 140 forest plots have 202 been monitored over decades for standing biomass (Phillips et al., 2009). This 203 study suggested substantial carbon uptake by intact forest, interrupted by biomass loss during drought years. It has been proposed that a large fraction of the uptake 204 205 extrapolated from the RAINFOR sites is compensated by carbon losses due to rare 206 disturbance events, such as forest blow-downs resulting from severe thunder-207 storms (Chambers et al., 2013, and references therein). The latest analysis from 208 the RAINFOR project, now based on 321 plots and 25 years of data, indicates that 209 the Amazon carbon sink in intact forest has declined by one-third during the past

Deleted: 0 Deleted: ²

_	Deleted: o
Η	Deleted: ²
\mathbb{Z}	Deleted: 0
$\langle \rangle$	Deleted: ²
	Deleted: ,
	Deleted: and i

218 decade compared to the 1990s. This appears to be driven by increased biomass

219 mortality, possibly caused by greater climate variability and feedbacks of faster

growth on mortality (Brienen et al., 2015). Like flux-tower measurements, bio-

221 mass inventories also miss the contributions of wetlands and water bodies to the

222 carbon flux, which may make a substantial contribution to CO₂ outgassing

223 (Richey et al., 2002; Abril et al., 2014).

224 An intermediate scale between global inverse modeling and plot-size flux 225 and inventory studies is captured by aircraft CO_2 soundings through the lowest 226 few km of the troposphere. This method averages regional fluxes on scales of tens 227 to hundreds of km. Early measurements made during the 1987 ABLE-2 experi-228 ment were reanalyzed by Chou et al. (2002) and suggested a near-neutral carbon 229 balance for their study region near Manaus. A series of flights north of Manaus during the 2001 wet-to-dry transition season also revealed that daytime carbon 230 231 uptake and nighttime release were in approximate balance (Lloyd et al., 2007). A 232 10-year aircraft profiling study conducted near Santarem in the eastern Amazon 233 concluded that the fetch region was a small net carbon source (0.15 t $ha^{-1}a^{-1}$), 234 mostly as a result of biomass burning, with no significant net flux to or from the 235 forest biosphere (Gatti et al., 2010). In 2010, this study was extended to include 236 the southern and western parts of the Amazon Basin (Gatti et al., 2014). The re-237 sults from 2010, an unusually dry year, show the Amazon forest biosphere to be 238 sensitive to drought, resulting in net carbon emission from the vegetation. The 239 following year, 2011, was wetter than average, and the Basin returned to an ap-240 proximately neutral carbon balance, with a modest biospheric sink compensating 241 the biomass burning source. A detailed study on the carbon dynamics over the 242 years 2009 to 2011 showed a complex response of the forest ecosystem to the drought episode, which not only affected net primary production (NPP) and tree 243 244 mortality, but also the allocation of carbon to the canopy, wood, and root com-245 partments (Doughty et al., 2015).

Seen together, these studies suggest that the Amazon Basin teeters on a precarious balance between being a source or sink of carbon to the world's atmosphere, with its future depending on the extent and form of climate change as well as on human actions. The region has already warmed by 0.5-0.6 °C, and warming Deleted: of CO₂

Deleted: ,

Deleted: ²

Deleted: did

255	is expected to continue (Malhi and Wright, 2004). Together with the increased	
256	frequency of drought episodes (Saatchi et al., 2013), the occurrence of periods of	
257	net biospheric carbon emissions will be enhanced and the likelihood of destructive	
258	understory fires will increase (Gloor et al., 2013; Balch, 2014; Zeri et al., 2014).	
259	On the other hand, the observed 20% increase in Amazon River discharge may	
260	reflect increasing water availability to the vegetation (Gloor et al., 2013), which	_
261	together with increasing atmospheric CO_2 may lead to more net carbon uptake by	
262	the intact forest vegetation (Schimel et al., 2015). While remote sensing can pro-	
263	vide important information on the response of the Amazon forest to changing cli-	
264	mate and ecological factors, the recent controversy about the effects of seasonal	
265	change and drought on the "greenness" of the forest illustrates how important	
266	long-term ground based observations are to our understanding of the Amazon sys-	
267	tem (Morton et al., 2014; Soudani and Francois, 2014; Zeri et al., 2014).	
268	Ultimately, the fate of the carbon stored in the Amazon Basin will depend	
269	on the interacting and often opposing effects of human actions, especially defor-	
270	estation, global and regional climate change, and changing atmospheric composi-	
271	tion (Soares-Filho et al., 2006; Poulter et al., 2010; Rammig et al., 2010; Davidson	
272	et al., 2012; Cirino et al., 2014; Lapola et al., 2014; Nepstad et al., 2014; Schimel	
273	et al., 2015; Zhang et al., 2015). Interactions of the carbon cycle with the cycles of	
274	other key biospheric elements, especially nitrogen and phosphorus, are also likely	
275	to play important roles (Ciais et al., 2013). This applies equally to two other	
276	greenhouse gases, methane (CH ₄) and nitrous oxide (N ₂ O), both of which have	
277	important sources in the wetlands or soils of the Amazon (Miller et al., 2007;	
278	D'Amelio et al., 2009; Beck et al., 2012).	

279 **1.2 Water and energy cycle**

The Amazon River has by far the greatest discharge of all the World's rivers — about 20% of the world's freshwater discharge, and five times that of the Congo, the next largest river in discharge. This reflects the immense amount of water that is cycling through the water bodies, soils, plants, and atmosphere of the Amazon Basin. As a result, the hydrological cycle of the Amazon Basin is crucial for providing the water that supports life within the Basin and even beyond its borders. Most moisture enters the Basin from the Atlantic Ocean with the trade Deleted: an Deleted: supply

Deleted: Amazon

290 wind circulation, but recirculation of water through evapotranspiration maintains a 291 flux of precipitation that becomes increasingly more important as airmasses move 292 into the western part of the Basin (Spracklen et al., 2012). When reaching the Andes, moisture becomes deflected southward, with the result that Amazonian evap-293 294 oration even supports the rain-fed agriculture in Argentina (Gimeno et al., 2012). 295 As a result, perturbations of the Amazonian moisture flux and the effects of 296 smoke aerosols from fires in Amazonia on cloud processes can affect rainfall even 297 over the distant La Plata Basin (Camponogara et al., 2014; Zemp et al., 2014).

298 Evaporation of water from the Earth's surface also supports a huge energy 299 flux in the form of latent heat, which is converted to sensible heat and atmospheric 300 buoyancy when the water vapor condenses to cloud droplets. This heat transfer 301 represents one of the major forces that drive atmospheric circulation at all scales 302 (Nobre et al., 2009). Changes in land cover, e.g., conversion of forest to pasture, 303 alter the amount and type of clouds over the region (e.g., Heiblum et al., 2014) 304 and shift the proportion of rain that flows away as runoff versus the fraction that is 305 transformed to water vapor by evapotranspiration (Silva Dias et al., 2002; Da-306 vidson et al., 2012; Gloor et al., 2013; and references therein). This in turn chang-307 es local and regional circulation and rainfall patterns, and consequently deforesta-308 tion has been predicted to reduce the potential for hydropower generation in Ama-309 zonia (Stickler et al., 2013). When the scale of deforestation exceeds some 40% of 310 the Basin, these perturbations of the water cycle may change the functioning of 311 the entire Amazon climate and ecosystem (Coe et al., 2009; Nobre and Borma, 312 2009; Lawrence and Vandecar, 2015).

313 Our ability to prognosticate the possible outcomes for the Amazon ecosys-314 tem in the coming decades is severely curtailed by limitations in the representa-315 tion of key processes in climate/vegetation models, including the role of the An-316 des and the teleconnections between the Amazon and the Atlantic and Pacific 317 Oceans. In addition, the biophysical response of the vegetation to changing water 318 supply and increasing CO₂ and temperature remains very poorly understood 319 (Davidson et al., 2012). Long-term measurements and process studies at key loca-320 tions are urgently needed to improve our understanding of these interactions.

321 1.3 Biodiversity

322 The Amazon Basin contains the most species-rich terrestrial and freshwa-323 ter ecosystems in the world (Hoorn et al., 2010; Wittmann et al., 2013). It houses at least 40,000 plant species, over 400 mammal species, about 1300 bird species, 324 325 and countless numbers of invertebrate and microbe species (Da Silva et al., 2005), accounting for about 10-20% of all the world's species diversity. Of these, the 326 great majority have not yet been described scientifically, and possibly never will 327 be. The variety of species in the Amazon Basin is directly related to the variety of 328 329 habitats, and consequently is threatened by any form of exploitation that is ac-330 companied by habitat destruction, particularly land clearing and deforestation. The 331 genetic information stored in these ecosystems and their biodiversity is beyond 332 measure and may be of enormous economic significance. This diversity is now 333 under great threat, mostly as a result of habitat loss due to deforestation and other 334 land use changes (Vieira et al., 2008).

335 Much of the Amazon's aboveground biomass is in its trees, and a single 336 hectare of the forest can be home to over 100 different tree species. Scientists still 337 do not know how many tree species occur in the Amazon, and the current estimate 338 of about 16,000 tree species is the result of an extrapolation from the existing scat-339 tered census data. Surprisingly, a relatively small number (227 species, or 1.4%) 340 account for half of all individual trees (ter Steege et al., 2013), which therefore 341 account for a large fraction of the Amazon's ecosystem services. This fact may 342 greatly facilitate research in Amazonian biogeochemistry, for example studies on 343 the trace gas exchange between plants and the atmosphere.

344

1.4 Atmospheric composition and self-cleansing

The tropical atmosphere has been referred to as the "washing machine of 345 346 the atmosphere" by Paul Crutzen (pers. comm., 2013). Both, human activities and 347 the biosphere, release huge amounts of substances such as nitrogen oxides (NO_x) , carbon monoxide (CO), and volatile organic compounds (VOC) into the atmos-348 349 phere, which must be constantly removed again to prevent accumulation to toxic 350 levels. Most such gases are poorly soluble in water, and are thus not effectively 351 washed out by rain. The self-purification of the atmosphere therefore requires

Deleted: has

Deleted: in

354 chemical reactions by which the trace substances are brought into water-soluble 355 form. These reaction chains normally begin with an initial oxidation step in which 356 the trace gas is attacked by a highly reactive molecule, such as ozone (O₃) or the 357 hydroxyl radical (OH). Production of these atmospheric detergents requires UV 358 radiation and water vapor, both of which are present in generous quantities in the 359 tropics. It comes thus as no surprise, that the tropics are the region in which large 360 fractions of many atmospheric trace gases, including CO and CH₄, are eliminated 361 (Crutzen, 1987). Recent discoveries indicate that the atmospheric oxidant cycles 362 in the boundary layer are even much more active than had been previously as-363 sumed, yet the mechanisms of these reactions are still a matter of active research 364 (Lelieveld et al., 2008; Martinez et al., 2010; Taraborrelli et al., 2012; Nölscher et 365 al., 2014).

366 The functioning of this self-cleansing mechanism is challenged by human 367 activities that change the emissions from the biosphere and add pollutants from 368 biomass burning and industrial activities. This may convert the "washing ma-369 chine" into a reactor producing photochemical smog with high concentrations of 370 ozone and other atmospheric pollutants, and large quantities of fine aerosols -371 which in turn influence the formation of clouds and precipitation and thus modify 372 the water and chemical cycles (Andreae, 2001; Pöschl et al., 2010). Increased 373 ozone concentrations over Amazonia, resulting from biomass burning emissions, 374 have also been implicated in plant damage, which may substantially decrease the 375 carbon uptake by the Amazon forest (Pacifico et al., 2015).

376 The concentrations and types of aerosol particles over the Amazon Basin 377 exhibit huge variations in time and space. In the absence of pollution from region-378 al or distant sources, and especially in the rainy season, the Amazon has among 379 the lowest aerosol concentrations of any continental region (Roberts et al., 2001; 380 Andreae, 2009; Martin et al., 2010b; Pöschl et al., 2010; Andreae et al., 2012; 381 Artaxo et al., 2013; Rizzo et al., 2013). Biogenic aerosols, either emitted directly 382 by the biota or produced photochemically from biogenic organic vapors, make up 383 most of this "clean-period" aerosol (Martin et al., 2010a). At the other extreme, 384 during the biomass burning season in the southern Amazon, aerosol concentra-385 tions over large regions are as high as in the most polluted urban areas worldwide

Deleted: largely

Deleted: but

388 (Artaxo et al., 2002; Eck et al., 2003; Andreae et al., 2004). These changes in the 389 atmospheric aerosol burdens have strong impacts on the radiation budget, cloud 390 physics, precipitation, and plant photosynthesis (Schafer et al., 2002; Williams et 391 al., 2002; Andreae et al., 2004; Lin et al., 2006; Oliveira et al., 2007; Freud et al., 392 2008; Bevan et al., 2009; Martins et al., 2009; Vendrasco et al., 2009; Sena et al., 393 2013; Cirino et al., 2014). Episodic inputs of Saharan dust, biomass smoke from 394 Africa, and marine aerosols transported over long distances with the trade winds further complicate the picture (Formenti et al., 2001; Ansmann et al., 2009; Ben-395 396 Ami et al., 2010; Baars et al., 2011). This complexity of aerosol sources is one 397 important reason why the mechanisms that lead to the production of biogenic aer-398 osols in Amazonia are still enigmatic (Pöhlker et al., 2012; Chen et al., 2015).

399 **1.5 The Amazon Tall Tower Observatory (ATTO)**

400 The foregoing sections have <u>cast</u> some <u>spotlights</u> on the key roles of the 401 Amazon Basin in the Earth System and on the important ecosystem services it 402 provides. It is evident that to avoid irreversible damage to this complex system we 403 need a better understanding of the interactions between biosphere and atmosphere in this important region. While considerable knowledge has been gained from 404 405 campaign-style studies, it is clear that the full picture will not emerge from these 406 "snapshots," but rather that continuous, long-term studies are required at key loca-407 tions (Hari et al., 2009; Zeri et al., 2014). This is true especially in view of the fact 408 that the Amazon and its global environment are rapidly changing, and that contin-409 uing observations are essential to keep track of these changes. It is particularly 410 urgent to obtain baseline data now, to document the present atmospheric and eco-411 logical conditions before upcoming changes, especially in the eastern part of the 412 Basin, will forever change the face of Amazonia.

<u>Observations from tall towers are especially useful for this purpose, be-</u>
<u>cause they allow measurements at several heights throughout the planetary</u>
<u>boundary layer and thereby can reflect both local processes at the lower levels and</u>
<u>regional influences at the upper levels (Bakwin et al., 1998; Andrews et al., 2014).</u>
<u>The effects of emission and uptake by local vegetation and soil are much reduced</u>
<u>at 300 m as compared to 50 m (Winderlich et al., 2010), and the analysis of the</u>
<u>diurnal variation of the vertical concentration profile provides an estimate of the</u>

Deleted: thrown
Deleted: highlights

Deleted: to avoid irreversible damage to this complex system

424	flux of trace gases such as CO ₂ and CH ₄ (Winderlich et al., 2014). The influence		
425	footprint of typical flux tower measurements made at a few tens of meters above		
426	the canopy is of the order of a few kilometers (e.g., de Araújo et al., 2002; Chen et		
427	al., 2012), whereas the concentration footprint of a tall tower is of the order of		
428	1000 km, and measurements at the top of the tower are therefore representative of		
429	regional processes (Gloor et al., 2001; Heimann et al., 2014), For micrometeoro-		Deleted: (Winderlich et al., 2010)
430	logical investigations, a tall tower provides the unique ability to obtain continuous		2010)(winderlich et al., 2014)
431	measurements at a series of heights throughout the lower part of the planetary		
432	boundary layer. This makes possible investigations of phenomena such as the		
433	formation and dissolution of nocturnal stable boundary layers, the production and		
434	behavior of intermittent turbulent structures, gravity waves, boundary layer rolls,		
435	etc. A summary of the characteristics of the Amazon planetary boundary layer can		
436	be found in Fisch et al. (2004).		
437	The need for tall tower observatories at mid-continental locations, espe-		Deleted: ¶
438	cially in Eurasia, Africa, and South America, was recognized in the late 1990s		
439	(Gloor et al., 2000) and the establishment of sites in Siberia and Amazonia was		
440	proposed to the Max Planck Society. This lead to the construction of the Zotino		Deleted: ,
441	Tall Tower Observatory (ZOTTO) as a joint Russian-German project, with meas-	$\overline{}$	Deleted:
442	urements beginning in 2006 (Heimann et al., 2014), and to the concept of the Am-		Deleted: ing
443	azon Tall Tower Observatory (ATTO)		Deleted: .
111	The ATTO project was initiated in 2008 as a Brazilian-German partner-		Deleted: For this purpose, t
444 AA5	ship A site was selected 150 km northeast of Manaus which fulfilled the follow-	\frown	Deleted: Amazon Tall Tower Observatory (
775 116	ing criteria: 1) large fetch with minimal current human perturbation, but with po-		Deleted:)
140 117	tential future land use change at a large scale 2) relatively flat topography with no))	Deleted: has been established in the central Amazon Basin by
148	large wetlands in the fatch region 3) stable and protected land ownership and con		Deleted: present
740 770	trolled access and 4) the possibility to reach the site in a reasonable time to facili-		
449	tate research and educational activities		
-50	tate research and generational derivities.		
451	In order to characterize the site and begin research activities, the site was	\angle	Deleted: h
452	set up initially with two measurement towers of intermediate height (80 m). At-		Deleted: been
453	mospheric measurements from these towers and ecological studies of the sur-		Deleted: . and t
454	rounding forest ecosystems were initiated in 2012. The construction of the 325-m		Deleted: a
455	tall tower began in September 2014 and is currently nearing completion. The tall		Deleted: to perform chemical and meteorological measurements representing large footprints

479	tower will serve as a basis for continuous monitoring of long-lived biogeochemi-
480	cally important trace gases such as CO_2 , CH_4 , CO , and N_2O , and a multitude of
481	reactive gases, including NO_x , O_3 , and VOC, as well as a broad range of aerosol
482	characteristics. The chemical measurements are complemented by a full suite of
483	micrometeorological measurements. Furthermore, the observing system will also
484	include a component directed at the underlying vegetation canopy, such as pheno-
485	logical observations from the tower by automated cameras, potentially a canopy
486	lidar, as well as an array of in-situ sensors of critical physical and biological vari-
487	ables in the ecosystems near the tower and the ground.

488 The continuous long-term data collected at ATTO will also serve to evalu-489 ate airborne and satellite observations. Expected to operate for an indeterminate 490 length of time, this unique observatory in South America will provide long-term 491 observations of the tropical Amazonian ecosystem affected by climate change.

493	1) To obtain regionally representative measurements of carbon gas con-
494	centrations (CO ₂ , CH ₄ , CO, and VOC), in order to improve our understanding of
495	the carbon budget of the Amazonian rain forest under changing climate, land use.
496	and other anthropogenic influences in the fetch region of ATTO.

Specific research objectives at the ATTO observatory are:

492

497 2) To continuously observe anthropogenic and biogenic greenhouse gases
498 in the lower troposphere, within the planetary boundary layer by day and outside
499 it at night, in order to help constrain inverse methods for deriving continental
500 source and sink strengths and their changes over time.

3) To continuously measure trace gases and aerosols for improvement of
our understanding of atmospheric chemistry and physics in the Amazon, with emphasis on the atmospheric oxidant cycle and the life cycle of the Amazonian aerosol, and to identify the effects of anthropogenic perturbations, e.g., land use
change and pollution, on these processes. Measurements of isotopic composition
will be made to help distinguish anthropogenic and biogenic fluxes.
4) To determine vertical trace gas and aerosol fluxes and gradients from

508 the tower top to the ground to estimate biosphere-atmosphere exchange rates.

Deleted: conditions

Deleted: within and outside the planetary boundary layer

Moved (insertion) [2]

Deleted: ally

Deleted: logically induced

Deleted: and further allow a continuous assessment of the effects of land use change on the atmosphere and climate.

Moved up [2]: Measurements of will be made to help distinguish anthropogenically and biologically induced fluxes. ¶ 5) To investigate key atmospheric

Deleted: 4) To simultaneously measure anthropogenic and biogenic trace gases, contributing to our understanding of natural and anthropogenic effects on the atmosphere and climate. Measurements of isotopic composition will be made to help distinguish anthropogenically and biologically induced fluxes. ¶ 5) To investigate key atmospheric

5) To investigate key autospheric

Deleted: 6

- Deleted: 7 536 5) To study turbulence and transport processes in the lower atmospheric 537 boundary layer, as well as to understand the extent and characteristics of the roughness sublayer over the forest. 538 Deleted: 8 539 (1) To develop and validate dynamic vegetation models, atmospheric 540 boundary layer models, and inverse models for the description of heat, moisture, 541 aerosol, and trace gas fluxes. Deleted: 9 542 7) To evaluate satellite estimates of greenhouse gas concentrations and temperature and humidity profiles by providing a ground truth site. 543 This paper is intended as an overview paper for a special issue on research 544 545 at the ATTO observatory. Here we discuss the scientific background and context of the observatory and describe the site characteristics, infrastructure, and meas-546 547 urement methodologies. We present initial results from studies in the ecosystem surrounding ATTO and from measurements at the two 80-m towers. Future papers 548 549 in the special issue will provide a detailed discussion of the tall tower and present the results of the various scientific investigations at ATTO. 550 2 Site description and infrastructure 551 Site characteristics 552 2.1 553 The ATTO site is located 150 km northeast of Manaus in the Uatumã Sus-554 tainable Development Reserve (USDR) in the Central Amazon (Fig. 1a). This Deleted: In a workshop on 23 June 2009 in Manaus, Brazilian and German conservation unit is under the control and administration of the Department of Scientists evaluated three potential sites 555 in terms of logistical and scientific criteria and decided to establish ATTO Environment and Sustainable Development of Amazonas State (SDS/CEUC). The 556 in the USDR. 557 USDR is bisected by the Uatumã River through its entire NE-SW extension. The climate is tropical humid, characterized by a pronounced rainy season from Feb-558 Deleted: with mean annual temperature of 28°C and mean annual precipitation of 2,376 mm (IBGE, 2012). The 559 ruary to May and a drier season from June to October (IDESAM, 2009). region is 560 The tower site is located approximately 12 km NE of the Uatumã River 561 (Fig. 1b), As is typical for this region in the central Amazon Basin, there is little Deleted: . 562 large-scale relief, but at smaller scales a dense drainage network has produced a 563 pattern of plateaus and valleys with a maximum relief height of about 100 m (Planalto Dissecado do Rio Trombetas - Rio Negro). The ATTO site is located at 564
- 565 120 m a.s.l. on a plateau that measures about 1.5 km in the NW-SE direction and

15

580	about 5 km along the NE-SW axis. The topography surrounding ATTO resembles	
581	that around the Manaus LBA site (ZF2, also referred to as k34 site) in the Cuieiras	
582	Reserve, where the influence of topography on the micrometeorology and the	
583	fluxes of CO ₂ has been studied in detail by Tota et al. (2012), From the perspec-	Deleted: R
584	tive of micrometeorological flux measurements, this is not an ideal type of terrain	
585	because it induces significant upslope and downslope circulations. The effects of	
586	local topography on the local flux measurements from the small towers are the	
587	subject of ongoing investigations.	
588	It must be pointed out, however, that the main objective of the tall tower	
589	with respect to greenhouse gas and aerosol monitoring is the measurement of con-	
590	centrations above the level of local circulations. For this purpose, measurements	
591	from tall towers, such as ATTO, have the advantage of being less influenced by	
592	the surface layer variability due to diurnal changes in photosynthesis and respira-	
593	tion, as well as by ecosystem and terrain heterogeneity. This results in smoothen-	
594	ing of the large daily cycles of near-surface signals and efficient integration over	Deleted: ly
595	daily cycles and small-scale heterogeneities, which facilitates the detection of	Deleted: es
596	long-term changes in the background atmospheric composition.	
597	The plateaus in this region are covered by yellow clayey ferralsols (lato-	
598	sols, oxisols) overlying the Miocene sedimentary Barreiras formation (Chauvel et	
599	al., 1987). In the valleys, alisols and sandy podzols are the dominant soil types,	Deleted: wh
600	The USDR consists of several different forested ecosystems. Dense, non-	plateaus at a n approximately
601	flooded upland forests (terra firme) prevail on plateaus at a maximum altitude of	(asl).
602	approximately 130 m above sea level (asl). Seasonally flooded black-water	
603	(igapó) forest dominates along the main river channel, oxbow lakes, and the sev-	
604	eral smaller tributaries of the Uatumã River (approximately 25 m asl). Inter-	
605	spersed with these formations are non-flooded terra firme forests on ancient river	
606	terraces (35-45 m asl), and campinas (savanna on white-sand soils) and campi-	
607	naranas (white-sand forest), which are predominantly located between the river	
608	terraces and the slope to the plateaus.	
609	Upwind of the site in the main wind direction (northeast to east), large are-	
610		

as covered by mostly undisturbed terra firme forests extend over hundreds of kil-610 ometers. To the northeast, the nearest region with dense human activity is in the 611

Deleted: where dense, non-flooded upland forests (terra firme) prevail on plateaus at a maximum altitude of approximately 130 m above sea level (asl).
620 coastal regions of the Guyanas and of Amapá State, about 1100 km away. In the

621 easterly direction, the main stem of the Amazon is in the fetch region of ATTO,

622 with scattered smaller towns and the cities of Santarém and Belém at distances of

about 500 and 900 km, respectively. To the southeast, the densely populated states

624 of the Brazilian Nordeste lie at distances greater than 1000 km. Figure 2 presents

on overview of the population density and the dominant land cover in northern

626 South America.

627 The origins of the predominant airmasses at ATTO change throughout the 628 year, as the Intertropical Convergence Zone (ITCZ) undergoes large seasonal 629 shifts over the Amazon Basin, resulting in pronounced differences in meteorologi-630 cal conditions and atmospheric composition (Andreae et al., 2012). This is illus-631 trated in Fig. 3, which shows monthly trajectory frequency plots for 9-day back-632 trajectories arriving at ATTO at an elevation of 1000 m. During boreal winter, the 633 ITCZ can lie as far south as 20°S, so that a large part of the Basin, including 634 ATTO, is in the meteorologically Northern Hemisphere (NH). Airmasses then 635 arrive predominantly from the northeast over a clean fetch region covered with 636 rain forest. During this period, long-range transport from the Atlantic and Africa 637 brings episodes of marine aerosol, Saharan dust, smoke from fires in West Africa, 638 and possibly even pollution from North America and Europe. This flow pattern 639 shifts abruptly at the end of May, when the ITCZ moves to the north of ATTO. 640 This shift marks the beginning of the dry season at ATTO, a period of time during 641 which the site is exposed to airmasses from the easterly and southeasterly fetch 642 regions, which receive considerable pollution from biomass burning and other 643 human activities in northeastern Brazil. In July almost the entire Basin is south of the ITCZ, and thus lies in the meteorologically Southern Hemisphere (SH), The 644 transition to the northeasterly flow pattern is more gradual, beginning in Septem-645 646 ber and becoming complete only in March.

647 **2.2 Access**

The ATTO site is reached from Manaus by the paved highway BR-174 for
101 km northward, then 70 km to the E on highway AM-240 towards Balbina.
From there, a 38 km dirt road along the Uatumã River, Ramal de Morena, Jeads to
the small community of Porto Morena, where the road and offer a 61 km meter.

the small community of Porto Morena, where the road ends. After a 61 km motor-

Deleted: and

Deleted: both meteorologically and geographically

Deleted: following national
Deleted: to a junction south of Presidente Figuereido
Deleted: heading
Deleted: a paved side road,
Deleted: ,
Deleted: , then
Deleted: SE on the
Deleted: a
Deleted: along the Llatumã River

665	boat ride on the <u>Rio</u> Uatuma towards the SE one reaches the landing, Porto		Deleted: River
666	ATTO, The access road from the landing to the ATTO site on the plateau follows		Deleted: , is reached
667	an old trail used in the 1980s to extract Pau Rosa wood from the forest. This trail		
668	was re-opened in 2010 and widened to an ATV and tractor trafficable path that		
669	was used during the initial years of the development of the ATTO site. In $2012/13$		
670	a 6 m wide dirt road was constructed between the Uatumã River and the ATTO		Deleted: the government of the State
671	tower site, which accommodates pickups and trucks. The overall distance along		taria de Estado de Infraestrutura, SEINFRA, financed and implemented
672	this road, Ramal ATTO, is 13.7 km, rising from 25 to 130 m a.s.l. Total travel		Deleted: During the years of the
673	time from Manaus to the site is about five hours. For the delivery of large and		from Manaus has been gradually
674	heavy equipment to Porto ATTO, fluvial transportation by ship or pontoon is pos-		to a 4.5 h ride in 2014
675	sible from Manaus by going down the Amazonas River and up its tributary, Rio		
676	Uatumã, a distance of ca. 550 km and travel time of 2 days.		
677	2.3 Camp		
678	The base camp on the ATTO plateau was built in 2011/12 and has electri-		Deleted: by a team of technicians
679	cal power and water. Facilities include toilets and a dormitory with hammocks		from INPA/LBA and workers hired from the Uatumã Sustainable Devel-
	· · · · · ·		opment Reserve (USDR) The camp
680	that can accommodate ca. 20 people. Another camp is planned by INPA at the	\frown	Deleted: , and
680 681	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological re-		Deleted: , and Deleted: f
680 681 682	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp.		Deleted: , and Deleted: f
680 681 682	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp.		Deleted: , and Deleted: f
680 681 682 683	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp.2.4 Towers		Deleted: , and Deleted: f
 680 681 682 683 684 	 that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of 		Deleted: , and Deleted: f
 680 681 682 683 684 685 	 that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction of the second secon		Deleted: , and Deleted: f
 680 681 682 683 684 685 686 	 that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m		Deleted: , and Deleted: f
 680 681 682 683 684 685 686 687 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological re- search in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construc- tion began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used		Deleted: , and Deleted: f
 680 681 682 683 684 685 686 687 688 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty		Deleted: , and Deleted: f
 680 681 682 683 684 685 686 687 688 689 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty guy-wired walk-up tower (Instant UpRight, Dublin, Ireland), The walk-up tower		Deleted: , and Deleted: f Deleted: , Deleted: ,
 680 681 682 683 684 685 686 687 688 689 690 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty guy-wired walk-up tower (Instant UpRight, Dublin, Ireland), The walk-up tower can carry a total payload of 900 kg, with outboard platforms on five levels. It is		Deleted: , and Deleted: f Deleted: , Deleted: , Deleted: , Deleted: , Note: Section 100 (Section 100 (Sectio
 680 681 682 683 684 685 686 687 688 689 690 691 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty guy-wired walk-up tower (Instant UpRight, Dublin, Ireland). The walk-up tower can carry a total payload of 900 kg, with outboard platforms on <u>five levels</u> . It is currently used for meteorological and trace gas measurements. The measurements		Deleted: , and Deleted: f Deleted: , Deleted: 5
 680 681 682 683 684 685 686 687 688 689 690 691 692 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014, and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty guy-wired walk-up tower (Instant UpRight, Dublin, Ireland), The walk-up tower can carry a total payload of 900 kg, with outboard platforms on five levels. It is currently used for meteorological and trace gas measurements. The measurements at the top level, at 79.3 m, are the highest ground based measurements within the		Deleted: , and Deleted: f Deleted: , Deleted: , Deleted: , Deleted: , Deleted: , URIGHT (formerly INSTANT) Deleted: 5
 680 681 682 683 684 685 686 687 688 689 690 691 692 693 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty guy-wired walk-up tower (Instant UpRight, Dublin, Ireland), The walk-up tower can carry a total payload of 900 kg, with outboard platforms on five levels. It is currently used for meteorological and trace gas measurements. The measurements at the top level, at 79.3 m, are the highest ground based measurements (WGS 84) are		Deleted: , and Deleted: f Deleted: ,
 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 	that can accommodate ca. 20 people. Another camp is planned by INPA at the Uatumã River landing, which will serve also as a base station for ecological research in the area. A helicopter landing site is intended adjacent to this camp. 2.4 Towers The measurement facilities on the ATTO plateau consist of two towers of ca. 80 m height, already implemented, and the 325-m tall tower, whose construction began in September 2014 and is now nearing completion. In 2010, an 81-m triangular mast was established for pilot measurements, which is currently used for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty guy-wired walk-up tower (Instant UpRight, Dublin, Ireland), The walk-up tower can carry a total payload of 900 kg, with outboard platforms on five levels. It is currently used for meteorological and trace gas measurements. The measurements at the top level, at 79.3 m, are the highest ground based measurements (WGS 84) are given in Table 1. The measuring instruments are accommodated in three air-		Deleted: , and Deleted: f Deleted: , Deleted: , Deleted: , Deleted: , Unstrained from the Irish company UPRIGHT (formerly INSTANT) Deleted: 5

the walk-up tower, and the aerosol lab at the base of the mast; each lab has inside
dimensions of 292 x 420 x 200 cm (WxLxH) and is supplied by 230/135 V electrical power.

721 **2.5 Communications**

722 Since the end of 2013, the ATTO site has been connected to the internet by 723 satellite. The uplink is realized by the mobile satellite terminal Cobham 724 EXPLORER 700 using the INMARSAT / BGAN broadband network, providing a 725 data bandwidth of up to 492 kbps. Operating in the L-Band, its active antenna 726 performance allows up to 20 dB compensation of signal attenuation due to bad 727 weather. The antenna is mounted at 50 m height on the walk-up tower, aligned by 728 43.9° elevation and 273.1° azimuth towards the geostationary satellite 729 **INMARSAT 4-F3 Americas.**

A cluster of two redundant routers manages the internet traffic and provides direct access from the internet to the various computers and networkable instruments at the ATTO site. The routers provide, additional features like centralized data storage, remote server access, optimized file transfer, monitoring systems, updating clients, VoIP telephony between the local infrastructure, sites, etc. Internal data communication between the various sites on the ATTO plateau (tow-

race ers, labs, camp) is realized via a wireless LAN bridge, operating in the 5 GHz

mode, featured by access points with directed-beam antennas.

Data communication within each site occurs via wired LAN with data rates of up to 1000 kbps. In addition, at the camp there is WLAN available in the 2.4 GHz mode. The communication system allows monitoring and controlling of networkable instruments in all three lab containers, as well as internet e_mailing, locally and globally. For oral communication with the remote ATTO site and for safety matters, satellite phones (IsatPhonePro) are available operating in the INMARSAT net.

745 **2.6 Electrical power supply**

Electrical power is provided by a system of diesel generators. Currently,the scientific sites (lab containers and towers) are supplied by two 60 Hz genera-

Deleted: , Deleted: with

Deleted: ing
Deleted: al

Deleted: are

753 tors with 45 and 40 kVA, operating alternately by weekly switching. They are

- 754 located ca. 800 m downwind from the measuring sites to avoid contamination.
- Due to the long distance between power generation and consumption, power is 755

756 transmitted via two 600 V transformers, using two parallel cables, each 3 x 16

mm². The voltage provided to the labs is 230 and 135 V, and UPSs are being used 757 to stabilize energy. Power to the camp is provided separately to avoid power fluc-758

759 tuations at the measurement sites. When the tall tower is established, it is planned

760 to upgrade the power generation to a new system of 2 x 100 kVA generators at a

- 761 distance of 2-3 km downwind of the tower.
- 762 3 **Measurement methods**

3.1 Ecological studies 763

764	3.1.1 Floristic composition and biomass characterization	Deleted: and
765	Forest plots of three ha each were inventoried in the igapó, the campinara-	
766	na, the terra firme on ancient river terraces, and the terra firme on the plateau in	Deleted: ,
767	order to provide a preliminarily description of the floristic composition and turno-	
768	ver as well as the aboveground wood biomass (AGWB), All trees with ≥ 10 cm	Deleted: in the different forested
769	DBH (diameter at breast height) were numbered, tagged with aluminum plates,	ecosystems near the tower site
770	and, when possible, identified in the field. Fertile and sterile vouchers were col-	
771	lected for later identification in the INPA herbarium, The AGWB was estimated	Deleted: , Manaus
772	by a pantropical allometric model (Feldpausch et al., 2012) considering DBH, tree	
773	height, and wood specific gravity. We measured tree height with a trigonometric	
774	measuring device (Blume-Leiss) and determined wood specific gravity by sam-	
775	pling cores from the tree trunk and calculating the ratio between dry mass (after	
776	drying the wood samples at 105 °C for 72 hours) and fresh volume. Additionally	
777	we used data from the Global Wood Density Database DRYAD (Chave et al.,	
778	2009) for tree species in the terra firme forests and from Targhetta (2012) for tree	Deleted: without determined wood
779	species in the campina and igapó forests.	specific gravity
780	3.1.2 Leaf phenology	
781	An RGB camera (Stardot Netcam XL 3MP) was installed in June 2013 at	
782	the top of the walk-up tower. The wide-angle view with 2048 x 1536 pixel resolu-	

 Deleted:	plateau

790	tion includes over 250 separable tree crowns within an area of ~4 ha of the forest
791	plateau. The camera aim is steeply oblique and toward the west, so that the sun is
792	behind the camera when images are recorded from mid-morning until noon. Illu-
793	mination artifacts are minimized by selecting images with homogeneous overcast
794	sky and a fixed narrow range of incident radiance, and by post-selection radio-
795	metric normalization. Leaf phenology change is most evident in individual
796	crowns, so timelines of the green chromatic coordinate, g _c , (Richardson et al.,
797	2007) were made for each crown. A steep and sustained increase in the g_c of a
798	crown can only be caused by the flushing of a new leaf cohort. The number of
799	crowns reaching a flush-caused peak of g_c in their individual timelines were
800	counted each month.
801	3.1.3 Soil characterization
002	Soil compline was conformed on the ancient tempered (ald flood plains) and
802	Soil sampling was performed on the ancient terraces (old floodplains) and
803	terra firme plateaus at the ATTO site according to a standard protocol (Quesada et
804	al., 2010). Five samples up to 2 m in depth were taken in each forest plot and one
805	2 m depth pit was dug close to each plot. We used the World Reference Base for
806	soil resources to classify soil types (IUSS (International Union of Soil Science)
807	Working Group WRB, 2006). Soil exchangeable cations were determined with the
808	silver thiourea method (Pleysier and Juo, 1980), and soil carbon and nitrogen were
809	analyzed using an automated elemental analyzer (Pella, 1990; Nelson and Som-
810	mers, 1996). Particle size was analyzed using the pipette method (Gee and Bau-
811	der, 1986). Soil physical properties were calculated for each plot using the
812	"Quesada Index" (Quesada et al., 2010). This index is based on measurements of
813	effective soil depth, soil structure, topography, and anoxia. To investigate the cur-
814	rent soil weathering levels, a chemically based weathering index, Total Reserve
815	Bases (ΣRB), was calculated. ΣRB is based on total soil cation concentration and
816	is considered to give a chemical estimation of weatherable minerals (Quesada et
817	al., 2010) <u>.</u>

818 3.2 Meteorology

819 The walk-up tower is equipped with a suite of standard meteorological820 sensors (Table 2). The following quantities are continuously recorded: (a) soil

Deleted: in

Deleted: including vertical profiles, for details see

825 heat flux, soil moisture, and soil temperature (10 minutes time resolution), (b)

- 826 incoming and outgoing short and long wave radiation, photosynthetic active radia-
- 827 tion (PAR), net radiation, ultraviolet radiation, rainfall, relative humidity (RH), air
- 828 | temperature, atmospheric pressure, and wind speed and direction (1 minute time
- 829 resolution). Data acquisition is <u>performed</u> by several data loggers (CR3000 and
- 830 CR1000, Campbell Scientific Inc., USA). Visibility is measured with an optical
- 831 fog sensor (OFS, Eigenbrodt GmbH, Königsmoor, Germany), which detects the
- backscattered light intensity from a 650 nm laser.

833 **3.3 Turbulence and flux measurements**

834 Turbulent exchange fluxes of H₂O and CO₂ as well as surface boundary layer stability are measured within and above the canopy using the eddy covari-835 836 ance (EC) technique. The method is well documented in the literature (e.g., 837 Baldocchi, 2003; Foken et al., 2012) and will not be described here. Three-838 dimensional wind and temperature fluctuations were measured by sonic anemom-839 eters at 81, 46 and 1.0 m a.g.l. (see Table 2). CO₂ and H₂O fluctuations are detect-840 ed by three fast response open-path CO₂/H₂O infrared gas analyzers installed at a lateral distance of about 10 cm from the sonic path. The high-frequency signals 841 842 are recorded at 10 Hz by CR1000 data loggers. The raw data are processed apply-843 ing state-of-the-art correction methods using the software Alteddy (version 3.9; www.climatexchange.nl/projects/alteddy/) based on Aubinet et al. (2000). Fluxes, 844 845 means and variances are calculated for half-hourly intervals (de Araújo et al., 846 2002; de Araujo et al., 2008; de Araujo et al., 2010). Continuous micrometeoro-847 logical measurements have been made since September 2012, with some interrup-848 tions due to technical problems. The raw data are archived and are made available 849 under the LBA data policy (https://daac.ornl.gov/LBA/lba_data_policy.html). 3.4 Vertical profiles of reactive trace gases and total OH reactivity 850 851 Ozone is measured by a UV-absorption technique (Thermo Scientific 49i, Franklin, MA, USA), using Nafion dryers to minimize the effects of changing 852

- 853 water vapor concentrations (Wilson and Birks, 2006). Mixing ratios of CO_2 and
- H_2O are measured by non-dispersive infrared absorption techniques (Licor-7000,
- 855 LI-COR, Lincoln, USA). The detection limits are 0.5 ppb for ozone, 1 ppm for

Deleted: realized

Deleted: .0 Deleted: .0 Deleted: were

Deleted: were Deleted: were

Deleted: Detailed information about this software is available in the internet (www.climatexchange.nl/projects/alted dy/). Deleted: were

Deleted: with a Thermo Scientific 49i analyzer

Deleted: , as suggested by Wilson and Birks

871	CO_2 and 0.2 mmol mol ⁻¹ for H ₂ O. Instrumental noise for 60-s averages is 0.25 ppb
872	for ozone, 6 ppb for CO ₂ (at 370 ppm), and 0.4 ppm for H ₂ O (at 10 mmol mol ⁻¹).
873	During intensive campaigns, measurements of mixing ratios of Volatile
874	Organic Compounds (VOC), total OH reactivity, nitric oxide (NO), nitrogen diox-
875	ide (NO ₂), ozone (O ₃), and water vapor (H ₂ O) were carried out at 8 heights, in and
876	above the rain forest canopy, using a reactive trace gas profile system similar to
877	that described by Rummel et al. (2007). The lower part of the vertical profile
878	(0.05, 0.5, and 4 m above the forest floor) was set up at an undisturbed location
879	near the walk-up tower (distance 12 m). The upper part of the vertical profile (12,
880	24, 38, 53, and 79 m above forest floor) was mounted on the north-west corner of
881	the walk-up tower. Heated and insulated intake lines (PTFE) were fed to the ana-
882	lyzers, which were housed in the air conditioned lab container 10 m west of the
883	walk-up tower.
884	The NO mixing ratio was determined by a gas-phase chemiluminescence
885	technique (CLD TR-780, Ecophysics, Switzerland). NO2 was determined by the
886	same analyzer after specific conversion to NO by a photolytic converter (Solid-
887	state Photolytic NO ₂ Converter (BLC); DMT, Boulder/USA). Detection limits are
888	<u>0.05 ppb for NO and 0.1 ppb for NO₂. The signal noise is $<0.5\%$ of signal, limited</u>
889	by the zero point noise.
890	Measurements of VOC were performed using a Proton Transfer Reaction
891	Mass Spectrometer (PTR-MS, Ionicon, Austria) operated under standard condi-
892	tions (2.2 hPa, 600 V, 127 Td; 1 Td = 10^{-21} V m ² .). The instrument is capable of
893	continuously monitoring VOCs with proton affinities higher than water and at low
894	mixing ratios (several ppt with a time resolution of about 1-20 s), (Lindinger et al.,
895	1998). One entire VOC vertical profile (from 0.05 m to 80 m, 8 heights in total)

can be determined every 16 minutes using the same inlet system as the NO, NO₂,
O₃, and CO₂ instruments.

Calibration was performed using a gravimetrically prepared multicomponent standard (Ionimed, Apel&Riemer). Occasionally, samples were collected in absorbent packed tubes (130 mg of Carbograph 1 [90 m² g⁻¹] followed by 130 mg of Carbograph 5 [560 m² g⁻¹]; Lara s.r.l., Rome, Italy) (Kesselmeier et al., 2002) and analyzed by GC-FID in order to cross-validate the measurements by PTR-MS Formatted: Subscript Formatted: Superscript Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Superscript Deleted: ,

Formatted: Right: 0 cm Deleted: NO Chemiluminescence analyzer, model Deleted: The mixing ratio of Formatted: Not Highlight Formatted: Not Highlight Deleted: Not Highlight Deleted: Volatile Organic Compounds (Deleted:)

Deleted: The proton transfer reaction is a soft chemical ionization technique, meaning that fractionation of compounds is low. More detailed information is provided elsewhere

Deleted: Protonated water molecules H_3O^+ are used to charge the compound of interest prior to separation and detection by a quadrupole mass spectrometer according to their mass to charge ratio.

921 and to determine the monoterpene speciation for the total OH reactivity measure-922 ment.

923	In addition to the measurement of individual reactive inorganic trace gases	
924	and the VOCs, the total OH reactivity was <u>determined</u> . Total OH reactivity is the	Deleted: monitored
925	summed loss rate of all OH-reactive molecules (mixing ratio \times reaction rate coef-	
926	ficient) present in the atmosphere. Direct measurements of total OH reactivity	Deleted: Comparison of the directly
927	were conducted by the Comparative Reactivity Method (Sinha et al., 2008) using	summed OH reactivity of the individu- ally detected species allows quantifica-
928	a PTR-MS as a detector. The PTR-MS monitored the mixing ratio of a reagent	tion of the "missing or unmeasured" OH reactivity.
929	(pyrrole) after mixing and reaction in a Teflon-coated glass reactor. Pyrrole alter-	Deleted: first
930	natingly reacts with OH alone and with OH in the presence of ambient air contain-	Deleted: then
931	ing many more OH reactive compounds. The competitive reactions of the reagent	
932	and the ambient OH reactive molecules cause a change in the detected levels of	
933	pyrrole. This can be equated to the atmospheric total OH reactivity provided the	
934	instrument is well calibrated and appropriate corrections are applied (Nölscher et	
935	al., 2012). The total OH reactivity instrument was regularly tested for linearity of	
936	response using an isoprene gas standard (Air Liquide). VOC and total OH reactiv-	
937	ity measurements were performed simultaneously with two separate PTR-MS	
938	systems measuring from the same inlet, so that the results may be directly com-	
939	pared over time, height, and season. The CRM method was able to measure OH	
940	reactivity down to 3 s_{1}^{-1} , estimated by the minimum observable modulation above	Formatted: Superscript
941	two times the standard deviation (σ) of the noise (measured in zero air). The over-	
942	all uncertainty in the measurement was 16%, including errors in detector (5%),	
943	rate coefficient (14%), gas standard (5%) and flow dilution (2%).	

Vertical profiles of long-lived trace gases (CO, CO₂, and CH₄) 944 3.5

945 In March 2012, continuous and high precision CO₂/CH₄/CO measurements were established in an air-conditioned container at the foot of the 80 m-tall walk-946 up tower. The sample air inlets are installed at five levels: 79, 53, 38, 24, and 4 947 948 meters above ground. The inlet tubes are constantly flushed at a flow rate of sev-949 eral liters per minute to avoid wall interaction within the tubing. A portion of the 950 sample air is sub-sampled from the high flow lines at a lower flow rate for analysis with instruments based on the cavity ring-down spectroscopy technique, 951

Deleted: . The

962	(G1301 and G1302 analyzers [Picarro Inc. USA] for measuring CO ₂ /CH, and	_	Deleted Picarro
062	CO/CO respectively)	\langle	Deleted: (
903	CO/CO_2 , respectively $$.		Deleted:)
964	The G1301 analyzer (Serial CFADS-109) provides data with a standard		Deleted: are used
965	deviation of the raw data below 0.05 ppm for CO_2 and 0.5 ppb for CH_4 , the long-		Deleted: Althoug also measure the H
966	term drift is below 2 ppm and 1 ppb per year for CO_2 and CH_4 , respectively. For		air, these measuren brated and can ther only as informative
967	the G1302 (Serial CKADS-018), tests with a stable gas tank show a standard de-		only as informative
968	viation of the raw data of 0.04 ppm for CO_2 and 7 ppb for CO. The long-term drift		
969	of the analyzer is below 2 ppm and 4 ppb per year for CO_2 and CO , respectively.		
970	Both analyzers agree well with a CO_2 difference below 0.02 ppm. When the		
971	G1301 analyzer broke down in 2012, it was replaced from December 2012 until		
972	October 2013 with a Fast Greenhouse Gas Analyzer (FGGA) based on Off-Axis		Deleted: by
973	Integrated Cavity Output Spectroscopy (OA-ICOS; Los Gatos Research Inc.,		
974	USA) as an emergency solution. This $CO_2/CH_4/H_2O$ analyzer is designed for		
975	measuring at rates of ≥ 10 Hz and is primarily used for eddy covariance and cham-		Deleted:
976	ber flux measurements, where a low drift rate is less vital than for highly precise		Deleted:
977	and stable long-term measurements. The FGGA operates with a raw standard de-		
978	viation of 0.6 ppm for CO_2 and 2 ppb for CH_4 ; the drift is quite large with 1 ppm		
979	and 3 ppb per day for CO_2 and CH_4 , respectively. For the time when the FGGA		
980	was used, the calibration and drift correction routines were adopted accordingly.		
981	The detailed description of the whole measurement system, including measure-		
982	ment, calibration, and correction routines will be presented elsewhere.		
Į			
983	3.6 Aerosol measurements		
984	3.6.1 Size distributions and optical measurements		
985	Aerosols are sampled above the canopy at 60 m height, without size cut-		
986	off, and transported in a laminar flow through a 2.5 cm diameter stainless steel		
987	tube into an air-conditioned container (aerosol lab at mast, see Sect. 2.4). The		
988	sample humidity is kept below 40% using silica diffusion driers. Since January		
989	2015, the aerosol sample air is being dried using a fully automatic silica diffusion		Deleted: has been
990	dryer, developed by the Institute for Tropospheric Research, Leipzig, Germany		
991	(Tuch et al., 2009). Aerosol size distributions at 60 m are currently measured from		
992	10 nm up to 10 μ m using three instruments: a Scanning Mobility Particle Sizer		

eted: (eted:) eted: are used

eted: Although both analyzers measure the H₂O concentration in hese measurements are not cali-id and can therefore be regarded as informative.

ted: ted:

ted: has been

1006	(SMPS, TSI model 3080, St. Paul, MN, USA; size range: 10-430 nm), an Ultra-		
1007	High Sensitivity Aerosol Spectrometer (UHSAS, DMT, Boulder, CO, USA; size		
1008	range: 60-1000 nm), and an Optical Particle Sizer (OPS, TSI model 3330; size		
1009	range: $0.3-10 \mu$ m). The SMPS provides an electromobility size distribution,		
1010	whereas the UHSAS and OPS measure aerosol light scattering and <u>derive</u> the size		Deleted: estimate
1011	distributions from the particle scattering intensity (Cai et al., 2008). In addition to		
1012	these continuous above-canopy measurements, aerosol size distributions are		Deleted: size
1013	measured with <u>a Wide Range Aerosol Spectrometer (WRAS, Grimm Aerosol</u>		Deleted: the
1014	Technik, Ainring, Germany; size range: 6 nm - 32 μ m) from a separate inlet line		
1015	below the canopy at 3 m height. The WRAS provides electromobility size distri-		
1016	butions in the size range of 6-350 nm and uses particle light scattering for the size		
1017	range above 300 nm. Details of the instrumentation setup are given in Table 2.		
1018	For measuring aerosol light scattering, we use a three-wavelength integrat-		
1019	ing nephelometer (until Feb 2014: TSI model 3563, wavelengths 450, 550, and		
1020	700 nm; after Feb 2014: Ecotech Aurora 3000, wavelengths 450, 525, and		
1021	635 nm) (Anderson et al., 1996; Anderson and Ogren, 1998). Calibration is car-		
1022	ried out using CO ₂ as the high span gas and <u>filtered air</u> as the low span gas. The		Deleted: Argon
1023	zero signals are measured once every twelve hours using filtered ambient air. For		Deleted: Noise level and detection
1024	the 300-s averages applied here, the detection limits, defined as a signal to noise	,	investigated by Anderson et al. (1996). At low particle concentrations and/or
1025	ratio of 2, for scattering coefficients are 0.45, 0.17, and 0.26 Mm^{-1} for 450,	\backslash	short sampling times, random noise dominates the nephelometer uncertain-
1026	550/525, and 700/635 nm, respectively. Since sub-micrometer particles predomi-		ties.
1027	nate in the particle number size distribution at our remote continental site, the sub-		
1028	micron corrections given in Table 4 of Anderson and Ogren (1998) were used for		Deleted: (as opposed to super-micro
1029	the truncation corrections. Bond et al. (2009) suggested that this correction is ac-		corrections
1030	curate to within 2% for a wide range of atmospheric particles, but that the error		
1031	could be as high as 5% for highly absorbing particles.		
1032	A Multi-Angle Absorption Photometer (MAAP, Model 5012, Thermo		Deleted: Carusso /
1033	Electron Group, USA, $\lambda = 670$ nm) and a 7-wavelength Aethalometer (until Jan		Deleted: MAAP
1034	2015 model AE-31, since then model AE-33) (Magee Scientific Company, Berke-		
1035	ley, CA, USA, $\lambda = 370, 470, 520, 590, 660, 880, and 950 nm)$ are used for meas-		Deleted: 615,
1036	uring the light absorption by particles. The MAAP and aethalometer have been		
1037	deployed at ATTO since March 2012. In the MAAP instrument, the optical ab-		
	1 J		

1056 sorption coefficient of aerosol collected on a filter is determined by radiative 1057 transfer calculations, which include multiple scattering effects and absorption en-1058 hancement due to reflections from the filter. A mass absorption efficiency (α_{abs}) of 1059 6.6 m² g⁻¹ was used to convert the MAAP absorption data to equivalent BC (BC_e). 1060 For the Aethalometer, an empirical correction method described by Rizzo et al. 1061 (2011) was used to correct the data for the scattering artifact.

1062Refractory black carbon (rBC) is measured by a 4-channel Single Particle1063Soot Photometer (SP2). The instrument is calibrated every 6 months using mono-1064disperse fullerene aerosol particles for rBC calibration, and polystyrene latex1065(PSL) spheres for scattering calibration. The instrument is sensitive to rBC in the1066size range between 70 and 280 nm. A recent instrumental upgrade provides a1067broader rBC dynamic range (70 - 480 nm).

1068 Regular quality checks are performed with all aerosol sizing instruments 1069 and CPCs, including flow checks, zero tests, and intercomparisons with ambient 1070 aerosol and monodisperse PSL cells. Exemplary plots are already included in the 1071 manuscript (Fig. 26). The MAAP and aethalometer are subject to frequent inter-1072 comparisons with the other optical instruments. For example, two aethalometers and the MAAP were operated side-by-side during an intensive campaign in 1073 1074 Nov/Dec 2014. The BC_e concentrations from the individual instruments agreed 1075 well. The SP2 instrument was carefully intercalibrated with another SP2 during 1076 the GoAmazon-2014 campaign.

1077 Fluorescent biological aerosol particles (FBAP) are measured with the 1078 Wideband Integrated Bioaerosol Spectrometer (WIBS-4<u>A</u>, DMT). The WIBS 1079 utilizes light-induced fluorescence technology to detect biological materials in 1080 real-time based on the presence of fluorophores in the ambient particles (Kaye et al., 2005). A 2x2 excitation (280 nm and 370 nm) - emission (310-400 nm and 1081 1082 420-650 nm) matrix is recorded along with the particle optical size and shape fac-1083 tor. The FBAP concentrations reported in this study correspond to the FL3 chan-1084 nel (excitation at 370 nm and emission in the waveband of 420-650 nm) of the 1085 WIBS instrument (Healy et al., 2014).

Deleted: B

1087 3.6.2 Chemical measurements and hygroscopicity

1088	The submicron non-refractory aerosol composition at a height of 60 m is	
1089	measured using an Aerosol Chemical Speciation Monitor (ACSM, Aerodyne,	
1090	USA) as described by Ng et al. (2011), The ACSM samples aerosol particles in	
1091	the 75-650 nm size range. The non-refractory fraction flash vaporizes on a hot	N
1092	surface $(600^{\circ}C)_{e}$ the evaporated gas phase compounds are ionized by 70 eV elec-	\backslash
1093	tron impact, and their spectra determined using a quadrupole mass spectrometer.	\mathbf{V}
1094	The chemical speciation is determined via deconvolution of the mass spectra ac-	N,
1095	cording to Allan et al. (2004). Mass concentrations of particulate organics, sulfate,	
1096	nitrate, ammonium, and chloride are obtained with detection limits ${<}0.2~\mu g~m^{\text{-}3}$	
1097	for 30 min of signal averaging. Mass calibration of the system is performed using	
1098	size-selected ammonium nitrate and ammonium sulfate aerosol following the pro-	
1099	cedure described by Ng et al. (2011). A collection efficiency (CE) of 1.0 is ap-	
1100	plied (similar to Chen et al., 2015), yielding good agreement with other instru-	
1101	ments.	
1102	PM2.5 sampling was carried out from 7 March to 21 April 2012 on Nucle-	
1103	pore® polycarbonate filters at 80 m on the walk-up tower using a Harvard Im-	
1104	pactor; samples were collected over 48 hour periods. They were analyzed by En-	
1105	ergy-Dispersive X-ray Fluorescence (EDXRF) (MiniPal 4, PANalytical) at 1 mA	<
1106	and 9 kV for low-Z (Na to Cl) elements, and 0.3 mA, 30 kV, and internal Al filter	
1107	for the other elements. Soluble species were determined by Ion Chromatography	
1108	(Dionex, ICS-5000) using conductivity detection for cations and anions and UV-	
1109	VIS for soluble transition metals. For cation separation, <u>a</u> capillary column	
1110	CS12A was used, for anions, an AS19 column, and for transition metals, a CS5A	
1111	column (calibrated to quantify traces of Fe^{2+} and Fe^{3+}).	
1112	Size-resolved cloud condensation nuclei (CCN) measurements are	
1113	performed using a continuous-flow streamwise thermal gradient CCN counter	
1114	(CCNC: model CCN-100, DMT, Boulder, CO, USA), a differential mobility	
1115	analyzer (DMA, Grimm Aerosol Technik, Ainring, Germany) and a condensation	
1116	particle counter (CPC model 5412, Grimm Aerosol Technik). By changing the	
1117	temperature gradient, the supersaturation of the CCNC is set to values between	
1118	0.1% and 1.1%. The completion of a full measurement cycle comprising CCN	/

Deleted: The instrument is a compact version of the widely used Aerodyne Aerosol Mass Spectrometer (Jayne et al., 2000).

Deleted: efficiently

Deleted: through an aerodynamic lens

Deleted: and characterizes the mass and chemical composition of the non-refractory species

Deleted: focused particle beam is transmitted into a detection chamber where the

Deleted: typically at

Deleted: . Subsequently,

Deleted: PANanytical
Deleted: , MiniPal4

Deleted: the

Deleted:), commercially available from Droplet Measurement Technologies, Inc. (

Deleted: Particles with a critical supersaturation equal to or smaller than the prescribed supersaturation (S_{presc}) are activated and form water droplets.

1144	efficiency spectra at 10 different supersaturation levels takes ~ 4 h. The CCNC is		
1145	calibrated frequently as part of the maintenance routines with size selected		
1146	monodisperse ammonium sulfate particles (Rose et al., 2008; Gunthe et al., 2009).		Moved down [5]: The
1147	3.6.3 Microspectroscopic analysis of single aerosol particles		measurement period already covers 12 months and is being continued. The long-term data set provides unique information on the size dependent hygroscopicity of Amazonian aerosol
1148	Aerosol samples for Scanning Electron Microscopy with Electron Probe		particles throughout the seasons. The results will complement and extend the
1149	Micro-analysis (EPMA) were collected on top of the 80 m tower in April 2012.	\backslash	results from previous campaigns (e.g., Gunthe et al., 2009; Rose et al., 2011;
1150	For the collection of size-segregated samples for single particle analysis, we used	$ \rangle$	Levin et al., 2014).
1151	a Battelle impactor with aerodynamic diameter cut-offs at 4, 2, 1 and 0.5 μ m. The		online long-term aerosol measure- ments, modern offline techniques were
1152	particles were collected on TEM grids covered with a thin carbon film (15-25		applied to aerosol samples collected at the ATTO site. In particular, micro-
1153	nm). Aerosol samples for x-ray microspectroscopy were collected using a single	$\ $	spectroscopic techniques, such as Scanning Transmission X-ray Micros-
1154	stage impactor, operated at a flow rate of 1-1.5 L min ⁻¹ and a corresponding 50%		copy with Near-Edge X-ray Absorption Fine Structure Analysis (STXM-
1155	size cut-off of about 500 nm. Particles below this nominal cut-off are not deposit-		Microscopy with Energy Dispersive X- ray spectroscopy (SEM-EDX) were
1156	ed quantitatively; however, a certain fraction is still collected via diffusive deposi-		utilized to shed light on the morpholo- gy and composition of single aerosol
1157	tion, Aerosol particles were collected onto silicon nitride substrates (membrane		particles with nanometer resolution.¶
1158	width 500 µm, membrane thickness 100 nm, Silson Ltd., Northhampton, UK) for		control, Don't adjust space
1159	short sampling periods (~ 20 min), which ensures an thin particle coverage on the		adjust space between Asian text and numbers
1160	substrate <u>appropriate</u> for single particle analysis,	(N III /	Deleted: at the ATTO site
		111	Deleted: (i.e., EPMA)
1161	Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorp-	$\langle \langle \rangle \rangle$	Deleted: ¶
1162	tion Fine Structure Analysis (STXM-NEXAFS) measurements were made at the		Deleted: homemade
1163	Advanced Light Source (ALS, Berkeley, CA, USA) and the Berliner Elektronen-	\ \\\'	Deleted: which was
1164	speicherring-Gesellschaft für Synchrotronstrahlung (BESSY II. Helmholtz-		the STXM analysis
1165	Zentrym Derlin für Materialian und Energia (IIZP) Cormony) A detailed de	1	Deleted: Si ₃ N ₄ ,
1105	Zentrum Bernin für Materianen und Energie (HZB), Germany). A detaned de-		Deleted: appropriately
1166	scription of the instrumentation and techniques can be found elsewhere (Kilcoyne		Deleted: Detailed information can be found in (Pöhlker et al., 2012; 2014)
1167	et al., 2003; Follath et al., 2010; Pöhlker et al., 2012; Pöhlker et al., 2014). <u>Scan-</u>		Deleted: is a synchrotron-based
1168	ning Electron Microscopy with Energy Dispersive X-ray spectroscopy		Deleted: In the soft X-ray regime,
1169	(SEM/EDX) analysis was carried out using a Jeol JSM-6390 SEM equipped with		STXM-NEXAFS is a powerful micro- scopic tool with high spectroscopic
1170	an Oxford Link SATW ultrathin window EDX detector. For EPMA, quantitative		sensitivity for the light elements carbon (C), nitrogen (N) and oxygen (O) as well as a variety of other atmospheri
1171	and qualitative calculations of the particle composition were performed using iter-		cally relevant elements (e.g., K, Ca, Fe,
1172	ative Monte Carlo simulations and hierarchical cluster analysis (Ro et al., 2003) to		the microstructure, mixing state, as well as the chemical composition of
1173	obtain average relative concentrations for each different cluster of similar particle		individual aerosol particles. ¶ The
1174	types.		

Deleted: at the ATTO site
Deleted: (i.e., EPMA)
Deleted: ¶
Deleted: homemade
Deleted: which was
Deleted: and therefore available for the STXM analysis
Deleted: Si ₃ N ₄ ,
Deleted: appropriately
Deleted: . Detailed information can be found in (Pöhlker et al., 2012; 2014)
Deleted: is a synchrotron-based technique and
Deleted: In the soft X-ray regime, STXM-NEXAFS is a powerful micro- scopic tool with high spectroscopic sensitivity for the light elements carbon (C), nitrogen (N) and oxygen (O) as well as a variety of other atmospheri-

1228	3.6.4 Chemical composition of secondary organic aerosol	
1229	Filter sampling for Secondary Organic Aerosol (SOA) analysis was per-	
1230	formed on the walk-up tower at a height of 42 m above ground level. Fine aerosol	
1231	(PM 2.5) was sampled at a flow rate of 2.3 $\text{m}^3 \text{h}^{-1}$ on TFE-coated borosilicate	Deleted:
1232	glass fiber filters (PALLFLEX, T60A20, Pall Life Science, USA). The sampling	
1233	times were 6, 12, or 24 hours. After sampling the filters were stored at 255 K until	
1234	extraction.	
1235	The extraction of the filters was performed with acetonitrile (\geq 99.9%;	
1236	Sigma Aldrich) in a sonication bath at room temperature. The filter extracts were	
1237	evaporated with a gentle nitrogen flow at room temperature in an evaporation unit	
1238	(Reacti Vap 1; Fisher Scientific), and the residue was re-dissolved in 100 μ L	
1239	HPLC grade water (Milli-Q water system, Millipore, Bedford, USA) / acetonitrile	
1240	$(\geq 99.9\%$; Sigma Aldrich) mixture (8:2).	
1241	The separation and analysis was performed with an UHPLC-system (Di-	
1242	onex UltiMate 3000) coupled to a Q Exactive electrospray ionization Orbitrap	Deleted: series, auto sampler, gradi-
1243	mass spectrometer (Thermo Scientific). A Hypersil Gold column (50 mm x 2.1	en punp and degasser
1244	mm, 1.9 μ m particle size, 175 Å pore size; Thermo Scientific) was used. The elu-	
1245	ents were HPLC grade water (Milli-Q water system, Millipore, Bedford, USA)	
1246	with 0.01% formic acid and 2% acetonitrile (eluent A) and acetonitrile with 2%	
1247	HPLC grade water (eluent B). The flow rate of the mobile phase was 0.5 mL	
1248	min ⁻¹ . The column was held at a constant temperature of 298 K in the column ov-	Deleted:
1249	en. The MS was operated with an auxiliary gas flow rate of 15 (instrument specif-	
1250	ic arbitrary units, AU), a sheath gas flow rate of 30 AU, a capillary temperature of	
1251	623 K, and a spray voltage of 3000 V. The MS was operated in the negative ion	
1252	mode, the resolution was 70000, and the measured mass range was m/z 80-350.	
1253		

Deleted: Results and Discussion

4 <u>Ongoing Research and Initial Results</u>

4.1 Ecological studies

1260	4.1.1 Tree species richness, composition, turnover, and aboveground	
1261	wood biomass	
1262	In total, 7293 trees \geq 10 cm DBH were recorded in the 12, 1-ha inventoried	Deleted: inventoried
1263	plots, which included 60 families, 206 genera, and 417 species. Tree species rich-	
1264	ness was highest in the terra firme forest on the plateau, followed by the terra	
1265	firme forest on the fluvial terrace, the campinarana, and the seasonally flooded	
1266	igapó (Table 3). Floristic similarity (Bray-Curtis index) within plots of the same	
1267	forest types ranged from 45-65%, but was highly variable between different forest	
1268	types (2-54%). Accordingly, the species turnover across the investigated forest	
1269	types was high, especially when seasonally inundated forest plots were compared	
1270	to their non-flooded counterparts (Fig. 4). AGWB varied considerably between	
1271	the studied forest ecosystems as a result of varying tree heights, DBH, and basal	
1272	area (Table 3). Carbon stocks in the AGWB increased from 74 ± 12 Mg ha ⁻¹ in the	
1273	igapó forest to 79 \pm 26 Mg ha ⁻¹ in the campina/campinarana, and 101 \pm 13 Mg	
1274	ha ⁻¹ on the ancient fluvial terrace, reaching maximum values of 170 ± 13 Mg ha ⁻¹ in	
1275	the terra firme forests. Tree species richness correlated significantly with carbon	
1276	stocks in AGWB (n=12; $r^2 = 0.61$; p<0.01).	
1277	The floristic data indicate that the rain forests at the ATTO site combine	
1278	high alpha diversity with high beta diversity at a small geographic scale, where	
1279	tree species segregate mainly due to contrasting local edaphic conditions (e.g.,	
1280	Tuomisto et al., 2003; ter Steege et al., 2013; Wittmann et al., 2013). Biomass and	
1281	carbon stocks vary considerably between habitats, and show low values on flood-	Deleted: C-
1282	ed and nutrient-poor soils and high values on well-drained upland soils, as previ-	Deleted: up
1283	ously reported elsewhere for other Amazonian regions (e.g., Chave et al., 2005;	Deleted: up
1284	Malhi et al., 2006; Schöngart et al., 2010).	
1285	4.1.2 Cryptogamic covers	
1286	We are investigating the potential of cryptogamic covers to serve as a	Deleted: e
1287	source of bioaerosol particles and chemical compounds. Cryptogamic covers	

comprise photoautotrophic communities of cyanobacteria, algae, lichens, and bryophytes in varying proportions, which may also host fungi, other bacteria, and
archaea (Elbert et al., 2012). A common feature of all these organism groups is
their poikilohydric nature, meaning that their moisture status follows the external
water conditions. Thus the organisms dry out under dry conditions, being reactivated again upon rain, fog, or condensation.

1301 Since September 2014, we have been conducting long-term measurements 1302 to monitor the activity patterns of cryptogamic covers at four different canopy 1303 heights at 10-min intervals, during which we measure temperature and water con-1304 tent within and light intensities directly on top of bio-crusts growing on the trunk 1305 of a tree. First analyses of the microclimate data indicate that microorganisms in 1306 the upper stem region of the trees are activated by fog or dewfall in the early morning hours, often coinciding with an aerosol particle burst in the accumulation 1307 1308 mode. Particle measurements conducted on isolated organisms also show a signif-1309 icant release of accumulation mode particles by wet and thus active organisms, 1310 e.g., fungi belonging to the phylum of Basidiomycota. Thus, we have the first 1311 clear indications that cryptogamic covers may play a key role in the enigmatic 1312 bioaerosol occurrence frequently observed at the ATTO site.

1313

4.1.3 Upper Canopy Leaf Phenology

1314 A single annual leaf flush was seen in most upper canopy crowns, concen-1315 trated in the five driest months (July to November) (Fig. 5). Consequently, mature leaves with high light-use efficiency will be most abundant in the late dry season 1316 1317 and early wet season. Massive leaf renewal in the dry season on the ATTO plateau 1318 may drive seasonality of photosynthesis and of photosynthetic capacity at the 1319 landscape scale, as has been indicated at the Santarém and the LBA km34 eddy 1320 flux tower sites in the Central Amazon (Doughty and Goulden, 2008; Restrepo-1321 Coupe et al., 2013).

1322The lack of a near-infrared (NIR) band in our camera precludes the direct1323measurement of leaf amount, but the RGB band space discriminates crown phe-1324nostages whose relative NIR reflectances are known. Gradual leaf attrition over1325the wet season, when leaf replacement is low, followed by early dry season pre-1326flush abscission and the emergence of young unexpanded leaves, should all lead

Formatted: Heading 3, Right: 0 cm

Formatted: Indent: First line: 1.25 cm, Right: -0 cm

to a lower landscape-scale amount of fully expanded leaves around lune or July
Completion of leaf flushing in most crowns by the late dry season should lead to a
maximum amount of fully expanded leaves in the late dry and early wet seasons.
This is consistent with the seasonal pattern of Central Amazon leaf amount de-
ected with the Enhanced Vegetation Index from the MODIS orbital sensor (e.g.,
Huete et al., 2006) and counters recent critiques of detectability of seasonal
hange in Amazon forest greenness (Galvão et al., 2011; Morton et al., 2014).
4.1.4 Soil Characterization
Soils in the terra firme plateaus were classified as Ferralsol, which are an-
ient, highly weathered, and well-drained soils frequently occurring in geological-
ancient surfaces (Chauvel et al., 1987). Soils at the fluvial terraces were classi-
ed as Alisol, which show a more recent pedogenetic status when compared to the
ighly weathered Ferralsols at the plateaus. Due to their lower weathering degree,
oils from the terrace have a greater capacity to supply nutrients, with higher total
and higher total reserve bases. The soil carbon stocks varied from 129±7 Mg
a^{-1} on the terrace to 164±7 Mg ha ⁻¹ on the plateau, indicating that belowground C
tocks are of similar magnitude to the aboveground carbon stocks in the forest
Table 4). Differences of belowground carbon stocks between terrace and plateau
are mainly associated with a higher clay content of the plateau soils.
Soil physical constraints are more frequent on the terraces, which show
nigher bulk density values (Fig. 6) and therefore increased soil compaction. Some
of these terrace soils also show signs of anoxia (mottling) in deeper layers. Such
mpeditive conditions may have an influence on forest structure (Quesada et al.,
2012; Emilio et al., 2014) and dynamics (Cintra et al., 2013), thereby possibly
restricting tree height or even tree individual biomass storage (Martins et al.,
2015) <u>.</u>
4.2 Meteorological conditions and fluxes

An overview of the climatic characteristics of the Amazon Basin has been presented by Nobre et al. (2009). The meteorological setting of the ATTO site has been described in Section 2.1, and the basic meteorological measurements (wind, temperature, humidity, radiation, etc.) at the site reflect the regional climate and Formatted: Heading 3, Indent: First line: 0 cm

Deleted: <#>The activation patterns of cryptogamic covers upon dewfall will be of particular interest to check for correlation with patterns of particle release. In on-site measurements cryptogamic covers are analyzed for their release of biogenic aerosols (e.g., spores). These particles will be investigated and compared with results from offline and online aerosol measurements at the ATTO site.¶ 1377 micrometeorological conditions influenced by local topography and vegetation. In Deleted: the the following sections we present overviews of meteorological observations that 1378 1379 characterize the site and initial results of micrometeorological investigations at 1380 ATTO. Since the quantification of the exchange of trace gases and aerosols be-1381 tween the rain forest and the atmosphere is a key objective of the ATTO program, 1382 the study of the structure and behavior of the atmospheric boundary layer is a cen-1383 tral focus here. 1384 4.2.1 Wind speed and direction above the forest canopy 1385 The wind roses for the dry season (15 June - 30 Nov) and the wet season 1386 (1 Dec - 14 June) (based on half-hourly averages of wind speed and direction measured at 81 m a.g.l. for the period from 18 Oct 2012 to 23 July 2014; Fig. 7) 1387 Deleted: 5 1388 indicate the dominance of easterly trade wind flows at the measurement site. A slight shift of the major wind direction towards ENE is observed during the wet 1389 1390 season, whereas flows are mainly from the east during the dry season. This sea-Deleted: while 1391 sonality can be explained by the inter-annual north-south migration of the Inter-1392 tropical Convergence Zone (ITCZ), which also governs the amount of rainfall (see 1393 Poveda et al., 2006). The wind roses show a slight diurnal variation with small Deleted: variation of the wind roses between daytime and nighttime was insignificant. 1394 contributions from the north, west and south during nighttime, when the nocturnal 1395 boundary layer is decoupled, in both seasons. In contrast, during daytime the wind 1396 blows nearly all the time from the east (dry season) and northeast (wet season), 1397 with much higher wind speeds. Maximal wind speeds observed at the site are about 9 m s⁻¹. The influence of river and/or lake breeze systems caused by the Rio 1398 1399 Uatumã (~12 km distance) is of minor importance and an effect from Lake Bal-Deleted: or 1400 bina (~50 km distance) or other thermally driven mesoscale circulations could not Deleted: and be detected. This shows that the sampled air masses mainly have their origin with-1401 **Deleted:** is of minor importance 1402 in the fetch of the green ocean extending several hundred kilometers to the east of 1403 the site. 1404 4.2.2 Temperature, precipitation, and radiation 1405 As is typical for the central Amazon Basin, the mean air temperature does

not show strong variations at seasonal timescales due to the high incident solarradiation throughout the year (Nobre et al., 2009). Climatologically in the Manaus

1417	region, the highest temperatures are observed during the dry season, with a Sep-
1418	tember monthly mean of 27.5 $^{\circ}$ C, whereas the lowest temperatures prevail in the
1419	rainy season, with a monthly mean of 25.9 °C in March.

1420 Vertical profiles of temperature show clear diurnal cycles driven by radia-1421 tive heating of the canopy during the day and cooling of the canopy and the forest floor during the night (Fig. 8). Therefore, both temperature minima and maxima 1422 1423 are observed at the canopy top during both seasons. A second temperature mini-1424 mum during night can be observed at the forest floor during the dry and wet sea-1425 son. During the day warm air from above the canopy is transported into the forest. 1426 Minimum temperatures at the canopy top are around 22.5 °C during both seasons, 1427 whereas daytime maxima are around 28 °C during the wet season and may reach 1428 slightly above 30 °C in the dry season.

1429 Rainfall in the Manaus region shows a pronounced seasonal variation,

reaching the highest amounts in March (335.4 mm) and the lowest amounts in

1431 August (47.3 mm), for an <u>average</u> annual total of 2307.4 mm at the INMET sta-

1432 tion in Manaus for the standard reference period 1961 to 1990

1433 (www.inmet.gov.br). Precipitation at the ATTO site follows this seasonal cycle

1434 with maximum values around March and minimum values in August and Septem-

1435 | ber (Fig. 9). The interannual variability appears to be high <u>at all times of the year</u>,

but especially in the transition to the rainy season, a fact that has also been evident

in the data from the years 1981 to 2010 at the Manaus station (Fernandes, 2014).

1438 Therefore, the large deviations from the regional mean during October to January

and also in April, when the ATTO values from the years 2012-2014 differ sub-

stantially from the long term mean of Manaus, are likely the result of interannualvariability.

Overall, however, the precipitation patterns at the ATTO site are in good agreement with its position in the Central Amazon, where the months between February and May are the wettest ones. In this period, the ITCZ reaches its southernmost position and acts as a strong driver <u>of convective cloud formation at the</u> equatorial trough. Due to the interaction of trade winds and sea breeze at the northeast Brazilian coastline, the ITCZ also takes part in the formation of instability lines that enter the continent and regenerate during their westerly propagation Deleted: radiative

Deleted: 6

Deleted: 7

Deleted: in

1453 (Greco et al., 1990). In this way, they account for substantial amounts of precipita-1454 tion. After this period, the ITCZ shifts to the northern hemisphere, accompanying 1455 the movement of the zenith position of the sun. This leads to less precipitation at 1456 the ATTO site, with the driest months being between July and September, when 1457 precipitation is formed mostly by local convection. In the following months, the 1458 amount of precipitation increases again, which coincides with the formation of a 1459 cloud band in a NW/SE direction that is linked to convection in the Amazon due to the South Atlantic Convergence Zone (SACZ) (Figueroa and Nobre, 1990; Ro-1460 1461 cha et al., 2009; Santos and Buchmann, 2010). 1462 The radiation balance at ATTO as well as the albedo presents a clear dif-1463 ference between the wet and the dry seasons. Some episodes when the incident 1464 solar radiation exceeds the top-of-atmosphere radiation have been observed for the ATTO data. They were more frequent during the wet season, probably due to 1465

1466 the effect of cloud gap modulation that intensifies, the radiation received at the

- 1467 surface by reflection and scattering.
- 1468 4.2.3 Roughness sublayer measurements
- 1469 The measurement of turbulent fluxes over tall forest canopies very often 1470 implies that these measurements are made in the so-called roughness sublayer 1471 (RSL). It is usually assumed that the RSL extends to 2 or 3 times the height of the roughness obstacles, h_0 (Williams et al., 2007). The roughness sublayer is consid-1472 1473 ered to be a part of the surface sublayer of the atmospheric boundary layer, but it 1474 is too close to the roughness elements for Monin-Obukhov Similarity Theory 1475 (MOST) to hold. Some progress in the parameterization of the RSL has been 1476 made in terms of applying correction factors to the traditional similarity functions 1477 of the surface layer (see for example, Mölder et al., 1999, and references therein). 1478 However, the universality of such procedures remains unknown. 1479
- 1479 In this section, we briefly show strong evidence that a simple adjustment 1480 factor that depends on the factor z/z_* (where z is the height of measurement and 1481 z_* is the height of the RSL), as employed by Mölder et al. (1999), is not able to 1482 collapse the "variance method" dimensionless variables

1483
$$\phi_w(\zeta) \equiv \frac{\sigma_w}{u_*} \tag{1}$$

Deleted:

36

)

1489

and

1490
$$\phi_a(\zeta) \equiv \frac{\sigma_a}{a_*},\tag{2}$$

1491 where σ_w is the standard deviation of the vertical velocity, u_* is the friction veloc-1492 ity, σ_a is the standard deviation of a scalar, and a_* is its turbulent scale (see (3) and (4) below). In (1) and (2), ζ is the Obukhov length with a zero-plane dis-1493 1494 placement height calculated as $d_0 = 2h_0/3$, $h_0 = 40$ m. 1495 We analyzed measurements collected during April 2012 at the 39.5 m lev-1496 el, which is right at the height of the tree tops, in terms of the turbulent scales $\overline{u'w'} \equiv -u_*^2$ 1497 (3) 1498 and $|\overline{w'a'}| \equiv u_*a_*.$ 1499 (4)1500 We only analyzed measurements under unstable conditions, and considered only 1501 cases where the sensible and Jatent heat fluxes are both positive (directed upwards) and the CO_2 flux is negative (directed downwards). In (4), the absolute 1502 value is used, so that a_* is always positive. The scalar *a* represents virtual temper-1503 1504 ature θ_{v} (measured by the sonic anemometer), specific humidity q, and CO₂ mix-1505 ing ratio c. 1506 The analysis is made in terms of the dimensionless standard deviation 1507 functions, $\phi_w(\zeta)$ and $\phi_a(\zeta)$, defined above. The overall results for vertical veloci-1508 ty, virtual temperature, and CO₂ concentration are shown in Fig. 10. The solid 1509 lines in the figure give representative functions found in the literature for the sur-1510 face layer well above the roughness sublayer (see, for example, Dias et al., 2009). 1511 Similar figures were drawn for specific times of day, namely 0700-0900, 1512 0900-1100, 1100-1300, 1300-1500 and 1500-1700 LT, in an attempt to identify 1513 periods of the day when better agreement (or even a systematic departure, for ex-1514 ample by a constant vertical shift) with the surface-layer curves could be identi-1515 fied. Temperature and humidity are somewhat better behaved in this case, but not 1516 CO_2 , for reasons that are not clear. Because no conclusive explanation can be 1517 found, we do not show these analyses here.

Deleted: heat flux is positive (directed upwards), Deleted: the Deleted: is

 Deleted: O
Deleted: s
Deleted: 8-
 Deleted: s

Finally, we tried to apply some concepts recently developed by Cancelli et al. (2012) to relate the applicability of MOST to the strength of the surface forcing. Cancelli et al. (2012) found that the applicability of MOST can be well predicted by their "surface flux number",

1530
$$Sf_a = \frac{|\overline{w'a'}|(z-d_0)}{\nu_a \Delta \overline{a}},$$
 (5)

1531 where v_a is the molecular diffusivity of scalar *a* in the air, and $\Delta \overline{a}$ is the gradient 1532 of its mean concentration between the surface and the measurement height.

1533 In our case, there is no easy way to obtain $\Delta \overline{a}$, so instead we use

1534
$$Sf_a = \frac{|\overline{w'a'}|(z-d_0)}{v_a \sigma_a}.$$
 (6)

1535 As a measure of the applicability of MOST, we use the absolute value of the difference between the observed value of $\phi_a(\zeta)$ and its reference value for the sur-1536 1537 face layer, as used by Dias et al. (2009), and shown by the solid lines in Fig. 10. 1538 The results are shown in Fig. 11. A relatively stronger forcing is clearly related to 1539 a behavior that is closer to that expected by MOST for both temperature and hu-1540 midity, but not for CO₂. This suggests that CO₂ presents even greater challenges 1541 for our proper understanding of its turbulent transport in the roughness sublayer 1542 over the Amazon Forest.

1543 Ultimately, the lack of conformity to MOST found in these investigations 1544 (a fact that has been generally observed in the roughness sublayer over other for-1545 ests) implies that scalar fluxes over the Amazon forest derived from standard 1546 models, which use MOST, are bound to have larger errors here than over lower 1547 vegetation, such as grass or crops. We can expect this to affect any chemical spe-1548 cies, and therefore the implications for ATTO are quite wide-ranging. On the oth-1549 er hand, once the 325-m tall tower is instrumented and operational, a much better 1550 picture will emerge on the extent of the roughness sublayer and the best strategies 1551 to model scalar fluxes over the forest.

Deleted: s
Deleted: 8-

Deleted: Monin-Obukhov Similarity Theory

4.2.4 Nighttime vertical coupling mechanisms between the canopy andthe atmosphere

1558 During daytime, intense turbulent activity provides an effective and vigor-1559 ous coupling between the canopy layer and the atmosphere above it. As a conse-1560 quence, vertical profiles of chemical species do not commonly show abrupt varia-1561 tions induced by episodes of intense vertical flux divergence. Accordingly, scalar 1562 fluxes between the canopy and the atmosphere are relatively well-behaved during daytime, so that their inference from the vertical profiles of mean quantities can 1563 1564 be achieved using established similarity relationships. At night, on the other hand, 1565 the reduced turbulence intensity often causes the canopy to decouple from the air above it (Fitzjarrald and Moore, 1990; Betts et al., 2009; van Gorsel et al., 2011; 1566 1567 Oliveira et al., 2013). In these circumstances, vertical fluxes converge to shallow layers in which the scalars may accumulate intensely over short time periods. In 1568 1569 the absence of convective turbulence, which is the main factor for daytime transport, other physical processes become relevant in the stable boundary layer 1570 1571 (SBL), such as drainage flow (Sun et al., 2004), vertical divergence of radiation (Drüe and Heinemann, 2007; Hoch et al., 2007), global intermittency (Mahrt, 1572 1573 1999), atmosphere-surface interactions (Steeneveld et al., 2008), and gravity 1574 waves (Nappo, 1991; Brown and Wood, 2003; Zeri and Sa, 2011). 1575 In this section, we discuss the role of intermittent turbulent events of vari-1576 able intensity and periodicity, which provide episodic connection between the 1577 canopy and the atmosphere and can induce oscillatory behavior in the nocturnal boundary layer (Van de Wiel et al., 2002). They are characterized by brief epi-1578 1579 sodes of turbulence with intervening periods of relatively weak or unmeasurably 1580 small fluctuations (Mahrt, 1999). In some cases, such events may comprise almost the entirety of the scalar fluxes during a given night. The effects of gravity waves 1581

Nocturnal decoupling occurs rather frequently at the ATTO site, usually
punctuated by intermittent mixing episodes, in agreement with previous studies
made over the Amazon forest (Fitzjarrald and Moore, 1990; Ramos et al., 2004).
During a typical decoupled, intermittent night, the horizontal wind components
are weak in magnitude and highly variable temporally, often switching signs in an

1582

are discussed in the next section.

Moved (insertion) [4]

Moved (insertion) [3] Deleted: While

Deleted: , this driving mechanism decays after nightfall. As a result

Field Code Changed

Deleted: GWs

Field Code Changed

Moved up [4]: In these circumvertical fluxes converge to shallow layers in which the scalars may accumulate intensely over short time periods.

Deleted: In these circumstances, vertical fluxes converge to shallow layers in which the scalars may accumulate intensely over short time periods. FurthermoreIn these circumstar 1602 unpredictable manner (Fig. 12). As a consequence, it is common that winds from 1603 all possible directions occur in such a night. The example from the ATTO site 1604 indicates that despite such a large variability, both horizontal wind components are generally in phase above the canopy, from the 42-m to the 80-m level. Vertical 1605 1606 velocity at the 42-m level is highly intermittent, with various turbulent events of 1607 variable intensity scattered throughout the night. While being less turbulent, the 1608 80-m level is also less intermittent, presenting a more continuous behavior. The relevance of the intermittent events to characterize canopy-atmosphere exchange 1609 1610 becomes clear when one looks at the fluxes of the scalars, such as CO₂ (Fig. 12, 1611 bottom panel). During this night, the majority of the exchange just above the canopy (42 m) happened during two specific events, at around 02:00 and 03:30 LT. 1612

1613 A proper understanding of nocturnal vertical profiles and fluxes of scalars above any forest canopy depends, therefore, on explaining the atmospheric con-1614 1615 trols on intermittent turbulence at canopy level. In the Amazon forest, this neces-1616 sity is enhanced, as there are indications that turbulence is more intermittent here, 1617 possibly as a consequence of flow instabilities generated by the wind profile at canopy level (Ramos et al., 2004). This is corroborated by early observations at 1618 1619 the ATTO site, which indicated decoupling and intermittency occurring during 1620 more than half of the nights.

1621 It is not yet clear what triggers these intermittent events. In general, previ-1622 ous studies indicate that the more intense events are generated above the nocturnal 1623 boundary layer, propagating from above (Sun et al., 2002; Sun et al., 2004). On 1624 the other hand, less intense events that occur in the decoupled state have been 1625 characterized as natural modes of turbulence variability generated near the surface 1626 (Costa et al., 2011). At ATTO, the occurrence of the highest intensity at 42 m indicates that intermittency is generated at the canopy level. Is it possible, then, to 1627 1628 identify the mechanisms that trigger their occurrence?

Some evidence can be gathered from a spectral decomposition of the turbulent flow at the different observation levels. Although the horizontal velocities in Fig. 12 are highly in phase between 42 and 80 m, it is clear from this plot that the wind speed is generally higher at 80 m, while there are more turbulent fluctuations at 42 m. When these signals are decomposed in terms of their time scale to Deleted: t

Deleted: the

1636 provide a turbulent kinetic energy (TKE) spectrum (Acevedo et al., 2014), the

1637 more intense turbulence at 42 m appears as a peak at time scales just greater than

1638 10 s (Fig. 13). At longer time scales, on the other hand, there is a sharp energy

1640

1639 increase at 80 m, making this the most energetic level for scales larger than 100 s.

This low-frequency flow at 80 m is characterized by the large wind direction vari-

ability apparent in Fig. 12. These are non-turbulent flow patterns that have been recently classified as "submeso" (Mahrt, 2009). Submeso flow has low intensity, with large and apparently unpredictable temporal variability. It is usually present in the atmospheric boundary layer, becoming dominant in conditions when the turbulent scales are highly reduced, such as in the decoupled nocturnal boundary layer.

1647 Evidence from ATTO indicates that it is possible to associate the intermit-1648 tent events at canopy level with the mean wind shear above the canopy. In Figure 1649 14, it is evident that the two intense events at 42 m, around 21:30 and 02:00 LT, 1650 are triggered by episodes of intense wind shear between 42 and 80 m. In condi-1651 tions where the 80-m wind field is dominated by submeso processes, such as in 1652 the examples in Figs. 12 and 14, it is this portion of the flow that determines the 1653 occurrence of intense wind shear episodes. Furthermore, it is clear from these ex-1654 amples that flow patterns at levels as high as 80 m exert important controls on the exchange of scalars at canopy level. Questions such as the height variation of 1655 1656 submeso flow have yet to be answered. Tall tower observations, such as those 1657 planned to be carried on at ATTO, are very important to provide the data for this 1658 kind of analysis and to deepen the understanding of exchange processes between the canopy and the atmosphere during the calm nights that are common in the 1659 1660 Amazon forest.

4.2.5 Orographically induced gravity waves in the stable boundary layerabove the Amazon forest

Gravity waves (GWs) may occur in the forest boundary layer during relatively calm nights. Depending on the magnitude of the turbulent drag, they influence the exchange processes that take place in the stable boundary layer of the atmosphere (Steeneveld et al., 2009). Internal gravity waves can be generated by several forcing mechanisms, including sudden changes of surface roughness, toDeleted: Deleted: Such a

Deleted: at

Moved up [3]: While convective turbulence is the main factor for daytime transport, this driving mechanism decays after nightfall. As a result, other physical processes become relevant in the stable boundary layer (SBL), such as drainage flow (Sun et al., 2004), vertical divergence of radiation (Drüe and Heinemann, 2007; Hoch et al., 2007), global intermittency (Mahrt, 1999), atmosphere-surface interactions (Steeneveld et al., 2008), and GWs (Nappo, 1991; Brown and Wood, 2003; Zeri and Sa, 2011). pography, convection, terrain undulations, etc. (Nappo, 2002). These features can
reallocate energy and momentum and are significant in determining atmospheric
vertical structure and the coupling of mesoscale to microscale phenomena
(Steeneveld et al., 2008; Steeneveld et al., 2009). Chimonas and Nappo (1989)
showed that under typical conditions of the planetary boundary layer, GWs can
interact with the mean flow resulting in turbulence at unexpected altitudes.

1695 Fast response data of vertical wind velocity, w, and temperature, T, meas-1696 ured in the nocturnal boundary layer (NBL) at the ATTO site were analyzed to 1697 detect the occurrence of GWs, and to identify under which situations they would 1698 be generated by terrain undulations, using the methodology proposed by 1699 Steeneveld et al. (2009). One of the goals of this study is to investigate the struc-1700 ture of turbulence associated with the conditions under which GWs would be 1701 forced by ground undulations (class I) in contrast to those under which GWs 1702 would be expected to be forced by other mechanisms (class II). To reach this goal, 1703 the methodology of Steeneveld et al. (2009), based on Chimonas and Nappo 1704 (1989), has been used to define whether a specific measurement belongs to class I 1705 or class II, based on the condition:

$$L_{\rm s}^2 = N^2 / U^2 - U'' / U > k^2$$

where k is the wave number associated with the ground undulations, L is the
Scorer parameter, U is the mean wind speed, and U" is second derivative of the
wind speed in relation to the height, z, computed as

$$1710 U'' = \partial^2 U / \partial z^2 (8)$$

1711 N is the Brunt-Väisälä frequency, defined as:

1712
$$N = \sqrt{g\Delta_z \theta / \theta}$$
(9)

1713 where g is the gravity acceleration and $\Delta_z \theta / \theta$ is the dimensionless gradient of the 1714 virtual potential temperature.

Two kinds of data were used: topographic and meteorological. A digital topographic image of the region surrounding the experimental site (Fig. 15a) was used to analyze the features of surface undulations and their scales of occurrence, as well as the space-scale analysis by complex Morlet wavelet transforms (Farge, Deleted: gravity waves (Deleted:)

Deleted: and

(7)

1722	1992; Thomas and Foken, 2005). Local geomorphometric variables were derived		
1723	from the Shuttle Radar Topographic Mission (SRTM) data (Valeriano, 2008).		Deleted: SRTM (
1724	These data were refined to 1 arcsecond (~30 m) from the original spatial resolu-		Deleted:)
1725	tion of 3 arcsecond (~90 m) and are available on the site		
1726	www.dsr.inpe.br/topodata/dados.php		Deleted:
1727	Time series of the vertical wind velocity and of the fast response tempera-		
1728	ture data provided by a sonic anemometer and thermometer were used to detect		
1729	GW events at a height of 81 m above the ground. The sampling rate of the meas-		Deleted: s
1730	ured turbulence data was 10 Hz. Wind speed and temperature vertical profiles		
1731	were provided by cup anemometer and thermometer measurements, respectively,		
1732	with a sampling rate of 60 Hz for both, making it possible to compute the Brunt-		
1733	Väisälä frequency, the vertical gradients of wind velocity, and the Scorer parame-		
1734	ter for GW classification (Steeneveld et al., 2009). Data from five nights were		Deleted: have been
1735	analyzed, consisting of 120 files of 30 minutes each between Julian days 42 and		Deleted: number
1736	46 of the year 2012, representing the first observational data available from the		
1737	ATTO site. The analyses were carried out for the time between 18:00 and 06:00		
1738	LT for each night with available data (Fig. 15).		Deleted: (local time)
1739	The black points on the arrows in Fig. 15b represent the GW events that		Deleted: ,
1757	The black points on the <u>minors</u> in Fig. 166 represent the OW events that	$\overline{}$	Deleted: Figure 15a shows a topo- graphic image of the experimental site
1740	were induced by the topography of the terrain whereas the gray points represent	N	with colors ranging from blue to red
1740 1741	were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain or graphy. The results show that a	$\backslash \backslash$	with colors ranging from blue to red representing the altimetry values in meters above sea level.
1740 1741 1742	were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes
1740 1741 1742	were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been
1740 1741 1742 1743	were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have
1740 1741 1742 1743 1744	were induced by the topography of the terrain, whereas the gray points represent GW events that <u>were not generated by terrain orography</u> . The results show that a considerable fraction of the analyzed situations represent <u>GWs induced by terrain</u> undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO site</u> , as it indicates that some mixing characteristics		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been
1740 1741 1742 1743 1744 1745	were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO</u> site, as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undula-		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: Latumã
1740 1741 1742 1743 1744 1745 1746	were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO site</u> , as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undula- tions and therefore change with the wind direction.		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: s Deleted: Uatumã
1740 1741 1742 1743 1744 1745 1746 1747	 were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO site</u>, as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undulations and therefore change with the wind direction. 4.2.6 Coherent structure time scale above the ATTO site 		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: s Deleted: Uatumã
1740 1741 1742 1743 1744 1745 1746 1747 1748	 were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO site</u>, as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undulations and therefore change with the wind direction. 4.2.6 Coherent structure time scale above the ATTO site Coherent structures (CSs) are a ubiquitous phenomenon in the turbulent 		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: s Deleted: Uatumã
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749	 were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO site</u>, as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undulations and therefore change with the wind direction. 4.2.6 Coherent structure time scale above the ATTO site Coherent structures (CSs) are a ubiquitous phenomenon in the turbulent atmospheric flow, particularly over forests (Hussain, 1986). They occur in the 		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: s Deleted: Uatumã
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750	 were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the <u>ATTO site</u>, as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undulations and therefore change with the wind direction. 4.2.6 Coherent structure time scale above the ATTO site Coherent structures (CSs) are a ubiquitous phenomenon in the turbulent atmospheric flow, particularly over forests (Hussain, 1986). They occur in the roughness sub-layer immediately above the plant canopy, where the CSs of the 		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: uatumã
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751	 were induced by the topography of the terrain, whereas the gray points represent GW events that were not generated by terrain orography. The results show that a considerable fraction of the analyzed situations represent GWs induced by terrain undulations. This finding is very important for the environmental studies that are being carried out at the ATTO site, as it indicates that some mixing characteristics of the nocturnal boundary layer depend on the characteristics of terrain undulations and therefore change with the wind direction. 4.2.6 Coherent structure time scale above the ATTO site Coherent structures (CSs) are a ubiquitous phenomenon in the turbulent atmospheric flow, particularly over forests (Hussain, 1986). They occur in the roughness sub-layer immediately above the plant canopy, where the CSs of the scalar signals show a "ramp-like" shape associated with the two-phase movement 		with colors ranging from blue to red representing the altimetry values in meters above sea level. Deleted: axes Deleted: have been Deleted: have Deleted: been Deleted: s Deleted: s Deleted: Uatumã

1753 play an important role in biosphere-atmosphere exchange processes (Gao and Li,

1773	1993; Serafimovich et al., 2011). There is some consensus that CSs are associated
1774	with turbulent flows, although there is no full agreement on the percentage of the
1775	turbulent fluxes associated with them (Lu and Fitzjarrald, 1994; Thomas and
1776	Foken, 2007; Foken et al., 2012). There has been much research on the dominant
1777	scale of occurrence of CSs (Collineau and Brunet, 1993; Thomas and Foken,
1778	2005) and the physical mechanisms responsible for their generation (Paw U et al.,
1779	1992; Raupach et al., 1996; McNaughton and Brunet, 2002; Campanharo et al.,
1780	2008; Dias Júnior et al., 2013). Considerable research has also been devoted to the
1781	detection of CSs (Collineau and Brunet, 1993; Krusche and Oliveira, 2004) and
1782	the dissimilarity between CSs associated with the transport of momentum and
1783	scalars (Li and Bou-Zeid, 2011). However, many aspects of their occurrence are
1784	still poorly known, particularly: i) their vertical variability (Lohou et al., 2000); ii)
1785	the manifestations of their interaction with gravity waves (Sorbjan and Czerwin-
1786	ska, 2013); iii) the influence of surface heterogeneity on their features; iv) aspects
1787	of their numerical simulation (Patton, 1997; Bou-Zeid et al., 2004; Dupont and
1788	Brunet, 2009; Wan and Porte-Agel, 2011), particularly in the nocturnal boundary
1789	layer (Durden et al., 2013; Zilitinkevich et al., 2013), and v) implications of the
1790	existence of CSs for the chemistry of the atmosphere (Steiner et al., 2011; Foken
1791	et al., 2012).

1792 A study on the structure of atmospheric turbulence was performed at the 1793 ATTO site under daytime conditions, with the aim of contributing to the detection 1794 of CSs and developing a better understanding of their vertical and temporal varia-1795 bility over a very uneven terrain covered by primary forest in central Amazonia. 1796 Wind, temperature, and humidity data were obtained using sonic anemometers 1797 and gas analyzers, installed at 42 m and 81 m above ground, as specified in the 1798 methods section. The scales of coherent structures were determined following the 1799 methodology proposed by Thomas and Foken (2005). Figure 16 shows the aver-1800 age duration of CSs for horizontal and vertical wind velocities (u, w), temperature 1801 (T), and humidity (q). For the data at 81 m height, the CS of u and w exhibit temporal scales around 46 s and 29 s, respectively. For the two scalars, T and q, the 1802 time scales of the CS are about 44 s and 55 s, respectively. For the height of 42 m 1803 1804 the coherent structure time scales of u, w, T, and q were approximately equal to 33 s, 26 s, 30 s, and 31 s, respectively. 1805

Deleted:

Deleted: among

1808	The results revealed that the CS time scale of the vertical wind velocity is	
1809	often smaller than the scales of the horizontal velocity and the scalar properties,	
1810	for both levels. This can be explained by the fact that the scalar spectra exhibit	
1811	greater similarity to the spectra of the horizontal velocity than to the vertical ve-	
1812	locity for low frequencies. Another interesting feature is that the temporal scale of	
1813	the $CS_{\underline{s}}$ for both the wind velocity and scalars are considerably shorter for the data	
1814	measured at 81 m compared with those at 42 m, i.e., the region immediately above	Deleted: are
1815	the forest canopy appears to be under the influence of a high-pass filter that re-	
1816	moves the lower frequency oscillations of the turbulent signals (Krusche and	
1817	Oliveira, 2004; Thomas and Foken, 2005).	
1818	4.2.7 Characteristics of the nocturnal boundary layer	
1819	The characteristics of the nocturnal boundary layer (NBL) at the ATTO	
1820	site near the Uatumã River were analyzed for the wet and the dry seasons, based	
1821	on two methodologies: i) the thermodynamic classes of the NBL proposed by	
1822	Cava et al. (2004) and ii) the turbulence regimes proposed by Sun et al. (2012).	
1823	Cava et al.'s (2004) classification of nocturnal time series is based on the	
1824	existence of a dominant pattern in scalar data, such as CO ₂ concentration, temper-	
1825	ature, or specific humidity. It also takes into account the variability of nocturnal	
1826	net radiation (R_n) , measured at a sufficiently high sampling rate, which allows	Formatted: Subscript
1827	cloud detection (with passage of clouds being identified by rapid R_p changes	Formatted: Subscript
1828	greater than 10 W m ⁻²). Classes (I), (II), (III), are defined by atmospheric condi-	
1829	tions free of the influence of clouds, which can disturb the stable boundary layer	
1830	above the forest. The classes are defined as followed by Cava et al. (2004): (I) the	
1831	occurrence of coherent structures in the form of "ramps" in scalar time series; (II)	
1832	the presence of sinusoidal signals ("ripples") that simultaneously occur in the time	
1833	series of scalars above the canopy and that are typical for gravity waves; (III) the	Deleted: ,
1834	existence of turbulence fine structure (i.e., according to Cava et al. (2004), "peri-	Deleted: which
1835	ods that lack any geometric structure or periodicity in the time series data"). The	
1836	last two categories, (IV) and (V), of Cava et al.'s classification refer to the simul-	
1837	taneous occurrence of clouds and organized movements with variations in $R_{n} > 10$	Formatted: Subscript
1838	W m ^{-2} . They are: (IV) cases where the net radiation induces organized move-	

1842 ments, and (V) those where the change in net radiation is not correlated with1843 changes in organized movements.

1844 The search of parameters to characterize the turbulent regimes of the noc-1845 turnal boundary layer is based on Sun et al. (2012). The three turbulent regimes in 1846 the NBL are defined as follows: Regime 1 shows weak turbulence generated by 1847 local shear instability and modulated by the vertical gradient of potential tempera-1848 ture. Regime 2 shows strong turbulence and wind speed exceeding a threshold 1849 value (V_{λ}) , above which turbulence increases systematically with increasing wind 1850 speed. This describes the turbulence generated by bulk shear instability, defined as 1851 the mean wind speed divided by the measuring height. In Regime 3, the turbu-1852 lence occurs at wind speeds lower than V_{λ} , but is associated with occasional bursts 1853 of top-down turbulence. In Regimes 1 and 2 the scale of turbulent velocity (V_{TKE}) 1854 is related to the mean wind velocity, V. The turbulent velocity, V_{TKE} , is defined as:

1855

$$V_{TKE} = \left[(I/2) \left(\sigma_u^2 + \sigma_v^2 + \sigma_w^2 \right) \right]^{1/2}$$
(10)

1856 where u, v_{\perp} and w are the components of the zonal, meridional and vertical winds, 1857 respectively, and σ represents the standard deviation of each variable.

1858 We analyzed 53 data files from the wet season and 79 data files collected 1859 during the dry season at the ATTO site. Our results show that the prevailing con-1860 ditions in the NBL are represented by Cava's classes I, II, and V for both wet and 1861 dry seasons (Table 5). Furthermore, during the wet season the classes I and V 1862 show their highest percentage of occurrence associated with turbulent Regime 3. 1863 Class IV is more frequent when turbulence Regime 1 prevails. For the dry season 1864 we observe that turbulent classes I, IV and V occur most frequently in situations 1865 associated with Regime 1 (Table <u>6</u>).

1866 **4.3 Measurements of atmospheric composition**

In March 2012, a basic set of measurements (CO, CO₂, CH₄, and equivalent black carbon, BC_e) was initiated at the site, which has been running almost continuously up to the present. As CO_2 and BC_e were measured with multiple instruments in parallel (see Table 2) an almost complete time series since March 2012 is available for these quantities. In November 2012, the long-term measureDeleted: 4

Deleted: 5

1874	ment setup was upgraded to include measurements of ozone, aerosol scattering,	Deleted: its current status,
1875	aerosol size distribution, and aerosol number concentration. Due to the complex	Deleted: ing
1876	logistics at this remote site, there are a few large data gaps in some of these time	Deleted: r
1877	series, but the datasets are almost complete from the middle of May 2013 to No-	
1878	vember 2013 and from February 2014 to now. Continuous measurements of aero-	
1879	sol chemical composition by an aerosol mass spectrometer were also initiated in	
1880	February 2014. Furthermore, several intensive campaigns were conducted with	
1881	additional measurements of aerosol properties, VOC, OH reactivity, and NO_x .	
1882	4.3.1 CO ₂ , CH ₄ , and CO	
1883	Figures $17a-c$, show the diurnal cycles of the vertical distributions of CO_2 ,	Deleted: -19
1884	$CH_{4_{2}}$ and CO at the ATTO site. CO_{2} and CO show a nighttime accumulation in	Deleted: the concentrations of
1885	the sub-canopy space and a corresponding steepening of the vertical concentration	
1886	gradient, which is greatly reduced during daytime due to the enhanced vertical	
1887	mixing throughout the canopy. In addition, CO ₂ exhibits a clear minimum during	
1888	daytime at mid-canopy level induced by photosynthesis. Interestingly, the build-	
1889	up of the nighttime maximum of CH_4 proceeds from above the canopy (Fig. 17b).	Deleted: 8
1890	The origin of this behavior, which seems to be linked to multiple processes, is	
1891	under investigation. During daytime, CO_2 , CH_{4_2} and CO still exhibit a small verti-	
1892	cal gradient below the canopy, indicating a local source near the ground.	
1893	Additional evidence for local surface sources are sporadic concurrent in-	Deleted: a
1894	creases of CH_4 and CO_3 predominantly <u>at the lowest measurement level. Exam</u>	Deleted: on
1895	ples are shown in Fig. 18, The origin of this local $CH_{4,and}CO$ source is not	Deleted: 20
1896	known. A remote source (e.g., from the large water reservoir behind the Balbina	Deleted: -
1897	Dam, 60 km northwest of ATTO) seems unlikely, as such a signal would be verti-	
1898	cally diluted before reaching the ATTO site. A combustion source also appears	
1899	unlikely, as the observed CH ₄ /CO ratios are several orders of magnitude higher	
1900	than the values typical of combustion emissions.	
1901	Apart from these CH4 and CO peaks, we occasionally observe, mostly dur-	Deleted: /
1902	ing nighttime, short CH_4 peaks of up to more than 100 ppb amplitude. These peaks	
1903	last a few hours, they do not always concur with increases in CO concentrations,	
1904	and often coincide with "bursts" of particles with a diameter of a few tens of na-	
1905	nometers.	
	٨٦	

		Deleted: 21
1917	Figure 19 shows the statistics of monthly daytime (defined as between	Deleted. 21
1918	1300-1600 LT, or 1700-2000 UT) 30-min measurements of CO_2 from three levels	
1919	(4 m, 38 m, and 79 m). The values at the 4-m level are consistently higher than at	Deleted: respectively
1920	the upper levels, while the 38-m level consistently shows lower values during day-	Deleted. Incasticinents
1921	time than the top level (79 m). This indicates that photosynthesis is active	
1922	throughout the year. The record is still too short to reveal a clear seasonality. Nev-	
1923	ertheless, it appears that CO_2 from June to August is about 5 ppm above the val-	
1924	ues during the months from December to February.	
1925	Statistics of monthly daytime 30-min measurements of CH_4 and CO are	
1926	shown in Fig. 20 (from the 79-m level only). Because of a large data gap due to a	Deleted: 2
1927	malfunctioning of the analyzer, a seasonal cycle is not discernible in the present	
1928	CH ₄ record. CO does show a seasonal cycle at ATTO with concentrations higher	
1929	by about 50 ppb during the dry months with a significant fraction of air coming	
1930	from the south-east (see Fig. 3), where vegetation fires are very active at this time.	
1931	Monthly daytime concentrations of CO ₂ , CH ₄ and CO are compared in	
1932	Fig. 21 with measurements upstream of ATTO: Cape Verde (green symbols) re-	Deleted: 3
1933	flecting the subtropics of the northern hemisphere, and Ascension Island (brown	Deleted: southern end
1933 1934	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the	Deleted: southern end
1933 1934 1935	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at	Deleted: southern end
1933 1934 1935 1936	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do-	Deleted: southern end
1933 1934 1935 1936 1937	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels	Deleted: southern end Deleted: Likewise
1933 1934 1935 1936 1937 1938	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and	Deleted: southern end Deleted: Likewise
1933 1934 1935 1936 1937 1938 1939	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄	Deleted: southern end Deleted: Likewise
1933 1934 1935 1936 1937 1938 1939 1940	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the	Deleted: southern end Deleted: Likewise
1933 1934 1935 1936 1937 1938 1939 1940 1941	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the airshed of ATTO. <u>The CO concentrations at ATTO during the wet season are</u>	Deleted: southern end Deleted: Likewise
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the airshed of ATTO. <u>The CO concentrations at ATTO during the wet season are</u> close to those at Cape Verde, reflecting the absence of significant combustion	Deleted: southern end Deleted: Likewise
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the airshed of ATTO. <u>The CO concentrations at ATTO during the wet season are</u> <u>close to those at Cape Verde, reflecting the absence of significant combustion</u> <u>sources in the South American part of the fetch during this season. In contrast, dry</u>	Deleted: southern end
193319341935193619371938193919401941194219431944	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the airshed of ATTO. <u>The CO concentrations at ATTO during the wet season are</u> close to those at Cape Verde, reflecting the absence of significant combustion sources in the South American part of the fetch during this season. In contrast, dry <u>season CO mixing ratios at ATTO are about 80 ppb higher than those at Ascen-</u>	Deleted: southern end
1933193419351936193719381939194019411942194319441945	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the airshed of ATTO. <u>The CO concentrations at ATTO during the wet season are</u> close to those at Cape Verde, reflecting the absence of significant combustion sources in the South American part of the fetch during this season. In contrast, dry season CO mixing ratios at ATTO are about 80 ppb higher than those at Ascen- sion Island, reflecting biomass burning emissions in the southeastern Amazon	Deleted: southern end Deleted: Likewise
19331934193519361937193819391940194119421943194419451946	flecting the <u>subtropics</u> of the northern hemisphere, and Ascension Island (brown symbols) representing conditions in the southern hemisphere. At least during the period of July to December, CO ₂ concentrations clearly reach lower values than at both upstream locations, reflecting the regional carbon sink in the Amazon do- main. <u>In contrast</u> , CH ₄ levels at ATTO lie almost on northern hemisphere levels throughout the year, even when the ITCZ is north of ATTO in austral winter and the site is in the atmospheric southern hemisphere with its lower background CH ₄ concentrations. This suggests the presence of regional CH ₄ emissions in the airshed of ATTO. <u>The CO concentrations at ATTO during the wet season are</u> close to those at Cape Verde, reflecting the absence of significant combustion sources in the South American part of the fetch during this season. In contrast, dry season CO mixing ratios at ATTO are about 80 ppb higher than those at Ascen- sion Island, reflecting biomass burning emissions in the southeastern Amazon (Andreae et al., 2012).	Deleted: southern end Deleted: Likewise

1954 4.3.2 Biogenic volatile organic compounds and OH reactivity

1955	The first successful vertical gradients of biogenic VOCs and total OH re-	
1956	activity were measured in November 2012 at the <u>walk-up</u> tower using the gradient	Deleted: INSTANT
1957	system as described in Section 3.4. Diurnal fluctuations of isoprene are apparent	
1958	at all heights (Fig. 22). Under daylight conditions, isoprene mixing ratios were	Deleted: 4
1959	always highest at the 24 m level, reaching up to 19.9 ± 2.0 ppb (average \pm standard	
1960	deviation) and indicating a source at the canopy top. During nighttime, the light-	
1961	driven emissions of isoprene cease and the in-canopy mixing ratio fell to 1.1 ± 0.5	
1962	ppb, which was lower than observed above the forest at 79 m (2.3±0.3 ppb).	Deleted: 80
1963	Measurements in the canopy (24 m) vary by a factor of ten from day to night,	
1964	while measurements close to the ground (0.05 m) vary only by a factor of two.	
1965	This clearly demonstrates a canopy emission of isoprene, with a peak around	
1966	noon, when light and temperature are at their maximum. Isoprene mixing ratios at	
1967	the ground level were always the lowest, indicating a potential sink at the	
1968	soil/litter level or relatively slow downward mixing. A detailed discussion of	
1969	measurements of isoprene and other biogenic VOC at ATTO was published re-	
1970	cently (Yañez-Serrano et al., 2015).	
1971	In November 2012, the high levels of isoprene measured above the canopy	
1972	contributed significantly (on average about 85%) to the total OH reactivity. From	
1973	Fig. 23, it can be seen that median isoprene mixing ratios of between 0.5 ppb at	Deleted: 5
1974	6:00 LT and 8 ppb in the late afternoon above the canopy give an OH reactivity of	
1975	about 1-20 s ⁻¹ . The gap between the two curves is the fraction of total OH reactivi-	
1976	ty that is not due to isoprene. For most of the time this gap is small and within the	
1977	uncertainty of the measurements. On two occasions, however, the total OH reac-	Deleted: within this dataset from
1978	tivity was significantly higher than the isoprene contribution, these being in the	November 2012
1979	early morning (0900 LT) coincident with a drop in light levels, and in the after-	
1980	noon just after sunset (1700 LT). For all other times in the course of the day, iso-	
1981	prene was the major sink for OH above the canopy. Overall, a distinct diel varia-	
1982	bility in total OH reactivity can be observed, similar to that of its major contribu-	
1983	tor, isoprene. The median lifetime of OH radicals during the dry-to-wet transition	
1984	season above the forest canopy at 80 m varied from about 50 ms by day to 100 ms	

1991 <u>at night. Ongoing measurements will determine the seasonal variability in total</u>

1992 OH reactivity and the relative contribution of isoprene.

Deleted: by

Deleted: 6

1993 4.3.3 Ozone profiles

1994 The O₃ mixing ratios (Fig. 24) show typical diurnal cycles for both sea-1995 sons, with values increasing from the morning to the afternoon and subsequently 1996 decreasing due to deposition and chemical reactions. The afternoon O₃ maxima at 1997 the uppermost height (79 m) are about a factor of 1.4 higher during the dry season than during the wet season, averaging about ~11 ppb and ~8 ppb, respectively. As 1998 1999 found in previous studies, its deposition to surfaces causes O₃ to exhibit pro-2000 <u>nounced</u> vertical <u>gradients</u> (Fig. 24), which makes a direct intercomparison to 2001 measurements at other sites difficult. However, the mixing ratios above the cano-2002 py from different studies in the Amazonian rain forest during the wet season are 2003 within a narrow range of 7 to 12 ppb, and the value measured at ATTO falls near 2004 the lower end of this range (Kirchhoff et al., 1990; Andreae et al., 2002; Rummel 2005 et al., 2007; Artaxo et al., 2013), A budget study by Jacob and Wofsy (1990) re-2006 vealed that downward transport of O₃ mainly controlled the Josses near the sur-2007 face, with only a minor contribution from photochemical formation above the 2008 canopy. This may explain the similar mixing ratios in the different studies. Fur-2009 thermore, only small O_3 differences were measured between 38 m (just above the 2010 canopy) and the top of the tower at 79 m during the wet season.

2011 A different picture is observed during the dry season, with much higher O_3 mixing ratios at more polluted sites (~40 ppb in Rondônia: Kirchhoff et al., 1989; 2012 2013 Andreae et al., 2002; Rummel et al., 2007; Artaxo et al., 2013), which can be re-2014 lated to biomass burning emissions causing photochemical O₃ formation (Crutzen 2015 and Andreae, 1990). A site comparable to the ATTO site is the ZF2 site, located 2016 about 60 km north-west of Manaus, which has been used extensively in the past 2017 (Artaxo et al., 2013), but which is occasionally affected by the Manaus urban 2018 plume (Kuhn et al., 2010; Trebs et al., 2012). At the ZF2 site, mean maximum O₃ 2019 mixing ratios measured at 39 m from 2009-2012 (Artaxo et al., 2013) match ex-2020 actly those measured at the ATTO site for the wet season, but are about a factor of 2021 1.5 higher during the dry season. This may be attributed to the more pristine char-2022 acter of the ATTO site, but could also be related to the different measurement

Deleted: distinct
Deleted: profiles
Deleted: 6
Deleted: other

Deleted: during the wet season
Deleted: mixing ratios

- 2031 periods or different biogenic emissions at the sites. In order to distinguish these 2032 different influences, high-quality long-term measurements are required, which are 2033 now being generated within the ATTO project.
- 2034 During the wet season, the amplitude of the mean diurnal cycle at 79 m is 2035 only about 2 ppb, whereas it is 3-4 ppb during the dry season. The highest ampli-2036 tudes are observed within the canopy and the understory with up to 5 ppb (24 m) in the dry season. These variations can be attributed to downward mixing of O_3 , 2037 2038 which is "stored" within the canopy (so called storage flux, see Rummel et al., 2039 2007). It is subsequently depleted by chemical reactions, mostly with soil biogenic 2040 NO, and deposition after the forest canopy becomes decoupled from the atmos-2041 phere above at nighttime. During the wet season, the largest decrease in O_3 mixing 2042 ratios occurs at the canopy top. This might be attributed to a lower canopy re-2043 sistance to O_3 deposition due to enhanced stomatal aperture during the wet season 2044 as proposed by Rummel et al. (2007) and will be the subject of future work. Fur-2045 ther investigations will also focus on the interactions between turbulence (supply 2046 of O_3) and trace gases that react with O_3 , especially nitric oxide (NO).
- 4.3.4 Aerosol optical properties 2047

2048 The aerosol optical properties measured at the ATTO site are shown as a 2049 time series in Fig. 25 and summarized in Table 7. The averages were calculated 2050 for the dry season, August-October, and the wet season, February-May (2012-13 2051 for the absorption measurements and 2013 for the scattering measurements). The 2052 transition periods between these two seasons are not included in the summary, in 2053 order to show the contrast between the cleanest and "more polluted" periods. The 2054 scattering coefficients are similar to those reported by Rizzo et al. (2013) from 2055 measurements performed at the ZF2 site (60 km N of Manaus). The regional 2056 transport of biomass burning emissions and fossil-fuel derived pollution is the 2057 main source of particles during the dry season. Its influence is pronounced, as can be seen by comparing the scattering and absorption coefficients from both sea-2058 2059 sons, which average about 3-6 times higher during the dry than during the wet 2060 season. During the wet season, ATTO is meteorologically located in the NH and 2061 the scattering and absorption coefficients reach their minimum values; however, Deleted: .

Deleted: , Deleted: for

Deleted: 7 Deleted: 6

Deleted: significant

2068 episodes of long-range transport of aerosols from the <u>Atlantic Ocean and Africa</u>
2069 still lead to episodically elevated values.

2070 The contrast between the wet and dry seasons can be attributed to a com-2071 bination of higher removal rates by wet deposition during the wet season and the 2072 dominant influence from biomass burning and fossil fuel emissions during the dry 2073 season, which are the main sources of submicron particles at that time. The scat-2074 tering Ångström exponent (a_s) averages 1.25 during the wet season, lower than the 2075 1.62 obtained for the dry season. This behavior results from the high relative pro-2076 portion of larger particles (mostly primary biogenic particles, but also dust and 2077 seaspray) during the wet season, because in contrast to the large seasonal variabil-2078 ity of the submicron particles, the supermicron fraction shows less intense season-2079 al changes.

2080 The seasonality of the absorption coefficient, σ_a , is comparable to that of 2081 the scattering coefficient. The regional transport of biomass burning emissions, 2082 most important between August and October, produces a rise in the σ_a values, 2083 reaching an average of 3.46 Mm⁻¹ during this period. In contrast, during the wet 2084 season, σ_a is very low, around 0.52 Mm⁻¹ on average.

2085 The absorption Ångström exponent (a_a) is often used to estimate the composition of light absorbing aerosols. An $a_a \sim 1$ indicates the aerosol is in the Ray-2086 2087 leigh regime, and the absorption is dominated by soot-like carbon and is therefore 2088 wavelength independent (Moosmüller et al., 2011). Higher å, values indicate the 2089 presence of additional light absorbing material, like brown carbon (BrC) (Andreae 2090 and Gelencsér, 2006). This kind of yellowish or brown organic material, abundant 2091 in biomass burning aerosols, usually has an $a_a \sim 2.0$ or greater (Bond et al., 1999). 2092 Our measurements show only relatively minor seasonal differences in a_a , with 2093 somewhat higher values during the wet season (1.53) than in the dry season 2094 (1.40), suggesting that soot carbon is <u>the most important</u> contributor to aerosol 2095 light absorption throughout the year. The contribution of the different light ab-2096 sorbing components of the aerosol to the total observed aerosol absorption is cur-2097 rently being investigated.

2098 2099
 We conducted the first long-term refractory black carbon (rBC) measure

 ments by an SP2 instrument at a remote Amazonian site. The mass absorption

Deleted: some

Deleted: an important
2103	cross section (α_a) has been calculated by applying an orthogonal regression to the	
2104	MAAP absorption coefficient measurements at 637 nm vs. rBC mass concentra-	
2105	tions measured by the SP2. The average α_a obtained for the 2013-2014 wet season	
2106	measurements was 13.5 m ² g ⁻¹ , which is much higher than the 4.7 m ² g ⁻¹ reported	
2107	previously for <u>another</u> Amazonian forest site (Gilardoni et al., 2011), <u>who used a</u>	
2108	thermal-optical method to determine the apparent elemental carbon content. The	
2109	high apparent α_a could be <u>partly</u> explained by the fact that the SP2 size dynamic	
2110	range was 70-280 nm and thus the technique did not account for rBC particles	
2111	larger than 280 nm. However, it is also likely related to an enhancement of light	
2112	absorption by coatings on the rBC particles, or to the presence of additional light-	
2113	absorbing substances besides rBC_(Bueno et al., 2011; McMeeking et al., 2014).	
2114	Single-particle studies (Section 4.3.7) on aerosols from the ATTO site consistent-	
2115	ly show thick coatings on the soot carbon particles. Our preliminary results indi-	
2116	cate that the constant α_a (6.6 m ² g ⁻¹), implemented by the MAAP in order to re-	
2117	trieve the BC mass concentration, is not representative of the true optical proper-	
2118	ties of Amazonian aerosol particles.	
2119	4.3.5 Aerosol number concentrations and size distributions	
2117		
2120	Continuous measurements of aerosol particle size and concentration have	
2121	been conducted at the ATTO site since March 2012. Over the last years, the extent	
2122	of the sizing instrumentation has been increased stepwise to provide uninterrupted	
2123	and redundant aerosol size and concentration time series. Figure 26 shows one of	
2124	the frequent instrument intercomparisons, including four different instruments that	
2125	are based on optical and electromobility sizing. It confirms the overall consistency	
2126	and comparability of the different sizing techniques. Integrated particle number	
2127	concentrations agree within 15% with measurements of total particle number con-	
2128	<u>centrations by a</u> CPC. The sample air <u>for this intercomparison was</u> collected	\langle
2129	through the main aerosol inlet at 60 m height, which is also used for instruments	\bigwedge
2130	measuring aerosol scattering, absorptivity, hygroscopicity, and chemical composi-	
2131	tion.	
2132	At the ATTO site, the atmospheric aerosol burden shows remarkable dif-	
2133	ferences in terms of size distribution and concentration depending on the seasons.	
2134	Figure 27 displays the average particle number and volume size distributions for	

Deleted: the refractive BC (
Deleted:)

Deleted: an

Deleted: measured also during the wet season.

Deleted: 8

Deleted: 9

Deleted: of Deleted: the backup Deleted: within 15% Deleted: has been

2146	typical wet (6-13 May 2014) and dry season (13-20 Sep 2014) conditions, cover-	 Deleted: . The comparison focusses on SMPS and OPS measurements
2147	ing an aerosol size range from 10 nm to 10μ m. The wet season is characterized	 Deleted: ¶
2148	by clean air masses from NE directions (Fig. 3), which result in a near-pristine	
2149	atmospheric state at the ATTO site. Total particle concentrations typically range	
2150	from 100-400 cm ⁻³ and aerosol size spectra reveal the characteristic "wet season	
2151	shape". A representative example is shown in Fig. 27, The size spectrum is char-	 Deleted: 9
2152	acterized by a 3-modal shape with pronounced Aitken and accumulation modes as	
2153	well as a noticeable coarse mode, Aitken (maximum at ~70 nm) and accumulation	 Deleted: maximum
2154	(maximum at ~150 nm) modes are separated by the so called Hoppel minimum (at	
2155	~110 nm), which is thought to be caused by cloud processing (e.g., Zhou et al.,	
2156	2002; Rissler et al., 2004; Artaxo et al., 2013).	
2157	The <u>near-pristine conditions that prevail at the ATTO site during the wet</u>	
2158	season, when the aerosol concentrations are remarkably low and dominated by	 Deleted: controlled
2159	local and/or regional biogenic sources, are episodically interrupted by long-range	
2160	transport of sea spray, Saharan dust, and/or African biomass burning and fossil	
2161	fuel combustion aerosol (e.g., Talbot et al., 1990; Martin et al., 2010a; Martin et	
2162	al., 2010b; Baars et al., 2011). Figure 28 displays characteristic changes in the wet	Deleted: 30
2163	season size distribution during selected episodes with long-range transport intru-	
2164	sions. Typically, the aerosol abundance in the accumulation and coarse mode size	
2165	range is substantially increased and the Hoppel minimum almost completely dis-	
2166	appears. The aerosol volume distribution clearly indicates a pronounced en-	Deleted: large
2167	hancement of coarse particles, which increases the integrated particle volume con-	
2168	centration by almost one order of magnitude (Fig. 28b).	Deleted: 30
2169	During the dry season, the dominant wind direction is E to SE (Fig. 3),	
2170	which brings polluted air from urban sources and deforestation and pasture fires in	
2171	in the southeastern Amazon and the Brazilian Nordeste to the ATTO site. Dry	Deleted: SE Brazil
2172	season aerosol number concentrations typically range from 500-2000 cm ⁻³ . A	
2173	characteristic dry season size spectrum is illustrated in Fig. 27, which shows in-	Deleted: 9
2174	creased particle concentrations across the entire size range. Typically, the accu-	
2175	mulation mode (maximum at \sim 140 nm) shows the highest relative increase and	
2176	therefore partly 'swamps' the Aitken mode (shoulder at ~70 nm).	

Besides the Aitken and accumulation modes, which dominate the total aerosol number concentration, a persistent coarse mode is observed at about 3 μ m, which accounts for a significant fraction of the total aerosol mass (Fig. 27). The coarse mode peak occurs throughout the year, with higher abundance in the dry season. In the absence of long-range transport, primary biological aerosol particles (PBAP) are assumed to dominate the coarse mode (Pöschl et al., 2010; Huffman et al., 2012).

2195 Autofluorescence-based techniques such as the Wideband Integrated Bio-2196 aerosol Sensor, WIBS-4A) are an efficient approach to probe fluorescent biological aerosol particles (FBAP) in online measurements (Kaye et al., 2005; Healy et 2197 2198 al., 2014). Figure 29 shows the first measurements of the FBAP number and volume size distributions from the WIBS instrument at the ATTO site. The FBAP 2199 size distributions are dominated in number by a narrow peak at 2.7 µm and in vol-2200 2201 ume by a broad peak from 2 to 5 μ m (Fig. <u>29</u>). For particles larger than 1 μ m, the mean integral FBAP number concentration is 0.22 cm^{-3} (40% of the concentration 2202 of supermicron particles), and the corresponding volume concentration is calcu-2203 2204 lated to be $3.0 \,\mu\text{m}^3 \,\text{cm}^{-3}$ (62%). The ratio of FBAP to total particles (number concentration) shows a clear size dependence, starting from 10% at 1 µm and rising 2205 2206 to a peak value \sim 70-80% in the size range of 3-10 µm. These observations are 2207 consistent with FBAP measurements made with an alternative instrument 2208 (UVAPS) during the AMAZE-08 campaign at the ZF2 rainforest site north of 2209 Manaus (Pöschl et al., 2010; Huffman et al., 2012). 2210

CCN size/supersaturation spectra have been measured since 2014 and are 2211 being continued. The long-term data set provides unique information on the size 2212 dependent hygroscopicity of Amazonian aerosol particles throughout the seasons. 2213 The results will complement and extend the results from previous campaigns (e.g., Gunthe et al., 2009; Rose et al., 2011; Levin et al., 2014). The measurements of 2214 2215 CCN and other aerosol properties at the ATTO site will also be an important reference for the analysis of the results from the ACRIDICON-CHUVA aircraft cam-2216 2217 paign, which took place in central Amazonia in September 2014 (Wendisch et al., 2218 2015).

Deleted: 9

Deleted: (Fig. 29)

Deleted: Deleted: (e.g., Deleted: have become an established

Deleted: 31 Deleted: the Deleted: operation Deleted: at the ATTO site Deleted: , which are in good agreement with the OPS measurements. Deleted: 31

Moved (insertion) [5]
Deleted: The
Deleted: are
Deleted: being
Deleted: measurement period al- ready covers 12 months and is
Field Code Changed

2236 4.3.6 Aerosol chemical composition

Monitor (ACSM), was installed <u>at the ATTO site in February</u> ive of making long-term measurements. The data reported <u>annual cycle of aerosol concentrations and composition from</u> <u>015 (Fig. 30)</u> . <u>iddle of the rainy season (March to May), the aerosol concen-</u> <u>ich their annual minimum and are in relatively good agree-</u> wet season studies, <u>including those</u> conducted at the ZF2 site, TTO (Chap et al. 2000; Päeghl et al. 2010; Arteuro et al.	
ive of making long-term measurements. The data reported annual cycle of aerosol concentrations and composition from 015 (Fig. 30). iddle of the rainy season (March to May), the aerosol concen- ich their annual minimum and are in relatively good agree- wet season studies, including those conducted at the ZF2 site, TTO (Char et al. 2000; Päschl et al. 2010; Arteuro et al.	
annual cycle of aerosol concentrations and composition from 015 (Fig. 30). iddle of the rainy season (March to May), the <u>aerosol</u> concen- ich their annual minimum and are in relatively good agree- wet season studies, including those conducted at the ZF2 site, TTO (Char et al. 2000; Päschl et al. 2010; Arteuro et al.	
<u>015 (Fig. 30)</u> . <u>iddle of the rainy season (March to May), the aerosol concen-</u> <u>inch their annual minimum and are in relatively good agree-</u> wet season studies, <u>including those</u> conducted at the ZF2 site, TTO (Chap et al. 2000; Pägghl et al. 2010; Arteuro et al.	
<u>ach their annual minimum and are in relatively good agree-</u> wet season studies, <u>including those</u> conducted at the ZF2 site,	
their annual minimum and are in relatively good agree- wet season studies, including those conducted at the ZF2 site,	
wet season studies, <u>including those</u> conducted at the ZF2 site,	
TTO (Chan at al. 2000; Deschl at al. 2010; Arterio at al	\bigwedge
1 10 (Chen et al., 2009; Poschi et al., 2010; Altaxo et al.,	$\left \right\rangle$
et of the dry season, the shift of airmass origins to the south-	\bigwedge
on of ATTO into the atmospheric southern hemisphere (Fig.	
ations increase sharply and remain high until the end of De-	
e rainy season. Trajectory analyses suggest that burning in	
te significantly to pollution levels at ATTO during this part of	
the rainy conditions in the Amazon combine again with dom-	
s in the tropical and subtropical North Atlantic and with the	
ourning in West Africa can aerosol concentrations at ATTO	
easonal lows.	
tion of the aerosol at ATTO shows surprisingly little variation	
in spite of the huge change in total concentrations between	
osol is always the dominant mass fraction at about 70%, <u>sul-</u>	
<u>10-15</u> %, followed by <u>BC_e (5-11%),</u> ammonium (~5%), ni-	
ride, Elevated concentrations of chloride were observed dur-	\bigwedge
when this species represented up to 13% of the total submi-	$\langle \rangle \rangle$
s, which is consistent with earlier observations of long-range	
going back to the ABLE-2B campaign (Talbot et al., 1990).	
	<
ss balance indicates, that the aerosol was approximately acid-	_
ss balance indicate <u>s</u> that the aerosol was <u>approximately acid-</u> sulfate is mostly in the form of ammonium sulfate, there is	
ss balance indicates, that the aerosol was approximately acid- sulfate is mostly in the form of ammonium sulfate, there is part of the nitrate could be present in the form of organic	
ss balance indicates, that the aerosol was approximately acid- sulfate is mostly in the form of ammonium sulfate, there is part of the nitrate could be present in the form of organic use the ratio between the fragments NO^+ and NO_2^+ (main ni-	
	tion of the aerosol at ATTO shows surprisingly little variation n spite of the huge change in total concentrations between osol is always the dominant mass fraction at about 70%, <u>sul-</u> <u>10-15</u> %, followed by <u>BC_e (5-11%)</u> , ammonium (~5%), ni- ride, <u>Elevated concentrations of chloride were observed dur-</u> when this species represented up to 13% of the total submi- s, which is consistent with earlier observations of long-range going back to the ABLE-2B campaign (Talbot et al., 1990). ss balance indicates that the aerosol was approximately acid-

Deleted: , a sample air stream is taken from the shared aerosol inlet (60 m) and the non-refractory submicrome-ter aerosol composition is determined using

Deleted: that

Deleted: were taken during the early wet season transition from 1 to 31 Mar 2015

Deleted: The time series of aerosol concentrations and the average chemical speciation are given in Fig. 32.

Deleted: T

Deleted: average

Deleted: of non-refractory aerosols, as well as the chemical speciation

Deleted: is

Deleted: during AMAZE-08 (

Deleted:),

Deleted: with organic matter domi-nating (78%) the aerosol composition and inorganic ions making relatively minor contributions

Deleted: Sulfate
Deleted: d
Deleted: 12
Deleted: of the mass concentration
Deleted: measured by the ACSM
Formatted: Subscript
Deleted: (2%)
Moved (insertion) [6]
Deleted: d
Deleted: mostly
Deleted: ized

2300	expected to be large (~10) when this ion is in organic forms, and low (2-3) when
2301	in inorganic forms, such as ammonium nitrate (Alfarra et al., 2006; Fry et al.,
2302	2009). Large values for this ratio were often observed during this period and may
2303	indicate the presence of organic nitrate.

The bulk composition of PM_{25} was measured for up to 10 elements by 2304 EDXRF analysis on a set of samples obtained in March/April 2012. The analysis 2305 2306 showed a high abundance of crustal elements, illustrating one exemplary episode of long-range dust transport from Africa (Fig. 31). Back trajectories indicate that 2307 2308 this period was indeed influenced by dust transport from Africa, which is a phe-2309 nomenon observed annually and particularly pronounced in February, March, and 2310 April (Prospero et al., 1981; Swap et al., 1992; Ben-Ami et al., 2012). Local 2311 sources of mineral dust aerosol can be excluded, especially during the wet season, because of the wetness of the soils. The prevalence of mineral dust aerosols dur-2312 2313 ing the wet season, when airmass trajectories reach from the North African deserts 2314 to the Amazon Basin, in combination with observations of transatlantic dust 2315 plumes by lidar, is strong evidence for the long-range origin of the observed crustal elements. 2316

2317 To explore the bioavailability of important trace elements, the oxidation state and solubility of iron (Fe) in the PM_{2.5} aerosols were analyzed. The soluble 2318 2319 (and therefore bioavailable) fraction of Fe is an important parameter in the overall 2320 biogeochemical cycles, with impact on the phosphorus cycle and biomass production (Liptzin and Silver, 2009). A soluble fraction of only 1.5% (1.8 ng m⁻³ Fe(III) 2321 of 120 ng m⁻³ of total Fe) was found, suggesting that aeolian transport of Fe is not 2322 likely to make a significant contribution of bioavailable Fe to the ecosystem at 2323 2324 ATTO.

2325The extended measurements of aerosol composition at the ATTO site, now2326reaching well over a full year, suggest the need for a reassessment of the relative2327contributions of biogenic and anthropogenic sources even in this very remote re-2328gion. Black carbon, a unique tracer of combustion, is present in a roughly equal2329fraction throughout the year. Sulfate, which has a more complex mixture of2330sources, also contributes a fairly constant fraction. In the rainy season, much of2331this sulfate could come from biogenic or marine sources (Andreae et al., 1990),

Moved up [6]: Elevated concentrations of chloride were observed during a few episodes, when this species represented up to 13% of the total submicron particulate mass, which is consistent with earlier observations of long-range transport of sea salt, going back to the ABLE-2B campaign (Talbot et al., 1990).

Deleted: Because quantification of this species still requires further analysis, the results are not shown here.

Deleted: 3

Moved down [7]: A soluble fraction of only 1.5% (1.8 ng m⁻³ Fe(III) of 120 ng m⁻³ of total Fe) was found.

Moved (insertion) [7]

2348	but the high concentrations during the August to December period suggest sub-	
2349	stantial contributions from fossil fuel burning. Periods with aerosol compositions	
2350	suggesting pristine conditions (low BC _e and sulfate, dominant organic matter)	Formatted: Subscript
2351	occur more as episodes at ATTO than as seasonal characteristics, similar to what	
2352	is observed at the remote ZOTTO site in Siberia (Chi et al., 2013).	
2353	4.3.7 Microspectroscopic analysis of single aerosol particles	
2354	The microspectroscopic analysis of aerosol samples can be seen as a	
2355	'snapshot' of the aerosol population at a given time. In combination with the long-	
2356	term aerosol measurements at the ATTO site, single particle characterization pro-	
2357	vides detailed insights into the highly variable aerosol cycling in the rain forest	
2358	ecosystem. In the soft X-ray regime, STXM-NEXAFS is a powerful microscopic	
2359	tool with high spectroscopic sensitivity for the light elements carbon (C), nitrogen	
2360	(N), and oxygen (O) as well as a variety of other atmospherically relevant ele-	
2361	ments (e.g., K, Ca, Fe, S, and Na). The technique allows analyzing the microstruc-	
2362	ture, mixing state, and the chemical composition of individual aerosol particles.	
2363	As an example, Fig. 32 displays the STXM-NEXAFS analysis of an aerosol sam-	Deleted: 4
2364	ple with substantial anthropogenic pollution, collected at the ATTO site during the	
2365	dry season. X-ray microspectroscopy reveals a substantial fraction of internally	
2366	mixed particles with soot cores (strong π -bond signals) and organic coatings of	
2367	variable thickness. The spectral signature of the organic coating is characteristic	
2368	for secondary organic material (SOM) (Pöhlker et al., 2014). These observations	
2369	underline the dominance of aged pyrogenic aerosols at the ATTO site during the	
2370	dry season. During the rainy season, when biomass burning is absent and undis-	
2371	turbed biosphere-atmosphere interactions prevail in the region, the aerosol popula-	
2372	tion is dominated by biogenic aerosol, such as primary biological aerosol particles	
2373	(PBAP), biogenic SOA, and biogenic salts (Pöhlker et al., 2012). Figure 32 dis-	Deleted: 5
2374	plays STXM elemental maps of this typical rainy season aerosol population.	
2375	As mentioned in the previous section, the biogenic background aerosol in	
2376	the wet season (i.e., February to April) is episodically superimposed by transatlan-	
2377	tic dust and smoke events. Statistical analysis of the electron microscope (EPMA)	
2378	results by hierarchical clustering reveals the abundance of the various particle	
2379	types observed at the ATTO tower in this season (Table <u>8</u>). In order to determine	Deleted: 7

2383 the sources and possible chemical interactions, particles were classified into representative groups according to their chemical composition. They are classified as 2384 2385 "mineral" when Al, Si, O, and Ca are dominant, and also contain minor elements like K, Na, Mg, and Fe. Particles are identified as being "organic", when the con-2386 2387 centrations of C and O in the particles are similar and when they also contain 2388 some P and S (<10 weight %). "Biogenic" particles occur in the larger size clas-2389 ses; they have smooth boundaries and always contain C, O, S, N, P, and K. Irregu-2390 lar crystallized particles with Na, Mg, S, O and C are classified as "salt" particles. 2391 Soot particles can be distinguished by their morphology, and always contain the elements C and O. 2392

With single particle analysis, important information was obtained concerning the contribution from organic aerosol particles and the agglomeration of various types of particles. The majority of particles in the fine fraction consist of organic matter with traces of S and K. This observation corroborates that small biogenic potassium and sulfur-containing particles from primary emissions can act as seeds for the condensation of organic material (Pöhlker et al., 2012).

2399 4.3.8 Chemical composition of secondary organic aerosol

2400	Measurements of the organic chemical composition of the aerosol over the
2401	Amazon rainforest are rare. Levoglucosan, several mono- di- and polycarboxylic
2402	acids, as well as isoprene tracer compounds have been identified in the aerosol
2403	phase (Mayol-Bracero et al., 2002; Claeys et al., 2004; Schkolnik et al., 2005;
2404	Claeys et al., 2010), whereas the contribution of highly reactive compounds, such
2405	as monoterpenes and sesquiterpenes, to SOA in this region is still largely un-
2406	known.

2407The concentrations of monoterpene and sesquiterpene oxidation products2408in ambient aerosol collected in November 2012 at the ATTO research site are2409shown in Fig. 34. A median concentration of 102 ng m⁻³ was measured for the2410sum of terpene oxidation products in the aerosol sampled over the Amazon rain2411forest. As can be seen in Fig. 34, monoterpene oxidation products accounted for2412the major part of the terpene oxidation products. Their concentration showed a2413high variance during November ranging between 23 and 146 ng m⁻³. The oxida-

Formatted: Superscript

2414	tion products derived from the pinene skeleton (α - and β -pinene) were most abun-
2415	dant in the sampled aerosols, followed by limonene oxidation products. Among
2416	the pinene derived oxidation products, MBTCA (3-methyl-1,2,3-
2417	butanetricarboxylic acid) was observed to be the most abundant individual mono-
2418	terpene oxidation product, with concentrations of up to 73 ng m ⁻³ , followed by
2419	pinonic acid with a maximum concentration of 46 ng m ⁻³ (van Eijck, 2013). Inter-
2420	estingly, these concentrations are in the same range as monoterpene oxidation
2421	products measured during summertime in boreal forest environments (Vestenius
2422	et al., 2014), ecosystems which are known to strongly emit monoterpenes. How-
2423	ever, these observations of high monoterpene product concentrations match with
2424	the high monoterpene mixing ratios measured at the same site (Yañez-Serrano et
2425	al., 2015) <u>.</u>
2426	The products from sesquiterpene oxidation showed much lower concentra-
2427	tions (Fig. 34). On average the sesquiterpene oxidation products reached about
2428	10% of the monoterpene oxidation product concentration; however, on some days
2429	they were as high as 26% of the total monoterpene oxidation product concentra-
2430	tion. Overall, twenty-three individual oxidation products of sesquiterpenes were
2431	identified in the aerosol collected in the Amazonian rainforest. The total concen-
2432	tration of these sesquiterpene oxidation products ranged from 6 to 12 ng m ⁻³ . The
2433	oxidation products could be assigned to four sesquiterpene precursors: β -
2434	caryophyllene, aromadendrene, cedrene, and isolongifolene. Among them, the
2435	products from the oxidation of β -caryophyllene were the most abundant (van
2436	Eijck, 2013). Very few measurements exist of sesquiterpene oxidation product
2437	concentrations and actually none in tropical forests, which complicates a compari-
2438	son. Measurements in boreal ecosystems (Vestenius et al., 2014) showed mean
2439	summertime concentrations of caryophyllinic acid (one of the β-caryophyllene
2440	oxidation products) of about 8 ng m ⁻³ , which is a high concentration for a single
2441	compound compared to the concentrations measured at ATTO, where the meas-
2442	ured concentration range of caryophyllinic acid is $0.26 - 1.38$ ng m ⁻³ .
2443	In summary, the contribution of monoterpene oxidation products to SOA
2444	at ATTO is relatively high and essentially comparable with their contribution to

2445 boreal forest SOA, whereas the contribution of sesquiterpene products is much
2446 less (about one tenth) than in boreal forest ecosystems.

2447

5 Summary and Future Outlook

2448 Our initial ecological studies have shown the ATTO site to be located in 2449 an area of high biodiversity, containing forest and wetland ecosystems that are 2450 representative of many regions in the central Amazon Basin. The meteorological 2451 measurements reflect rainfall, temperature, and wind conditions typical of the 2452 region, with pronounced seasonality in rainfall and airmass origins, but they also 2453 show substantial interannual variability. Early micrometeorological studies have 2454 characterized the nocturnal boundary layer and its coupling with the overlying 2455 atmosphere, the properties of turbulence structures in the boundary layer, and the 2456 formation of orographically induced gravity waves.

Continuous measurements of the carbon gases CO_2 , CO, and CH_4 at five heights reveal the effects of photosynthesis and respiration on the vertical distribution of CO_2 , the presence of a source of CO at the forest floor, and yet unidentified intensive and episodic sources of CH_4 . Ozone, VOC, and OH reactivity measurements indicate an active photochemical cycle in the tropical boundary layer and a strong forest sink for ozone.

2463 The Amazonian aerosol is strongly influenced by seasonal variations in 2464 airmass origins. In the rainy season, when airmasses come from the northeast 2465 across almost undisturbed rain forest, there are long periods when natural, biogenic aerosols prevail, characterized by low particle number concentrations and a 2466 2467 very large fraction of organic matter. In spite of considerable research efforts, the 2468 mode of formation of these aerosols remains enigmatic. Nucleation and new parti-2469 cle formation events are almost never observed in clean air over Amazonia. The 2470 deployment of instrumentation that explores the size range at the border between 2471 gases and particles, and the measurement of species that are involved in the for-2472 mation and growth of aerosol particles, such as H₂SO₄, extremely low volatility organic compounds (ELVOCs), ammonia, and amines may shed light on the pro-2473 2474 cesses responsible for the formation of biogenic aerosols over the tropical forest 2475 (Kulmala et al., 2014).

Deleted: A median concentration of 102 ng m⁻³ was measured for terpene oxidation products in the aerosol sampled over the Amazon rain forest. The concentration of monoterpene and sesquiterpene oxidation products in ambient aerosol collected in November 2012 is shown in Fig. 36. Monoterpene oxidation products accounted for the major part of the terpene oxidation products, whereas the sesquiterpene oxidation products showed much lower concentrations. On average the sesquiterpene oxidation products reached about 10% of the monoterpene oxidation product concentration, however, on some days they were even as high as 26% of the total monoterpene oxidation product concentration. The monoterpene oxidation products showed a high variance during November ranging between 23 and 146 ng m⁻³, whereas the concentration of sesquiterpene oxidation products stayed quite constant around a median concentration of $8 \text{ ng m}^{\text{-3}}.\P$

Deleted: Conclusions

Deleted: which are

2504	During the rainy season, the biogenic aerosol over Amazonia is overprint-
2505	ed periodically by episodes of intense transatlantic transport, which bring Saharan
2506	dust, smoke from fires in West Africa, Atlantic marine aerosols, and possibly pol-
2507	lution from fossil fuel burning in Africa, Europe, and North America to the site. In
2508	contrast, during the dry season the dominant airmass source regions lie to the east
2509	and southeast, where biomass and fossil fuel combustion result in persistent and
2510	substantial production of pollution aerosols.
2511	Overall, our measurements at ATTO support the view that there is no
2512	longer any place on Earth that can be considered truly pristine. Even at this remote
2513	site, trace gas and aerosol concentrations show the impact of anthropogenic emis-
2514	sions. For long-lived species, like CO_2 and CH_4 , this reflects the secular increase
2515	in concentrations as a result of global emissions. For shorter-lived trace gases and
2516	aerosols, the effects of regional sources and long range transport can be detected
2517	almost at all times, even though they may be very small during the cleanest peri-
2518	ods.
2519	During 2015, we expect that many measurements will be relocated from
2520	the 80-m towers to the 325-m tall tower. This will significantly enlarge the foot-
2521	print of the measurements of long-lived trace gases, especially CO ₂ . Integration of
2522	ATTO into networks for the study of carbon cycling, such as the proposed long-
2523	term, pantropical network that assesses NPP using multiple approaches
2524	(Cleveland et al., 2015) could significantly increase the knowledge that can be
2525	gained from this site. The challenge for the future will be to maintain these meas-
2526	urements over the coming decades, so that they can reveal secular trends in at-
2527	mospheric composition and the health of the Amazonian ecosystem.
2528	

2529 Acknowledgements

We thank the Max Planck Society and the Instituto Nacional de Pesquisas
da Amazonia for continuous support. We acknowledge the support by the German
Federal Ministry of Education and Research (BMBF contract 01LB1001A) and
the Brazilian Ministério da Ciência, Tecnologia e Inovação (MCTI/FINEP contract 01.11.01248.00) as well as the Amazon State University (UEA), FAPEAM,
LBA/INPA and SDS/CEUC/RDS-Uatumã. Leonardo Sá thanks CNPq for his

Deleted: Also in this season
Deleted: by
Deleted: and

Deleted: D

Deleted: t

Formatted: Right: 0 cm

2542	Productivity in Research Grant, Process 303728/2010-8. Cléo Dias-Júnior thanks		
2543	CAPES for his Ph.D. grant. Maria Teresa F. Piedade thanks CNPq and FAPEAM		
2544	for research grants (PELD-Project, Process 403792/2012-6). The ALS is support-		
2545	ed by the Director, Office of Science, Office of Basic Energy Sciences, of the US		
2546	Department of Energy under Contract DE-AC02-05CH11231. We thank the		
2547	Helmholtz-Zentrum Berlin for the allocation of synchrotron radiation beamtime at		
2548	BESSY II. We also thank M. Weigand, M. Bechtel, and A. L. D. Kilcoyne for		
2549	their constant support during the beamtime sessions. We would like to especially		
2550	thank all the people involved in the technical and logistical support of the ATTO		
2551	project, in particular Thomas Disper, Andrew Crozier, Uwe Schulz, Steffen		
2552	Schmidt, Alcides Camargo Ribeiro, Hermes Braga Xavier, Elton Mendes da Sil-	Deleted: and	
2553	va, Nagib Alberto de Castro Souza, Adir Vasconcelos Brandão, Amauri Rodri-		
2554	guês Perreira, Thiago de Lima Xavier, Josué Ferreira de Souza, Roberta Pereira de		
2555	Souza, and Wallace Rabelo Costa. We acknowledge the micrometeorological		
2556	group of JNPA/LBA for their collaboration concerning the meteorological param-	Deleted: the	_
2557	eters, with special thanks to Antonio Huxley Melo Nascimento and Leonardo	Deleted: Antonio Huxley	
2558	Ramos de Oliveira, The aerosol team thanks Isabella Hrabe de Angelis and Sachin	 Deleted: Leonardo Oliveira	
2559	S. Gunthe for their help with instrument maintenance and I. Lieberwirth and G.		
2560	Glaßer (Max Planck Institute for Polymer Research, Mainz, Germany) for kind	 Deleted: -	
2561	support with SEM imaging. We thank Tracey W. Andreae for help with copyedit-	Deleted: -	
2562	ing the manuscript. This paper contains results of research conducted under the		
2563	Technical/Scientific Cooperation Agreement between the National Institute for		
2564	Amazonian Research, the State University of Amazonas, and the Max-Planck-		
2565	Gesellschaft e.V.; the opinions expressed are the entire responsibility of the au-		
2566	thors and not of the participating institutions.		
2567			

Figure captions

2575	Figure 1: (a) Location of the ATTO site. The main map shows the access to the			
2576	site via the road and riverboat connections (background map from Google		Deleted: .	
2577	Earth). (b) Topography in the region around the ATTO site. The Balbina		Deleted: B	
2578	Reservoir is in the northwestern corner of the map.	\sim	Deleted:	
2579 2580 2581 2582 2583 2583	Figure 2: Land cover and population density map of northern South America. The land cover map (GlobCover 2009, downloaded from: http://www.esa-landcover-cci.org/, 11/07/14, ESA and UCLouvain) highlights vegetated areas in green tones (deciduous forest, broadleaf forest, evergreen forest, and mixed broadleaf and needleleaf forest) and water bodies in blue tones (regularly flooded and permanently flooded areas). Populated areas (given			
2585	as population density map) span a range from <u>1 (light red) to 1000+ (dark</u>		Deleted: one	
2586 2587 2588 2589	red) persons per km ² (from: Gridded Population of the World, Version 3 (GPWv3) provided by the Center for International Earth Science Information Network (CIESIN), Columbia University). The ATTO site is marked by a star.			
2590 2591 2592 2593 2594 2595 2596 2597	 Figure 3: Back trajectory frequency plots and satellite fire maps for the ATTO site in 2014. Back trajectories (9 days) have been calculated with HYSPLIT (NOAA-ARL, GDAS1, start height 1000 m) (Draxler and Rolph, 2015). Four back trajectories have been initiated per day (0:00, 06:00, 12:00, 18:00 UTC) – frequency plots are based on monthly trajectory ensembles. Color coding of frequency plots: >10% (green), >1% (blue), >0.1% (cyan). Monthly fire map derived from GFAS (Global Fire Assimilation System) and averaged to 1 degree grid resolution (Kaiser et al., 2012). 			
2598 2599 2600 2601 2602 2603	Figure 4: Species turnover of the four inventoried forest types at the ATTO site. Turnover is expressed as Shmida & Wilson's (1985) index: $SMI = (g+l) / (a+b)$; where g and l are gained and lost species from site 1 to site 2; a and b are the numbers of species in site 1 and site 2. TF = terra firme forest upon plateau, Terr = terra firme forest upon fluvial terrace, Camp = campinarana, and IG = seasonally flooded black-water forest (igapó).			
2604 2605 2606 2607 2608	Figure 5: Portion of camera view, contrast enhanced. Spatial and temporal crown color differences are most evident in the five driest months (July to No- vember) when crowns present rapidly changing phenostages associated with leaf flush briefly deciduous pre-flush abscission, young red unex- panded leaves, or bright green recently expanded leaves.			
2609	Figure 6: Plot of bulk density ($g \text{ cm}^{-3}$) and carbon stocks (Mg ha ⁻¹) against soil		Formatted: Superscript	
2610 2611	<u>depth. Pronounced differences of belowground carbon stocks between ter-</u> race and plateau occur in deeper layers (Depth > 100 cm).	(Formatted: Superscript	
2612	Eigure 7: Wind reases for (a) dry season (15 June 20 Ney) and (b) wat season (1	1	Deleted: 5	
2612 2613 2614	Dec - 14 June) based on half-hourly averages of wind speed and direction measured at 81 m a.g.l. for the period from 18 Oct 2012 to 23 July 2014.			
2615	Figure 8: Diurnal profiles of temperature for a) wet season (March 2014) and b)		Deleted: 6	
2616	dry season (September 2013). Contour plots interpolate from measure-			
2617 2618	ments at 0.4 m, 1.5 m, 4 m, 12 m, 26 m, 36 m, 40 m, 55 m, 73 m, and 81 m.			

2625	Figure 9: Monthly sums of precipitation at the ATTO site for the years 2012 to		Deleted: 7
2626	2014. For comparison the data from the Manaus INMET-station		
2627	(www.inmet.gov.br) for the standard reference period (1961-1990) are	\square	Deleted: of
2628	shown.		
2629	Figure 10: The dimensionless standard deviation function for a) vertical velocity		Deleted: 8
2027	$\Phi(\vec{l})$ is similar to \vec{l} and \vec{l} and \vec{l} and \vec{l}	$\leq -($	Deleted: ,
2630	$\Phi_{w}(\varsigma)$, b) virtual temperature $\Phi_{\theta_{v}}(\varsigma)$, and c) CO_{2} concentration $\Phi_{c}(\varsigma)$ for		
2631	the ATTO site from measurements at 39.5 m.	ſ	Deleted. Figure 0. The dimension
2632	Figure 11: From top to bottom, the departure of the dimensionless standard devia-		less standard deviation function for
2633	tion function, $\phi_a(\zeta)$, from its surface-layer behavior for θ_v , q, and c, re-		virtual temperature, $\phi_{\theta_v}(\zeta)$, for the ATTO site from measurements at
2634	spectively.		39.5m.¶
2635	Figure 12: Upper panels: Temporal evolution of the three wind components for		Figure 10: The dimensionless stand- ard deviation function for CO ₂ con-
2636	the night of 27 April 2012 at each of the ATTO observation levels. The		centration, $\phi_c(\zeta)$, for the ATTO site
2637	lower panel shows the corresponding eddy covariance CO ₂ fluxes.		nom measurements at 59.5m.]
2638	Figure 13: Mean multi-resolution <u>turbulent kinetic energy</u> (TKE) spectra at the	\square	Deleted: TKE
2639	three observation levels.		
2640	Figure 14: Upper panel: Multi-resolution 42-m vertical velocity spectra for the		
2641	night of 04 May 2012 (colors and contours), and mean wind difference be-		
2642	tween the 80-m and 42-m levels (red line, scale at the right side). Lower		
2643	panel: temporal evolution of vertical velocity at the 42-m level for the		
2644	same night.	_	
2645	Figure 15: (a) Area of approximately 900 km^2 surrounding the ATTO site. The		Deleted: in the Uatumã Sustaina-
2646	axes represent the directions $(0^\circ, 5^\circ, 10^\circ, 15^\circ,, 175^\circ, 180^\circ)$ from the		ble Development Reserve
2647	ATTO tower. The color scale represents terrain elevation in meters above		Deleted: C
2648	sea level. (b) Schematic with axes corresponding to (a); the black dots in-		
2649	dicate gravity wave events induced by terrain undulations and the gray	-	Deleted: GW
2650	points represent <u>gravity wave</u> events not induced by terrain effects.		Deleted: GW
2651	Figure 16: Coherent structures time scale of w, u, T, and q, recorded at heights of	_	
2652	42 m and 81 m <u>at the ATTO site.</u>	-	Deleted: above
2653	Figure 17: Diurnal cycle of <u>a)</u> CO_2 , <u>b)</u> CH_4 , and <u>c)</u> CO_4 . The CO_2 plot is computed		Deleted: computed from the
2654	from the measurements in January 2013, the CH_4 and CO plots from all		incastrements in January 2015
2655	available measurements until the end of 2014. Time is given in UT, with		
2656	the first 12 hours repeated for clarity. The white vertical lines indicate the		
2657	times of local sunrise (10 UT) and sunset (22 UT), respectively. Black		
2658	dashed horizontal lines show the heights of the 5 inlets.	ſ	Deleted F's a 10 Course F's
2659	Figure <u>18</u> : Examples of sporadic concurrent increases in CH ₄ and CO recorded at		ure 17, but for CH ₄ (computed by
2660	the lowermost (4 m) inlet in 2012.	\setminus	pooling all available CH ₄ measure- ments until the end of 2014). ¶
2661	Figure <u>19</u> : Statistics of monthly daytime (1700-2000 UT) 30-min measurements	$\langle \rangle$	Figure 19: Same as Figure 17, but
2662	of CO ₂ at the 80-m walk-up tower. Shown are whisker plots indicating	$\setminus \setminus$	available measurements until the end
2663	min/max and quartiles of the monthly measurements. The white line in the		of 2014). ¶
2664	box indicates the median. Brown: 4-m level, green: 38-m level, blue: 79-m		Deleted: 20
2665	level.	Ļ	Deleted: 21
2666	Figure <u>20</u> : Statistics of monthly daytime (1700-2000 UT) 30-min measurements		Deleted: 22
2667	of CH_4 and CO at the 79-m level of the 80-m walk-up tower. Shown are		

2701 2702	whisker plots indicating min/max and quartiles of the monthly measure- ments. The white line in the box indicates the median.		
2703	Figure 21: Monthly averaged daytime (1700-2000 UT) measurements of CO ₂		Deleted: 23
2704 2705 2706 2707 2708	CH ₄ and CO at the 79 m level of the ATTO tower (blue line, standard de- viation indicated by shading) in comparison with monthly averaged con- centration measurements from Ascension Island (brown; data for 2014 are preliminary; Dlugokencky et al., 2014; Novelli and Masarie, 2014) and Cape Verde (green: Carpenter et al., 2010, updated).		
2709	Figure 22: Profiles of isoprene derived from measurements at three different	\square	Deleted: 24
2710 2711 2712	heights (0.05 m, 24 m, and 79.3 m) below, within, and above the cano- py <u>respectively</u> , in November 2012 (transition period from dry to wet sea- son).		
2713	Figure 23: Isoprene and total OH reactivity measurements during November 2012	\square	Deleted: 25
2714 2715 2716 2717 2718 2719	at the highest point above the canopy (79 m), binned as 60 minute medians for all periods when both data were available (about 4 days). The isoprene mixing ratio scale (left axis) was set to match its contribution to the total OH reactivity (1 ppb isoprene = 2.46 s^{-1} isoprene OH reactivity), which is presented on the right axis. The upper panel shows the diel variation of temperature (measured at 81 m) and the net radiation.		
2720	Figure 24: Mean diurnal profiles of O_3 mixing ratios measured on the walk-up	\square	Deleted: 26
2721 2722	tower during the dry season (left panel, 15 August to 14 September 2013) and the wet season (right panel, 1 February to 3 March 2014).		
2723	Figure 25: Time series of scattering and absorption coefficients and particle num-		Deleted: 27
2724	ber concentration (diameter > 80 nm).		
2725	Einen 26. Internetion of the median medial membranic distributions from	1	Deleted: 28
2725 2726 2727 2728	the SMPS, OPS, WRAS, and UHSAS instruments. Instruments were oper- ated for 6 h using the same inlet line during clean rainy-season conditions (26 Jan 2015).		
2729	Figure 27: Median particle number (a) and volume (b) size distributions from the		Deleted: 29
2730 2731 2732 2733 2733 2734 2735 2736	SMPS and OPS instruments, representative for conditions during the wet (dashed lines) and dry (solid lines) seasons. Plotted data sets comprise continuous SMPS and OPS data covering 7-day periods for wet (06-13 May 2014) and dry (13-20 Sep 2014) season conditions. Integrated number and volume concentrations for the selected wet season period: $N_{Ait,wet} = 141 \text{ cm}^{-3}$, $N_{Acc,wet} = 130 \text{ cm}^{-3}$, $N_{Total,wet} = 282 \text{ cm}^{-3}$; $V_{sub-\mu,wet} = 0.5 \ \mu\text{m}^3 \text{ cm}^{-3}$, $V_{super-\mu,wet} = 1.5 \ \mu\text{m}^3 \text{ cm}^{-3}$,		Formatted: Don't hyphenate
2737	$V_{\text{Total,wet}} = 2.0 \mu\text{m}^{\circ} \text{ cm}^{\circ}$. Integrated number and volume concentrations for	1	Deleted: ⁻
2138 2720	the selected dry season period: $N_{Ait,dry} = 395 \text{ cm}^{-3}$, $N_{Acc,dry} = 90 / \text{ cm}^{-3}$, $N_{max} = -1398 \text{ cm}^{-3}$; $V_{max} = -4.0 \text{ um}^{-3} \text{ cm}^{-3}$, $V_{max} = -2.5 \text{ um}^{-3} \text{ cm}^{-3}$		
2739	$V_{\text{Total,dry}} = 1.576 \text{ cm}^{-1}$, $v_{\text{sub-}\mu,\text{dry}} = 4.0 \mu\text{m}^{-1}$ cm , $v_{\text{super-}\mu,\text{dry}} = 5.5 \mu\text{m}^{-1}$ cm , $V_{\text{Total,dry}} = 7.5 \mu\text{m}^{-3}$ cm ⁻³	_	Deleted: -
2740	$\tau_{10tal,dry} = 7.5 \mu m$ cm .		Deleted: 30
2741 2742 2743 2744	Figure <u>28</u> : Median particle number (a) and volume (b) size distributions from the SMPS and OPS instruments, showing the contrast between pristine wet season conditions and episodes with long-range transport influence (i.e., Saharan dust, African biomass burning, and sea salt). Wet season number		
2745	and volume size spectra are taken from Fig. 27, The long-range transport	(Deleted: 9
2746	size spectrum is averaged from three selected episodes in Feb and Mar		
	66		

2758 2759 2760 2761	2014. Integrated number and volume concentrations for the long-range transport episodes: $N_{Ait,long} = 80 \text{ cm}^{-3}$, $N_{Acc,long} = 308 \text{ cm}^{-3}$, $N_{Total,long} = 409 \text{ cm}^{-3}$; $V_{sub-\mu,long} = 2.3 \ \mu\text{m}^3 \text{ cm}^{-3}$, $V_{super-\mu,long} = 12.7 \ \mu\text{m}^3 \text{ cm}^{-3}$, $V_{Total,long} = 15.0 \ \mu\text{m}^3 \text{ cm}^{-3}$.		
2762 2763 2764	Figure <u>29</u> : Average number (a) and volume (b) size distributions of the total and fluorescent aerosol particles measured by WIBS. Orange lines refer to the size-resolved fraction of FBAP.		Deleted: 31
2765 2766	Figure <u>30</u> : <u>Time series of monthly mean aerosol mass concentrations and chemi-</u> cal speciation at the ATTO site, measured by ACSM from May 2014 to		Deleted: 32
2767 2768 2769	April 2015, Figure <u>31</u> : Average bulk elemental concentrations (in weight-percent) of PM 2.5 aerosols collected at 80 m height between 7 March and 21 April 2012.		Deleted: Time series of aerosol concentration and average chemical speciation at the ATTO site, measured by ACSM during the early wet season from 1 to 31 March 2015.
2770	Figure <u>32</u> : STXM images and elemental maps with corresponding NEXAFS spec-		Deleted: 33
2771	tra of aerosol particles collected at the ATTO site during a period with an-		Deleted: 34
2772	thropogenic pollution. (a) Carbon post-edge image (293 eV) of a charac-		Deleted: A
2773	teristic region showing internally mixed droplet-like particles with cores	C	
2774	(black arrows) and coatings of variable thickness (green boxes). (a) Car-		Deleted: B
2115	bon elemental map (pre-edge 280 eV, post-edge 293 eV) showing the dis- tribution of carbonaccous material (a) NEX AES spectra showing high	ſ	Deleted: C
2770	abundance of $p_{i_{a}}(C-C)$ and keto $(O-C)$ functional groups in cores. Cost-		Deleted: C
2778	ing reveals high abundance of carboxylic acid groups (CCOH) and weaker		
2//9	signals for keto and pi groups.	ſ	Deleted: 25
2780	Figure <u>33</u> : Microscopic images of aerosol particles during rainy season. (a) SEM		Deleted: 35
2781	images of representative region. (b) STXM carbon post-edge image		Deleted: A
2782	(293 eV) and (<u>c-f</u>) STXM elemental maps of same region. <u>The particle</u>		Deleted: B
2783	types are indicated in panel (b): primary biological aerosol particles (re-		Deleted: C-r
2785	salts (region iii).	L	Deleteu. Region snows
2796	Einen 24. Company for a formation of a second second termination and heat in	\checkmark	Deleted: 36
2786	ambient aerosol collected in November 2012 over the Amazon rain forest.		
2788			
2789			

- 2808 References
- 2809
- Abril, G., Martinez, J. M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M. F.,
 Vidal, L., Meziane, T., Kim, J. H., Bernardes, M. C., Savoye, N., Deborde,
 J., Souza, E. L., Alberic, P., de Souza, M. F. L., and Roland, F., Amazon
 River carbon dioxide outgassing fuelled by wetlands: Nature, 505, 395398, doi:10.1038/nature12797, 2014.
- Acevedo, O. C., Costa, F. D., Oliveira, P. E. S., Puhales, F. S., Degrazia, G. A.,
 and Roberti, D. R., The influence of submeso processes on stable
 boundary layer similarity relationships: J. Atmos. Sci., 71, 207-225,
 doi:10.1175/jas-d-13-0131.1, 2014.
- Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prevot, A. S.
 H., Worsnop, D. R., Baltensperger, U., and Coe, H., A mass spectrometric
 study of secondary organic aerosols formed from the photooxidation of
 anthropogenic and biogenic precursors in a reaction chamber: Atmos.
 Chem. Phys., 6, 5279-5293, 2006.
- Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L.,
 Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
 Jayne, J. T., and Worsnop, D. R., A generalised method for the extraction
 of chemically resolved mass spectra from aerodyne aerosol mass
 spectrometer data: J. Aerosol Sci., 35, 909-922,
 doi:10.1016/j.jaerosci.2004.02.007, 2004.
- Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J.,
 Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R.,
 Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.,
 Performance characteristics of a high-sensitivity, three- wavelength, total
 scatter/backscatter nephelometer: J. Atmos. Ocean. Technol., 13, 967-986,
 1996.
- Anderson, T. L., and Ogren, J. A., Determining aerosol radiative properties using
 the TSI 3563 integrating nephelometer: Aerosol Sci. Tech., 29, 57-69,
 1998.
- Andreae, M. O., Berresheim, H., Bingemer, H., Jacob, D. J., Lewis, B. L., Li, S.M., and Talbot, R. W., The atmospheric sulfur cycle over the Amazon
 Basin, 2. Wet Season: J. Geophys. Res., 95, 16,813-16,824, 1990.
- Andreae, M. O., The Biosphere: Pilot or Passenger on Spaceship Earth?, in *Contributions to Global Change Research*, edited by D. Heinen, S. Hoch,
 T. Krafft, C. Moss, P. Scheidt, & A. Welschhoff, pp. 59-66, German
 National Committee on Global Change Research, Bonn, 2001.
- Andreae, M. O., Artaxo, P., Brandão, C., Carswell, F. E., Ciccioli, P., da Costa, A.
 L., Culf, A. D., Esteves, J. L., Gash, J. H. C., Grace, J., Kabat, P.,
 Lelieveld, J., Malhi, Y., Manzi, A. O., Meixner, F. X., Nobre, A. D.,
 Nobre, C., Ruivo, M. d. L. P., Silva-Dias, M. A., Stefani, P., Valentini, R.,
 von Jouanne, J., and Waterloo, M. J., Biogeochemical cycling of carbon,
- 2851 water, energy, trace gases and aerosols in Amazonia: The LBA-

- 2852 EUSTACH experiments: J. Geophys. Res., 107, 8066,
 2853 doi:10.1029/2001JD000524, 2002.
- Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K.
 M., and Silva-Dias, M. A. F., Smoking rain clouds over the Amazon:
 Science, 303, 1337-1342, 2004.
- Andreae, M. O., and Gelencsér, A., Black carbon or brown carbon? The nature of
 light-absorbing carbonaceous aerosols: Atmos. Chem. Phys., 6, 31313148, 2006.
- Andreae, M. O., Correlation between cloud condensation nuclei concentration and
 aerosol optical thickness in remote and polluted regions: Atmos. Chem.
 Phys., 9, 543–556, 2009.
- Andreae, M. O., Artaxo, P., Beck, V., M. Bela, Gerbig, C., Longo, K., Munger, J.
 W., Wiedemann, K. T., and Wofsy, S. C., Carbon monoxide and related
 trace gases and aerosols over the Amazon Basin during the wet and dry
 seasons: Atmos. Chem. Phys., 12, 6041–6065, 2012.
- Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., 2867 2868 Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., 2869 Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, 2870 S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P., CO₂, CO, and CH₄ 2871 measurements from tall towers in the NOAA Earth System Research 2872 2873 Laboratory's Global Greenhouse Gas Reference Network: instrumentation, 2874 uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts: Atmos. Meas. Tech., 7, 647-687, 2875 doi:10.5194/amt-7-647-2014, 2014. 2876
- Ansmann, A., Baars, H., Tesche, M., Muller, D., Althausen, D., Engelmann, R.,
 Pauliquevis, T., and Artaxo, P., Dust and smoke transport from Africa to
 South America: Lidar profiling over Cape Verde and the Amazon
 rainforest: Geophys. Res. Lett., 36, L11802, doi:10.1029/2009GL037923,
 2009.
- Artaxo, P., Martins, J. V., Yamasoe, M. A., Procópio, A. S., Pauliquevis, T. M.,
 Andreae, M. O., Guyon, P., Gatti, L. V., and Leal, A. M. C., Physical and
 chemical properties of aerosols in the wet and dry season in Rondonia,
 Amazonia: J. Geophys. Res., 107, 8081, doi:10.1029/2001JD000666,
 2002.
- Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T.,
 Cirino, G. G., Bastos, W., Martin, S. T., and Andreae, M. O., Atmospheric
 aerosols in Amazonia and land use change: from natural biogenic to
 biomass burning conditions: Faraday Discussions, 165, 203-235,
 doi:10.1039/C3FD00052D, 2013.
- Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Artaxo, P., Pauliquevis,
 T., and Souza, R., Further evidence for significant smoke transport from
 Africa to Amazonia: Geophys. Res. Lett., 38, L20802,
 doi:10.1029/2011GL049200, 2011.

- Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe,
 D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S.,
 and Houghton, R. A., Estimated carbon dioxide emissions from tropical
 deforestation improved by carbon-density maps: Nature Climate Change,
 2, 182-185, doi:10.1038/nclimate1354, 2012.
- Bakwin, P. S., Tans, P. P., Hurst, D. F., and Zhao, C. L., Measurements of carbon
 dioxide on very tall towers: results of the NOAA/CMDL program: Tellus
 Series B-Chemical and Physical Meteorology, 50, 401-415, 1998.
- Balch, J. K., Drought and fire change sink to source: Nature, 506, 41-42,
 doi:10.1038/506041a, 2014.
- Beck, V., Chen, H., Gerbig, C., Bergamaschi, P., Bruhwiler, L., Houweling, S.,
 Röckmann, T., Kolle, O., Steinbach, J., Koch, T., Sapart, C. J., van der
 Veen, C., Frankenberg, C., Andreae, M. O., Artaxo, P., Longo, K. M., and
 Wofsy, S. C., Methane airborne measurements and comparison to global
 models during BARCA: J. Geophys. Res., 117, D15310,
 doi:10.1029/2011JD017345, 2012.
- Ben-Ami, Y., Koren, I., Rudich, Y., Artaxo, P., Martin, S. T., and Andreae, M. O.,
 Transport of Saharan dust from the Bodélé Depression to the Amazon
 Basin: a case study: Atmos. Chem. Phys., 10, 7533–7544, 2010.
- Ben-Ami, Y., Koren, I., Altaratz, O., Kostinski, A., and Lehahn, Y., Discernible
 rhythm in the spatio/temporal distributions of transatlantic dust: Atmos.
 Chem. Phys., 12, 2253-2262, doi:10.5194/acp-12-2253-2012, 2012.
- Betts, A. K., Fisch, G., von Randow, C., Dias, M. A. F. S., Cohen, J. C. P., da
 Silva, R., and Fitzjarrald, D. R., The Amazonian boundary layer and
 mesoscale circulations, in *Amazonia and Global Change*, edited by M.
 Keller, M. Bustamante, J. Gash, & P. Dias, pp. 163-181, American
 Geophysical Union, Washington, DC, 2009.
- Bevan, S. L., North, P. R. J., Grey, W. M. F., Los, S. O., and Plummer, S. E.,
 Impact of atmospheric aerosol from biomass burning on Amazon dryseason drought: J. Geophys. Res., 114, D09204,
 doi:10.1029/2008jd011112, 2009.
- Bond, T. C., Bussemer, M., Wehner, B., Keller, S., Charlson, R. J., and
 Heintzenberg, J., Light absorption by primary particle emissions from a
 lignite burning plant: Environ. Sci. Technol., 33, 3887-3891, 1999.
- Bond, T. C., Covert, D. S., and Müller, T., Truncation and angular-scattering
 corrections for absorbing aerosol in the TSI 3563 nephelometer: Aerosol
 Sci. Tech., 43, 866-871, doi:10.1080/02786820902998373, 2009.
- Bou-Zeid, E., Meneveau, C., and Parlange, M. B., Large-eddy simulation of
 neutral atmospheric boundary layer flow over heterogeneous surfaces:
 Blending height and effective surface roughness: Water Resources
 Research, 40, W02505, doi:10.1029/2003wr002475, 2004.
- Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R.,
 Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y.,
 Lewis, S. L., Vasquez Martinez, R., Alexiades, M., Alvarez Davila, E.,

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958	 Alvarez-Loayza, P., Andrade, A., Aragao, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C., G. A., Banki, O. S., Baraloto, C., Barroso, J., Bonal, D., Boot, R. G. A., Camargo, J. L. C., Castilho, C. V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo Valverde, F., da Costa, L., de Oliveira, E. A., Di Fiore, A., Erwin, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame, E. S., Groot, N., Herault, B., Higuchi, N., Honorio Coronado, E. N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Licona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, B. H., Mendoza, C., Neill, D. A., Nogueira, E. M., Nunez, P., Pallqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J., Pena-Claros, M., Pickavance, G. C., Pitman, N. C. A., Poorter, L., Prieto, A., Quesada, C. A., Ramirez, F., Ramirez-Angulo, H., Restrepo, Z., Roopsind, A., Rudas, A., Salomao, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Talbot, J., ter Steege, H., Teran-Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K., van der Heijden, G. M. F., van der Hout, P., Guimaraes Vieira, I. C., Vieira, S. A., Vilanova, E., Vos, V. A., and Zagt, R. J., Long-term decline of the Amazon carbon sink: Nature, 519, 344-348, doi:10.1038/nature14283, 2015.
2959	Brown, A. R., and Wood, N., Properties and parameterization of the stable
2960	boundary layer over moderate topography: J. Atmos. Sci., 60, 2797-2808,
2961	2003.
2962	 Bueno, P. A., Havey, D. K., Mulholland, G. W., Hodges, J. T., Gillis, K. A.,
2963	Dickerson, R. R., and Zachariah, M. R., Photoacoustic measurements of
2964	amplification of the absorption cross section for coated soot aerosols:
2965	Aerosol Sci. Tech., 45, 1217-1230, doi:10.1080/02786826.2011.587477,
2966	2011.
2967	Cai, Y., Montague, D. C., Mooiweer-Bryan, W., and Deshler, T., Performance
2968	characteristics of the ultra high sensitivity aerosol spectrometer for
2969	particles between 55 and 800 nm: Laboratory and field studies: J. Aerosol
2970	Sci., 39, 759-769, doi:10.1016/j.jaerosci.2008.04.007, 2008.
2971	Campanharo, A., Ramos, F. M., Macau, E. E. N., Rosa, R. R., Bolzan, M. J. A.,
2972	and Sa, L. D. A., Searching chaos and coherent structures in the
2973	atmospheric turbulence above the Amazon forest: Phil. Trans. R. Soc. A,
2974	366, 579-589, doi:10.1098/rsta.2007.2118, 2008.
2975	Camponogara, G., Silva Dias, M. A. F., and Carrió, G. G., Relationship between
2976	Amazon biomass burning aerosols and rainfall over the La Plata Basin:
2977	Atmos. Chem. Phys., 14, 4397-4407, doi:10.5194/acp-14-4397-2014,
2978	2014.
2979 2980 2981 2982	Cancelli, D. M., Dias, N. L., and Chamecki, M., Dimensionless criteria for the production-dissipation equilibrium of scalar fluctuations and their implications for scalar similarity: Water Resources Research, 48, W10522, doi:10.1029/2012wr012127, 2012.
2983 2984 2985	Carpenter, L. J., Fleming, Z. L., Read, K. A., Lee, J. D., Moller, S. J., Hopkins, J.R., Purvis, R. M., Lewis, A. C., Mueller, K., Heinold, B., Herrmann, H.,Fomba, K. W., van Pinxteren, D., Mueller, C., Tegen, I., Wiedensohler,

- 2986 A., Mueller, T., Niedermeier, N., Achterberg, E. P., Patey, M. D., Kozlova, E. A., Heimann, M., Heard, D. E., Plane, J. M. C., Mahajan, A., 2987 Oetjen, H., Ingham, T., Stone, D., Whalley, L. K., Evans, M. J., Pilling, M. 2988 J., Leigh, R. J., Monks, P. S., Karunaharan, A., Vaughan, S., Arnold, S. R., 2989 2990 Tschritter, J., Poehler, D., Friess, U., Holla, R., Mendes, L. M., Lopez, H., Faria, B., Manning, A. J., and Wallace, D. W. R., Seasonal characteristics 2991 of tropical marine boundary layer air measured at the Cape Verde 2992 2993 Atmospheric Observatory: J. Atmos. Chem., 67, 87-140, 2994 doi:10.1007/s10874-011-9206-1, 2010. 2995 Carswell, F. E., Costa, A. L., Palheta, M., Malhi, Y., Meir, P., Costa, J. d. P. R., 2996 Ruivo, M. d. L., Leal, L. d. S. M., Costa, J. M. N., Clement, R. J., and 2997 Grace, J., Seasonality in CO₂ and H₂O flux at an eastern Amazonian rain forest: J. Geophys. Res., 107, LBA 43-1-LBA 43-15, 2998 doi:10.1029/2000JD000284, 2002. 2999 3000 Cava, D., Giostra, U., Siqueira, M., and Katul, G., Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine 3001 3002 forest: Boundary-Layer Meteorology, 112, 129-157, 3003 doi:10.1023/B:BOUN.0000020160.28184.a0, 2004. 3004 Chambers, J. Q., Negron-Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews, J., 3005 Roberts, D., Ribeiro, G. H. P. M., Trumbore, S. E., and Higuchi, N., The steady-state mosaic of disturbance and succession across an old-growth 3006 3007 Central Amazon forest landscape: Proc. Natl. Acad. Sci., 110, 3949-3954, 3008 doi:10.1073/pnas.1202894110, 2013. Chauvel, A., Lucas, Y., and Boulet, R., On the genesis of the soil mantle of the 3009 3010 region of Manaus, Central Amazonia, Brazil: Experientia, 43, 234-241, 3011 doi:10.1007/bf01945546, 1987. 3012 Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., 3013 Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B., and Yamakura, T., Tree allometry and 3014 3015 improved estimation of carbon stocks and balance in tropical forests: Oecologia, 145, 87-99, doi:10.1007/s00442-005-0100-x, 2005. 3016
 - Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A.
 E., Towards a worldwide wood economics spectrum: Ecology Letters, 12, 3019 351-366, doi:10.1111/j.1461-0248.2009.01285.x, 2009.
 - Chen, B., Coops, N. C., Fu, D., Margolis, H. A., Amiro, B. D., Black, T. A.,
 Arain, M. A., Barr, A. G., Bourque, C. P. A., Flanagan, L. B., Lafleur, P.
 M., McCaughey, J. H., and Wofsy, S. C., Characterizing spatial
 representativeness of flux tower eddy-covariance measurements across the
 Canadian Carbon Program Network using remote sensing and footprint
 analysis: Remote Sens. Environ., 124, 742-755,
 doi:<u>http://dx.doi.org/10.1016/j.rse.2012.06.007</u>, 2012.
 - Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T.,
 Guenther, A., Allan, J. D., Robinson, N., Coe, H., Kimmel, J. R.,
 Pauliquevis, T., Borrmann, S., Pöschl, U., Andreae, M. O., Artaxo, P.,
 Jimenez, J. L., and Martin, S. T., Mass spectral characterization of

3031 submicron biogenic organic particles in the Amazon Basin: Geophys. Res. Lett., 36, L20806, doi:10.1029/2009GL039880, 2009. 3032 3033 Chen, Q., Farmer, D. K., Rizzo, L. V., Pauliquevis, T., Kuwata, M., Karl, T. G., 3034 Guenther, A., Allan, J. D., Coe, H., Andreae, M. O., Pöschl, U., Jimenez, J. L., Artaxo, P., and Martin, S. T., Submicron particle mass 3035 3036 concentrations and sources in the Amazonian wet season (AMAZE-08): Atmos. Chem. Phys., 15, 3687-3701, doi:10.5194/acp-15-3687-2015, 3037 3038 2015. 3039 Chi, X., Winderlich, J., Mayer, J.-C., Panov, A. V., Heimann, M., Birmili, W., 3040 Heintzenberg, J., Cheng, Y., and Andreae, M. O., Long-term 3041 measurements of aerosols and carbon monoxide at the ZOTTO tall tower 3042 to characterize polluted and pristine air in the Siberian Taiga: Atmos. 3043 Chem. Phys., 13, 12,271-12,298, doi:10.5194/acp-13-12271-2013, 2013. 3044 Chimonas, G., and Nappo, C. J., Wave drag in the planetary boundary layer over complex terrain: Boundary-Layer Meteorology, 47, 217-232, 3045 3046 doi:10.1007/bf00122330, 1989. 3047 Chou, W. W., Wofsy, S. C., Harriss, R. C., Lin, J. C., Gerbig, C., and Sachse, G. 3048 W., Net fluxes of CO₂ in Amazonia derived from aircraft observations: J. 3049 Geophys. Res., 107, 4614, doi:10.1029/2001JD001295, 2002. 3050 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., 3051 DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, 3052 R. B., Piao, S., and Thornton, P., Chapter 6: Carbon and Other 3053 Biogeochemical Cycles, in IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 3054 3055 Report of the Intergovernmental Panel on Climate Change, edited by T.F. Stocker, D. Oin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. 3056 3057 Nauels, Y. Xia, V. Bex, & P. M. Midgley, pp. 465-570, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3058 2013. 3059 3060 Cintra, B. B. L., Schietti, J., Emillio, T., Martins, D., Moulatlet, G., Souza, P., 3061 Levis, C., Quesada, C. A., and Schöngart, J., Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus-3062 3063 Madeira interfluvial wetlands in Amazonia: Biogeosciences, 10, 7759-3064 7774, doi:10.5194/bg-10-7759-2013, 2013. Cirino, G. G., Souza, R. A. F., Adams, D. K., and Artaxo, P., The effect of 3065 3066 atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon: Atmos. Chem. Phys., 14, 6523-6543, doi:10.5194/acp-14-6523-3067 3068 2014, 2014. 3069 Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W., 3070 Formation of secondary organic aerosols through photooxidation of 3071 isoprene: Science, 303, 1173-1176, 2004. 3072 3073 Claeys, M., Kourtchev, I., Pashynska, V., Vas, G., Vermeylen, R., Wang, W., Cafmeyer, J., Chi, X., Artaxo, P., Andreae, M. O., and Maenhaut, W., 3074 3075 Polar organic marker compounds in atmospheric aerosols during the LBA-73

3076 3077 3078 3079	SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions: Atmos. Chem. Phys., 10, 9319–9331, doi:10.5194/acp-10-9319-2010, 2010.
3080	Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R.,
3081	Ni, J., and Holland, E. A., Net primary production in tropical forests: An
3082	evaluation and synthesis of existing field data: Ecol. Appl., 11, 371-384,
3083	doi:10.2307/3060895, 2001.
3084	Cleveland, C. C., Taylor, P., Chadwick, K. D., Dahlin, K., Doughty, C. E., Malhi,
3085	Y., Smith, W. K., Sullivan, B. W., Wieder, W. R., and Townsend, A. R., A
3086	comparison of plot-based satellite and Earth system model estimates of
3087	tropical forest net primary production: Global Biogeochemical Cycles, 29,
3088	626-644, doi:10.1002/2014GB005022, 2015.
3089	Coe, M. T., Costa, M. H., and Soares-Filhoc, B. S., The influence of historical and
3090	potential future deforestation on the stream flow of the Amazon River -
3091	Land surface processes and atmospheric feedbacks: Journal of Hydrology,
3092	369, 165-174, doi:10.1016/j.jhydrol.2009.02.043, 2009.
3093 3094 3095	Collineau, S., and Brunet, Y., Detection of turbulent coherent motions in a forest canopy. 2. Time-scales and conditional averages: Boundary-Layer Meteorology, 66, 49-73, doi:10.1007/bf00705459, 1993.
3096 3097 3098	Costa, F. D., Acevedo, O. C., Mombach, J. C. M., and Degrazia, G. A., A simplified model for intermittent turbulence in the nocturnal boundary layer: J. Atmos. Sci., 68, 1714-1729, doi:10.1175/2011jas3655.1, 2011.
3099	Crutzen, P. J., The role of the tropics in atmospheric chemistry, in <i>The</i>
3100	<i>Geophysiology of Amazonia</i> , edited by R. E. Dickinson, pp. 107-130, John
3101	Wiley, New York, 1987.
3102 3103 3104	Crutzen, P. J., and Andreae, M. O., Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles: Science, 250, 1669-1678, 1990.
3105	D'Amelio, M. T. S., Gatti, L. V., Miller, J. B., and Tans, P., Regional N ₂ O fluxes
3106	in Amazonia derived from aircraft vertical profiles: Atmos. Chem. Phys.,
3107	9, 8785-8797, 2009.
3108 3109 3110	Da Silva, J. M. C., Rylands, A. B., and Da Fonseca, G. A. B., The fate of the Amazonian areas of endemism: Conservation Biology, 19, 689-694, doi:10.1111/j.1523-1739.2005.00705.x, 2005.
3111 3112 3113 3114 3115	 Davidson, E. A., de Araujo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., Bustamante, M. M. C., Coe, M. T., DeFries, R. S., Keller, M., Longo, M., Munger, J. W., Schroeder, W., Soares, B. S., Souza, C. M., and Wofsy, S. C., The Amazon basin in transition: Nature, 481, 321-328, doi:10.1038/nature10717, 2012.
3116	de Araujo, A. C., Kruijt, B., Nobre, A. D., Dolman, A. J., Waterloo, M. J., Moors,
3117	E. J., and de Souza, J. S., Nocturnal accumulation of CO(2) underneath a
3118	tropical forest canopy along a topographical gradient: Ecol. Appl., 18,
3119	1406-1419, 2008.

- 3120 de Araujo, A. C., Dolman, A. J., Waterloo, M. J., Gash, J. H. C., Kruijt, B., Zanchi, F. B., de Lange, J. M. E., Stoevelaar, R., Manzi, A. O., Nobre, A. 3121 D., Lootens, R. N., and Backer, J., The spatial variability of CO₂ storage 3122 and the interpretation of eddy covariance fluxes in central Amazonia: 3123 3124 Agricultural and Forest Meteorology, 150, 226-237, doi:10.1016/j.agrformet.2009.11.005, 2010. 3125
- de Araújo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., 3126 3127 von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., and Kabat, P., Comparative measurements of carbon dioxide fluxes from 3128 3129 two nearby towers in a central Amazonian rainforest: The Manaus LBA site: J. Geophys. Res., 107, 8090, doi:10.1029/2001JD000676, 2002. 3130
- 3131 Dias Júnior, C. Q., Sa, L. D. A., Pacheco, V. B., and de Souza, C. M., Coherent 3132 structures detected in the unstable atmospheric surface layer above the 3133 Amazon forest: Journal of Wind Engineering and Industrial Aerodynamics, 115, 1-8, doi:10.1016/j.jweia.2012.12.019, 2013. 3134
- Dias, N. L., Hong, J., Leclerc, M. Y., Black, T. A., Nesic, Z., and Krishnan, P., A 3135 3136 simple method of estimating scalar fluxes over forests: Boundary-Layer 3137 Meteorology, 132, 401-414, doi:10.1007/s10546-009-9408-0, 2009.
- 3138 Dlugokencky, E. J., Lang, P. M., Masarie, K. A., Crotwell, A. M., and Crotwell, 3139 M. J., Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 3140 3141 1968-2013, Version: 2014-06-27, 3142

ftp://aftp.cmdl.noaa.gov/data/trace gases/co2/flask/surface/ (2014).

- Doughty, C. E., and Goulden, M. L., Seasonal patterns of tropical forest leaf area 3143 3144 index and CO2 exchange: Journal of Geophysical Research-Biogeosciences, 113, G00B06, doi:10.1029/2007jg000590, 2008. 3145
- 3146 Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amezquita, F. F., Cabrera, D. 3147 G., Huasco, W. H., Silva-Espejo, J. E., Araujo-Murakami, A., da Costa, M. C., Rocha, W., Feldpausch, T. R., Mendoza, A. L. M., da Costa, A. C. 3148 3149 L., Meir, P., Phillips, O. L., and Malhi, Y., Drought impact on forest 3150 carbon dynamics and fluxes in Amazonia: Nature, 519, 78-82, doi:10.1038/nature14213, 2015. 3151
- Draxler, R. R., and Rolph, G. D., HYSPLIT (HYbrid Single-Particle Lagrangian 3152 3153 Integrated Trajectory) Model access via NOAA ARL READY Website 3154 (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD. (2015). 3155
- Drüe, C., and Heinemann, G., Characteristics of intermittent turbulence in the 3156 3157 upper stable boundary layer over Greenland: Boundary-Layer Meteorology, 124, 361-381, doi:10.1007/s10546-007-9175-8, 2007. 3158
- Dupont, S., and Brunet, Y., Coherent structures in canopy edge flow: a large-eddy 3159 3160 simulation study: Journal of Fluid Mechanics, 630, 93-128, 3161 doi:10.1017/s0022112009006739, 2009.
- 3162 Durden, D. J., Nappo, C. J., Leclerc, M. Y., Duarte, H. F., Zhang, G., Parker, M. 3163 J., and Kurzeja, R. J., On the impact of wave-like disturbances on turbulent fluxes and turbulence statistics in nighttime conditions: a case 3164

- 3165study: Biogeosciences, 10, 8433-8443, doi:10.5194/bg-10-8433-2013,31662013.
- Eck, T. F., Holben, B. N., Reid, J. S., O'Neill, N. T., Schafer, J. S., Dubovik, O.,
 Smirnov, A., Yamasoe, M. A., and Artaxo, P., High aerosol optical depth
 biomass burning events: A comparison of optical properties for different
 source regions: Geophys. Res. Lett., 30, 2035,
 doi:10.1029/2003GL017861, 2003.
- Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O., and
 Pöschl, U., Contribution of cryptogamic covers to the global cycles of
 carbon and nitrogen: Nature Geoscience, 5, 459-462, 2012.
- Emilio, T., Quesada, C. A., Costa, F. R. C., Magnusson, W. E., Schietti, J., 3175 Feldpausch, T. R., Brienen, R. J. W., Baker, T. R., Chave, J., Alvarez, E., 3176 Araujo, A., Banki, O., Castilho, C. V., Honorio C., E. N., Killeen, T. J., 3177 Malhi, Y., Mendoza, E. M. O., Monteagudo, A., Neill, D., Alexander 3178 Parada, G., Pena-Cruz, A., Ramirez-Angulo, H., Schwarz, M., Silveira, 3179 M., ter Steege, H., Terborgh, J. W., Thomas, R., Torres-Lezama, A., 3180 Vilanova, E., and Phillips, O. L., Soil physical conditions limit palm and 3181 3182 tree basal area in Amazonian forests: Plant Ecology & Diversity, 7, 215-229, doi:10.1080/17550874.2013.772257, 2014. 3183
- Farge, M., Wavelet transforms and their applications to turbulence: Annual
 Review of Fluid Mechanics, 24, 395-457,
 doi:10.1146/annurev.fluid.24.1.395, 1992.
- 3187 Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Mendoza, A. M., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., 3188 3189 Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragao, L., Murakami, A. A., Arets, E., Arroyo, L., Aymard, G. A., Baker, T. R., 3190 3191 Banki, O. S., Berry, N. J., Cardozo, N., Chave, J., Comiskey, J. A., 3192 Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T. F., Erwin, T. L., Fearnside, P. M., Franca, M. B., Freitas, M. A., Higuchi, 3193 3194 N., Honorio, E., Iida, Y., Jimenez, E., Kassim, A. R., Killeen, T. J., Laurance, W. F., Lovett, J. C., Malhi, Y., Marimon, B. S., Marimon, B. H., 3195 Lenza, E., Marshall, A. R., Mendoza, C., Metcalfe, D. J., Mitchard, E. T. 3196 A., Neill, D. A., Nelson, B. W., Nilus, R., Nogueira, E. M., Parada, A., 3197 3198 Peh, K. S. H., Cruz, A. P., Penuela, M. C., Pitman, N. C. A., Prieto, A., 3199 Ouesada, C. A., Ramirez, F., Ramirez-Angulo, H., Reitsma, J. M., Rudas, A., Saiz, G., Salomao, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., 3200 Silveira, M., Sonke, B., Stropp, J., Taedoumg, H. E., Tan, S., ter Steege, 3201 3202 H., Terborgh, J., Torello-Raventos, M., van der Heijden, G. M. F., Vasquez, R., Vilanova, E., Vos, V. A., White, L., Willcock, S., Woell, H., 3203 and Phillips, O. L., Tree height integrated into pantropical forest biomass 3204 estimates: Biogeosciences, 9, 3381-3403, doi:10.5194/bg-9-3381-2012, 3205 2012. 3206 Fernandes, M. J. S., Índice de erosividade da chuva média anual para Manaus/AM 3207 de 1981 a 2010: Revista Geonorte, 10, 46- 49, 2014. 3208 3209 Figueroa, S. N., and Nobre, C. A., Precipitions distribution over Central and
- 3210 Western Tropical South America: Climanálise, 5, 36-44, 1990.

- Fisch, G., Tota, J., Machado, L. A. T., Dias, M., Lyra, R. F. D., Nobre, C. A.,
 Dolman, A. J., and Gash, J. H. C., The convective boundary layer over
 pasture and forest in Amazonia: Theoretical and Applied Climatology, 78,
 47-59, 2004.
- Fitzjarrald, D. R., and Moore, K. E., Mechanisms of nocturnal exchange between
 the rain-forest and the atmosphere: J. Geophys. Res., 95, 16,839-16,850,
 doi:10.1029/JD095iD10p16839, 1990.
- 3218 Foken, T., Meixner, F. X., Falge, E., Zetzsch, C., Serafimovich, A., Bargsten, A., Behrendt, T., Biermann, T., Breuninger, C., Dix, S., Gerken, T., Hunner, 3219 3220 M., Lehmann-Pape, L., Hens, K., Jocher, G., Kesselmeier, J., Luers, J., Mayer, J. C., Moravek, A., Plake, D., Riederer, M., Rutz, F., Scheibe, M., 3221 3222 Siebicke, L., Sorgel, M., Staudt, K., Trebs, I., Tsokankunku, A., Welling, 3223 M., Wolff, V., and Zhu, Z., Coupling processes and exchange of energy 3224 and reactive and non-reactive trace gases at a forest site - results of the EGER experiment: Atmos. Chem. Phys., 12, 1923-1950, doi:10.5194/acp-3225 12-1923-2012, 2012. 3226
- Follath, R., Schmidt, J. S., Weigand, M., and Fauth, K., The Xray microscopy
 beamline UE46-PGM2 at BESSY: AIP Conf. Proc., 1234, 323-326,
 doi:10.1063/1.3463201, 2010.
- Formenti, P., Andreae, M. O., Lange, L., Roberts, G., Cafmeyer, J., Rajta, I.,
 Maenhaut, W., Holben, B. N., Artaxo, P., and Lelieveld, J., Saharan dust
 in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere
 Experiment in Amazonia (LBA)- Cooperative LBA Regional Experiment
 (CLAIRE) in March 1998: J. Geophys. Res., 106, 14,919-14,934, 2001.
- 3235 Fraser, B., Carving up the Amazon: Nature, 509, 418-419, 2014.
- Freud, E., Rosenfeld, D., Andreae, M. O., Costa, A. A., and Artaxo, P., Robust
 relations between CCN and the vertical evolution of cloud drop size
 distribution in deep convective clouds: Atmos. Chem. Phys., 8, 1661–
 1675, 2008.
- Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S.,
 Fuchs, H., Dube, W., Mensah, A., dal Maso, M., Tillmann, R., Dorn, H.
 P., Brauers, T., and Cohen, R. C., Organic nitrate and secondary organic
 aerosol yield from NO₃ oxidation of beta-pinene evaluated using a gasphase kinetics/aerosol partitioning model: Atmos. Chem. Phys., 9, 14311449, 2009.
- Galvão, L. S., dos Santos, J. R., Roberts, D. A., Breunig, F. M., Toomey, M., and
 de Moura, Y. M., On intra-annual EVI variability in the dry season of
 tropical forest: A case study with MODIS and hyperspectral data: Remote
 Sens. Environ., 115, 2350-2359, doi:10.1016/j.rse.2011.04.035, 2011.
- Gao, W., and Li, B. L., Wavelet analysis of coherent structures at the atmosphere
 forest interface: J. Appl. Meteor., 32, 1717-1725, 1993.
- Gatti, L. V., Miller, J. B., D'Amelio, M. T. S., Martinewski, A., Basso, L. S.,
 Gloor, M. E., Wofsy, S., and Tans, P., Vertical profiles of CO₂ above
 eastern Amazonia suggest a net carbon flux to the atmosphere and
 balanced biosphere between 2000 and 2009: Tellus Series B-Chemical and

- 3256Physical Meteorology, 62, 581-594, doi:10.1111/j.1600-32570889.2010.00484.x, 2010.
- Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues, L.
 G., Basso, L. S., Martinewski, A., Correia, C. S. C., Borges, V. F., Freitas,
 S., Braz, R., Anderson, L. O., Rocha, H., Grace, J., Phillips, O. L., and
 Lloyd, J., Drought sensitivity of Amazonian carbon balance revealed by
 atmospheric measurements: Nature, 506, 76-80, doi:10.1038/nature12957,
 2014.
- Gee, G. W., and Bauder, J. W., Particle size analysis, in *Methods in Soil Analysis*, *Part 1. Physical and Mineralogical Methods*, edited by A. Klute, pp. 383409, American Society of Agronomy and Soil Science Society of America,
 Madison, Wisconsin, USA, 1986.
- Gilardoni, S., Vignati, E., Marmer, E., Cavalli, F., Belis, C., Gianelle, V.,
 Loureiro, A., and Artaxo, P., Sources of carbonaceous aerosol in the
 Amazon basin: Atmos. Chem. Phys., 11, 2747-2764, 2011.
- Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L. S.,
 Drumond, A., Duran-Quesada, A. M., and Nieto, R., Oceanic and
 terrestrial sources of continental precipitation: Rev. Geophys., 50,
 RG4003, doi:10.1029/2012rg000389, 2012.
- Gloor, M., Fan, S. M., Pacala, S., and Sarmiento, J., Optimal sampling of the
 atmosphere for purpose of inverse modeling: A model study: Global
 Biogeochemical Cycles, 14, 407-428, 2000.
- Gloor, M., Bakwin, P., Hurst, D., Lock, L., Draxler, R., and Tans, P., What is the
 concentration footprint of a tall tower?: J. Geophys. Res., 106, 17,83117,840, 2001.
- Gloor, M., Gatti, L., Brienen, R., Feldpausch, T. R., Phillips, O. L., Miller, J.,
 Ometto, J. P., Rocha, H., Baker, T., de Jong, B., Houghton, R. A., Malhi,
 Y., Aragao, L., Guyot, J. L., Zhao, K., Jackson, R., Peylin, P., Sitch, S.,
 Poulter, B., Lomas, M., Zaehle, S., Huntingford, C., Levy, P., and Lloyd,
 J., The carbon balance of South America: a review of the status, decadal
 trends and main determinants: Biogeosciences, 9, 5407-5430,
 doi:10.5194/bg-9-5407-2012, 2012.
- Gloor, M., Brienen, R. J. W., Galbraith, D., Feldpausch, T. R., Schöngart, J.,
 Guyot, J. L., Espinoza, J. C., Lloyd, J., and Phillips, O. L., Intensification
 of the Amazon hydrological cycle over the last two decades: Geophys.
 Res. Lett., 40, 1729-1733, doi:10.1002/grl.50377, 2013.
- Goulding, M., Barthem, R. B., and Duenas, R., The Smithsonian Atlas of the
 Amazon. Washington, D.C.: Smithsonian Books, 253 p, 2003.
- Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre,
 C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., and Gash, J.,
 Carbon dioxide uptake by an undisturbed tropical rain forest in southwest
 Amazonia, 1992 to 1993: Science, 270, 778-780, 1995.
- 3298 Greco, S., Swap, R., Garstang, M., Ulanski, S., Shipman, M., Harriss, R. C.,
 3299 Talbot, R., Andreae, M. O., and Artaxo, P., Rainfall and surface kinematic

3300 3301	conditions over Central Amazonia during ABLE 2B: J. Geophys. Res., 95, 17,001-17,014, 1990.
3302	Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K.,
3303	Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.,
3304	Cloud condensation nuclei in pristine tropical rainforest air of Amazonia:
3305	size-resolved measurements and modeling of atmospheric aerosol
3306	composition and CCN activity: Atmos. Chem. Phys., 9, 7551–7575, 2009.
3307	Hari, P., Andreae, M. O., Kabat, P., and Kulmala, M., A comprehensive network
3308	of measuring stations to monitor climate change: Boreal Environment
3309	Research, 14, 442-446, 2009.
3310	Healy, D. A., Huffman, J. A., O'Connor, D. J., Pöhlker, C., Pöschl, U., and
3311	Sodeau, J. R., Ambient measurements of biological aerosol particles near
3312	Killarney, Ireland: a comparison between real-time fluorescence and
3313	microscopy techniques: Atmos. Chem. Phys., 14, 8055-8069,
3314	doi:10.5194/acp-14-8055-2014, 2014.
3315	 Heiblum, R. H., Koren, I., and Feingold, G., On the link between Amazonian
3316	forest properties and shallow cumulus cloud fields: Atmos. Chem. Phys.,
3317	14, 6063-6074, doi:10.5194/acp-14-6063-2014, 2014.
3318	 Heimann, M., Schulze, ED., Winderlich, J., Andreae, M. O., Chi, X., Gerbig, C.,
3319	Kolle, O., Kübler, K., Lavric, J., Mikhailov, E., Panov, A., Park, S.,
3320	Rödenbeck, C., and Skorochod, A., The Zotino Tall Tower Observatory
3321	(ZOTTO): Quantifying large scale biogeochemical changes in Central
3322	Siberia: Nova Acta Leopoldina, 117, 51-64, 2014.
3323	Hoch, S. W., Calanca, P., Philipona, R., and Ohmura, A., Year-round observation
3324	of longwave radiative flux divergence in Greenland: Journal of Applied
3325	Meteorology and Climatology, 46, 1469-1479, doi:10.1175/jam2542.1,
3326	2007.
3327 3328 3329 3330 3331 3332	 Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Sarkinen, T., and Antonelli, A., Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity: Science, 330, 927-931, doi:10.1126/science.1194585, 2010.
3333	Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra,
3334	L. R., Yang, W. Z., Nemani, R. R., and Myneni, R., Amazon rainforests
3335	green-up with sunlight in dry season: Geophys. Res. Lett., 33, L06405,
3336	doi:10.1029/2005GL025583, 2006.
3337	 Huffman, J. A., Sinha, B., Garland, R. M., Snee-Pollmann, A., Gunthe, S. S.,
3338	Artaxo, P., Martin, S. T., Andreae, M. O., and Pöschl, U., Size
3339	distributions and temporal variations of biological aerosol particles in the
3340	Amazon rainforest characterized by microscopy and real-time UV-APS
3341	fluorescence techniques during AMAZE-08: Atmos. Chem. Phys., 12,
3342	11,997–12,019, 2012.
3343	Hussain, A. K. M. F., Coherent structures and turbulence: Journal of Fluid
3344	Mechanics, 173, 303-356, doi:10.1017/s0022112086001192, 1986.

3345 IDESAM, Plano de Gestão da Reserva de Desenvolvimento Sustentável do 3346 Uatumã. Versão para consulta pública. Instituto de Conservação e Desenvolvimento Sustentável do Amazonas, Manaus. (2009). 3347 3348 IUSS (International Union of Soil Science) Working Group WRB, World reference base for soil resources 2006: A framework for international 3349 3350 classification, correlation and communication, World Soil Resources 3351 Report 103. FAO, Rome, 145 p. (2006). 3352 Jacob, D. J., and Wofsy, S. C., Budgets of reactive nitrogen, hydrocarbons, and 3353 ozone over the Amazon forest during the wet season: J. Geophys. Res., 95, 3354 16,737-16,754, 1990. 3355 Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der 3356 3357 Werf, G. R., Biomass burning emissions estimated with a global fire assimilation system based on observations of fire radiative power: 3358 Biogeosciences, 9, 527-554, doi:10.5194/bg-9-527-2012, 2012. 3359 3360 Kaye, P. H., Stanley, W. R., Hirst, E., Foot, E. V., Baxter, K. L., and Barrington, 3361 S. J., Single particle multichannel bio-aerosol fluorescence sensor: Optics 3362 Express, 13, 3583-3593, doi:10.1364/opex.13.003583, 2005. Keller, M., Bustamante, M., Gash, J., and Dias, P., Amazonia and Global Change. 3363 3364 Washington, DC: American Geophysical Union, 565 p, 2009. 3365 Kesselmeier, J., Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, 3366 G., Andreae, M. O., Ciccioli, P., Brancaleoni, E., Frattoni, M., Oliva, S. T., Botelho, M. L., Silva, C. M. A., and Tavares, T. M., Concentrations 3367 and species composition of atmospheric volatile organic compounds 3368 (VOCs) as observed during the wet and dry season in Rondonia 3369 3370 (Amazonia): J. Geophys. Res., 107, 8053, doi:10.1029/2000JD000267, 3371 2002. 3372 Kilcoyne, A. L. D., Tyliszczak, T., Steele, W. F., Fakra, S., Hitchcock, P., Franck, 3373 K., Anderson, E., Harteneck, B., Rightor, E. G., Mitchell, G. E., 3374 Hitchcock, A. P., Yang, L., Warwick, T., and Ade, H., Interferometercontrolled scanning transmission X-ray microscopes at the Advanced 3375 Light Source: Journal of Synchrotron Radiation, 10, 125-136, 3376 doi:10.1107/s0909049502017739, 2003. 3377 3378 Kirchhoff, V. W. J. H., Setzer, A. W., and Pereira, M. C., Biomass burning in 3379 Amazonia: Seasonal effects on atmospheric O₃ and CO: Geophys. Res. 3380 Lett., 16, 469-472, 1989. 3381 Kirchhoff, V. W. J. H., daSilva, I. M. O., and Browell, E. V., Ozone 3382 measurements in Amazonia: Dry season versus wet season: J. Geophys. 3383 Res., 95, 16,913-16,926, 1990. Krusche, N., and Oliveira, A. P., Characterization of coherent structures in the 3384 atmospheric surface layer: Boundary-Layer Meteorology, 110, 191-211, 3385 3386 doi:10.1023/a:1026096805679, 2004. 3387 Kuhn, U., Ganzeveld, L., Thielmann, A., Dindorf, T., Welling, M., Sciare, J., Roberts, G., Meixner, F. X., Kesselmeier, J., Lelieveld, J., Ciccioli, P., 3388

3389 3390 3391 3392		Lloyd, J., Trentmann, J., Artaxo, P., and Andreae, M. O., Impact of Manaus City on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity and aerosol load: Atmos. Chem. Phys., 10, 9251– 9282, 2010.
3393 3394 3395 3396 3397 3398	Kulma	la, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M., Worsnop, D. R., and Kerminen, V. M., Chemistry of atmospheric nucleation: On the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation: Annu. Rev. Phys. Chem., 65, 21-37, doi:10.1146/annurev-physchem- 040412-110014, 2014.
3399 3400 3401 3402 3403 3404	Lapola	a, D. M., Martinelli, L. A., Peres, C. A., Ometto, J. P. H. B., Ferreira, M. E., Nobre, C. A., Aguiar, A. P. D., Bustamante, M. M. C., Cardoso, M. F., Costa, M. H., Joly, C. A., Leite, C. C., Moutinho, P., Sampaio, G., Strassburg, B. B. N., and Vieira, I. C. G., Pervasive transition of the Brazilian land-use system: Nature Clim. Change, 4, 27-35, doi:10.1038/nclimate2056, 2014.
3405 3406 3407	Lawrei	nce, D., and Vandecar, K., Effects of tropical deforestation on climate and agriculture: Nature Clim. Change, 5, 27-36, doi:10.1038/nclimate2430, 2015.
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420	Le Que	éré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain, A., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N., Wang, Y. P., Wanninkhof, R., Wiltshire, A., and Zeng, N., Global carbon budget 2014: Earth Syst. Sci. Data Discuss., 7, 521-610, doi:10.5194/essdd-7-521-2014, 2014.
3421 3422 3423 3424	Lelieve	eld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J., Atmospheric oxidation capacity sustained by a tropical forest: Nature, 452, 737-740, doi:10.1038/nature06870, 2008.
3425 3426 3427 3428 3429	Levin,	E. J. T., Prenni, A. J., Palm, B. B., Day, D. A., Campuzano-Jost, P., Winkler, P. M., Kreidenweis, S. M., DeMott, P. J., Jimenez, J. L., and Smith, J. N., Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado: Atmos. Chem. Phys., 14, 2657-2667, doi:10.5194/acp-14-2657-2014, 2014.
3430 3431 3432 3433	Li, D.,	and Bou-Zeid, E., Coherent Structures and the Dissimilarity of Turbulent Transport of Momentum and Scalars in the Unstable Atmospheric Surface Layer: Boundary-Layer Meteorology, 140, 243-262, doi:10.1007/s10546-011-9613-5, 2011.

3434 3435 3436 3437	Lin, J.	C., Matsui, T., Pielke, R. A., Sr., and Kummerow, C., Effects of biomass burning-derived aerosols on precipitation and clouds in the Amazon basin: a satellite-based empirical study: J. Geophys. Res., 111, D19204, doi:10.1029/2005JD006884, 2006.
3438 3439 3440	Lindin	ger, W., Hansel, A., and Jordan, A., Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels: Chemical Society Reviews, 27, 347-354, 1998.
3441 3442 3443	Liptzir	h, D., and Silver, W. L., Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil: Soil Biology & Biochemistry 41, 1696-1702, 2009.
3444 3445 3446 3447	Lloyd,	J., Kolle, O., Fritsch, H., de Freitas, S. R., Silva Dias, M. A. F., Artaxo, P., Nobre, A. D., de Araújo, A. C., Kruijt, B., Sogacheva, L., Fisch, G., Thielmann, A., Kuhn, U., and Andreae, M. O., An airborne regional carbon balance for Central Amazonia: Biogeosciences, 4, 759-768, 2007.
3448 3449 3450 3451	Lohou	F., Druilhet, A., Campistron, B., Redelspergers, J. L., and Said, F., Numerical study of the impact of coherent structures on vertical transfers in the atmospheric boundary layer: Boundary-Layer Meteorology, 97, 361- 383, doi:10.1023/a:1002641728075, 2000.
3452 3453 3454	Lu, C.	H., and Fitzjarrald, D. R., Seasonal and diurnal variations of coherent structures over a deciduous forest: Boundary-Layer Meteorology, 69, 43-69, doi:10.1007/bf00713294, 1994.
3455 3456	Mahrt,	L., Stratified atmospheric boundary layers: Boundary-Layer Meteorology, 90, 375-396, doi:10.1023/a:1001765727956, 1999.
3457 3458 3459	Mahrt,	L., Characteristics of submeso winds in the stable boundary layer: Boundary-Layer Meteorology, 130, 1-14, doi:10.1007/s10546-008-9336- 4, 2009.
3460 3461 3462 3463	Malhi,	Y., and Wright, J., Spatial patterns and recent trends in the climate of tropical rainforest regions: Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359, 311-329, doi:10.1098/rstb.2003.1433, 2004.
3464 3465 3466 3467 3468 3469 3470 3471	Malhi,	Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C. A., Quesada, C. A., Salomao, R., Silva, J. N. M., Lezama, A. T., Terborgh, J., Martinez, R. V., and Vinceti, B., The regional variation of aboveground live biomass in old-growth Amazonian forests: Global Change Biology, 12, 1107-1138, doi:10.1111/j.1365- 2486.2006.01120.x, 2006.
3472 3473 3474 3475 3476 3477 3478	Martin	, S. T., Andreae, M. O., Althausen, D., Artaxo, P., Baars, H., Borrmann, S., Chen, Q., Farmer, D. K., Guenther, A., Gunthe, S., Jimenez, J. L., Karl, T., Longo, K., Manzi, A., Pauliquevis, T., Petters, M., Prenni, A., Pöschl, U., Rizzo, L. V., Schneider, J., Smith, J. N., Swietlicki, E., Tota, J., Wang, J., Wiedensohler, A., and Zorn, S. R., An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08): Atmos. Chem. Phys., 10, 11,415–11,438, 2010a.

- Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein,
 A. H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L., McMurry, P. H.,
 Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R.,
 Dias, M. A. S., Spracklen, D., Swietlicki, E., and Trebs, I., Sources and
 properties of Amazonian aerosol particles: Rev. Geophys., 48, RG2002,
 doi:10.1029/2008RG000280, 2010b.
- Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G.,
 Fischer, H., Klupfel, T., Gurk, C., Konigstedt, R., Parchatka, U., Schiller,
 C. L., Stickler, A., Williams, J., and Lelieveld, J., Hydroxyl radicals in the
 tropical troposphere over the Suriname rainforest: airborne measurements:
 Atmos. Chem. Phys., 10, 3759-3773, 2010.
- Martins, D. L., Schietti, J., Feldpausch, T. R., Luizao, F. J., Phillips, O. L.,
 Andrade, A., Castilho, C. V., Laurance, S. G., Oliveira, A., Amaral, I. L.,
 Toledo, J. J., Lugli, L. F., Purri Veiga Pinto, J. L., Oblitas Mendoza, E. M.,
 and Quesada, C. A., Soil-induced impacts on forest structure drive coarse
 woody debris stocks across central Amazonia: Plant Ecology & Diversity,
 8, 229-241, doi:10.1080/17550874.2013.879942, 2015.
- Martins, J. A., Dias, M., and Goncalves, F. L. T., Impact of biomass burning
 aerosols on precipitation in the Amazon: A modeling case study: J.
 Geophys. Res., 114, D02207, doi:10.1029/2007jd009587, 2009.
- Mayol-Bracero, O. L., Gabriel, R., Andreae, M. O., Kirchstetter, T. W., Novakov,
 T., Ogren, J., Sheridan, P., and Streets, D. G., Carbonaceous aerosols over
 the Indian Ocean during the Indian Ocean Experiment (INDOEX):
 Chemical characterization, optical properties and probable sources: J.
 Geophys. Res., 107, 8030, doi:10.1029/2000JD000039, 2002.
- McMeeking, G. R., Fortner, E., Onasch, T. B., Taylor, J. W., Flynn, M., Coe, H.,
 and Kreidenweis, S. M., Impacts of nonrefractory material on light
 absorption by aerosols emitted from biomass burning: J. Geophys. Res.,
 119, 12,272–12,286, doi:10.1002/2014JD021750, 2014.
- McNaughton, K. G., and Brunet, Y., Townsend's hypothesis, coherent structures
 and Monin-Obukhov similarity: Boundary-Layer Meteorology, 102, 161175, doi:10.1023/a:1013171312407, 2002.
- Miller, J. B., Gatti, L. V., d'Amelio, M. T. S., Crotwell, A. M., Dlugokencky, E.
 J., Bakwin, P., Artaxo, P., and Tans, P. P., Airborne measurements
 indicate large methane emissions from the eastern Amazon basin:
 Geophys. Res. Lett., 34, L10809, doi:10.1029/2006GL029213, 2007.
- Mölder, M., Grelle, A., Lindroth, A., and Halldin, S., Flux-profile relationships
 over a boreal forest roughness sublayer corrections: Agricultural and
 Forest Meteorology, 98/99, 645-658, doi:10.1016/s0168-1923(99)001318, 1999.
- Moosmüller, H., Chakrabarty, R. K., Ehlers, K. M., and Arnott, W. P., Absorption
 Angstrom coefficient, brown carbon, and aerosols: basic concepts, bulk
 matter, and spherical particles: Atmos. Chem. Phys., 11, 1217-1225,
 doi:10.5194/acp-11-1217-2011, 2011.

- Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D.,
 Vermote, E. F., Harding, D. J., and North, P. R. J., Amazon forests
 maintain consistent canopy structure and greenness during the dry season:
 Nature, 506, 221-224, doi:10.1038/nature13006, 2014.
- Nappo, C. J., Sporadic breakdowns of stability in the PBL over simple and
 complex terrain: Boundary-Layer Meteorology, 54, 69-87,
 doi:10.1007/bf00119413, 1991.
- Nappo, C. J., An Introduction to Atmospheric Gravity Waves. Amsterdam:
 Academic Press, 276 p, 2002.
- Nelson, D. W., and Sommers, L. E., Total carbon and total nitrogen, in *Methods*of Soil Analysis: Part 3 Chemical Methods, edited by D. L. Sparks, pp.
 961-1010, American Society of Agronomy and Soil Science Society of
 America, Madison, Wisconsin, USA, 1996.
- Nepstad, D., McGrath, D., Stickler, C., Alencar, A., Azevedo, A., Swette, B.,
 Bezerra, T., DiGiano, M., Shimada, J., Seroa da Motta, R., Armijo, E.,
 Castello, L., Brando, P., Hansen, M. C., McGrath-Horn, M., Carvalho, O.,
 and Hess, L., Slowing Amazon deforestation through public policy and
 interventions in beef and soy supply chains: Science, 344, 1118-1123,
 doi:10.1126/science.1248525, 2014.
- Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,
 Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and
 Jayne, J. T., An Aerosol Chemical Speciation Monitor (ACSM) for
 Routine Monitoring of the Composition and Mass Concentrations of
 Ambient Aerosol: Aerosol Sci. Tech., 45, 780-794,
 doi:10.1080/02786826.2011.560211, 2011.
- Nobre, C. A., and Borma, L. D., 'Tipping points' for the Amazon forest: Curr.
 Opin. Environ. Sust., 1, 28-36, doi:10.1016/j.cosust.2009.07.003, 2009.
- Nobre, C. A., Obregón, G. O., Marengo, J. A., Fu, R., and Poveda, G.,
 Characteristics of Amazonian climate: Main Features, in *Amazonia and Global Change*, edited by M. Keller, M. Bustamante, J. Gash, & P. Dias,
 pp. 149-162, American Geophysical Union, Washington, DC, 2009.
- Nölscher, A. C., Williams, J., Sinha, V., Custer, T., Song, W., Johnson, A. M.,
 Axinte, R., Bozem, H., Fischer, H., Pouvesle, N., Phillips, G., Crowley, J.
 N., Rantala, P., Rinne, J., Kulmala, M., Gonzales, D., Valverde-Canossa,
 J., Vogel, A., Hoffmann, T., Ouwersloot, H. G., de Arellano, J. V. G., and
 Lelieveld, J., Summertime total OH reactivity measurements from boreal
 forest during HUMPPA-COPEC 2010: Atmos. Chem. Phys., 12, 82578270, doi:10.5194/acp-12-8257-2012, 2012.
- Nölscher, A. C., Butler, T., Auld, J., Veres, P., Muñoz, A., Taraborrelli, D.,
 Vereecken, L., Lelieveld, J., and Williams, J., Using total OH reactivity to
 assess isoprene photooxidation via measurement and model: Atmospheric
 Environment, 89, 453-463, doi:10.1016/j.atmosenv.2014.02.024, 2014.
- Novelli, P. C., and Masarie, K. A., Atmospheric Carbon Monoxide Dry Air Mole
 Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air

3567	Sampling Network, 1988-2013, Version: 2014-07-02,
3568	<u>ftp://aftp.cmdl.noaa.gov/data/trace_gases/co/flask/surface/</u> (2014).
3569	Oliveira, P. E. S., Acevedo, O. C., Moraes, O. L. L., Zimermann, H. R., and
3570	Teichrieb, C., Nocturnal intermittent coupling between the interior of a
3571	pine forest and the air above it: Boundary-Layer Meteorology, 146, 45-64,
3572	doi:10.1007/s10546-012-9756-z, 2013.
3573	Oliveira, P. H. F., Artaxo, P., Pires, C., De Lucca, S., Procopio, A., Holben, B.,
3574	Schafer, J., Cardoso, L. F., Wofsy, S. C., and Rocha, H. R., The effects of
3575	biomass burning aerosols and clouds on the CO ₂ flux in Amazonia: Tellus,
3576	59B, 338-349, doi:10.1111/j.1600-0889.2007.00270.x, 2007.
3577 3578 3579 3580	 Pacifico, F., Folberth, G. A., Sitch, S., Haywood, J. M., Rizzo, L. V., Malavelle, F. F., and Artaxo, P., Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study: Atmos. Chem. Phys., 15, 2791-2804, doi:10.5194/acp-15-2791-2015, 2015.
3581	Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz, W. A.,
3582	Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
3583	Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S. L., Rautiainen, A.,
3584	Sitch, S., and Hayes, D., A large and persistent carbon sink in the World's
3585	forests: Science, 333, 988-993, doi:10.1126/science.1201609, 2011.
3586	Patton, E. G. (1997). Large-Eddy Simulation of Turbulent Flow Above and Within
3587	a Plant Canopy, University of California at Davis, 132 p.
3588	Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and
3589	Hipps, L., On coherent structures in turbulence above and within
3590	agricultural plant canopies: Agricultural and Forest Meteorology, 61, 55-
3591	68, 1992.
3592 3593	Pella, E., Elemental organic analysis. 2. State of the art: American Laboratory, 22, 28-32, 1990.
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607	 Phillips, O. L., Aragao, L., Lewis, S. L., Fisher, J. B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Banki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, A. C. A., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jimenez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patino, S., Penuela, M. C., Prieto, A., Ramirez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., ter Steege, H., Stropp, J., Vasquez, R., Zelazowski, P., Davila, E. A., Andelman, S., Andrade, A., Chao, K. J., Erwin, T., Di Fiore, A., Honorio, E., Keeling, H., Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P. N., Ramirez-Angulo, H., Rudas, A., Salamao, R., Silva, N., Terborgh, J., and Torres-Lezama, A., Drought sensitivity of the Amazon rainforest: Science, 323, 1344-1347, doi:10.1126/science.1164033, 2009.
3608	Pleysier, J. L., and Juo, A. S. R., A single-extraction method using silver-thiourea
3609	for measuring exchangeable cations and effective CEC in soils with
3610	variable charges: Soil Science, 129, 205-211, 1980.

- 3611 Pöhlker, C., Wiedemann, K., Sinha, B., Shiraiwa, M., Gunthe, S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K., Kilcoyne, 3612 A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U., and 3613 Andreae, M. O., Biogenic potassium salt particles as seeds for secondary 3614 3615 organic aerosol in the Amazon: Science, 337, 1075-1078, 2012. 3616 Pöhlker, C., Saturno, J., Krüger, M. L., Förster, J.-D., Weigand, M., Wiedemann, 3617 K. T., Bechtel, M., Artaxo, P., and Andreae, M. O., Efflorescence upon 3618 humidification? X-ray microspectroscopic in-situ observation of changes in aerosol microstructure and phase state upon hydration: Geophys. Res. 3619 Lett., 41, 3681-3689, doi:10.1002/2014GL059409, 2014. 3620 Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., 3621 3622 Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., 3623 King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., 3624 Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P., and Andreae, M. O., Rainforest aerosols as biogenic nuclei of 3625
- 3626 clouds and precipitation in the Amazon: Science, 329, 1513-1516, 2010.
 3627 Poulter, B., Aragao, L., Heyder, U., Gumpenberger, M., Heinke, J., Langerwisch,
- Founder, B., Aragao, L., Heyder, O., Gumpenberger, M., Hennke, J., Langerwisch,
 F., Rammig, A., Thonicke, K., and Cramer, W., Net biome production of
 the Amazon Basin in the 21st century: Global Change Biology, 16, 20622075, doi:10.1111/j.1365-2486.2009.02064.x, 2010.
- Prospero, J. M., Glaccum, R. A., and Nees, R. T., Atmospheric transport of soil
 dust from Africa to South America: Nature, 289, 570-572, 1981.
- 3633 Quesada, C. A., Lloyd, J., Schwarz, M., Patino, S., Baker, T. R., Czimczik, C., Fyllas, N. M., Martinelli, L., Nardoto, G. B., Schmerler, J., Santos, A. J. 3634 B., Hodnett, M. G., Herrera, R., Luizao, F. J., Arneth, A., Lloyd, G., 3635 Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W. A., 3636 Geilmann, H., Moraes Filho, J. O., Carvalho, F. P., Araujo Filho, R. N., 3637 Chaves, J. E., Cruz Junior, O. F., Pimentel, T. P., and Paiva, R., Variations 3638 in chemical and physical properties of Amazon forest soils in relation to 3639 3640 their genesis: Biogeosciences, 7, 1515-1541, doi:10.5194/bg-7-1515-2010, 3641 2010.
- 3642 Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patino, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., 3643 Alvarez Davila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, 3644 3645 T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E. M., Killeen, T., Lezama, A. T., Lloyd, G., Lopez-Gonzalez, G., Luizao, F. J., 3646 Malhi, Y., Monteagudo, A., Neill, D. A., Nunez Vargas, P., Paiva, R., 3647 Peacock, J., Penuela, M. C., Pena Cruz, A., Pitman, N., Priante Filho, N., 3648 3649 Prieto, A., Ramirez, H., Rudas, A., Salomao, R., Santos, A. J. B., Schmerler, J., Silva, N., Silveira, M., Vasquez, R., Vieira, I., Terborgh, J., 3650 and Lloyd, J., Basin-wide variations in Amazon forest structure and 3651 function are mediated by both soils and climate: Biogeosciences, 9, 2203-3652 2246, doi:10.5194/bg-9-2203-2012, 2012. 3653
- Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht,
 W., Cramer, W., and Cox, P., Estimating the risk of Amazonian forest

- 3656dieback: New Phytologist, 187, 694-706, doi:10.1111/j.1469-36578137.2010.03318.x, 2010.
- Ramos, F. M., Bolzan, M. J. A., Sa, L. D. A., and Rosa, R. R., Atmospheric
 turbulence within and above an Amazon forest: Physica D Nonlinear
 Phenomena, 193, 278-291, doi:10.1016/j.physd.2004.01.026, 2004.
- Raupach, M. R., Finnigan, J. J., and Brunet, Y., Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy: Boundary-Layer
 Meteorology, 78, 351-382, doi:10.1007/bf00120941, 1996.
- Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. 3664 3665 S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., Lola da Costa, A. C., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, 3666 J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von 3667 Randow, C., Abreu Sa, L. D., Sakai, R. K., Tota, J., Wofsy, S. C., Zanchi, 3668 F. B., and Saleska, S. R., What drives the seasonality of photosynthesis 3669 across the Amazon basin? A cross-site analysis of eddy flux tower 3670 measurements from the Brasil flux network: Agricultural and Forest 3671 Meteorology, 182, 128-144, doi:10.1016/j.agrformet.2013.04.031, 2013. 3672
- Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S.
 V., and Smith, M.-L., Use of digital webcam images to track spring greenup in a deciduous broadleaf forest: Oecologia, 152, 323-334, doi:10.1007/s00442-006-0657-z, 2007.
- Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., and Hess, L.
 L., Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2: Nature, 416, 617-620, 2002.
- Rissler, J., Swietlicki, E., Zhou, J., Roberts, G., Andreae, M. O., Gatti, L. V., and
 Artaxo, P., Physical properties of the sub-micrometer aerosol over the
 Amazon rain forest during the wet-to-dry season transition Comparison
 of modeled and measured CCN concentrations: Atmos. Chem. Phys., 4,
 2119-2143, 2004.
- Rizzo, L. V., Correia, A. L., Artaxo, P., Procópio, A. S., and Andreae, M. O.,
 Spectral dependence of aerosol light absorption over the Amazon Basin:
 Atmos. Chem. Phys., 11, 8899-8912, 2011.
- Rizzo, L. V., Artaxo, P., Müller, T., Wiedensohler, A., Paixão, M., Cirino, G. G.,
 Arana, A., Swietlicki, E., Roldin, P., Fors, E. O., Wiedemann, K. T., Leal,
 L. S. M., and Kulmala, M., Long term measurements of aerosol optical
 properties at a primary forest site in Amazonia: Atmos. Chem. Phys., 13,
 2391-2413, doi:10.5194/acp-13-2391-2013, 2013.
- Ro, C.-U., Osan, J., Szaloki, I., De Hoog, J., Worobiec, A., and Van Grieken, R.
 A., Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles: Anal. Chem., 75, 851-859, 2003.
- Roberts, G. C., Andreae, M. O., Zhou, J., and Artaxo, P., Cloud condensation
 nuclei in the Amazon Basin: "Marine" conditions over a continent?:
 Geophys. Res. Lett., 28, 2807-2810, 2001.

3699 3700 3701 3702	 Rocha, R. P., Morales, C. A., Cuadra, S. V., and Ambrizzi, T., Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations: J. Geophys. Res., 114, D10108, doi:10.1029/2008JD010212, 2009.
3703	Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O.,
3704	and Pöschl, U., Calibration and measurement uncertainties of a
3705	continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN
3706	activation of ammonium sulfate and sodium chloride aerosol particles in
3707	theory and experiment: Atmos. Chem. Phys., 8, 1153-1179, 2008.
3708 3709 3710 3711 3712 3713 3714	 Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F., Wehner, B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y., Andreae, M. O., and Pöschl, U., Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed CCN-inactive soot particles: Atmos. Chem. Phys., 11, 2817-2836, 2011.
3715	Rummel, U., Ammann, C., Kirkman, G. A., Moura, M. A. L., Foken, T., Andreae,
3716	M. O., and Meixner, F. X., Seasonal variation of ozone deposition to a
3717	tropical rainforest in southwest Amazonia: Atmos. Chem. Phys., 7, 5415-
3718	5435, 2007.
3719	Saatchi, S., Asefi-Najafabady, S., Malhi, Y., Aragão, L. E. O. C., Anderson, L. O.,
3720	Myneni, R. B., and Nemani, R., Persistent effects of a severe drought on
3721	Amazonian forest canopy: Proc. Natl. Acad. Sci., 110, 565-570,
3722	doi:10.1073/pnas.1204651110, 2013.
3723 3724	Salati, E., and Vose, P. B., Amazon Basin - A system in equilibrium: Science, 225, 129-138, doi:10.1126/science.225.4658.129, 1984.
3725 3726 3727	Santos, I. A., and Buchmann, J., A qualitative review emphasizing climatic aspects of the Amazon and Northeast Brazil: Anu. Inst. Geocienc., 33 2010.
3728	Schafer, J. S., Holben, B. N., Eck, T. F., Yamasoe, M. A., and Artaxo, P.,
3729	Atmospheric effects on insolation in the Brazilian Amazon: Observed
3730	modification of solar radiation by clouds and smoke and derived single
3731	scattering albedo of fire aerosols: J. Geophys. Res., 107, 8074,
3732	doi:10.1029/2001JD000428, 2002.
3733	Schimel, D., Stephens, B. B., and Fisher, J. B., Effect of increasing CO ₂ on the
3734	terrestrial carbon cycle: Proc. Natl. Acad. Sci., 112, 436-441,
3735	doi:10.1073/pnas.1407302112, 2015.
3736 3737 3738 3739	Schkolnik, G., Falkovich, A. H., Rudich, Y., Maenhaut, W., and Artaxo, P., New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples: Environ. Sci. Technol., 39, 2744-2752, 2005.
3740	Schöngart, J., Wittmann, F., and Worbes, M., Biomass and net primary production
3741	of Central Amazonian floodplains forests, in <i>Amazonian floodplain</i>
3742	<i>forests: ecophysiology, biodiversity and sustainable management</i> , edited
3743 by W. Junk, M. T. F. Piedade, F. Wittmann, J. Schöngart, & P. Parolin, pp. 3744 347-388, Springer New York, 2010. 3745 Sena, E. T., Artaxo, P., and Correia, A. L., Spatial variability of the direct 3746 radiative forcing of biomass burning aerosols and the effects of land use 3747 change in Amazonia: Atmos. Chem. Phys., 13, 1261-1275, 3748 doi:10.5194/acp-13-1261-2013, 2013. 3749 Serafimovich, A., Thomas, C., and Foken, T., Vertical and horizontal transport of 3750 energy and matter by coherent motions in a tall spruce canopy: Boundary-3751 Layer Meteorology, 140, 429-451, doi:10.1007/s10546-011-9619-z, 2011. Silva Dias, M. A., Rutledge, S., Kabat, P., Silva Dias, P. L., Nobre, C., Fisch, G., 3752 Dolman, A. J., Zipser, E., Garstang, M., Manzi, A. O., Fuentes, J. D., 3753 3754 Rocha, H. R., Marengo, J., Plana-Fattori, A., Sá, L. D. A., Alvalá, R. C. S., Andreae, M. O., Artaxo, P., Gielow, R., and Gatti, L., Clouds and rain 3755 processes in a biosphere-atmosphere interaction context in the Amazon 3756 Region: J. Geophys. Res., 107, 8072, doi:10.1029/2001JD000335, 2002. 3757 Sinha, V., Williams, J., Crowley, J. N., and Lelieveld, J., The comparative 3758 3759 reactivity method - a new tool to measure total OH reactivity in ambient 3760 air: Atmos. Chem. Phys., 8, 2213-2227, 2008. 3761 Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Cerqueira, G. C., Garcia, R. 3762 A., Ramos, C. A., Voll, E., McDonald, A., Lefebvre, P., and Schlesinger, 3763 P., Modelling conservation in the Amazon basin: Nature, 440, 520-523, 2006. 3764 3765 Sorbjan, Z., and Czerwinska, A., Statistics of turbulence in the stable boundary layer affected by gravity waves: Boundary-Layer Meteorology, 148, 73-3766 3767 91, doi:10.1007/s10546-013-9809-y, 2013. Soudani, K., and Francois, C., Remote sensing: A green illusion: Nature, 506, 3768 3769 165-166, doi:10.1038/nature13052, 2014. 3770 Spracklen, D. V., Arnold, S. R., and Taylor, C. M., Observations of increased 3771 tropical rainfall preceded by air passage over forests: Nature, 489, 282-3772 285, doi:10.1038/nature11390, 2012. 3773 Steeneveld, G. J., Holtslag, A. A. M., Nappo, C. J., de Wiel, B., and Mahrt, L., Exploring the possible role of small-scale terrain drag on stable boundary 3774 layers over land: Journal of Applied Meteorology and Climatology, 47, 3775 3776 2518-2530, doi:10.1175/2008jamc1816.1, 2008. 3777 Steeneveld, G. J., Nappo, C. J., and Holtslag, A. A. M., Estimation of orographically induced wave drag in the stable boundary layer during the 3778 CASES-99 experimental campaign: Acta Geophysica, 57, 857-881, 3779 doi:10.2478/s11600-009-0028-3, 2009. 3780 3781 Steiner, A. L., Pressley, S. N., Botros, A., Jones, E., Chung, S. H., and Edburg, S. L., Analysis of coherent structures and atmosphere-canopy coupling 3782 3783 strength during the CABINEX field campaign: Atmos. Chem. Phys., 11, 3784 11,921-11,936, doi:10.5194/acp-11-11921-2011, 2011.

- Steinkamp, K., and Gruber, N., A joint atmosphere-ocean inversion for the
 estimation of seasonal carbon sources and sinks: Global Biogeochemical
 Cycles, 27, 732-745, doi:10.1002/gbc.20064, 2013.
- Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler,
 L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S.,
 Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A., Heimann,
 M., Shibistova, O., Langenfelds, R. L., Steele, L. P., Francey, R. J., and
 Denning, A. S., Weak northern and strong tropical land carbon uptake
 from vertical profiles of atmospheric CO2: Science, 316, 1732-1735,
 doi:10.1126/science.1137004, 2007.
- Stickler, C. M., Coe, M. T., Costa, M. H., Nepstad, D. C., McGrath, D. G., Dias,
 L. C. P., Rodrigues, H. O., and Soares-Filho, B. S., Dependence of
 hydropower energy generation on forests in the Amazon Basin at local and
 regional scales: Proc. Natl. Acad. Sci. USA, 110, 9601-9606,
 doi:10.1073/pnas.1215331110, 2013.
- Sun, J. L., Burns, S. P., Lenschow, D. H., Banta, R., Newsom, R., Coulter, R.,
 Frasier, S., Ince, T., Nappo, C., Cuxart, J., Blumen, W., Lee, X., and Hu,
 X. Z., Intermittent turbulence associated with a density current passage in
 the stable boundary layer: Boundary-Layer Meteorology, 105, 199-219,
 doi:10.1023/a:1019969131774, 2002.
- Sun, J. L., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter,
 R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L.,
 Miller, D., and Skelly, B., Atmospheric disturbances that generate
 intermittent turbulence in nocturnal boundary layers: Boundary-Layer
 Meteorology, 110, 255-279, doi:10.1023/a:1026097926169, 2004.
- Sun, J. L., Mahrt, L., Banta, R. M., and Pichugina, Y. L., Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99: J. Atmos. Sci., 69, 338-351, doi:10.1175/jas-d-11-082.1, 2012.
- 3813 Swap, R., Garstang, M., Greco, S., Talbot, R., and Kållberg, P., Saharan dust in
 3814 the Amazon Basin: Tellus, 44B, 133-149, 1992.
- Talbot, R. W., Andreae, M. O., Berresheim, H., Artaxo, P., Garstang, M., Harriss,
 R. C., Beecher, K. M., and Li, S. M., Aerosol chemistry during the wet
 season in Central Amazonia: The influence of long-range transport: J.
 Geophys. Res., 95, 16,955-16,969, 1990.
- Taraborrelli, D., Lawrence, M. G., Crowley, J. N., Dillon, T. J., Gromov, S.,
 Gross, C. B. M., Vereecken, L., and Lelieveld, J., Hydroxyl radical
 buffered by isoprene oxidation over tropical forests: Nature Geoscience, 5,
 190-193, doi:10.1038/ngeo1405, 2012.
- Targhetta, N. (2012). Comparação florística e estrutural entre florestas de igapó
 e campinarana ao longo de gradientes hidroedáficos na Reserva de
 Desenvolvimento Sustentável do Uatumã, Amazônia Central. MSc Thesis,
 INPA, Manaus, 96 p.
- ter Steege, H., Nigel, C. A., Sabatier, D., Baraloto, C., Salomao, R. P., Guevara, J.
 E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F.,
 Monteagudo, A., Vargas, P. N., Montero, J. C., Feldpausch, T. R.,

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3846 3847 3848 3849 3850 3851 3852 3853	 Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W. F., Laurance, S. G. W., Marimon, B. S., Marimon, B. H., Vieira, I. C. G., Amaral, I. L., Brienen, R., Castellanos, H., Lopez, D. C., Duivenvoorden, J. F., Mogollon, H. F., Matos, F. D. D., Davila, N., Garcia-Villacorta, R., Diaz, P. R. S., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Motoya, A. J. D., Piedade, M. T. F., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P. V. A., Peres, C. A., Toledo, M., Gerardo, A. A. C., Baker, T. R., Ceron, C., Engel, J., Henkel, T. W., Maas, P., Petronelli, P., Stropp, J., Zartman, C. E., Daly, D., Neill, D., Silveira, M., Paredes, M. R., Chave, J., Lima, D. D., Jorgensen, P. M., Fuentes, A., Schongart, J., Valverde, F. C., Di Fiore, A., Jimenez, E. M., Mora, M. C. P., Phillips, J. F., Rivas, G., van Andel, T. R., von Hildebrand, P., Hoffman, B., Zent, E. L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A. R., Silva, N., Vos, V., Zent, S., Oliveira, A. A., Schutz, A. C., Gonzales, T., Nascimento, M. T., Ramirez-Angulo, H., Sierra, R., Tirado, M., Medina, M. N. U., van der Heijden, G., Vela, C. I. A., Torre, E. V., Vriesendorp, C., Wang, O., Young, K. R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Giraldo, L. E. U., Zagt, R., Alexiades, M. N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Cuenca, W. P., Pauletto, D., Sandoval, E. V., Gamarra, L. V., Dexter, K. G., Feeley, K., Lopez-Gonzalez, G., and Silman, M. R., Hyperdominance in the Amazonian tree flora: Science, 342, 325, doi:10.1126/science.1243092, 2013.
3854 3855 3856	Thomas, C., and Foken, T., Detection of long-term coherent exchange over spruce forest using wavelet analysis: Theoretical and Applied Climatology, 80, 91-104, doi:10.1007/s00704-004-0093-0, 2005.
3857 3858 3859 3860	Thomas, C., and Foken, T., Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy: Boundary-Layer Meteorology, 123, 317-337, doi:10.1007/s10546-006-9144-7, 2007.
3861	Tollefson, J., Battle for the Amazon: Nature, 520, 20-23, 2015.
3862 3863 3864 3865	Tota, J., Fitzjarrald, D. R., and da Silva Dias, M. A. F., Amazon rainforest exchange of carbon and subcanopy air flow: Manaus LBA Site - A complex terrain condition: Scientific World Journal, 2012, 165067, doi:10.1100/2012/165067, 2012.
3866 3867 3868 3869 3870 3871	Trebs, I., Mayol-Bracero, O. L., Pauliquevis, T., Kuhn, U., Sander, R., Ganzeveld, L., Meixner, F. X., Kesselmeier, J., Artaxo, P., and Andreae, M. O., Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the NO-NO ₂ -O ₃ photo- stationary state and peroxy radical levels: J. Geophys. Res., 117, doi:10.1029/2011JD016386, 2012.
3872 3873 3874 3875	Tuch, T. M., Haudeck, A., Müller, T., Nowak, A., Wex, H., and Wiedensohler, A., Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites: Atmos. Meas. Tech., 2, 417-422, 2009.

3876	Tuomisto, H., Ruokolainen, K., Aguilar, M., and Sarmiento, A., Floristic patterns
3877	along a 43-km long transect in an Amazonian rain forest: Journal of
3878	Ecology, 91, 743-756, doi:10.1046/j.1365-2745.2003.00802.x, 2003.
3879	Valeriano, M. M., Topodata: Guia para utilização de dados geomorfológicos
3880	locais do projeto de produtividade em pesquisa modelagem de dados
3881	topográficos SRTM. INPE Sao Jose dos Campos, Brazil. (2008).
3882	Van de Wiel, B. J. H., Ronda, R. J., Moene, A. F., De Bruin, H. A. R., and
3883	Holtslag, A. A. M., Intermittent turbulence and oscillations in the stable
3884	boundary layer over land. Part I: A bulk model: J. Atmos. Sci., 59, 942-
3885	958, 2002.
3886 3887 3888 3888 3889	van Eijck, A. (2013). Atmospheric degradation of reactive biogenic VOCs and their role in aerosol formation: Modeling activities, laboratory experiments and field studies in different vegetation zones, Ph.D. Diss., University of Mainz, Germany, 113 p.
3890	van Gorsel, E., Harman, I. N., Finnigan, J. J., and Leuning, R., Decoupling of air
3891	flow above and in plant canopies and gravity waves affect
3892	micrometeorological estimates of net scalar exchange: Agricultural and
3893	Forest Meteorology, 151, 927-933, doi:10.1016/j.agrformet.2011.02.012,
3894	2011.
3895 3896 3897 3898	Vendrasco, E. P., Dias, P. L. S., and Freitas, E. D., A case study of the direct radiative effect of biomass burning aerosols on precipitation in the Eastern Amazon: Atmos. Res., 94, 409-421, doi:10.1016/j.atmosres.2009.06.016, 2009.
3899	Vestenius, M., Hellen, H., Levula, J., Kuronen, P., Helminen, K. J., Nieminen, T.,
3900	Kulmala, M., and Hakola, H., Acidic reaction products of monoterpenes
3901	and sesquiterpenes in atmospheric fine particles in a boreal forest: Atmos.
3902	Chem. Phys., 14, 7883-7893, doi:10.5194/acp-14-7883-2014, 2014.
3903 3904 3905	Vieira, I. C. G., Toledo, P. M., Silva, J. M. C., and Higuchi, H., Deforestation and threats to the biodiversity of Amazonia: Brazilian Journal of Biology, 68, 949-956, 2008.
3906	Wan, F., and Porte-Agel, F., A large-eddy simulation study of turbulent flow over
3907	multiscale topography: Boundary-Layer Meteorology, 141, 201-217,
3908	doi:10.1007/s10546-011-9648-7, 2011.
3909	Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P., Heimann,
3910	M., Miller, J., Peng, S., Wang, T., Yang, H., and Chen, A., A two-fold
3911	increase of carbon cycle sensitivity to tropical temperature variations:
3912	Nature, 506, 212-215, doi:10.1038/nature12915, 2014.
3913 3914 3915 3916 3917 3918 3919 3920	 Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Buchholz, B., Ebert, V., Fisch, G., Curtius, J., Frank, F., Kohl, R., Rose, D., Hüneke, T., Knecht, M., Pfeilsticker, K., Longo, K., Afchine, A., Costa, A., Krämer, M., Jaervinen, E., Schnaiter, M., Ehrlich, A., Jäkel, E., Krisna, T. C., Kanter, S., Rosenow, D., Werner, F., Mertes, S., Kästner, U., Dorf, M., Klimach, T., Krüger, M., Nillius, B., Pöhlker, C., Schneider, J., Schulz, C., Borrmann, S., Mahnke, C., Molleker, S., Weigel, R., Ewald, F., Kölling, T., Mayer, B., Zinner, T.,

3921	Fix, A., Fütterer, D., Jurkat, T., Kenntner, M., Sauer, D., Paul Stock,
3922	Voigt, C., Weinzierl, B., Ziereis, H., Barbosa, H., Artaxo, P., Souza, R. A.
3923	F. d., and Yamasoe, M. A., The ACRIDICON–CHUVA observational
3924	study of tropical convective clouds and precipitation using the new
3925	German research aircraft HALO: Bull. Am. Meteorol. Soc., 2015, under
3926	review.
3927	Williams, C. A., Scanlon, T. M., and Albertson, J. D., Influence of surface
3928	heterogeneity on scalar dissimilarity in the roughness sublayer: Boundary-
3929	Layer Meteorology, 122, 149-165, doi:10.1007/s10546-006-9097-x, 2007.
 3930 3931 3932 3933 3934 3935 3936 3937 3938 	 Williams, E., Rosenfeld, D., Madden, N., Gerlach, J., Gears, N., Atkinson, L., Dunnemann, N., Frostrom, G., Antonio, M., Biazon, B., Camargo, R., Franca, H., Gomes, A., Lima, M., Machado, R., Manhaes, S., Nachtigall, L., Piva, H., Quintiliano, W., Machado, L., Artaxo, P., Roberts, G., Renno, N., Blakeslee, R., Bailey, J., Boccippio, D., Betts, A., Wolff, D., Roy, D., Halverson, J., Rickenbach, T., Fuentes, J., and Avelino, E., Contrasting convective regimes over the Amazon: Implications for cloud electrification: J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380, 2002.
3939	Wilson, K. L., and Birks, J. W., Mechanism and elimination of a water vapor
3940	interference in the measurement of ozone by UV absorbance: Environ. Sci.
3941	Technol., 40, 6361-6367, 2006.
3942 3943 3944 3945 3946	 Winderlich, J., Chen, H., Gerbig, C., Seifert, T., Kolle, O., Lavric, J. V., Kaiser, C., Hofer, A., and Heimann, M., Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia: Atmos. Meas. Tech., 3, 1113-1128, doi:10.5194/amt-3-1113-2010, 2010.
3947 3948 3949 3950	 Winderlich, J., Gerbig, C., Kolle, O., and Heimann, M., Inferences from CO₂ and CH₄ concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes: Biogeosciences, 11, 2055-2068, doi:10.5194/bg-11-2055-2014, 2014.
3951	Wittmann, F., Householder, E., Piedade, M. T. F., de Assis, R. L., Schöngart, J.,
3952	Parolin, P., and Junk, W. J., Habitat specifity, endemism and the
3953	Neotropical distribution of Amazonian white-water floodplain trees:
3954	Ecography, 36, 690-707, 2013.
3955	Yañez-Serrano, A. M., Nölscher, A. C., Williams, J., Wolff, S., Alves, E.,
3956	Martins, G. A., Bourtsoukidis, E., Brito, J., Jardine, K., Artaxo, P., and
3957	Kesselmeier, J., Diel and seasonal changes of biogenic volatile organic
3958	compounds within and above an Amazonian rainforest: Atmos. Chem.
3959	Phys., 15, 3359–3378, doi:10.5194/acp-15-3359-2015, 2015.
3960	Zemp, D. C., Schleussner, C. F., Barbosa, H. M. J., van der Ent, R. J., Donges, J.
3961	F., Heinke, J., Sampaio, G., and Rammig, A., On the importance of
3962	cascading moisture recycling in South America: Atmos. Chem. Phys., 14,
3963	13,337-13,359, doi:10.5194/acp-14-13337-2014, 2014.
3964 3965	Zeri, M., and Sa, L. D. A., Horizontal and vertical turbulent fluxes forced by a gravity wave event in the nocturnal atmospheric surface layer over the

- 3966Amazon forest: Boundary-Layer Meteorology, 138, 413-431,3967doi:10.1007/s10546-010-9563-3, 2011.
- Zeri, M., Sa, L. D. A., Manzi, A. O., Araujo, A. C., Aguiar, R. G., von Randow,
 C., Sampaio, G., Cardoso, F. L., and Nobre, C. A., Variability of carbon
 and water fluxes following climate extremes over a tropical forest in
 southwestern Amazonia: Plos One, 9, e88130,
 doi:10.1371/journal.pone.0088130, 2014.
- Zhang, K., Castanho, A. D. d. A., Galbraith, D. R., Moghim, S., Levine, N., Bras,
 R. L., Coe, M., Costa, M. H., Malhi, Y., Longo, M., Knox, R. G.,
 McKnight, S., Wang, J., and Moorcroft, P. R., The fate of Amazonian
 ecosystems over the coming century arising from changes in climate,
 atmospheric CO₂ and land-use: Global Change Biology,
 doi:10.1111/gcb.12903, 2015, in press.
- Zhou, J., Swietlicki, E., Hansson, H.-C., and Artaxo, P., Submicrometer aerosol
 particle size distribution and hygroscopic growth measured in the Amazon
 rain forest during the wet season: J. Geophys. Res., 107, 8055,
 doi:10.129/2000JD000203, 2002.
- Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I., A
 hierarchy of energy- and flux-budget (EFB) turbulence closure models for
 stably-stratified geophysical flows: Boundary-Layer Meteorology, 146,
 341-373, doi:10.1007/s10546-012-9768-8, 2013.

3989	Author emails
3990	
3991	Meinrat O. Andreae (m.andreae@mpic.de)
3992	Otàvio C. Acevedo (otavio@ufsm.br)
3993	Alessandro Araùjo (alessandro.araujo@gmail.com)
3994	Paulo Artaxo (artaxo@if.usp.br)
3995	Cybelli G. G. Barbosa (cybelli.barbosa@gmail.com)
3996	Henrique M. J. Barbosa
3997	Joel Brito (jbrito@if.usp.br)
3998	Samara Carbone (carbone@if.usp.br)
3999	Xuguang Chi (xuguang.chi@mpic.de)
4000	Bruno Barçante Ladvocat Cintra (brunoladvocat@yahoo.com.br)
4001	Naara Ferreira da Silva (naara_fs@hotmail.com)
4002	Nelson L. Dias (nelsonluisdias@gmail.com)
4003	Cléo Quaresma Dias-Júnior (cleoquaresma@hotmail.com)
4004	Florian Ditas (f.ditas@mpic.de)
4005	Reiner Ditz (reiner.ditz@mpic.de)
4006	Ana F. L. Godoi (anaflgodoi@gmail.com)
4007	Ricardo H. M. Godoi (rhmgodoi@hotmail.com)
4008	Martin Heimann (martin.heimann@bgc-jena.mpg.de)
4009	Thorsten Hoffmann (t.hoffmann@uni-mainz.de)
4010	Jürgen Kesselmeier (j.kesselmeier@mpic.de)
4011	Tobias Könemann (tobias.koenemann@gmail.com)
4012	Mira Krüger (m.kruger@mpic.de)
4013	Aline Pontes Lopes <alineplopes@gmail.com></alineplopes@gmail.com>
4014	Jost V. Lavric (jlavric@bgc-jena.mpg.de)
4015	Antonio O. Manzi (manzi@inpa.gov.br)
4016	Demétrius. L. Martins <emaildemetrius@gmail.com></emaildemetrius@gmail.com>
4017	Eugene F. Mikhailov <eugene.mikhailov@spbu.ru></eugene.mikhailov@spbu.ru>
4018	Daniel Moran (daniel.moran@mpic.de)
4019	Bruce Walker Nelson <bnelsonbr@gmail.com></bnelsonbr@gmail.com>
4020	Anke C. Nölscher (a.noelscher@mpic.de)
4021	Daniele Santos Nogueira (danielesn84@yahoo.com.br)
4022	Maria T. F. Piedade (maitepp@inpa.gov.br)
4023	Christopher Pöhlker (c.pohlker@mpic.de)
4024	Ulrich Pöschl (u.poschl@mpic.de)
4025	<u>Carlos Alberto Quesada <quesada.beto@gmail.com></quesada.beto@gmail.com></u>
4026	Nina Ruckteschler (n.ruckteschler@mpic.de)
4027	Chul-Un Ro (curo@inha.ac.kr)
4028	Leonardo D. A. Sá (leodeane@uol.com.br)
4029	Marta de Oliveira Sá (martasa.inpa@gmail.com)
4030	Claudomiro Batista Sales (cbsales I@hotmail.com)
4031	Kosa Maria Nascimento dos Santos (rosa.maria.sto@gmail.com)
4032	Jorge Saturno (J.saturno@mpic.de)
4033	Jocnen Schongart (J.schoengart@mpic.de)
4034	Matthias Sorgei (<u>m.soergei@mpic.de</u>)
4035	Luciana V. Kizzo
4036	Ciedeniison Miendonca de Souza (ciedeniisonms@gmail.com)
4037	Koungo Augusto Ferreira de Souza (souzarai@gmail.com)

4038	Hang Su (h.su@mpic.de)	
4039	Natália Targhetta (natalia.targhetta@gmail.com)	
4040	Julio Tóta (totaju@gmail.com)	
4041	Ivonne Trebs (ivonne.trebs@list.lu)	
4042	Susan Trumbore (trumbore@bgc-jena.mpg.de)	
4043	Anna van Eijck (anna.v.eijck@gmail.com)	
4044	David Walter (david.walter@mpic.de)	
4045	Zhibin Wang (zhibin.wang@mpic.de)	
4046	Bettina Weber (b.weber@mpic.de)	
4047	Jonathan Williams (jonathan.williams@mpic.de)	
4048	Jan Winderlich (jan.winderlich@mpic.de)	
4049	Florian Wittmann (F-Wittmann@web.de)	
4050	Stefan Wolff (stefan.wolff@mpic.de)	
4051	Ana María Yáñez-Serrano (ayanezserrano@yahoo.es)	
4052		Deleted: ¶

<u>Tables</u>

4055 Table 1: Location and specifications of the towers and masts at the ATTO site.

Towers/masts	Coordinates	Base elevation	Height
	(WGS 84)	[m]	[m]
Walk-up tower	S 02° 08.647'	S 02° 08.647' 130	
	W 58° 59.992'		
Triangular mast	S 02° 08.602'	130	81
	W 59° 00.033'		
ATTO Tall Tower	S 2° 08.752'	130	325
	W 59° 00.335'		

eat flux sensor (HFP01, Hukseflux, Neth-	0.05	
lanasj		MPIC
ater content reflectometer (CS615, ampbell Scientific Inc., USA)	0.1; 0.2; 0.3; 0.4; 0,6; 1.0	INPA, EMBRAPA
nermistor (108, Campbell Scientific Inc., SA)	0.1; 0.2; 0.4	INPA, EMBRAPA, MPIC
vranometer (CMP21,Kipp & Zonen, etherlands)	75.0	INPA, EMBRAPA
rrgeometer (CGR4, Kipp & Zonen, Neth- lands)	75.0	INPA, EMBRAPA
uantum sensor (PAR LITE, Kipp & Zonen, etherlands)	75.0	USP
et radiometer (NR-LITE2, Kipp & Zonen, etherlands)	75.0	INPA, EMBRAPA
V radiometer (CUV5, Kipp & Zonen, etherlands)	75.0	INPA, EMBRAPA
ain gauge (TB4, Hydrological Services y. Ltd., Australia)	81.0	INPA, EMBRAPA
ermohygrometer (CS215, Rotronic easurement Solutions, UK)	81.0; 73.0; 55.0; 40.0; 36.0; 26.0; 12.0; 4.0; 1.5; 0.4	INPA, EMBRAPA
arometer (PTB101B, Vaisala, Finnland)	75.0	INPA, EMBRAPA
) sonic anemometer (Windsonic, Gill struments Ltd., UK)	73.0; 65.0; 50.0; 42.0; 26.0; 19.0	INPA, EMBRAPA
	ands) tter content reflectometer (CS615, mpbell Scientific Inc., USA) ermistor (108, Campbell Scientific Inc., A) ranometer (CMP21,Kipp & Zonen, therlands) rgeometer (CGR4, Kipp & Zonen, Neth- ands) antum sensor (PAR LITE, Kipp & Zonen, therlands) t radiometer (NR-LITE2, Kipp & Zonen, therlands) radiometer (CUV5, Kipp & Zonen, therlands) n gauge (TB4, Hydrological Services Ltd., Australia) rmohygrometer (CS215, Rotronic easurement Solutions, UK) rometer (PTB101B, Vaisala, Finnland) sonic anemometer (Windsonic, Gill truments Ltd., UK)	ands)0.1; 0.2; 0.3; 0.4; 0,6; 1.0tter content reflectometer (CS615, mpbell Scientific Inc., USA)0.1; 0.2; 0.3; 0.4; 0,6; 1.0ermistor (108, Campbell Scientific Inc., A)0.1; 0.2; 0.4aranometer (CMP21,Kipp & Zonen, therlands)75.0rgeometer (CGR4, Kipp & Zonen, Neth- ands)75.0antum sensor (PAR LITE, Kipp & Zonen, therlands)75.0t radiometer (NR-LITE2, Kipp & Zonen, therlands)75.0radiometer (CUV5, Kipp & Zonen, therlands)75.0radiometer (CUV5, Kipp & Zonen, therlands)75.0radiometer (CUV5, Kipp & Zonen, therlands)81.0r. Ltd., Australia)81.0; 73.0; 55.0; 40.0; 36.0; 26.0; 12.0; 4.0; 1.5; 0.4rometer (PTB101B, Vaisala, Finnland)75.0sonic anemometer (Windsonic, Gill truments Ltd., UK)73.0; 65.0; 50.0; 42.0; 26.0; 19.0

Table 2: Overview of (micro)-meteorological sensors, trace gas and aerosol instrumentation installed at the walk-up tower.

Wind vector components (u, v, w)	3D sonic anemometer (Windmaster, Gill Instruments Ltd., UK)	81.0; 46.0; 36.0; 4.0; 1.0	INPA, EMBRAPA	
CO_2 and $\mathrm{H}_2\mathrm{O}$ molar density	IRGA (LI-7500A, LI-COR Inc., USA) IRGA (LI-7200, LI-COR Inc., USA)	81.0; 46.0 1.0	INPA, EMBRAPA	
Vertical profile of CO_2 , CH_4 and CO mixing ratios	G1301 (CFADS-109) and G1302 (CKADS- 018; both Picarro Inc., USA)	4.0; 24.0; 38.0; 53.0; 79.0	MPI-BGC, MPI-C	
Vertical profile of NO, NO ₂ , O ₃ , CO ₂ , and H_2O mixing ratios	CLD 780TR (Eco Physics, Switzerland), BLC (Droplet Measurement Technologies Inc., USA), TEI 49i (Thermo Electron Corp, USA), IRGA 7000 (LI-COR Inc., USA)	0.05; 0.5; 4.0; 12.0; 24.0; 38.3; 53.0; 79.3	INPA, MPI-C, UEA	
Vertical profile of VOCs	Proton Transfer Mass Spectrometer (PTR- QMS 500, Ionicon, Austria)	0.05; 0.5; 4.0; 12.0; 24.0; 38.3; 53.0; 79.3	MPI-C, USP, INPA	
Vertical profile of total reactivity to OH	Comparative Reaction Method, Proton Transfer Mass Spectrometer	0.05; 0.5; 4.0; 12.0; 24.0; 38.3; 53.0; 79.3	MPI-C	
Black carbon <u>equivalent</u>	Multi Angle Absorption Photometer (model 5012, Thermo-Scientific, USA)	60.0	MPI-C	
Refractory black carbon	Single Particle Soot Photometer (SP-2,	60.0	MPI-C	Deleted: B
	Droplet Measurement Technologies, USA)			
Black carbon <u>equivalent</u>	Aethalometer (model AE31 <u>or AE33</u> , Magee Scientific Corporation, USA)	60.0	USP	
Aerosol scattering	Nephelometer (model 3563, TSI, USA)	60.0	USP	
	Ecotech Aurora 3000; wavelengths 450, 525, and 635 nm			
Aerosol number concentration	Condensation particle counter (model 3022A,TSI, USA)	60.0	MPI-C	
Aerosol size distribution	Ultra-High Sensitivity Aerosol Spectrome- ter (Droplet Measurement Technologies,	60.0	MPI-C	

	USA) Scanning Mobility Particle Sizer (SMPS, TSI model 3080, St. Paul, MN, USA; size range: 10-430 nm)	60.0	
	Optical Particle Sizer (OPS, TSI model 3330; size range: 0.3-10 µm)	60.0	
	Wide Range Aerosol Spectrometer (WRAS, Grimm Aerosol Technik, Ainring, Germa- ny; size range: 6 nm - 32 μm)	3.0	
Primary Biological Aerosol Particles (PBAP)	Wideband Integrated Bioaerosol Spec- trometer (WIBS-4, DMT)	60.0	MPI-C
Aerosol chemical composition	Aerosol Chemical Speciation Monitor (ACSM, Aerodyne, USA)	60.0	USP

	Density	DBH	Tree height	Basal area	Species rich- ness	AGWB ²	Carbon stock ³
		Mean±sd (max)	Mean±sd (max)				AGWB
	(Trees ha ⁻¹)	(cm)	(m)	(m ² ha ⁻¹)	(spp. ha⁻¹)	(Mg ha⁻¹)	(Mg C ha⁻¹)
Floodplain (igapó) ¹							
plot1	695	19.5±8.1 (136)	12.2±3.8 (27)	26.8	26	126	63
plot2	540	20.9±12.0 (78)	10.5±4.2 (29)	25.8	49	146	73
plot3	928	17.9±9.4 (117)	11.5±1.9 (18)	30.3	31	173	87
Mean±sd	721±195	19.4±1.5	11.4±0.9	27.6±2.4	35±12	148±24	74±12
Campina/campinarana							
plot 1	560	20.1±12.1 (90)	15.2±4.7 (34)	24.3	82	190	95
plot 2	503	17.2±10.4 (83)	11.2±3.6 (26)	16.3	46	98	49
plot 3	786	18.3±17.7 (162)	12.9±5.0 (33)	27.8	65	185	93
Mean±sd	616±150	18.5±1.5	13.1±2.0	22.8±5.9	64±18	158±52	79±26
Ancient fluvial terrace							
plot 1	516	20.9±11.2 (100)	14.9±3.0 (30)	22.7	135	181	91
plot 2	483	20.8±12.7 (117)	14.8±3.3 (32)	22.6	120	194	97
plot 3	492	21.1±14.6 (177)	14.8±3.5 (38)	25.4	126	232	116
Mean±sd	497±17	20.9±0.2	14.8±0.1	23.6±1.6	127±8	202±27	101±13
Terra firme							
plot 1	522	21.3±13.9 (152)	20.5±4.6 (40)	26.4	132	318	159
plot 2	644	20.5±12.0 (120)	20.4±4.3 (38)	28.6	142	335	168
plot 3	624	22.1±12.5 (96)	21.1±4.4 (36)	31.7	137	368	184
Mean±sd	597±65	21.3±0.8	20.7±0.4	28.9±2.7	137±5	340±25	170±13

Table 3: Tree species richness, forest structure, above-ground wood biomass (AGWB) and carbon stocks of the inventoried forest plots.

¹ Mean flood height in the igapó floodplains: plot 1: 3.40±1.06 m; plot 2: 3.12±0.62 m; plot 3: 1.81±0.64 m ² Aboveground wood biomass (AGWB) was calculated using a pantropical allometric equation considering diameter (*DBH* in cm), tree height (*H* in m) and wood specific gravity (ρ in g cm⁻³) as independent parameters (Feldpausch et al., 2012): *AGWB* = -2.9205 + 0.9894 ×ln (*DBH*² × *H* × ρ) ³ The carbon stock was estimated by 50% of the AGWB (Clark et al., 2001)

<u>Table 4: Carbon stocks, soil bulk density, concentrations of K, Mg, Ca, P, Total reserve bases (Σ_{RB}), clay, silt, and sand, and Quesada's index</u> Formatted: Font: Not Bold Formatted: Font: Not Bold of the forest plots.

	C stock	<u>Bulk</u>	<u>K</u>	<u>Mg</u>	<u>Ca</u>	<u>P</u>	$\sum_{\text{RB}} (mmol \ lca^{-1})$	<u>Clay</u>	<u>Silt</u>	<u>Sand</u>	<u>Quesada's</u>	
	$(Mg ha^{-1})^a$	$\frac{\text{density}}{(\text{g cm}^{-3})}$	$(\operatorname{mmol}_{\underline{c}} \operatorname{kg}^{-1})^{\mathrm{b}}$	$\underline{(\text{mmol}_{c} \text{ kg}^{-1})^{b}}$	$(\mathrm{mmol}_{\mathrm{c}}\mathrm{kg}^{-1})^{\mathrm{b}}$	$(\operatorname{mg} \operatorname{kg}^{-1})$	$\frac{(\text{IIIIIOI}_{c} \text{ kg})}{(\text{clay})^{2}}$	<u>(%)</u>	<u>(%)</u>	<u>(%)</u>	<u>macx</u>	
PLATEAUS											•	Formatted Table
1	<u>143.7±8.7</u>	<u>0.9</u>	<u>0.3</u>	<u>0.4</u>	<u>0.4</u>	<u>84.8</u>	<u>1.7</u>	<u>85.1</u>	<u>5.2</u>	<u>9.7</u>	<u>0</u>	
2	<u>160.7±7.6</u>	<u>0.9</u>	<u>0.4</u>	<u>0.4</u>	<u>0.8</u>	<u>125.9</u>	<u>1.8</u>	<u>86.2</u>	<u>4.6</u>	<u>9.2</u>	<u>0</u>	
<u>3</u>	<u>164.1±6.9</u>	<u>0.9</u>	<u>0.4</u>	<u>0.3</u>	<u>0.8</u>	<u>121.4</u>	<u>1.0</u>	<u>84.6</u>	<u>3.8</u>	<u>12.1</u>	<u>0</u>	
<u>Means</u>	<u>156.2±10.9</u>	<u>0.9</u>	<u>0.4</u>	<u>0.4</u>	<u>0.7</u>	<u>100.2</u>	<u>1.5</u>	<u>85.3</u>	<u>4.5</u>	<u>10.4</u>	<u>0</u>	
												Formatted Table
TERRACES												
<u>1</u>	<u>140.2±6.4</u>	<u>1.2</u>	<u>0.3</u>	<u>0.4</u>	<u>0.6</u>	<u>92.5</u>	<u>4.9</u>	<u>52.8</u>	<u>12.4</u>	<u>34.8</u>	<u>3</u>	
2	<u>129.4±6.8</u>	<u>1.1</u>	<u>0.3</u>	<u>0.4</u>	<u>0.7</u>	<u>181.1</u>	<u>5.1</u>	<u>70.7</u>	<u>7.1</u>	<u>24.8</u>	<u>2</u>	
<u>3</u>	<u>140.8±5.9</u>	<u>1.1</u>	<u>0.4</u>	<u>0.5</u>	<u>0.8</u>	<u>129.1</u>	<u>5.5</u>	<u>68.3</u>	<u>6.4</u>	<u>25.4</u>	1	
<u>Means</u>	<u>136.8±6.4</u>	<u>1.0</u>	<u>0.3</u>	<u>0.4</u>	<u>0.7</u>	<u>161.1</u>	<u>5.2</u>	<u>74.3</u>	<u>6.6</u>	<u>19.3</u>	<u>2</u>	

^{a)} Total cumulative C stock up to 2 m depth. Mean per plot and their respective standard deviations ^{b)} Mean nutrient concentration up to 30 cm depth ^{c)} Quesada's Index indicating soil physical constraints in which higher values of the index show stronger physical constraint. It is a semi-quantitative index and does not show intermediate values, therefore the value shown in the "means" line is the median value of the three plots.

1 Table <u>5</u>: Percentage of occurrence of Cava's classes for dry and wet season obtained at the

2 ATTO site and a comparison with the results found by Cava for the Duke Forest, North

3 Carolina, USA.

Class	А		Duke	
	Wet	Dry	Avg.	Avg.
I	46.8 %	49.1 %	47.9 %	45.7 %
Ш	14.0 %	28.3 %	21.2 %	5.9 %
111	7.6 %	7.6 %	7.6 %	29.2 %
IV	3.8 %	3.7 %	3.75 %	1%
V	27.8 %	11.3 %	19.6 %	18.2 %

4

5 Table <u>6</u>: Distribution of Cava's classes associated with the turbulence regimes for the

6 ATTO site nocturnal boundary layer.

7

	Regime 1		Reg	ime 2	Regime 3		
	Wet	Dry	Wet	Dry	Wet	Dry	
Class I	19.2 %	49 %	38.5 %	16 %	42.3 %	35 %	
Class IV	100 %	67 %	0 %	0 %	0 %	33 %	
Class V	25 %	50 %	25 %	27 %	50 %	23 %	

8 9

Deleted: 4

Deleted: 5

13 Table 7: Summary of aerosol optical parameters for the dry and wet seasons. Average and

Deleted: 6
Deleted: .

Formatted: Space Before: 0 pt, After: 0 pt

14 standard deviations are calculated from 60-min data.

		Dry season		Wet season	
	-	Mean	Std. Dev.	Mean	Std. Dev.
Scattering coefficient	450 nm	31	15	8.0	7.4
	550 nm	23	11	6.4	6.5
(σ _s , Mm ⁻¹)	700 nm	15	8	4.8	5.3
Scattering Ångström Exponent (å _s)	450/700	1.62	0.26	1.25	0.71
Absorption coefficient (σ _a , Mm ⁻¹)	637 nm	3.46	2.32	0.52	1.25
Absorption Ångström Exponent (å _a)	470/960	1.40*	0.26	1.53*	0.36
Mass absorption cross- section $(\alpha_2, m^2/g)$	637 nm			13.5 [§]	

15

16 * Calculated by a log-log linear fit including the last six wavelengths measured by the Ae-

17 thalometer ($R^2 > 0.99$).

18 Solution $(R^2 = 0.92)$

19

104

Table <u>8</u>: Relative abundance of single particle types obtained at top of the walk-up tower in
April 2012 (in percent).

Deleted: 7

Date April 2012	Size fraction (µm)	Organic	Organic with S,K	Mineral	Biogenic	Salts	Soot
1	0.25~0.5	70	13	17	0	0	0
	0.5~1.0	0	27	71	1.2	0	0
	1.0~2.0	24	28	47	1.7	0	0
16	0.25~0.5	42	58	0	0	0	0
	0.5~1.0	60	32	8	0	0	0
	1.0~2.0	50	5.3	16	13	16	0
17	0.25~0.5	82	6.1	3	9.1	0	0
	0.5~1.0	37	27	6.7	17	13	0
	1.0~2.0	0	79	21	0	0	0
18	0.25~0.5	72	28	0	0	0	0
	0.5~1.0	41	36	21	2.4	0	0
	1.0~2.0	34	31	17	5.7	0	11

25 26