
Response to Anonymous Referee #1 

The referee’s comments are in italics, our responses in plain font. 

While not explicitly stated in the manuscript (except indirectly in the title), it appears to 
me that this paper is an introduction article to the ATTO special issue rather than a regular 
research article. At such, the paper is very well written and easy to read. I do not find any errors 
in the paper, so my comments are mainly related to structural and technical issues. Once the 
authors have addressed the comments given, I recommend accepting this paper for publication 
in ACP. 

We thank the referee for his/her constructive comments. We have added a paragraph at 
the end of the introduction that makes it clear that this paper is intended as introduction and 
overview for a special issue. 

 

General issues 
The objectives, given in the end of section 1, remain a bit unclear when reading the paper 

for the first time. What are these objectives representing? Objectives of the whole research being 
done in ATTO, or even more generally in the Amazon basin? Objective of the research planned 
to be published in this special issues, or something else? Please define this clearly in the text. 
The current list of objectives ranges from aiming to solve purely scientific questions to mainly 
technical issues (carrying out various kinds of measurement). The whole paper would definitely 
be more appealing to readers if the authors could somehow divide the list of objective into 2-3 
separate categories (e.g. “scientific aims”, “technical goals” etc.).  

We have now made it clear that these are the scientific objectives of the ATTO project. 
We have reorganized and tightened up the description of the objectives, reducing their number to 
seven. At this point, there are no objectives of a purely technical nature, so that a division of the 
list, as proposed by the reviewer, is not practical. 

 

The type of this paper should be reflected in the section titles. Therefore, I do not think 
that the titles of sections 4 and 5 are appropriate. For example, some of the subsections in 
section 4 do not contain results at all (e.g. 4.1.2) but rather describe what is being done in 
practice. I suggest renaming the title of section 4 something like “4. Ongoing research and 
preliminary results”. Likewise, the conclusions made from the ongoing measurements are 
preliminary rather than end products of this project. I would be more comfortable with the title 
“5. Summary and future outlook”.  

We have adopted the headings proposed by the reviewer. 

 

While I am in favor of keeping section 3 as brief as possible, some addition information 
might be useful for the readers. Section 3.4: what is the accuracy of trace gas measurements, 
especially in terms of the detection limit for concentrations? Sections 3.6.1 and 3.6.2: Are the 
instruments measuring aerosol number size distributions, optical properties and CCN under 
regular quality control and have any of these instruments been in instrument inter-comparison 
experiments? 



Section 3.4: Information on the precision and detection limits has been added. 

Sections 3.6.1 and 3.6.2: We are conducting regular quality checks with all aerosol sizing 
instruments and CPCs, including flow checks, zero tests, and intercomparisons with ambient 
aerosol and monodisperse PSL cells. Exemplary plots are already included in the manuscript 
(Fig. 26). In general, all instruments are calibrated frequently as part of the maintenance routines, 
e.g., the CCNC with size selected monodisperse ammonium sulfate particles and the 
nephelometer with CO2 as reference gas. The MAAP and aethalometer are subject to frequent 
intercomparisons with the other optical instruments. For example, two aethalometers and the 
MAAP were operated side-by-side during an intensive campaign in Nov/Dec 2014. The BC 
concentrations from the individual instruments agreed well. The SP2 instrument was carefully 
intercalibrated with another SP2 during the GoAmazon-2014 campaign. This information has 
been added to the text. 

 

Technical issues 
Page 11634 and Figs. 8-11: What does SD function mean? Please define. 
SD means standard deviation. We had that spelled out in the manuscript, but ACP 

changed it to SD without telling us! 

 

Pages 11637 and 11638: The authors use terms “intermittent events” and “GW events” 
and sometimes simply events (line 14 on page 11638). What is the difference? Is one of those 
subset of the other, or are they totally different phenomena. 

Oscillatory behavior in the nocturnal boundary layer (Van de Wiel et al., 2002) can be 
generated by intermittent turbulence, for example due to downward bursts from turbulence 
created aloft (Mahrt, 1999), or by the action of gravity waves upon the turbulent flow (Zeri and 
Sá, 2011). The first case is discussed in section 4.2.4, where the term “intermittent events” is 
used (or sometimes just “events”, where the context is clear). The second case, the effect of 
gravity waves on the stable boundary layer, is discussed in section 4.2.5, where the term “gravity 
wave events” is used. These two sections have been reorganized to make this distinction clear 
and definitions have been added. 

 

In principle, the figure captions should be understandable by themselves. Therefore, I 
recommend spelling out SD, TKE and GW in the captions of fFgs. 8-11, 13 and 14.  

Done 

 

There is a very large number of figures. Are all of them necessary and could some of 
them combined together (for example, Figs. 17-19 could form 3 panels of one figure). 

We combined Figs. 8-10 and Figs. 17-19 into one Figure each. 



Response to Anonymous Referee #2 

The referee’s comments are in italics, our responses in plain font. 

This manuscript states that it provides an overview of the first results from the Amazon 

Tall Tower Observatory (ATTO). The ACPD short title is "ATTO overview". 

Ongoing and future ATTO results will be an incredible addition to Amazonian science. 

That said, the manuscript in its present form in my own view does not do justice to the project, 

and I give a rating of "fair" to this ACPD manuscript. 

The present version of the manuscript appears to me to lack a simple statement as to its 

purpose. Why do we need this manuscript? The absence of this motivational statement makes 

preparation of the review quite difficult because I do not know exactly what criteria to evaluate 

in deciding if the authors have achieved their purpose. Based on the title, a logical inference is 

to formulate criteria based on the quality of a description of the need for a tall tower and a 

presentation of early results. The actual manuscript, however, is much different from such crite-

ria, especially with regard to the description of a need. 

We thank the referee for his/her constructive comments. We have added a paragraph at 

the end of the introduction that makes it clear that this paper is intended as an introduction to and 

overview for a special issue. The Amazon Tall Tower Observatory is actually more than the tall 

tower itself, rather, it comprises several smaller towers for pilot and process studies as well as the 

ecosystem surrounding the towers. This paper is intended to provide the scientific context of 

ATTO and to serve as an overview paper for the pilot studies. A future paper will discuss the de-

tails of the tall tower. 

 

Here are some suggestions: 

1. Foremost, there should be a description of the tall tower and its motivation. The actual 

manuscript emphasizes long-term measurements. This is not a new theme for Amazonia. Those 

efforts have been under way through many projects, most notably LBA for climate change as 

well as multiple forestry studies. 



As stated above, there will be a future paper with the details of the tall tower. Neverthe-

less, we have added some text regarding the motivation for the construction of the tall tower in 

the introduction.  

2. The motivation for the tall tower is really marginalized in the actual manuscript. Only 

the sections on turbulence (sections 4.2.x) provide some intellectual motivation for the tallness of 

the tower. I think instead the introduction should do this job. Why do we need a 325 m tower and 

what do we get out of it? The manuscript does not presently answer this question. As an example, 

how about to show the fetch of a 325 m compared to shorter towers in Amazonia, and how about 

to discuss what that means for a definitive answer about CO2 uptake or release? 

See the response to comment 1) above. 

3. This manuscript does not discuss measurements from the tall tower. The manuscript 

states that the tall tower will be completed in 2015. Again, the entire motivation for the manu-

script is not clear. 

See the response to the introductory comment above.  

4. The introduction of the manuscript reads like a review paper, a book chapter, or per-

haps the introduction to a proposal, rather than a research article. ATTO itself is not mentioned 

until the end of the long introduction, at which point a list of 9 objectives is summarily presented. 

How about a complete deletion of the present introduction with a re-work toward a clear motiva-

tion for what a tall tower can and will accomplish (this is what is novel), with a downgrade on 

emphasis of long-term measurements (which are needed but not novel, i.e., this idea is common 

place and there are various type of long-term measurements already underway for years to dec-

ades at other sites). 

The introduction serves to introduce the reader of the special volume to the scientific 

background and context of the ATTO project. Therefore, to provide this background to a broad 

range of scientists from many disciplines it is written as a “mini-review”. It is also meant as a 

common point of reference for the specialist papers in the special issue. While the need for long-

term measurements may be well known, it is nevertheless important to emphasize this point for a 

site that is intended to operate for decades. Besides, to our knowledge there are no continuous 

long-term high-accuracy measurements of trace gases and aerosols in the Amazon region. The 



introduction now contains a section discussing the motivation and concept of the tall tower and 

an improved description of the objectives. 

5. Parts of section 2 are strange for a research article. Sections 2.2, 2.3, and 2.5 seem to 

be drawn from a narrative of a travel report. I would suggest for consideration that these sec-

tions can be entirely removed and that the manuscript would be focused and improved in conse-

quence. 

As mentioned before, this paper is meant to be a common resource for specialist papers in 

the ATTO Special Issue. As such, the description of logistical details is appropriate. The text has 

been tightened up somewhat, however. 

6. Subsections of section 3 are highly heterogeneous in content and quality. Some of them 

go into much more detail than would be needed in an overview paper, such as repeating in full 

paragraphs what are standard operating procedures for instruments and techniques (e.g., con-

sider using just a single reference in place of a paragraph). In my view, section 3 should only 

going into details about aspects that are unique and different to ATTO. 

Here, there is a divergence of opinions among reviewers. While reviewer 1 feels that the 

methods section is quite brief and requests some more details, this reviewer thinks there is too 

much detail in some sections. Given that this paper is a team effort and contains contributions 

from many disciplines, a certain degree of heterogeneity seems unavoidable. For example, the 

discussion of the CO2/CH4/CO analyzers needs to be quite detailed, because the performance of 

the analyzers is specific to individual instruments and traceability is essential to quality assur-

ance of these key data. Similarly, inlet setups are described in detail as they are crucial to the va-

lidity of the measurements, and a detailed discussion here allows common referencing in the 

specialist papers. The methods section was edited throughout for brevity and clarity. 

7. Section 4 relates to results and discussion. Again, these sections are highly heteroge-

neous in presentation and quality. 

7a. Section 4.2.4 is an example of what in my view was really done well. This section 

provides new information based on measurements that are specific to the ATTO site. Sections 

4.2.5, 4.2.6, and 4.2.7 are also exemplarily positive in that they provide new and specific infor-

mation about the ATTO site that promise to be useful as studies there continue in the future, as 



well as interesting at present to a reader. Each of these sections has a nice concluding take-

home statement for the reader about ATTO specific information. 

We thank the reviewer for these positive remarks. 

7b. Let me now give a negative example. Section 4.1.2 essentially provides no research 

information. It should be deleted.  

At the time the ACPD version of the manuscript was written, this project was in its very 

early stages. Many of the measurements reported here therefore represent an attempt to define an 

initial baseline against which the extended records can be evaluated in the future. Nevertheless, 

significant results have been obtained in the meantime, which are briefly presented in the revised 

version. 

7c. My quick review is that helpful, informative sections with new research results in-

clude: 4.3.2 and 4.3.3. Sections that really do not say anything by way of new data or new in-

sights compared to existing literature (as cited in the manuscript itself) include: 4.3.1, 4.3.4, 

4.3.5, 4.3.6, 4.3.7, and 4.3.8. 

In the following, we point out what is new in terms of data and insights in those sections 

that the reviewer did not feel contained enough novel material: 

4.3.1: There are no previously published high-accuracy measurements of CO2, CH4, or 

CO in the Amazon forest (or any tropical forest that I am aware of) that span more than the time 

of an intensive campaign. Even these campaign data are usually not continuous measurements. 

For CO, for example, only some fragmentary profiles with outdated techniques are in the litera-

ture. There are also no continuous data from any mid-continental tropical site for these trace gas-

es. The only comparable data are from flask sampling programs. The ATTO results present clear 

evidence for a CO source at ground level in the rainforest, something that was only speculated 

about earlier. They also indicate strong episodic CH4 sources that remain unexplained. 

4.3.4: Systematic measurements of the aerosol optical properties in the central Amazon 

are still scarce. The only comparable data set is that of Rizzo et al. (2013). Since their site has a 

significantly greater likelihood of contamination from the Manaus area, having a more remote 

site for comparison is very important. This section also contains a discussion of the absorption 

Ångstrom exponent, for which no systematic previous data exist from a remote tropical forest 



region. We also present the first results of measurements of refractory black carbon by the SP2 

instrument in this type of environment, which produce some quite surprising and not yet fully 

explained results. Our measurements suggest very strong absorption enhancements in Amazoni-

an particles relative to fresh soot particles, which are likely related to thick coatings with biogen-

ic or pyrogenic organic matter. 

4.3.5: Compared to the huge amounts of data available from, for example, Europe and 

North America, the moist tropics are still a highly undersampled region. Previous studies were 

limited to short campaign periods and did not cover the full seasonal and intraseasonal variability 

of size distributions. While this section contains a significant amount of confirmatory infor-

mation, it is nevertheless important to document that the comprehensive data sets obtained at 

ATTO agree with the more spotty information obtained previously. Furthermore, this section 

contains some aspects of the long-term measurements of fluorescent biological particles, which 

are unique for the Amazon ecosystem. It emphasizes the dominance of fluorescent supermicron 

bioaerosols in the coarse mode size range in the Amazon. These are the first reported measure-

ments of fluorescent particles with the WIBS system from the Amazon.  

4.3.6: Again, there are no previous measurements from Amazonia by an aerosol mass 

spectrometer that extend over more than a few weeks in the wet season. In the revised manu-

script, we include monthly average ACSM data that show the changes in aerosol composition 

and concentration throughout the annual cycle.  

We present here the first measurements of iron oxidation states and solubility in aerosols 

from a comparable environment. The measurements of crustal elements reported here may be 

more of a confirmation of previous work, but are reported to provide a comprehensive overview 

of work going on at ATTO. 

4.3.7: In general, there are only a small number of studies that focus on the microstructure 

of Amazonian aerosols, which is important for understanding their micro-physical properties. 

Moreover, the previous single-particle studies in central Amazonia have focused on the wet sea-

son. Here we present exemplary results that show dry-season aerosols with significant contribu-

tions from aged biomass burning and fossil fuel burning. The data presented here show the high 

degree of mixing and atmospheric aging of the particles. It further emphasizes the thick coating 

on BC cores, with important implications for the optical properties of the aerosol. The STXM 



images from the wet season show the characteristics of coarse-mode primary biological particles. 

These types of results have not been published previously. 

4.3.8: We are surprised that the reviewer feels that this section does not contain new in-

formation. We are not aware of a previous publication that quantifies the amounts of monoter-

pene and sesquiterpene oxidation products in tropical forest aerosols. However, to better point 

out the new scientific aspects this section has been revised and updated.   

7d. Figure 1 is essential. Figure 2 seems extraneous. And so on. Are 35 figures justified? 

Or could a very nice job be done with half as many or fewer? Some of the figures represent sta-

tistical studies of a full season (which seems appropriate to an overview manuscript) while other 

figures seem anecdotal to a single or a few days studies (which seems inappropriate to an over-

view manuscript). 

We disagree with the reviewer concerning Figure 2. Since ATTO is intended to be an ob-

servatory with the objective of detecting large-scale, long-term trends, it is important to show the 

potential sources and sinks of biogenic and anthropogenic species in the fetch region. We repre-

sent the anthropogenic sources by mapping population density and the biogenic sources by eco-

system type. The mapped region has been deliberately kept fairly large to provide context. For 

example, how does the populated region in NE Brazil, which is in the normal fetch of ATTO 

during the dry season compare to the Sao Paulo region, which rarely affects the central Amazon? 

Having figures that display long-term measurements as well as results from intensive 

campaigns reflects the concept of the ATTO observatory to be both a long-term monitoring site 

and to host intensive campaigns. Given the large number of studies ongoing at ATTO, we feel 

that the most effective way of providing an overview is to present a relatively short text and one 

or a few plots for each program component. We did combine some of the figures into a single 

plot, however. 

7e. I expect the authors will disagree on some of my classifications of good and bad ex-

amples and provide good explanations, but I think they will agree with at least some of the clas-

sifications and recognize in all cases opportunities for significant improvements. My point here 

is not really to attempt to be directive in any way about what should stay in or what should go 

out in a seriously revised manuscript. Rather, I hope that the authors will make revisions with an 

eye toward cutting the length of the text significantly and focusing on what is really new and dif-



ferent for an overview of the first results from ATTO. The manuscript probably would have bene-

fited from a few more rounds of internal revisions before being sent to peer review. I would en-

courage the new flavor of the manuscript to emphasize why a TALL tower is motivated or inter-

esting. 

We hope that the revised version will have addressed at least most of the reviewer’s con-

cern. Producing a synthesis with such a large number of co-authors and such a large and diverse 

portfolio is not an easy task. As pointed out before, the motivation for the tall tower has now 

been included, but specifics and results from the tall tower will be provided in a future paper. 

The ATTO project will be a source of excellent observations and associated science in the 

years and decades ahead. It would be valuable to the ATTO community for this first manuscript 

to be really streamlined and focused if it is to continue to ACP so that it can be of a final quality 

equal to the ATTO project itself. Please accept my criticisms in that context. 



Response to Referee #3 (D. Fitzjarrald) 

We thank the referee for his constructive comments. The referee’s comments are in italics, our 

responses in plain font. 

Having labored in the Amazon rainforest environment at intervals during a period of 30 

years, I can well appreciate the remarkable effort that went into the making of this facility. 

I have worked personally with many of the authors on other projects. I think that too 

many topics and indeed, many separate potential papers or notes, were combined in this mighty 

one-hundred-and-twenty-seven-page manuscript. This is more than an “Overview”, but less than 

a proper publication for each topic. Releasing these half-results now runs the risk of preventing 

the original scientists from presenting their specialized work separately.  

Given the large number of studies ongoing at ATTO, we feel that the most effective way 

of providing an overview is to present a relatively short text and one or a few plots for each pro-

gram component. This is the “standard” way of producing an overview paper for a special issue. 

There would be no objective basis for arbitrarily excluding some of the ATTO subprojects. The 

authors see no risk of this publication precluding future specialized papers. The overview is also 

intended to provide a broad context for readers unfamiliar with work in the disciplines other than 

their own. 

This is compounded by the distinct impression this journal gives that the paper is essen-

tially already accepted, even as it remains in some odd limbo as it awaits some correction and 

blessing. 

It appears that the reviewer is not familiar with the two-stage publication and open review 

process of ACPD/ACP. Please see  

http://www.atmospheric-chemistry-and-

physics.net/peer_review/interactive_review_process.html  

One mystery about this paper it may be too soon to report on results from ATTO, since no 

data has been obtained from the ATTO centerpiece, the 325 m tower. Why is this paper with pre-

liminary results coming out before the tall tower is commissioned? Why not simply describe the 

project, justify its siting, instrumentation and height, and pass lightly over both the boilerplate 

justification and early finding from the smaller towers? 

http://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html
http://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html


We apologize for not having made the purpose of this paper more transparent. As pointed 

out in the response to Reviewer 1, the Amazon Tall Tower Observatory is actually more than just 

the tall tower itself, rather, it comprises several smaller towers for pilot and process studies as 

well as the ecosystem surrounding the towers. This paper is intended to provide the scientific 

context of ATTO and to serve as an overview paper for the pilot studies. A future paper will dis-

cuss the details of the tall tower. We have added a paragraph at the end of the introduction that 

makes it clear that this paper is intended as an introduction and overview for a special issue.  

The justifications as to why there is a need for long-term continuous measurements in the 

first thirteen pages are not clearly focused on the ATTO concept. The authors take side trips to 

explain details of the importance of the Amazon Basin to global biodiversity and climate change; 

these should be dealt with by references to other review articles already in the literature. 

The introduction serves to introduce the reader of the special volume to the scientific 

background and context of the ATTO project. Therefore, it is written as a “mini-review”, to pro-

vide this background to a broad range of scientists from many disciplines. It is also meant as a 

common point of reference for the specialized papers in the special issue. While the need for 

long-term measurements may be well known, it is nevertheless important to emphasize it for a 

site that is intended to operate for decades.  

The reader deserves a more specific argument—more than generalities highlighting the 

importance of the Amazon Basin—that defends the idea that a 328-m tall tower be installed in 

such a hostile environment. It is necessary, but not sufficient to note that there are other tall tow-

ers monitoring the lower atmosphere at other parts of the world. The reader deserves to know 

why the ATTO tower was sited at this particular, relatively remote site. 

The introduction now contains a section discussing the motivation and concept of the tall 

tower, the site selection criteria, and an improved description of the objectives. 

What is the purpose of the smaller towers around the tall one? (The local canopy data 

presented in this paper all come from these towers.)  

They were established to conduct process studies with minimal disturbance of the forest 

ecosystem, as is unavoidable with a large structure such as the tall tower, and to begin research 



during the time that it took to get the tall tower constructed. This enabled about four years of 

process studies and pilot research at the ATTO site, which are being introduced in this overview. 

Why is the local topography and map of adjacent water bodies only included deep into 

the manuscript, as part of one finding about gravity waves? These topics need to be presented 

right at the beginning, so that this paper can serve its rightful purpose as a reference to papers 

that follow, so that this information need not be endlessly repeated. 

We agree, and have added a map with local topography and a brief discussion of the soils 

and geology earlier in the paper (Section 2.1).  

To repeat: The authors would be well served to make a short description of the vertical 

structure of the atmosphere—and its diurnal variability—is presented. Such at least would allow 

the reader to understand why one has to make such a tall tower.  

Boundary-layer phenomena that can be investigated using the tall tower are now dis-

cussed in the introduction. For a description of the boundary layer behavior we included a refer-

ence to Fisch et al. (2004). 

The reader sees no reference to the successes and difficulties that have occurred at other 

tall tower installations (BAO, Cabauw, ZOTTO in Russia). 

This will be included in a future paper specifically addressing the tall tower. 

One important issue is the likely percentage of good turbulence data that has been ob-

tained from tall towers in other ‘remote’ sites. This reader sees no reference to what degree the 

preliminary measurements have been continuous. (In the preliminary results, many findings 

based on 2-3 weeks of work are presented at representative.) 

Continuous micrometeorological measurements have been made since September 2012, 

with some interruptions due to technical problems. This information has been included in Section 

3.3. 

What this reader found here resembles a forced marriage collection of ‘white papers’ 

written over some time to accompany meetings planning this tower and/or (perhaps) selling the 

concept to funding agencies. 

In fact, all the text contained in this manuscript was specifically written for this paper. 



In short, the reader gets a heavy dose of interesting, perhaps important facts, but facts 

that are tangential to the issue at hand. The authors need to describe the site, explain why it was 

placed where it was, and what peculiarities it exhibits. I’m thinking of vegetation diversity, geo-

graphical diversity, and behavior of local wind systems. As one example, does proximity to the 

large Balbina dam and reservoir perturb any measurements? How would the authors know? 

We have described the site in quite some detail and have now added additional detail on 

site selection and characteristics. Vegetation diversity is described in 4.1.1; geomorphology in 

section 2.1 (new text); local wind systems in 4.2.1. The influence of the Balbina Reservoir has 

not been detected in chemical tracers (e.g., CH4) or wind measurements. 

Perhaps the size of the text is merely a symptom of the enthusiasm that led to the tower’s 

construction, but the founds ought to be restrained a little, to avoid the hubris that leads to 

‘monumental science’. There is not yet enough output to justify a celebration. The reader de-

serves to receive an overview that discusses ATTO, not an encyclopedia of everything all shoved 

together as it would be in a loosely gathered notebook. If the fifty-six authors want to write such 

a tome, they should write a book, with chapters for the sundry specialties OR they should com-

mandeer a journal for a dedicated issue. 

In fact, this is a paper that introduces just such a dedicated issue, and that is intended to 

serve as a common reference for the specialized papers. 

I hope that in revision the paper more closely resembles a reference work that allows the 

reader to understand why the tower was placed where it was, how the height of the tower was 

determined, what thinking went behind the construction of the smaller, satellite towers.  

This has been included in the revised manuscript (see above). 

I imagine that the revised paper will make a reasonable assessment of the percentage of 

time that continuous measurements can be achieved.  

Such an assessment would be different for all the variables measured at the site and 

would dramatically increase the size of this already large paper. 

Such a paper would lighten the load of the many authors who will follow and report on 

their new findings. The justification for the ATTO and how it came to be at this site can simply be 

referred to. Only some of these findings—perhaps long-term concentration measurements of 



trace gases and aerosols—will be relevant to the Basin as a whole; many more will be of neces-

sity local area case studies. 

Indeed, ATTO is meant to be both a site for long-term measurements and local process 

studies. 

 

Specific comments. 

1. Any subsequent drafts should provide line numbers to aid the harried reviewer. 

We don’t understand. The ACPD version has both line and page numbers. 

p. 7. “Efforts to upscale local measurements to larger scales have also lead to inconclu-

sive and often contradictory results.” Where do the authors explain how adding a single point 

measurements will improve this situation? 

This statement is part of a general discussion on carbon cycle investigations. We did not imply 

that ATTO by itself would be the answer to this problem. But the establishment of long-term 

mid-continental baseline stations has been shown to significantly reduce uncertainties in the car-

bon budget. See the paper by Gloor et al. (2001), now discussed in the Introduction section 1.5. 

p. 8. “Seen together, these studies suggest that the Amazon Basin teeters on a precarious 

balance…” Again, these generalizations would be interesting if they were not distracting from 

the mission at hand. They belong in an overview paper; perhaps they come from one. 

This is the overview paper. 

p. 8. “While remote sensing can provide important information on the response of the 

Amazon forest to changing climate and ecological factors, the recent controversy about the ef-

fects of seasonal change and drought on the “greenness” of the forest illustrates how important 

long-term ground based observations are to our understanding of the Amazon system…” This is 

a true statement, as far as it goes. Much of this ‘green-up’ controversy has to do with the situa-

tion further east in the Basin, where the dry season is more intense and prolonged. The authors 

are ‘selling’ the utility of a tall tower in the central Basin. They are justifying it in much the same 

way as one would justify having a much smaller tower, of the type that is in use in this region 

already. What they need to do is emphasize the scientific riches that are in store for those who 



have long-term observations at 325 meters, about one fourth of the thickness of the daytime con-

vective boundary layer. 

This is now discussed in section 1.5, and will be included in more detail in a forthcoming paper 

specifically addressing the tall tower. 

5. p. 15. Suggested changes to the objectives, all designed to rein in hyperbole: 

The Objectives have been tightened up and rewritten. 

1) To understand the carbon budget of one specific site in the Amazonian rain forest un-

der changing climate conditions and anthropogenic influences. 

Actually, because the tall tower has a CO2 concentration footprint on the order of 106 km2, it rep-

resents more than one specific site. See new text in Section 1.5. 

2) To continuously observe anthropogenic and biogenic greenhouse gases in the lower 

troposphere, within the planetary boundary layer by day and outside it at night, in order to help 

constrain inverse methods for deriving continental source and sink strengths and their changes 

over time. 

Changed as suggested. 

3) To continuously measure trace gases and aerosols for improvement of our understand-

ing of atmospheric chemistry and physics in the Amazon and further allow a continuous assess-

ment of the effects of land use change that occur upwind of ATTO on the atmosphere and cli-

mate. 

Now part of the newly formulated Objective 1. 

4) To simultaneously measure anthropogenic and biogenic trace gases, contributing to 

our understanding of natural and anthropogenic effects on the atmosphere and climate. Meas-

urements of isotopic composition will be made to help distinguish anthropogenically and biolog-

ically induced fluxes. 

OK 

5) To investigate key atmospheric processes, with emphasis on the atmospheric oxidant 

cycle, the trace gas exchange between forest and atmosphere, and the life cycle of the Amazoni-

an aerosol. 



6) To determine vertical trace gas and aerosol gradients from the tower top to the ground 

to estimate biosphere-atmosphere exchange rates. 

7) To study turbulence and transport processes in the lower atmospheric boundary layer, 

as well as to understand the extent and characteristics of the roughness sublayer over the forest. 

8) To develop and validate dynamic vegetation models, atmospheric boundary layer 

models, and inverse models for the description of heat, moisture, aerosol, and trace gas fluxes. 

9) To provide single-point ground truth to help evaluate satellite estimates of greenhouse 

gas concentrations and temperature and humidity profiles 

Modified to reflect the point that this is one site. 

6. p. 20. Are raw turbulence and trace gas data archived? Will these be available to the 

community? 

Yes. This is now stated in section 3.3. 

7. p. 31. “The variation of the wind roses between daytime and nighttime was insignifi-

cant.” This reader doesn’t believe this. Please present hourly hodographs to show possible 

breeze influences. 

This statement was based on an initial analysis of wind roses for daytime and nighttime. 

We have now plotted hourly wind roses for each season (see Figure 1 below, time in UTC) and 

cannot detect a lake breeze system. Such a system would be characterized by dominant flows 

from the north-western sector (Balbina reservoir) during daytime, which is clearly not the case. 

However, the wind roses show a slight diurnal variation with small contributions from the North, 

West and South during nighttime, when the nocturnal boundary layer is decoupled, in both sea-

sons. In contrast, during daytime the wind blows nearly all the time from the East (dry season) 

and Northeast (wet season) with much higher wind speeds. 



 



 

Figure 1: Half-hourly wind roses at 80 m at the ATTO site. The upper diagram shows the dry-

season average, the lower diagram the rainy season average. 

 

8. p. 32. (Figure 6) I don’t see that the vertical spacing of temperature sensors is ade-

quate to describe the stability regimes within the canopy. One cannot properly resolve the stabil-

ity at canopy top and near the forest floor with the observation levels shown. How will this be 

addressed in the long term? 



 The referee is right in that the vertical spacing of the temperature sensors (6 levels 

throughout the canopy) might not be sufficient to resolve the shape of the temperature profile 

and, therefore, the exact heights of the diurnal maxima and minima. Nevertheless, the observed 

minima and maxima reflect the regimes of cooling and heating of the canopy as described in the 

text, which are in agreement with general observations in forest canopies. Nevertheless, our con-

cept for upgrading the measurements within the framework of equipping the ATTO tower in-

cludes a higher vertical resolution of the profile throughout the canopy. 

9. p. 40. Text following: “Figure 15a shows a topographic image of the experimental site 

with colors ranging from blue to red representing the altimetry values in meters above sea lev-

el.” It turns out that the forest floor topography has an important influence on the CO2 balance, 

at length scales well smaller than 30 km, as the work of co-author Julio Tóta has shown. Some-

where in the site description this information should show up. Indeed, one shouldn’t have to wait 

until p. 40 to learn of this site peculiarity. 

We have added a new Figure (Fig. 1b) and some text in the manuscript (Section 2.1) to 

introduce this topic earlier in the revised version. The topography surrounding ATTO is actually 

not a site peculiarity, but the dominant landscape form in the central Amazon Basin. Regrettably, 

but unavoidably, this is not an ideal type of terrain from the perspective of micrometeorological 

flux measurements, because it induces significant upslope and downslope circulations (Tota et 

al., 2012). The effects of local topography on the local flux measurements from the small towers 

are the subject of ongoing investigations.  

It must be pointed out, however, that the main objective of the tall tower with respect to 

greenhouse gas and aerosol monitoring is the measurement of concentrations above the level of 

local circulations. In this context, measurements from tall towers, such as ATTO, have the ad-

vantage of being less influenced by the surface layer variability due to diurnal changes in photo-

synthesis and respiration, as well as ecosystem and terrain heterogeneity. This results in smooth-

ening of the large daily cycles of near-surface signals and efficiently integrates over daily cycles 

and small-scale heterogeneities, and facilitates the detection of long-term changes in the back-

ground atmospheric composition. 

 



Tota, J., Fitzjarrald, D. R., and da Silva Dias, M. A. F., Amazon rainforest exchange of carbon 
and subcanopy air flow: Manaus LBA Site - A complex terrain condition: Scientific 
World Journal, 2012, 165067, doi:10.1100/2012/165067, 2012. 
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Abstract 67 

The Amazon Basin plays key roles in the carbon and water cycles, climate 68 

change, atmospheric chemistry, and biodiversity. It has already been changed sig-69 

nificantly by human activities, and more pervasive change is expected to occur in 70 

the next decades. It is therefore essential to establish long-term measurement sites 71 

that provide a baseline record of present-day climatic, biogeochemical, and at-72 

mospheric conditions and that will be operated over coming decades to monitor 73 

change in the Amazon region, as human perturbations increase in the future.  74 

The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine 75 

rain forest region in the central Amazon Basin, about 150 km northeast of the city 76 

of Manaus. Two 80-m towers have been operated at the site since 2012, and a 77 

325-m tower is nearing completion in mid-2015. An ecological survey including a 78 

biodiversity assessment has been conducted in the forest region surrounding the 79 

site. Measurements of micrometeorological and atmospheric chemical variables 80 

were initiated in 2012, and their range has continued to broaden over the last few 81 

years. The meteorological and micrometeorological measurements include tem-82 

perature and wind profiles, precipitation, water and energy fluxes, turbulence 83 

components, soil temperature profiles and soil heat fluxes, radiation fluxes, and 84 

visibility. A tree has been instrumented to measure stem profiles of temperature, 85 

light intensity, and water content in cryptogamic covers. The trace gas measure-86 

ments comprise continuous monitoring of carbon dioxide, carbon monoxide, me-87 

thane, and ozone at 5 to 8 different heights, complemented by a variety of addi-88 

tional species measured during intensive campaigns (e.g., VOC, NO, NO2, and 89 

OH reactivity). Aerosol optical, microphysical, and chemical measurements are 90 

being made above the canopy as well as in the canopy space. They include aerosol 91 

light scattering and absorption, fluorescence, number and volume size distribu-92 

tions, chemical composition, cloud condensation nuclei (CCN) concentrations, 93 

and hygroscopicity. In this paper, we discuss the scientific context of the ATTO 94 

observatory and present an overview of results from ecological, meteorological, 95 

and chemical pilot studies at the ATTO site.  96 

  97 
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1 Introduction 106 

A little over thirty years ago, Eneas Salati and Peter Vose published a 107 

landmark paper entitled “Amazon Basin: A System in Equilibrium” (Salati and 108 

Vose, 1984). Since then, a paradigm shift has occurred in the minds of the public 109 

at large as well as the scientific community, which is reflected in the title of a re-110 

cent synthesis paper by a group of prominent Amazon researchers, “The Amazon 111 

Basin in transition” (Davidson et al., 2012). Despite its reassuring title, Salati and 112 

Vose’s paper had already pointed at growing threats to the integrity of the Ama-113 

zon ecosystem, mostly resulting from ongoing large-scale deforestation. Since 114 

then, deforestation has indeed continued and has only begun to abate in recent 115 

years (Lapola et al., 2014; Tollefson, 2015). It goes hand in hand with road con-116 

struction and urbanization (Fraser, 2014), affecting ecosystems and air quality in 117 

many parts of the Basin. And, whereas Salati and Vose were concerned with cli-118 

mate change as a regional phenomenon driven by deforestation and its impact on 119 

the hydrological cycle, the focus now is on the interactions of global climate 120 

change with the functioning of the Amazon forest ecosystem (Keller et al., 2009). 121 

In the following sections, we will present the key roles the Amazon is playing in 122 

the global ecosystem, which form the rationale for setting up a long-term measur-123 

ing station, including a tall tower, for monitoring its functioning and health. 124 

1.1 Carbon cycle 125 

The Amazon Basin covers about one third of the South American conti-126 

nent and extends over about 6.9·106 km2, of which about 80% is covered with rain 127 

forest (Goulding et al., 2003). It contains 90-120 Pg C in living biomass, repre-128 

senting about 84% of the aboveground biomass in Latin America and ca. 40% of 129 

all tropical forests worldwide (Baccini et al., 2012; Gloor et al., 2012). Another 130 

160 Pg C are stored in the Amazon Basins’s soils – putting this in perspective, the 131 

Amazon holds about half as much carbon as was in the Earth’s atmosphere before 132 

the industrial revolution (Gloor et al., 2012). Given the magnitude of this carbon 133 

reservoir, it is clear that tropical forests in general, and the Amazon forest in par-134 

ticular, have the potential to play a crucial role in climate change because of their 135 

potential to gain or lose large amounts of carbon as a result of land use and cli-136 

mate change. A recent study shows a strong correlation between climate change 137 

Deleted: continued  

Deleted: D 
Deleted: , 



 5 

on the tropical continents and the rate at which CO2 increases in the atmosphere, 141 

and indicates that the strength of this feedback has doubled since the 1970s (Wang 142 

et al., 2014). The interaction between physical climate and the biosphere repre-143 

sents one of the largest uncertainties in the assessment of the response of the cli-144 

mate system to human emissions of greenhouse gases. 145 

Depending on the path land use change takes and the interactions between 146 

the forest biota and the changing climate, the Amazon can act as a net source or 147 

sink of atmospheric CO2. The most recent global carbon budget estimates indicate 148 

that in the decade of 2004-2013 land use change worldwide resulted in a net car-149 

bon release of 0.9±0.5 Pg a-1, or about 9% of all anthropogenic carbon emissions 150 

(Le Quéré et al., 2014). This represents a significant decrease since the 1960s, 151 

when land-use carbon emissions of 1.5±0.5 Pg a-1 accounted for 38% of anthro-152 

pogenic CO2. Part of this decrease in the relative contribution from land use 153 

change is of course due to the increase in fossil fuel emissions, but there has also 154 

been a significant decrease in deforestation in recent years, particularly in the Bra-155 

zilian Amazon (Nepstad et al., 2014).  156 

The “net” land use emissions, as presented above, are the sum of “gross” 157 

release and uptake fluxes, where deforestation represents the dominant gross 158 

source, whereas afforestation, regrowth, and uptake by intact vegetation are the 159 

main gross sinks. Using an approach based on forest inventories and land use 160 

budgeting, Pan et al. (2011) estimated that tropical land use change represented a 161 

net carbon source of 1.3±0.7 Pg a-1 in the 1990s and early 2000s, consisting of a 162 

gross tropical deforestation carbon emission of 2.9±0.5 Pg a-1 partially compen-163 

sated for by a carbon sink in tropical forest regrowth of 1.6±0.5 Pg a-1. A more 164 

recent comprehensive analysis of the role of land vegetation in the global carbon 165 

cycle concluded that carbon sources and sinks in the tropics are approximately 166 

balanced, with regrowth and CO2-driven carbon uptake compensating the large 167 

deforestation source (Schimel et al., 2015). For the South American continent, a 168 

detailed budgeting study also concluded that, at present, carbon uptake by the bio-169 

sphere approximately compensates the emissions from deforestation and fossil 170 

fuel burning, with a slight trend of the continent becoming a carbon source in the 171 

most recent period (Gloor et al., 2012). 172 
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Attempts to verify these carbon budgets with measurements have remained 178 

inconclusive so far. The largest spatial scale is represented by global inversion 179 

models, which derive fluxes from concentration measurements and global 180 

transport models. An early attempt deduced a large tropical sink from inverse 181 

modeling (Stephens et al., 2007), whereas a more recent analysis suggests a net 182 

tropical carbon source of 1.1±0.9 Pg a-1 (Steinkamp and Gruber, 2013). Gloor et 183 

al. (2012) have reviewed the numerous attempts to deduce the South American 184 

carbon budgets from inverse modeling and came to the conclusion that they are 185 

not adequately constrained to produce meaningful results, a conclusion that they 186 

extend to the application of digital global vegetation models for larger time and 187 

space scales. 188 

Efforts to upscale local measurements to larger scales have also lead to in-189 

conclusive and often contradictory results. Flux measurements using the eddy 190 

covariance technique initially suggested a fairly large carbon sink (1-8 t ha-1 a-1) in 191 

intact Amazon forests (e.g., Grace et al., 1995; Carswell et al., 2002; de Araújo et 192 

al., 2002). But as more studies were conducted, this uncertainty range expanded, 193 

reaching from a sink of 8 t ha-1 a-1 to a source of 1.4 t ha-1 a-1. It thus became clear 194 

that issues related to nighttime fluxes and terrain effects make upscaling of CO2 195 

fluxes from eddy covariance measurements difficult to impossible (de Araujo et 196 

al., 2010, and references therein). Nevertheless, such flux measurements are es-197 

sential for understanding micrometeorological and ecological processes and for 198 

monitoring changes in the functioning of the forest ecosystem. 199 

An alternative approach to upscaling from local to regional carbon balanc-200 

es is followed in the RAINFOR project, where initially some 140 forest plots have 201 

been monitored over decades for standing biomass (Phillips et al., 2009). This 202 

study suggested substantial carbon uptake by intact forest, interrupted by biomass 203 

loss during drought years. It has been proposed that a large fraction of the uptake 204 

extrapolated from the RAINFOR sites is compensated by carbon losses due to rare 205 

disturbance events, such as forest blow-downs resulting from severe thunder-206 

storms (Chambers et al., 2013, and references therein). The latest analysis from 207 

the RAINFOR project, now based on 321 plots and 25 years of data, indicates that 208 

the Amazon carbon sink in intact forest has declined by one-third during the past 209 
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decade compared to the 1990s. This appears to be driven by increased biomass 218 

mortality, possibly caused by greater climate variability and feedbacks of faster 219 

growth on mortality (Brienen et al., 2015). Like flux-tower measurements, bio-220 

mass inventories also miss the contributions of wetlands and water bodies to the 221 

carbon flux, which may make a substantial contribution to CO2 outgassing 222 

(Richey et al., 2002; Abril et al., 2014). 223 

An intermediate scale between global inverse modeling and plot-size flux 224 

and inventory studies is captured by aircraft CO2 soundings through the lowest 225 

few km of the troposphere. This method averages regional fluxes on scales of tens 226 

to hundreds of km. Early measurements made during the 1987 ABLE-2 experi-227 

ment were reanalyzed by Chou et al. (2002) and suggested a near-neutral carbon 228 

balance for their study region near Manaus. A series of flights north of Manaus 229 

during the 2001 wet-to-dry transition season also revealed that daytime carbon 230 

uptake and nighttime release were in approximate balance (Lloyd et al., 2007). A 231 

10-year aircraft profiling study conducted near Santarem in the eastern Amazon 232 

concluded that the fetch region was a small net carbon source (0.15 t ha-1 a-1), 233 

mostly as a result of biomass burning, with no significant net flux to or from the 234 

forest biosphere (Gatti et al., 2010). In 2010, this study was extended to include 235 

the southern and western parts of the Amazon Basin (Gatti et al., 2014). The re-236 

sults from 2010, an unusually dry year, show the Amazon forest biosphere to be 237 

sensitive to drought, resulting in net carbon emission from the vegetation. The 238 

following year, 2011, was wetter than average, and the Basin returned to an ap-239 

proximately neutral carbon balance, with a modest biospheric sink compensating 240 

the biomass burning source. A detailed study on the carbon dynamics over the 241 

years 2009 to 2011 showed a complex response of the forest ecosystem to the 242 

drought episode, which not only affected net primary production (NPP) and tree 243 

mortality, but also the allocation of carbon to the canopy, wood, and root com-244 

partments (Doughty et al., 2015). 245 

Seen together, these studies suggest that the Amazon Basin teeters on a 246 

precarious balance between being a source or sink of carbon to the world’s atmos-247 

phere, with its future depending on the extent and form of climate change as well 248 

as on human actions. The region has already warmed by 0.5-0.6 °C, and warming 249 
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is expected to continue (Malhi and Wright, 2004). Together with the increased 255 

frequency of drought episodes (Saatchi et al., 2013), the occurrence of periods of 256 

net biospheric carbon emissions will be enhanced and the likelihood of destructive 257 

understory fires will increase (Gloor et al., 2013; Balch, 2014; Zeri et al., 2014). 258 

On the other hand, the observed 20% increase in Amazon River discharge may 259 

reflect increasing water availability to the vegetation (Gloor et al., 2013), which 260 

together with increasing atmospheric CO2 may lead to more net carbon uptake by 261 

the intact forest vegetation (Schimel et al., 2015). While remote sensing can pro-262 

vide important information on the response of the Amazon forest to changing cli-263 

mate and ecological factors, the recent controversy about the effects of seasonal 264 

change and drought on the “greenness” of the forest illustrates how important 265 

long-term ground based observations are to our understanding of the Amazon sys-266 

tem (Morton et al., 2014; Soudani and Francois, 2014; Zeri et al., 2014). 267 

Ultimately, the fate of the carbon stored in the Amazon Basin will depend 268 

on the interacting and often opposing effects of human actions, especially defor-269 

estation, global and regional climate change, and changing atmospheric composi-270 

tion (Soares-Filho et al., 2006; Poulter et al., 2010; Rammig et al., 2010; Davidson 271 

et al., 2012; Cirino et al., 2014; Lapola et al., 2014; Nepstad et al., 2014; Schimel 272 

et al., 2015; Zhang et al., 2015). Interactions of the carbon cycle with the cycles of 273 

other key biospheric elements, especially nitrogen and phosphorus, are also likely 274 

to play important roles (Ciais et al., 2013). This applies equally to two other 275 

greenhouse gases, methane (CH4) and nitrous oxide (N2O), both of which have 276 

important sources in the wetlands or soils of the Amazon (Miller et al., 2007; 277 

D'Amelio et al., 2009; Beck et al., 2012). 278 

1.2 Water and energy cycle 279 

The Amazon River has by far the greatest discharge of all the World’s riv-280 

ers — about 20% of the world’s freshwater discharge, and five times that of the 281 

Congo, the next largest river in discharge. This reflects the immense amount of 282 

water that is cycling through the water bodies, soils, plants, and atmosphere of the 283 

Amazon Basin. As a result, the hydrological cycle of the Amazon Basin is crucial 284 

for providing the water that supports life within the Basin and even beyond its 285 

borders. Most moisture enters the Basin from the Atlantic Ocean with the trade 286 
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wind circulation, but recirculation of water through evapotranspiration maintains a 290 

flux of precipitation that becomes increasingly more important as airmasses move 291 

into the western part of the Basin (Spracklen et al., 2012). When reaching the An-292 

des, moisture becomes deflected southward, with the result that Amazonian evap-293 

oration even supports the rain-fed agriculture in Argentina (Gimeno et al., 2012). 294 

As a result, perturbations of the Amazonian moisture flux and the effects of 295 

smoke aerosols from fires in Amazonia on cloud processes can affect rainfall even 296 

over the distant La Plata Basin (Camponogara et al., 2014; Zemp et al., 2014). 297 

Evaporation of water from the Earth’s surface also supports a huge energy 298 

flux in the form of latent heat, which is converted to sensible heat and atmospheric 299 

buoyancy when the water vapor condenses to cloud droplets. This heat transfer 300 

represents one of the major forces that drive atmospheric circulation at all scales 301 

(Nobre et al., 2009). Changes in land cover, e.g., conversion of forest to pasture, 302 

alter the amount and type of clouds over the region (e.g., Heiblum et al., 2014) 303 

and shift the proportion of rain that flows away as runoff versus the fraction that is 304 

transformed to water vapor by evapotranspiration (Silva Dias et al., 2002; Da-305 

vidson et al., 2012; Gloor et al., 2013; and references therein). This in turn chang-306 

es local and regional circulation and rainfall patterns, and consequently deforesta-307 

tion has been predicted to reduce the potential for hydropower generation in Ama-308 

zonia (Stickler et al., 2013). When the scale of deforestation exceeds some 40% of 309 

the Basin, these perturbations of the water cycle may change the functioning of 310 

the entire Amazon climate and ecosystem (Coe et al., 2009; Nobre and Borma, 311 

2009; Lawrence and Vandecar, 2015). 312 

Our ability to prognosticate the possible outcomes for the Amazon ecosys-313 

tem in the coming decades is severely curtailed by limitations in the representa-314 

tion of key processes in climate/vegetation models, including the role of the An-315 

des and the teleconnections between the Amazon and the Atlantic and Pacific 316 

Oceans. In addition, the biophysical response of the vegetation to changing water 317 

supply and increasing CO2 and temperature remains very poorly understood 318 

(Davidson et al., 2012). Long-term measurements and process studies at key loca-319 

tions are urgently needed to improve our understanding of these interactions. 320 
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1.3 Biodiversity 321 

The Amazon Basin contains the most species-rich terrestrial and freshwa-322 

ter ecosystems in the world (Hoorn et al., 2010; Wittmann et al., 2013). It houses 323 

at least 40,000 plant species, over 400 mammal species, about 1300 bird species, 324 

and countless numbers of invertebrate and microbe species (Da Silva et al., 2005), 325 

accounting for about 10-20% of all the world’s species diversity. Of these, the 326 

great majority have not yet been described scientifically, and possibly never will 327 

be. The variety of species in the Amazon Basin is directly related to the variety of 328 

habitats, and consequently is threatened by any form of exploitation that is ac-329 

companied by habitat destruction, particularly land clearing and deforestation. The 330 

genetic information stored in these ecosystems and their biodiversity is beyond 331 

measure and may be of enormous economic significance. This diversity is now 332 

under great threat, mostly as a result of habitat loss due to deforestation and other 333 

land use changes (Vieira et al., 2008). 334 

Much of the Amazon’s aboveground biomass is in its trees, and a single 335 

hectare of the forest can be home to over 100 different tree species. Scientists still 336 

do not know how many tree species occur in the Amazon, and the current estimate 337 

of about 16,000 tree species is the result of an extrapolation from the existing scat-338 

tered census data. Surprisingly, a relatively small number (227 species, or 1.4%) 339 

account for half of all individual trees (ter Steege et al., 2013), which therefore 340 

account for a large fraction of the Amazon’s ecosystem services. This fact may 341 

greatly facilitate research in Amazonian biogeochemistry, for example studies on 342 

the trace gas exchange between plants and the atmosphere.  343 

1.4 Atmospheric composition and self-cleansing 344 

The tropical atmosphere has been referred to as the “washing machine of 345 

the atmosphere” by Paul Crutzen (pers. comm., 2013). Both, human activities and 346 

the biosphere, release huge amounts of substances such as nitrogen oxides (NOx), 347 

carbon monoxide (CO), and volatile organic compounds (VOC) into the atmos-348 

phere, which must be constantly removed again to prevent accumulation to toxic 349 

levels. Most such gases are poorly soluble in water, and are thus not effectively 350 

washed out by rain. The self-purification of the atmosphere therefore requires 351 
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chemical reactions by which the trace substances are brought into water-soluble 354 

form. These reaction chains normally begin with an initial oxidation step in which 355 

the trace gas is attacked by a highly reactive molecule, such as ozone (O3) or the 356 

hydroxyl radical (OH). Production of these atmospheric detergents requires UV 357 

radiation and water vapor, both of which are present in generous quantities in the 358 

tropics. It comes thus as no surprise, that the tropics are the region in which large 359 

fractions of many atmospheric trace gases, including CO and CH4, are eliminated 360 

(Crutzen, 1987). Recent discoveries indicate that the atmospheric oxidant cycles 361 

in the boundary layer are even much more active than had been previously as-362 

sumed, yet the mechanisms of these reactions are still a matter of active research 363 

(Lelieveld et al., 2008; Martinez et al., 2010; Taraborrelli et al., 2012; Nölscher et 364 

al., 2014). 365 

The functioning of this self-cleansing mechanism is challenged by human 366 

activities that change the emissions from the biosphere and add pollutants from 367 

biomass burning and industrial activities. This may convert the “washing ma-368 

chine” into a reactor producing photochemical smog with high concentrations of 369 

ozone and other atmospheric pollutants, and large quantities of fine aerosols – 370 

which in turn influence the formation of clouds and precipitation and thus modify 371 

the water and chemical cycles (Andreae, 2001; Pöschl et al., 2010). Increased 372 

ozone concentrations over Amazonia, resulting from biomass burning emissions, 373 

have also been implicated in plant damage, which may substantially decrease the 374 

carbon uptake by the Amazon forest (Pacifico et al., 2015). 375 

The concentrations and types of aerosol particles over the Amazon Basin 376 

exhibit huge variations in time and space. In the absence of pollution from region-377 

al or distant sources, and especially in the rainy season, the Amazon has among 378 

the lowest aerosol concentrations of any continental region (Roberts et al., 2001; 379 

Andreae, 2009; Martin et al., 2010b; Pöschl et al., 2010; Andreae et al., 2012; 380 

Artaxo et al., 2013; Rizzo et al., 2013). Biogenic aerosols, either emitted directly 381 

by the biota or produced photochemically from biogenic organic vapors, make up 382 

most of this “clean-period” aerosol (Martin et al., 2010a). At the other extreme, 383 

during the biomass burning season in the southern Amazon, aerosol concentra-384 

tions over large regions are as high as in the most polluted urban areas worldwide 385 
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(Artaxo et al., 2002; Eck et al., 2003; Andreae et al., 2004). These changes in the 388 

atmospheric aerosol burdens have strong impacts on the radiation budget, cloud 389 

physics, precipitation, and plant photosynthesis (Schafer et al., 2002; Williams et 390 

al., 2002; Andreae et al., 2004; Lin et al., 2006; Oliveira et al., 2007; Freud et al., 391 

2008; Bevan et al., 2009; Martins et al., 2009; Vendrasco et al., 2009; Sena et al., 392 

2013; Cirino et al., 2014). Episodic inputs of Saharan dust, biomass smoke from 393 

Africa, and marine aerosols transported over long distances with the trade winds 394 

further complicate the picture (Formenti et al., 2001; Ansmann et al., 2009; Ben-395 

Ami et al., 2010; Baars et al., 2011). This complexity of aerosol sources is one 396 

important reason why the mechanisms that lead to the production of biogenic aer-397 

osols in Amazonia are still enigmatic (Pöhlker et al., 2012; Chen et al., 2015).  398 

1.5 The Amazon Tall Tower Observatory (ATTO) 399 

The foregoing sections have cast some spotlights on the key roles of the 400 

Amazon Basin in the Earth System and on the important ecosystem services it 401 

provides. It is evident that to avoid irreversible damage to this complex system we 402 

need a better understanding of the interactions between biosphere and atmosphere 403 

in this important region. While considerable knowledge has been gained from 404 

campaign-style studies, it is clear that the full picture will not emerge from these 405 

“snapshots,” but rather that continuous, long-term studies are required at key loca-406 

tions (Hari et al., 2009; Zeri et al., 2014). This is true especially in view of the fact 407 

that the Amazon and its global environment are rapidly changing, and that contin-408 

uing observations are essential to keep track of these changes. It is particularly 409 

urgent to obtain baseline data now, to document the present atmospheric and eco-410 

logical conditions before upcoming changes, especially in the eastern part of the 411 

Basin, will forever change the face of Amazonia. 412 

Observations from tall towers are especially useful for this purpose, be-413 

cause they allow measurements at several heights throughout the planetary 414 

boundary layer and thereby can reflect both local processes at the lower levels and 415 

regional influences at the upper levels (Bakwin et al., 1998; Andrews et al., 2014). 416 

The effects of emission and uptake by local vegetation and soil are much reduced 417 

at 300 m as compared to 50 m (Winderlich et al., 2010), and the analysis of the 418 

diurnal variation of the vertical concentration profile provides an estimate of the 419 

Deleted: thrown  
Deleted: highlights  

Deleted:  to avoid irreversible dam- 
age to this complex system 



 13 

flux of trace gases such as CO2 and CH4 (Winderlich et al., 2014). The influence 424 

footprint of typical flux tower measurements made at a few tens of meters above 425 

the canopy is of the order of a few kilometers (e.g., de Araújo et al., 2002; Chen et 426 

al., 2012), whereas the concentration footprint of a tall tower is of the order of 427 

1000 km, and measurements at the top of the tower are therefore representative of 428 

regional processes (Gloor et al., 2001; Heimann et al., 2014). For micrometeoro-429 

logical investigations, a tall tower provides the unique ability to obtain continuous 430 

measurements at a series of heights throughout the lower part of the planetary 431 

boundary layer. This makes possible investigations of phenomena such as the 432 

formation and dissolution of nocturnal stable boundary layers, the production and 433 

behavior of intermittent turbulent structures, gravity waves, boundary layer rolls, 434 

etc. A summary of the characteristics of the Amazon planetary boundary layer can 435 

be found in Fisch et al. (2004). 436 

The need for tall tower observatories at mid-continental locations, espe-437 

cially in Eurasia, Africa, and South America, was recognized in the late 1990s 438 

(Gloor et al., 2000) and the establishment of sites in Siberia and Amazonia was 439 

proposed to the Max Planck Society. This lead to the construction of the Zotino 440 

Tall Tower Observatory (ZOTTO) as a joint Russian-German project, with meas-441 

urements beginning in 2006 (Heimann et al., 2014), and to the concept of the Am-442 

azon Tall Tower Observatory (ATTO).  443 

The ATTO  project was initiated in 2008 as a Brazilian-German partner-444 

ship. A site was selected 150 km northeast of Manaus which fulfilled the follow-445 

ing criteria: 1) large fetch with minimal current human perturbation, but with po-446 

tential future land use change at a large scale, 2) relatively flat topography with no 447 

large wetlands in the fetch region, 3) stable and protected land ownership and con-448 

trolled access, and 4) the possibility to reach the site in a reasonable time to facili-449 

tate research and educational activities. 450 

In order to characterize the site and begin research activities, the site was 451 

set up initially with two measurement towers of intermediate height (80 m). At-452 

mospheric measurements from these towers and ecological studies of the sur-453 

rounding forest ecosystems were initiated in 2012. The construction of the 325-m 454 

tall tower began in September 2014 and is currently nearing completion. The tall 455 
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tower will serve as a basis for continuous monitoring of long-lived biogeochemi-479 

cally important trace gases such as CO2, CH4, CO, and N2O, and a multitude of 480 

reactive gases, including NOx, O3, and VOC, as well as a broad range of aerosol 481 

characteristics. The chemical measurements are complemented by a full suite of 482 

micrometeorological measurements. Furthermore, the observing system will also 483 

include a component directed at the underlying vegetation canopy, such as pheno-484 

logical observations from the tower by automated cameras, potentially a canopy 485 

lidar, as well as an array of in-situ sensors of critical physical and biological vari-486 

ables in the ecosystems near the tower and the ground. 487 

The continuous long-term data collected at ATTO will also serve to evalu-488 

ate airborne and satellite observations. Expected to operate for an indeterminate 489 

length of time, this unique observatory in South America will provide long-term 490 

observations of the tropical Amazonian ecosystem affected by climate change.  491 

Specific research objectives at the ATTO observatory are: 492 

1) To obtain regionally representative measurements of carbon gas con-493 

centrations (CO2, CH4, CO, and VOC), in order to improve our understanding of 494 

the carbon budget of the Amazonian rain forest under changing climate, land use, 495 

and other anthropogenic influences in the fetch region of ATTO. 496 

2) To continuously observe anthropogenic and biogenic greenhouse gases 497 

in the lower troposphere, within the planetary boundary layer by day and outside 498 

it at night, in order to help constrain inverse methods for deriving continental 499 

source and sink strengths and their changes over time.  500 

3) To continuously measure trace gases and aerosols for improvement of 501 

our understanding of atmospheric chemistry and physics in the Amazon, with em-502 

phasis on the atmospheric oxidant cycle and the life cycle of the Amazonian aero-503 

sol, and to identify the effects of anthropogenic perturbations, e.g., land use 504 

change and pollution, on these processes. Measurements of isotopic composition 505 

will be made to help distinguish anthropogenic and biogenic fluxes.  506 

4) To determine vertical trace gas and aerosol fluxes and gradients from 507 

the tower top to the ground to estimate biosphere-atmosphere exchange rates. 508 
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5) To study turbulence and transport processes in the lower atmospheric 536 

boundary layer, as well as to understand the extent and characteristics of the 537 

roughness sublayer over the forest. 538 

6) To develop and validate dynamic vegetation models, atmospheric 539 

boundary layer models, and inverse models for the description of heat, moisture, 540 

aerosol, and trace gas fluxes. 541 

7) To evaluate satellite estimates of greenhouse gas concentrations and 542 

temperature and humidity profiles by providing a ground truth site. 543 

This paper is intended as an overview paper for a special issue on research 544 

at the ATTO observatory. Here we discuss the scientific background and context 545 

of the observatory and describe the site characteristics, infrastructure, and meas-546 

urement methodologies. We present initial results from studies in the ecosystem 547 

surrounding ATTO and from measurements at the two 80-m towers. Future papers 548 

in the special issue will provide a detailed discussion of the tall tower and present 549 

the results of the various scientific investigations at ATTO.  550 

2 Site description and infrastructure 551 

2.1 Site characteristics 552 

The ATTO site is located 150 km northeast of Manaus in the Uatumã Sus-553 

tainable Development Reserve (USDR) in the Central Amazon (Fig. 1a). This 554 

conservation unit is under the control and administration of the Department of 555 

Environment and Sustainable Development of Amazonas State (SDS/CEUC). The 556 

USDR is bisected by the Uatumã River through its entire NE-SW extension. The 557 

climate is tropical humid, characterized by a pronounced rainy season from Feb-558 

ruary to May and a drier season from June to October (IDESAM, 2009). 559 

The tower site is located approximately 12 km NE of the Uatumã River 560 

(Fig. 1b). As is typical for this region in the central Amazon Basin, there is little 561 

large-scale relief, but at smaller scales a dense drainage network has produced a 562 

pattern of plateaus and valleys with a maximum relief height of about 100 m 563 

(Planalto Dissecado do Rio Trombetas - Rio Negro). The ATTO site is located at 564 

120 m a.s.l. on a plateau that measures about 1.5 km in the NW-SE direction and 565 
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about 5 km along the NE-SW axis. The topography surrounding ATTO resembles 580 

that around the Manaus LBA site (ZF2, also referred to as k34 site) in the Cuieiras 581 

Reserve, where the influence of topography on the micrometeorology and the 582 

fluxes of CO2 has been studied in detail by Tota et al. (2012). From the perspec-583 

tive of micrometeorological flux measurements, this is not an ideal type of terrain 584 

because it induces significant upslope and downslope circulations. The effects of 585 

local topography on the local flux measurements from the small towers are the 586 

subject of ongoing investigations.  587 

It must be pointed out, however, that the main objective of the tall tower 588 

with respect to greenhouse gas and aerosol monitoring is the measurement of con-589 

centrations above the level of local circulations. For this purpose, measurements 590 

from tall towers, such as ATTO, have the advantage of being less influenced by 591 

the surface layer variability due to diurnal changes in photosynthesis and respira-592 

tion, as well as by ecosystem and terrain heterogeneity. This results in smoothen-593 

ing of the large daily cycles of near-surface signals and efficient integration over 594 

daily cycles and small-scale heterogeneities, which facilitates the detection of 595 

long-term changes in the background atmospheric composition. 596 

The plateaus in this region are covered by yellow clayey ferralsols (lato-597 

sols, oxisols) overlying the Miocene sedimentary Barreiras formation (Chauvel et 598 

al., 1987). In the valleys, alisols and sandy podzols are the dominant soil types. 599 

The USDR consists of several different forested ecosystems. Dense, non-600 

flooded upland forests (terra firme) prevail on plateaus at a maximum altitude of 601 

approximately 130 m above sea level (asl). Seasonally flooded black-water 602 

(igapó) forest dominates along the main river channel, oxbow lakes, and the sev-603 

eral smaller tributaries of the Uatumã River (approximately 25 m asl). Inter-604 

spersed with these formations are non-flooded terra firme forests on ancient river 605 

terraces (35-45 m asl), and campinas (savanna on white-sand soils) and campi-606 

naranas (white-sand forest), which are predominantly located between the river 607 

terraces and the slope to the plateaus. 608 

Upwind of the site in the main wind direction (northeast to east), large are-609 

as covered by mostly undisturbed terra firme forests extend over hundreds of kil-610 

ometers. To the northeast, the nearest region with dense human activity is in the 611 
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coastal regions of the Guyanas and of Amapá State, about 1100 km away. In the 620 

easterly direction, the main stem of the Amazon is in the fetch region of ATTO, 621 

with scattered smaller towns and the cities of Santarém and Belém at distances of 622 

about 500 and 900 km, respectively. To the southeast, the densely populated states 623 

of the Brazilian Nordeste lie at distances greater than 1000 km. Figure 2 presents 624 

on overview of the population density and the dominant land cover in northern 625 

South America. 626 

The origins of the predominant airmasses at ATTO change throughout the 627 

year, as the Intertropical Convergence Zone (ITCZ) undergoes large seasonal 628 

shifts over the Amazon Basin, resulting in pronounced differences in meteorologi-629 

cal conditions and atmospheric composition (Andreae et al., 2012). This is illus-630 

trated in Fig. 3, which shows monthly trajectory frequency plots for 9-day back-631 

trajectories arriving at ATTO at an elevation of 1000 m. During boreal winter, the 632 

ITCZ can lie as far south as 20°S, so that a large part of the Basin, including 633 

ATTO, is in the meteorologically Northern Hemisphere (NH). Airmasses then 634 

arrive predominantly from the northeast over a clean fetch region covered with 635 

rain forest. During this period, long-range transport from the Atlantic and Africa 636 

brings episodes of marine aerosol, Saharan dust, smoke from fires in West Africa, 637 

and possibly even pollution from North America and Europe. This flow pattern 638 

shifts abruptly at the end of May, when the ITCZ moves to the north of ATTO. 639 

This shift marks the beginning of the dry season at ATTO, a period of time during 640 

which the site is exposed to airmasses from the easterly and southeasterly fetch 641 

regions, which receive considerable pollution from biomass burning and other 642 

human activities in northeastern Brazil. In July almost the entire Basin is south of 643 

the ITCZ, and thus lies in the meteorologically Southern Hemisphere (SH). The 644 

transition to the northeasterly flow pattern is more gradual, beginning in Septem-645 

ber and becoming complete only in March. 646 

2.2 Access 647 

The ATTO site is reached from Manaus by the paved highway BR-174 for 648 

101 km northward, then 70 km to the E on highway AM-240 towards Balbina. 649 

From there, a 38 km dirt road along the Uatumã River, Ramal de Morena, leads to 650 

the small community of Porto Morena, where the road ends. After a 61 km motor-651 
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boat ride on the Rio Uatumã towards the SE one reaches the landing, Porto 665 

ATTO. The access road from the landing to the ATTO site on the plateau follows 666 

an old trail used in the 1980s to extract Pau Rosa wood from the forest. This trail 667 

was re-opened in 2010 and widened to an ATV and tractor trafficable path that 668 

was used during the initial years of the development of the ATTO site. In 2012/13 669 

a 6 m wide dirt road was constructed between the Uatumã River and the ATTO 670 

tower site, which accommodates pickups and trucks. The overall distance along 671 

this road, Ramal ATTO, is 13.7 km, rising from 25 to 130 m a.s.l. Total travel 672 

time from Manaus to the site is about five hours. For the delivery of large and 673 

heavy equipment to Porto ATTO, fluvial transportation by ship or pontoon is pos-674 

sible from Manaus by going down the Amazonas River and up its tributary, Rio 675 

Uatumã, a distance of ca. 550 km and travel time of 2 days. 676 

2.3 Camp 677 

The base camp on the ATTO plateau was built in 2011/12 and has electri-678 

cal power and water. Facilities include toilets and a dormitory with hammocks 679 

that can accommodate ca. 20 people. Another camp is planned by INPA at the 680 

Uatumã River landing, which will serve also as a base station for ecological re-681 

search in the area. A helicopter landing site is intended adjacent to this camp. 682 

2.4 Towers 683 

The measurement facilities on the ATTO plateau consist of two towers of 684 

ca. 80 m height, already implemented, and the 325-m tall tower, whose construc-685 

tion began in September 2014 and is now nearing completion. In 2010, an 81-m 686 

triangular mast was established for pilot measurements, which is currently used 687 

for a wide set of aerosol measurements, followed in 2011 by an 80-m heavy-duty 688 

guy-wired walk-up tower (Instant UpRight, Dublin, Ireland). The walk-up tower 689 

can carry a total payload of 900 kg, with outboard platforms on five levels. It is 690 

currently used for meteorological and trace gas measurements. The measurements 691 

at the top level, at 79.3 m, are the highest ground based measurements within the 692 

Amazonian rain forest performed so far. The tower coordinates (WGS 84) are 693 

given in Table 1. The measuring instruments are accommodated in three air-694 

conditioned containers, the trace gas lab and the greenhouse gas lab at the base of 695 
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the walk-up tower, and the aerosol lab at the base of the mast; each lab has inside 718 

dimensions of 292 x 420 x 200 cm (WxLxH) and is supplied by 230/135 V elec-719 

trical power. 720 

2.5 Communications 721 

Since the end of 2013, the ATTO site has been connected to the internet by 722 

satellite. The uplink is realized by the mobile satellite terminal Cobham 723 

EXPLORER 700 using the INMARSAT / BGAN broadband network, providing a 724 

data bandwidth of up to 492 kbps. Operating in the L-Band, its active antenna 725 

performance allows up to 20 dB compensation of signal attenuation due to bad 726 

weather. The antenna is mounted at 50 m height on the walk-up tower, aligned by 727 

43.9° elevation and 273.1° azimuth towards the geostationary satellite 728 

INMARSAT 4‐F3 Americas.  729 

A cluster of two redundant routers manages the internet traffic and pro-730 

vides direct access from the internet to the various computers and networkable 731 

instruments at the ATTO site. The routers provide additional features like central-732 

ized data storage, remote server access, optimized file transfer, monitoring sys-733 

tems, updating clients, VoIP telephony between the local infrastructure sites, etc. 734 

Internal data communication between the various sites on the ATTO plateau (tow-735 

ers, labs, camp) is realized via a wireless LAN bridge, operating in the 5 GHz 736 

mode, featured by access points with directed-beam antennas.  737 

Data communication within each site occurs via wired LAN with data 738 

rates of up to 1000 kbps. In addition, at the camp there is WLAN available in the 739 

2.4 GHz mode. The communication system allows monitoring and controlling of 740 

networkable instruments in all three lab containers, as well as internet e-mailing, 741 

locally and globally. For oral communication with the remote ATTO site and for 742 

safety matters, satellite phones (IsatPhonePro) are available operating in the 743 

INMARSAT net. 744 

2.6 Electrical power supply 745 

Electrical power is provided by a system of diesel generators. Currently, 746 

the scientific sites (lab containers and towers) are supplied by two 60 Hz genera-747 
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tors with 45 and 40 kVA, operating alternately by weekly switching. They are 753 

located ca. 800 m downwind from the measuring sites to avoid contamination. 754 

Due to the long distance between power generation and consumption, power is 755 

transmitted via two 600 V transformers, using two parallel cables, each 3 x 16 756 

mm2. The voltage provided to the labs is 230 and 135 V, and UPSs are being used 757 

to stabilize energy. Power to the camp is provided separately to avoid power fluc-758 

tuations at the measurement sites. When the tall tower is established, it is planned 759 

to upgrade the power generation to a new system of 2 x 100 kVA generators at a 760 

distance of 2-3 km downwind of the tower. 761 

3 Measurement methods 762 

3.1 Ecological studies 763 

3.1.1 Floristic composition and biomass characterization 764 

Forest plots of three ha each were inventoried in the igapó, the campinara-765 

na, the terra firme on ancient river terraces, and the terra firme on the plateau in 766 

order to provide a preliminarily description of the floristic composition and turno-767 

ver as well as the aboveground wood biomass (AGWB). All trees with ≥ 10 cm 768 

DBH (diameter at breast height) were numbered, tagged with aluminum plates, 769 

and, when possible, identified in the field. Fertile and sterile vouchers were col-770 

lected for later identification in the INPA herbarium. The AGWB was estimated 771 

by a pantropical allometric model (Feldpausch et al., 2012) considering DBH, tree 772 

height, and wood specific gravity. We measured tree height with a trigonometric 773 

measuring device (Blume-Leiss) and determined wood specific gravity by sam-774 

pling cores from the tree trunk and calculating the ratio between dry mass (after 775 

drying the wood samples at 105 ºC for 72 hours) and fresh volume. Additionally 776 

we used data from the Global Wood Density Database DRYAD (Chave et al., 777 

2009) for tree species in the terra firme forests and from Targhetta (2012) for tree 778 

species in the campina and igapó forests. 779 

3.1.2 Leaf phenology 780 

An RGB camera (Stardot Netcam XL 3MP) was installed in June 2013 at 781 

the top of the walk-up tower. The wide-angle view with 2048 x 1536 pixel resolu-782 
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tion includes over 250 separable tree crowns within an area of ~4 ha of the forest 790 

plateau. The camera aim is steeply oblique and toward the west, so that the sun is 791 

behind the camera when images are recorded from mid-morning until noon. Illu-792 

mination artifacts are minimized by selecting images with homogeneous overcast 793 

sky and a fixed narrow range of incident radiance, and by post-selection radio-794 

metric normalization. Leaf phenology change is most evident in individual 795 

crowns, so timelines of the green chromatic coordinate, gc, (Richardson et al., 796 

2007) were made for each crown. A steep and sustained increase in the gc of a 797 

crown can only be caused by the flushing of a new leaf cohort. The number of 798 

crowns reaching a flush-caused peak of gc in their individual timelines were 799 

counted each month. 800 

3.1.3 Soil characterization 801 

Soil sampling was performed on the ancient terraces (old floodplains) and 802 

terra firme plateaus at the ATTO site according to a standard protocol (Quesada et 803 

al., 2010). Five samples up to 2 m in depth were taken in each forest plot and one 804 

2 m depth pit was dug close to each plot. We used the World Reference Base for 805 

soil resources to classify soil types (IUSS (International Union of Soil Science) 806 

Working Group WRB, 2006). Soil exchangeable cations were determined with the 807 

silver thiourea method (Pleysier and Juo, 1980), and soil carbon and nitrogen were 808 

analyzed using an automated elemental analyzer (Pella, 1990; Nelson and Som-809 

mers, 1996). Particle size was analyzed using the pipette method (Gee and Bau-810 

der, 1986). Soil physical properties were calculated for each plot using the 811 

“Quesada Index” (Quesada et al., 2010). This index is based on measurements of 812 

effective soil depth, soil structure, topography, and anoxia. To investigate the cur-813 

rent soil weathering levels, a chemically based weathering index, Total Reserve 814 

Bases (∑RB), was calculated. ∑RB is based on total soil cation concentration and 815 

is considered to give a chemical estimation of weatherable minerals (Quesada et 816 

al., 2010). 817 

3.2 Meteorology 818 

The walk-up tower is equipped with a suite of standard meteorological 819 

sensors (Table 2). The following quantities are continuously recorded: (a) soil 820 
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heat flux, soil moisture, and soil temperature (10 minutes time resolution), (b) 825 

incoming and outgoing short and long wave radiation, photosynthetic active radia-826 

tion (PAR), net radiation, ultraviolet radiation, rainfall, relative humidity (RH), air 827 

temperature, atmospheric pressure, and wind speed and direction (1 minute time 828 

resolution). Data acquisition is performed by several data loggers (CR3000 and 829 

CR1000, Campbell Scientific Inc., USA). Visibility is measured with an optical 830 

fog sensor (OFS, Eigenbrodt GmbH, Königsmoor, Germany), which detects the 831 

backscattered light intensity from a 650 nm laser. 832 

3.3 Turbulence and flux measurements 833 

Turbulent exchange fluxes of H2O and CO2 as well as surface boundary 834 

layer stability are measured within and above the canopy using the eddy covari-835 

ance (EC) technique. The method is well documented in the literature (e.g., 836 

Baldocchi, 2003; Foken et al., 2012) and will not be described here. Three-837 

dimensional wind and temperature fluctuations were measured by sonic anemom-838 

eters at 81, 46 and 1.0 m a.g.l. (see Table 2). CO2 and H2O fluctuations are detect-839 

ed by three fast response open-path CO2/H2O infrared gas analyzers installed at a 840 

lateral distance of about 10 cm from the sonic path. The high-frequency signals 841 

are recorded at 10 Hz by CR1000 data loggers. The raw data are processed apply-842 

ing state-of-the-art correction methods using the software Alteddy (version 3.9; 843 

www.climatexchange.nl/projects/alteddy/) based on Aubinet et al. (2000). Fluxes, 844 

means and variances are calculated for half-hourly intervals (de Araújo et al., 845 

2002; de Araujo et al., 2008; de Araujo et al., 2010). Continuous micrometeoro-846 

logical measurements have been made since September 2012, with some interrup-847 

tions due to technical problems. The raw data are archived and are made available 848 

under the LBA data policy (https://daac.ornl.gov/LBA/lba_data_policy.html). 849 

3.4 Vertical profiles of reactive trace gases and total OH reactivity 850 

Ozone is measured by a UV-absorption technique (Thermo Scientific 49i, 851 

Franklin, MA, USA), using Nafion dryers to minimize the effects of changing 852 

water vapor concentrations (Wilson and Birks, 2006). Mixing ratios of CO2 and 853 

H2O are measured by non-dispersive infrared absorption techniques (Licor-7000, 854 

LI-COR, Lincoln, USA). The detection limits are 0.5 ppb for ozone, 1 ppm for 855 
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CO2 and 0.2 mmol mol-1 for H2O. Instrumental noise for 60-s averages is 0.25 ppb 871 

for ozone, 6 ppb for CO2 (at 370 ppm), and 0.4 ppm for H2O (at 10 mmol mol-1). 872 

During intensive campaigns, measurements of mixing ratios of Volatile 873 

Organic Compounds (VOC), total OH reactivity, nitric oxide (NO), nitrogen diox-874 

ide (NO2), ozone (O3), and water vapor (H2O) were carried out at 8 heights in and 875 

above the rain forest canopy, using a reactive trace gas profile system similar to 876 

that described by Rummel et al. (2007). The lower part of the vertical profile 877 

(0.05, 0.5, and 4 m above the forest floor) was set up at an undisturbed location 878 

near the walk-up tower (distance 12 m). The upper part of the vertical profile (12, 879 

24, 38, 53, and 79 m above forest floor) was mounted on the north-west corner of 880 

the walk-up tower. Heated and insulated intake lines (PTFE) were fed to the ana-881 

lyzers, which were housed in the air conditioned lab container 10 m west of the 882 

walk-up tower.  883 

The NO mixing ratio was determined by a gas-phase chemiluminescence 884 

technique (CLD TR-780, Ecophysics, Switzerland). NO2 was determined by the 885 

same analyzer after specific conversion to NO by a photolytic converter (Solid-886 

state Photolytic NO2 Converter (BLC); DMT, Boulder/USA). Detection limits are 887 

0.05 ppb for NO and 0.1 ppb for NO2. The signal noise is <0.5% of signal, limited 888 

by the zero point noise. 889 

Measurements of VOC were performed using a Proton Transfer Reaction 890 

Mass Spectrometer (PTR-MS, Ionicon, Austria) operated under standard condi-891 

tions (2.2 hPa, 600 V, 127 Td; 1 Td = 10-21 V m2.). The instrument is capable of 892 

continuously monitoring VOCs with proton affinities higher than water and at low 893 

mixing ratios (several ppt with a time resolution of about 1-20 s) (Lindinger et al., 894 

1998). One entire VOC vertical profile (from 0.05 m to 80 m, 8 heights in total) 895 

can be determined every 16 minutes using the same inlet system as the NO, NO2, 896 

O3, and CO2 instruments.  897 

Calibration was performed using a gravimetrically prepared multicompo-898 

nent standard (Ionimed, Apel&Riemer). Occasionally, samples were collected in 899 

absorbent packed tubes (130 mg of Carbograph 1 [90 m2 g-1] followed by 130 mg 900 

of Carbograph 5 [560 m2 g-1]; Lara s.r.l., Rome, Italy) (Kesselmeier et al., 2002) 901 

and analyzed by GC-FID in order to cross-validate the measurements by PTR-MS 902 
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and to determine the monoterpene speciation for the total OH reactivity measure-921 

ment. 922 

In addition to the measurement of individual reactive inorganic trace gases 923 

and the VOCs, the total OH reactivity was determined. Total OH reactivity is the 924 

summed loss rate of all OH-reactive molecules (mixing ratio × reaction rate coef-925 

ficient) present in the atmosphere. Direct measurements of total OH reactivity 926 

were conducted by the Comparative Reactivity Method (Sinha et al., 2008) using 927 

a PTR-MS as a detector. The PTR-MS monitored the mixing ratio of a reagent 928 

(pyrrole) after mixing and reaction in a Teflon-coated glass reactor. Pyrrole alter-929 

natingly reacts with OH alone and with OH in the presence of ambient air contain-930 

ing many more OH reactive compounds. The competitive reactions of the reagent 931 

and the ambient OH reactive molecules cause a change in the detected levels of 932 

pyrrole. This can be equated to the atmospheric total OH reactivity provided the 933 

instrument is well calibrated and appropriate corrections are applied (Nölscher et 934 

al., 2012). The total OH reactivity instrument was regularly tested for linearity of 935 

response using an isoprene gas standard (Air Liquide). VOC and total OH reactiv-936 

ity measurements were performed simultaneously with two separate PTR-MS 937 

systems measuring from the same inlet, so that the results may be directly com-938 

pared over time, height, and season. The CRM method was able to measure OH 939 

reactivity down to 3 s-1, estimated by the minimum observable modulation above 940 

two times the standard deviation (σ) of the noise (measured in zero air). The over-941 

all uncertainty in the measurement was 16%, including errors in detector (5%), 942 

rate coefficient (14%), gas standard (5%) and flow dilution (2%). 943 

3.5 Vertical profiles of long-lived trace gases (CO, CO2, and CH4) 944 

In March 2012, continuous and high precision CO2/CH4/CO measurements 945 

were established in an air-conditioned container at the foot of the 80 m-tall walk-946 

up tower. The sample air inlets are installed at five levels: 79, 53, 38, 24, and 4 947 

meters above ground. The inlet tubes are constantly flushed at a flow rate of sev-948 

eral liters per minute to avoid wall interaction within the tubing. A portion of the 949 

sample air is sub-sampled from the high flow lines at a lower flow rate for analy-950 

sis with instruments based on the cavity ring-down spectroscopy technique 951 
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(G1301 and G1302 analyzers [Picarro Inc., USA] for measuring CO2/CH4 and 962 

CO/CO2, respectively).  963 

The G1301 analyzer (Serial CFADS-109) provides data with a standard 964 

deviation of the raw data below 0.05 ppm for CO2 and 0.5 ppb for CH4, the long-965 

term drift is below 2 ppm and 1 ppb per year for CO2 and CH4, respectively. For 966 

the G1302 (Serial CKADS-018), tests with a stable gas tank show a standard de-967 

viation of the raw data of 0.04 ppm for CO2 and 7 ppb for CO. The long-term drift 968 

of the analyzer is below 2 ppm and 4 ppb per year for CO2 and CO, respectively. 969 

Both analyzers agree well with a CO2 difference below 0.02 ppm. When the 970 

G1301 analyzer broke down in 2012, it was replaced from December 2012 until 971 

October 2013 with a Fast Greenhouse Gas Analyzer (FGGA) based on Off-Axis 972 

Integrated Cavity Output Spectroscopy (OA-ICOS; Los Gatos Research Inc., 973 

USA) as an emergency solution. This CO2/CH4/H2O analyzer is designed for 974 

measuring at rates of ≥10 Hz and is primarily used for eddy covariance and cham-975 

ber flux measurements, where a low drift rate is less vital than for highly precise 976 

and stable long-term measurements. The FGGA operates with a raw standard de-977 

viation of 0.6 ppm for CO2 and 2 ppb for CH4; the drift is quite large with 1 ppm 978 

and 3 ppb per day for CO2 and CH4, respectively. For the time when the FGGA 979 

was used, the calibration and drift correction routines were adopted accordingly. 980 

The detailed description of the whole measurement system, including measure-981 

ment, calibration, and correction routines will be presented elsewhere. 982 

3.6 Aerosol measurements 983 

3.6.1 Size distributions and optical measurements 984 

Aerosols are sampled above the canopy at 60 m height, without size cut-985 

off, and transported in a laminar flow through a 2.5 cm diameter stainless steel 986 

tube into an air-conditioned container (aerosol lab at mast, see Sect. 2.4). The 987 

sample humidity is kept below 40% using silica diffusion driers. Since January 988 

2015, the aerosol sample air is being dried using a fully automatic silica diffusion 989 

dryer, developed by the Institute for Tropospheric Research, Leipzig, Germany 990 

(Tuch et al., 2009). Aerosol size distributions at 60 m are currently measured from 991 

10 nm up to 10 µm using three instruments: a Scanning Mobility Particle Sizer 992 
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(SMPS, TSI model 3080, St. Paul, MN, USA; size range: 10-430 nm), an Ultra-1006 

High Sensitivity Aerosol Spectrometer (UHSAS, DMT, Boulder, CO, USA; size 1007 

range: 60-1000 nm), and an Optical Particle Sizer (OPS, TSI model 3330; size 1008 

range: 0.3-10 µm). The SMPS provides an electromobility size distribution, 1009 

whereas the UHSAS and OPS measure aerosol light scattering and derive the size 1010 

distributions from the particle scattering intensity (Cai et al., 2008). In addition to 1011 

these continuous above-canopy measurements, aerosol size distributions are 1012 

measured with a Wide Range Aerosol Spectrometer (WRAS, Grimm Aerosol 1013 

Technik, Ainring, Germany; size range: 6 nm - 32 µm) from a separate inlet line 1014 

below the canopy at 3 m height. The WRAS provides electromobility size distri-1015 

butions in the size range of 6-350 nm and uses particle light scattering for the size 1016 

range above 300 nm. Details of the instrumentation setup are given in Table 2. 1017 

For measuring aerosol light scattering, we use a three-wavelength integrat-1018 

ing nephelometer (until Feb 2014: TSI model 3563, wavelengths 450, 550, and 1019 

700 nm; after Feb 2014: Ecotech Aurora 3000, wavelengths 450, 525, and 1020 

635 nm) (Anderson et al., 1996; Anderson and Ogren, 1998). Calibration is car-1021 

ried out using CO2 as the high span gas and filtered air as the low span gas. The 1022 

zero signals are measured once every twelve hours using filtered ambient air. For 1023 

the 300-s averages applied here, the detection limits, defined as a signal to noise 1024 

ratio of 2, for scattering coefficients are 0.45, 0.17, and 0.26 Mm−1 for 450, 1025 

550/525, and 700/635 nm, respectively. Since sub-micrometer particles predomi-1026 

nate in the particle number size distribution at our remote continental site, the sub-1027 

micron corrections given in Table 4 of Anderson and Ogren (1998) were used for 1028 

the truncation corrections. Bond et al. (2009) suggested that this correction is ac-1029 

curate to within 2% for a wide range of atmospheric particles, but that the error 1030 

could be as high as 5% for highly absorbing particles. 1031 

A Multi-Angle Absorption Photometer (MAAP, Model 5012, Thermo 1032 

Electron Group, USA, λ = 670 nm) and a 7-wavelength Aethalometer (until Jan 1033 

2015 model AE-31, since then model AE-33) (Magee Scientific Company, Berke-1034 

ley, CA, USA, λ = 370, 470, 520, 590, 660, 880, and 950 nm) are used for meas-1035 

uring the light absorption by particles. The MAAP and aethalometer have been 1036 

deployed at ATTO since March 2012. In the MAAP instrument, the optical ab-1037 
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sorption coefficient of aerosol collected on a filter is determined by radiative 1056 

transfer calculations, which include multiple scattering effects and absorption en-1057 

hancement due to reflections from the filter. A mass absorption efficiency (αabs) of 1058 

6.6 m2 g-1 was used to convert the MAAP absorption data to equivalent BC (BCe). 1059 

For the Aethalometer, an empirical correction method described by Rizzo et al. 1060 

(2011) was used to correct the data for the scattering artifact. 1061 

Refractory black carbon (rBC) is measured by a 4-channel Single Particle 1062 

Soot Photometer (SP2). The instrument is calibrated every 6 months using mono-1063 

disperse fullerene aerosol particles for rBC calibration, and polystyrene latex 1064 

(PSL) spheres for scattering calibration. The instrument is sensitive to rBC in the 1065 

size range between 70 and 280 nm. A recent instrumental upgrade provides a 1066 

broader rBC dynamic range (70 - 480 nm). 1067 

Regular quality checks are performed with all aerosol sizing instruments 1068 

and CPCs, including flow checks, zero tests, and intercomparisons with ambient 1069 

aerosol and monodisperse PSL cells. Exemplary plots are already included in the 1070 

manuscript (Fig. 26). The MAAP and aethalometer are subject to frequent inter-1071 

comparisons with the other optical instruments. For example, two aethalometers 1072 

and the MAAP were operated side-by-side during an intensive campaign in 1073 

Nov/Dec 2014. The BCe concentrations from the individual instruments agreed 1074 

well. The SP2 instrument was carefully intercalibrated with another SP2 during 1075 

the GoAmazon-2014 campaign. 1076 

Fluorescent biological aerosol particles (FBAP) are measured with the 1077 

Wideband Integrated Bioaerosol Spectrometer (WIBS-4A, DMT). The WIBS 1078 

utilizes light-induced fluorescence technology to detect biological materials in 1079 

real-time based on the presence of fluorophores in the ambient particles (Kaye et 1080 

al., 2005). A 2x2 excitation (280 nm and 370 nm) - emission (310-400 nm and 1081 

420-650 nm) matrix is recorded along with the particle optical size and shape fac-1082 

tor. The FBAP concentrations reported in this study correspond to the FL3 chan-1083 

nel (excitation at 370 nm and emission in the waveband of 420-650 nm) of the 1084 

WIBS instrument (Healy et al., 2014). 1085 
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3.6.2 Chemical measurements and hygroscopicity 1087 

The submicron non-refractory aerosol composition at a height of 60 m is 1088 

measured using an Aerosol Chemical Speciation Monitor (ACSM, Aerodyne, 1089 

USA) as described by Ng et al. (2011). The ACSM samples aerosol particles in 1090 

the 75-650 nm size range. The non-refractory fraction flash vaporizes on a hot 1091 

surface (600°C), the evaporated gas phase compounds are ionized by 70 eV elec-1092 

tron impact, and their spectra determined using a quadrupole mass spectrometer. 1093 

The chemical speciation is determined via deconvolution of the mass spectra ac-1094 

cording to Allan et al. (2004). Mass concentrations of particulate organics, sulfate, 1095 

nitrate, ammonium, and chloride are obtained with detection limits <0.2 µg m-3 1096 

for 30 min of signal averaging. Mass calibration of the system is performed using 1097 

size-selected ammonium nitrate and ammonium sulfate aerosol following the pro-1098 

cedure described by Ng et al. (2011). A collection efficiency (CE) of 1.0 is ap-1099 

plied (similar to Chen et al., 2015), yielding good agreement with other instru-1100 

ments. 1101 

PM2.5 sampling was carried out from 7 March to 21 April 2012 on Nucle-1102 

pore® polycarbonate filters at 80 m on the walk-up tower using a Harvard Im-1103 

pactor; samples were collected over 48 hour periods. They were analyzed by En-1104 

ergy-Dispersive X-ray Fluorescence (EDXRF) (MiniPal 4, PANalytical) at 1 mA 1105 

and 9 kV for low-Z (Na to Cl) elements, and 0.3 mA, 30 kV, and internal Al filter 1106 

for the other elements. Soluble species were determined by Ion Chromatography 1107 

(Dionex, ICS-5000) using conductivity detection for cations and anions and UV-1108 

VIS for soluble transition metals. For cation separation, a capillary column 1109 

CS12A was used, for anions, an AS19 column, and for transition metals, a CS5A 1110 

column (calibrated to quantify traces of Fe2+ and Fe3+). 1111 

Size-resolved cloud condensation nuclei (CCN) measurements are 1112 

performed using a continuous-flow streamwise thermal gradient CCN counter 1113 

(CCNC; model CCN-100, DMT, Boulder, CO, USA), a differential mobility 1114 

analyzer (DMA, Grimm Aerosol Technik, Ainring, Germany) and a condensation 1115 

particle counter (CPC model 5412, Grimm Aerosol Technik). By changing the 1116 

temperature gradient, the supersaturation of the CCNC is set to values between 1117 

0.1% and 1.1%. The completion of a full measurement cycle comprising CCN 1118 
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efficiency spectra at 10 different supersaturation levels takes ~ 4 h. The CCNC is 1144 

calibrated frequently as part of the maintenance routines with size selected 1145 

monodisperse ammonium sulfate particles (Rose et al., 2008; Gunthe et al., 2009).  1146 

3.6.3 Microspectroscopic analysis of single aerosol particles 1147 

Aerosol samples for Scanning Electron Microscopy with Electron Probe 1148 

Micro-analysis (EPMA) were collected on top of the 80 m tower in April 2012. 1149 

For the collection of size-segregated samples for single particle analysis, we used 1150 

a Battelle impactor with aerodynamic diameter cut-offs at 4, 2, 1 and 0.5 μm. The 1151 

particles were collected on TEM grids covered with a thin carbon film (15–25 1152 

nm). Aerosol samples for x-ray microspectroscopy were collected using a single 1153 

stage impactor, operated at a flow rate of 1-1.5 L min-1 and a corresponding 50% 1154 

size cut-off of about 500 nm. Particles below this nominal cut-off are not deposit-1155 

ed quantitatively; however, a certain fraction is still collected via diffusive deposi-1156 

tion. Aerosol particles were collected onto silicon nitride substrates (membrane 1157 

width 500 µm, membrane thickness 100 nm, Silson Ltd., Northhampton, UK) for 1158 

short sampling periods (~ 20 min), which ensures an thin particle coverage on the 1159 

substrate appropriate for single particle analysis. 1160 

Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorp-1161 

tion Fine Structure Analysis (STXM-NEXAFS) measurements were made at the 1162 

Advanced Light Source (ALS, Berkeley, CA, USA) and the Berliner Elektronen-1163 

speicherring-Gesellschaft für Synchrotronstrahlung (BESSY II, Helmholtz-1164 

Zentrum Berlin für Materialien und Energie (HZB), Germany). A detailed de-1165 

scription of the instrumentation and techniques can be found elsewhere (Kilcoyne 1166 

et al., 2003; Follath et al., 2010; Pöhlker et al., 2012; Pöhlker et al., 2014). Scan-1167 

ning Electron Microscopy with Energy Dispersive X-ray spectroscopy 1168 

(SEM/EDX) analysis was carried out using a Jeol JSM-6390 SEM equipped with 1169 

an Oxford Link SATW ultrathin window EDX detector. For EPMA, quantitative 1170 

and qualitative calculations of the particle composition were performed using iter-1171 

ative Monte Carlo simulations and hierarchical cluster analysis (Ro et al., 2003) to 1172 

obtain average relative concentrations for each different cluster of similar particle 1173 

types. 1174 
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3.6.4 Chemical composition of secondary organic aerosol 1228 

Filter sampling for Secondary Organic Aerosol (SOA) analysis was per-1229 

formed on the walk-up tower at a height of 42 m above ground level. Fine aerosol 1230 

(PM 2.5) was sampled at a flow rate of 2.3 m3 h-1 on TFE-coated borosilicate 1231 

glass fiber filters (PALLFLEX, T60A20, Pall Life Science, USA). The sampling 1232 

times were 6, 12, or 24 hours. After sampling the filters were stored at 255 K until 1233 

extraction.  1234 

The extraction of the filters was performed with acetonitrile (≥ 99.9%; 1235 

Sigma Aldrich) in a sonication bath at room temperature. The filter extracts were 1236 

evaporated with a gentle nitrogen flow at room temperature in an evaporation unit 1237 

(Reacti Vap 1; Fisher Scientific), and the residue was re-dissolved in 100 µL 1238 

HPLC grade water (Milli-Q water system, Millipore, Bedford, USA) / acetonitrile 1239 

(≥ 99.9%; Sigma Aldrich) mixture (8:2). 1240 

The separation and analysis was performed with an UHPLC-system (Di-1241 

onex UltiMate 3000) coupled to a Q Exactive electrospray ionization Orbitrap 1242 

mass spectrometer (Thermo Scientific). A Hypersil Gold column (50 mm x 2.1 1243 

mm, 1.9 μm particle size, 175 Å pore size; Thermo Scientific) was used. The elu-1244 

ents were HPLC grade water (Milli-Q water system, Millipore, Bedford, USA) 1245 

with 0.01% formic acid and 2% acetonitrile (eluent A) and acetonitrile with 2% 1246 

HPLC grade water (eluent B). The flow rate of the mobile phase was 0.5 mL 1247 

min-1. The column was held at a constant temperature of 298 K in the column ov-1248 

en. The MS was operated with an auxiliary gas flow rate of 15 (instrument specif-1249 

ic arbitrary units, AU), a sheath gas flow rate of 30 AU, a capillary temperature of 1250 

623 K, and a spray voltage of 3000 V. The MS was operated in the negative ion 1251 

mode, the resolution was 70000, and the measured mass range was m/z 80-350. 1252 
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4 Ongoing Research and Initial Results 1258 

4.1 Ecological studies 1259 

4.1.1 Tree species richness, composition, turnover, and aboveground 1260 

wood biomass 1261 

In total, 7293 trees ≥ 10 cm DBH were recorded in the 12 1-ha inventoried 1262 

plots, which included 60 families, 206 genera, and 417 species. Tree species rich-1263 

ness was highest in the terra firme forest on the plateau, followed by the terra 1264 

firme forest on the fluvial terrace, the campinarana, and the seasonally flooded 1265 

igapó (Table 3). Floristic similarity (Bray-Curtis index) within plots of the same 1266 

forest types ranged from 45-65%, but was highly variable between different forest 1267 

types (2-54%). Accordingly, the species turnover across the investigated forest 1268 

types was high, especially when seasonally inundated forest plots were compared 1269 

to their non-flooded counterparts (Fig. 4). AGWB varied considerably between 1270 

the studied forest ecosystems as a result of varying tree heights, DBH, and basal 1271 

area (Table 3). Carbon stocks in the AGWB increased from 74±12 Mg ha-1 in the 1272 

igapó forest to 79±26 Mg ha-1 in the campina/campinarana, and 101±13 Mg 1273 

ha-1on the ancient fluvial terrace, reaching maximum values of 170±13 Mg ha-1 in 1274 

the terra firme forests. Tree species richness correlated significantly with carbon 1275 

stocks in AGWB (n=12; r2 = 0.61; p<0.01). 1276 

The floristic data indicate that the rain forests at the ATTO site combine 1277 

high alpha diversity with high beta diversity at a small geographic scale, where 1278 

tree species segregate mainly due to contrasting local edaphic conditions (e.g., 1279 

Tuomisto et al., 2003; ter Steege et al., 2013; Wittmann et al., 2013). Biomass and 1280 

carbon stocks vary considerably between habitats, and show low values on flood-1281 

ed and nutrient-poor soils and high values on well-drained upland soils, as previ-1282 

ously reported elsewhere for other Amazonian regions (e.g., Chave et al., 2005; 1283 

Malhi et al., 2006; Schöngart et al., 2010). 1284 

4.1.2 Cryptogamic covers 1285 

We are investigating the potential of cryptogamic covers to serve as a 1286 

source of bioaerosol particles and chemical compounds. Cryptogamic covers 1287 
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comprise photoautotrophic communities of cyanobacteria, algae, lichens, and bry-1295 

ophytes in varying proportions, which may also host fungi, other bacteria, and 1296 

archaea (Elbert et al., 2012). A common feature of all these organism groups is 1297 

their poikilohydric nature, meaning that their moisture status follows the external 1298 

water conditions. Thus the organisms dry out under dry conditions, being reac-1299 

tivated again upon rain, fog, or condensation.  1300 

Since September 2014, we have been conducting long-term measurements 1301 

to monitor the activity patterns of cryptogamic covers at four different canopy 1302 

heights at 10-min intervals, during which we measure temperature and water con-1303 

tent within and light intensities directly on top of bio-crusts growing on the trunk 1304 

of a tree. First analyses of the microclimate data indicate that microorganisms in 1305 

the upper stem region of the trees are activated by fog or dewfall in the early 1306 

morning hours, often coinciding with an aerosol particle burst in the accumulation 1307 

mode. Particle measurements conducted on isolated organisms also show a signif-1308 

icant release of accumulation mode particles by wet and thus active organisms, 1309 

e.g., fungi belonging to the phylum of Basidiomycota. Thus, we have the first 1310 

clear indications that cryptogamic covers may play a key role in the enigmatic 1311 

bioaerosol occurrence frequently observed at the ATTO site. 1312 

4.1.3 Upper Canopy Leaf Phenology 1313 

A single annual leaf flush was seen in most upper canopy crowns, concen-1314 

trated in the five driest months (July to November) (Fig. 5). Consequently, mature 1315 

leaves with high light-use efficiency will be most abundant in the late dry season 1316 

and early wet season. Massive leaf renewal in the dry season on the ATTO plateau 1317 

may drive seasonality of photosynthesis and of photosynthetic capacity at the 1318 

landscape scale, as has been indicated at the Santarém and the LBA km34 eddy 1319 

flux tower sites in the Central Amazon (Doughty and Goulden, 2008; Restrepo-1320 

Coupe et al., 2013). 1321 

The lack of a near-infrared (NIR) band in our camera precludes the direct 1322 

measurement of leaf amount, but the RGB band space discriminates crown phe-1323 

nostages whose relative NIR reflectances are known. Gradual leaf attrition over 1324 

the wet season, when leaf replacement is low, followed by early dry season pre-1325 

flush abscission and the emergence of young unexpanded leaves, should all lead 1326 
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to a lower landscape-scale amount of fully expanded leaves around June or July. 1332 

Completion of leaf flushing in most crowns by the late dry season should lead to a 1333 

maximum amount of fully expanded leaves in the late dry and early wet seasons. 1334 

This is consistent with the seasonal pattern of Central Amazon leaf amount de-1335 

tected with the Enhanced Vegetation Index from the MODIS orbital sensor (e.g., 1336 

Huete et al., 2006) and counters recent critiques of detectability of seasonal 1337 

change in Amazon forest greenness (Galvão et al., 2011; Morton et al., 2014). 1338 

4.1.4 Soil Characterization 1339 

Soils in the terra firme plateaus were classified as Ferralsol, which are an-1340 

cient, highly weathered, and well-drained soils frequently occurring in geological-1341 

ly ancient surfaces (Chauvel et al., 1987). Soils at the fluvial terraces were classi-1342 

fied as Alisol, which show a more recent pedogenetic status when compared to the 1343 

highly weathered Ferralsols at the plateaus. Due to their lower weathering degree, 1344 

soils from the terrace have a greater capacity to supply nutrients, with higher total 1345 

P and higher total reserve bases. The soil carbon stocks varied from 129±7 Mg 1346 

ha-1 on the terrace to 164±7 Mg ha-1 on the plateau, indicating that belowground C 1347 

stocks are of similar magnitude to the aboveground carbon stocks in the forest 1348 

(Table 4). Differences of belowground carbon stocks between terrace and plateau 1349 

are mainly associated with a higher clay content of the plateau soils.  1350 

Soil physical constraints are more frequent on the terraces, which show 1351 

higher bulk density values (Fig. 6) and therefore increased soil compaction. Some 1352 

of these terrace soils also show signs of anoxia (mottling) in deeper layers. Such 1353 

impeditive conditions may have an influence on forest structure (Quesada et al., 1354 

2012; Emilio et al., 2014) and dynamics (Cintra et al., 2013), thereby possibly 1355 

restricting tree height or even tree individual biomass storage (Martins et al., 1356 

2015).  1357 

4.2 Meteorological conditions and fluxes 1358 

An overview of the climatic characteristics of the Amazon Basin has been 1359 

presented by Nobre et al. (2009). The meteorological setting of the ATTO site has 1360 

been described in Section 2.1, and the basic meteorological measurements (wind, 1361 

temperature, humidity, radiation, etc.) at the site reflect the regional climate and 1362 
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micrometeorological conditions influenced by local topography and vegetation. In 1377 

the following sections we present overviews of meteorological observations that 1378 

characterize the site and initial results of micrometeorological investigations at 1379 

ATTO. Since the quantification of the exchange of trace gases and aerosols be-1380 

tween the rain forest and the atmosphere is a key objective of the ATTO program, 1381 

the study of the structure and behavior of the atmospheric boundary layer is a cen-1382 

tral focus here. 1383 

4.2.1 Wind speed and direction above the forest canopy 1384 

The wind roses for the dry season (15 June - 30 Nov) and the wet season 1385 

(1 Dec - 14 June) (based on half-hourly averages of wind speed and direction 1386 

measured at 81 m a.g.l. for the period from 18 Oct 2012 to 23 July 2014; Fig. 7) 1387 

indicate the dominance of easterly trade wind flows at the measurement site. A 1388 

slight shift of the major wind direction towards ENE is observed during the wet 1389 

season, whereas flows are mainly from the east during the dry season. This sea-1390 

sonality can be explained by the inter-annual north-south migration of the Inter-1391 

tropical Convergence Zone (ITCZ), which also governs the amount of rainfall (see 1392 

Poveda et al., 2006). The wind roses show a slight diurnal variation with small 1393 

contributions from the north, west and south during nighttime, when the nocturnal 1394 

boundary layer is decoupled, in both seasons. In contrast, during daytime the wind 1395 

blows nearly all the time from the east (dry season) and northeast (wet season), 1396 

with much higher wind speeds. Maximal wind speeds observed at the site are 1397 

about 9 m s-1. The influence of river and/or lake breeze systems caused by the Rio 1398 

Uatumã (~12 km distance) is of minor importance and an effect from Lake Bal-1399 

bina (~50 km distance) or other thermally driven mesoscale circulations could not 1400 

be detected. This shows that the sampled air masses mainly have their origin with-1401 

in the fetch of the green ocean extending several hundred kilometers to the east of 1402 

the site. 1403 

4.2.2 Temperature, precipitation, and radiation 1404 

As is typical for the central Amazon Basin, the mean air temperature does 1405 

not show strong variations at seasonal timescales due to the high incident solar 1406 

radiation throughout the year (Nobre et al., 2009). Climatologically in the Manaus 1407 
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region, the highest temperatures are observed during the dry season, with a Sep-1417 

tember monthly mean of 27.5 °C, whereas the lowest temperatures prevail in the 1418 

rainy season, with a monthly mean of 25.9 °C in March.  1419 

Vertical profiles of temperature show clear diurnal cycles driven by radia-1420 

tive heating of the canopy during the day and cooling of the canopy and the forest 1421 

floor during the night (Fig. 8). Therefore, both temperature minima and maxima 1422 

are observed at the canopy top during both seasons. A second temperature mini-1423 

mum during night can be observed at the forest floor during the dry and wet sea-1424 

son. During the day warm air from above the canopy is transported into the forest. 1425 

Minimum temperatures at the canopy top are around 22.5 °C during both seasons, 1426 

whereas daytime maxima are around 28 °C during the wet season and may reach 1427 

slightly above 30 °C in the dry season. 1428 

Rainfall in the Manaus region shows a pronounced seasonal variation, 1429 

reaching the highest amounts in March (335.4 mm) and the lowest amounts in 1430 

August (47.3 mm), for an average annual total of 2307.4 mm at the INMET sta-1431 

tion in Manaus for the standard reference period 1961 to 1990 1432 

(www.inmet.gov.br). Precipitation at the ATTO site follows this seasonal cycle 1433 

with maximum values around March and minimum values in August and Septem-1434 

ber (Fig. 9). The interannual variability appears to be high at all times of the year, 1435 

but especially in the transition to the rainy season, a fact that has also been evident 1436 

in the data from the years 1981 to 2010 at the Manaus station (Fernandes, 2014). 1437 

Therefore, the large deviations from the regional mean during October to January 1438 

and also in April, when the ATTO values from the years 2012-2014 differ sub-1439 

stantially from the long term mean of Manaus, are likely the result of interannual 1440 

variability. 1441 

Overall, however, the precipitation patterns at the ATTO site are in good 1442 

agreement with its position in the Central Amazon, where the months between 1443 

February and May are the wettest ones. In this period, the ITCZ reaches its south-1444 

ernmost position and acts as a strong driver of convective cloud formation at the 1445 

equatorial trough. Due to the interaction of trade winds and sea breeze at the 1446 

northeast Brazilian coastline, the ITCZ also takes part in the formation of instabil-1447 

ity lines that enter the continent and regenerate during their westerly propagation 1448 
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(Greco et al., 1990). In this way, they account for substantial amounts of precipita-1453 

tion. After this period, the ITCZ shifts to the northern hemisphere, accompanying 1454 

the movement of the zenith position of the sun. This leads to less precipitation at 1455 

the ATTO site, with the driest months being between July and September, when 1456 

precipitation is formed mostly by local convection. In the following months, the 1457 

amount of precipitation increases again, which coincides with the formation of a 1458 

cloud band in a NW/SE direction that is linked to convection in the Amazon due 1459 

to the South Atlantic Convergence Zone (SACZ) (Figueroa and Nobre, 1990; Ro-1460 

cha et al., 2009; Santos and Buchmann, 2010).  1461 

The radiation balance at ATTO as well as the albedo presents a clear dif-1462 

ference between the wet and the dry seasons. Some episodes when the incident 1463 

solar radiation exceeds the top-of-atmosphere radiation have been observed for 1464 

the ATTO data. They were more frequent during the wet season, probably due to 1465 

the effect of cloud gap modulation that intensifies the radiation received at the 1466 

surface by reflection and scattering. 1467 

4.2.3 Roughness sublayer measurements 1468 

The measurement of turbulent fluxes over tall forest canopies very often 1469 

implies that these measurements are made in the so-called roughness sublayer 1470 

(RSL). It is usually assumed that the RSL extends to 2 or 3 times the height of the 1471 

roughness obstacles, ℎ0 (Williams et al., 2007). The roughness sublayer is consid-1472 

ered to be a part of the surface sublayer of the atmospheric boundary layer, but it 1473 

is too close to the roughness elements for Monin-Obukhov Similarity Theory 1474 

(MOST) to hold. Some progress in the parameterization of the RSL has been 1475 

made in terms of applying correction factors to the traditional similarity functions 1476 

of the surface layer (see for example, Mölder et al., 1999, and references therein). 1477 

However, the universality of such procedures remains unknown. 1478 

In this section, we briefly show strong evidence that a simple adjustment 1479 

factor that depends on the factor 𝑧𝑧/𝑧𝑧∗ (where 𝑧𝑧 is the height of measurement and 1480 

𝑧𝑧∗ is the height of the RSL), as employed by Mölder et al. (1999), is not able to 1481 

collapse the “variance method” dimensionless variables 1482 

𝜙𝜙𝑤𝑤(𝜁𝜁) ≡ 𝜎𝜎𝑤𝑤
𝑢𝑢∗

        (1) 1483 
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and 1489 

𝜙𝜙𝑎𝑎(𝜁𝜁) ≡ 𝜎𝜎𝑎𝑎
𝑎𝑎∗

,        (2) 1490 

where 𝜎𝜎𝑤𝑤 is the standard deviation of the vertical velocity, 𝑢𝑢∗ is the friction veloc-1491 

ity, 𝜎𝜎𝑎𝑎 is the standard deviation of a scalar, and 𝑎𝑎∗ is its turbulent scale (see (3) 1492 

and (4) below). In (1) and (2), 𝜁𝜁 is the Obukhov length with a zero-plane dis-1493 

placement height calculated as 𝑑𝑑0 = 2ℎ0/3, ℎ0 = 40 m. 1494 

We analyzed measurements collected during April 2012 at the 39.5 m lev-1495 

el, which is right at the height of the tree tops, in terms of the turbulent scales 1496 

𝑢𝑢ʹ𝑤𝑤ʹ ≡ −𝑢𝑢∗2        (3) 1497 

and 1498 

∣ 𝑤𝑤ʹ𝑎𝑎ʹ ∣≡ 𝑢𝑢∗𝑎𝑎∗.       (4) 1499 

We only analyzed measurements under unstable conditions, and considered only 1500 

cases where the sensible and latent heat fluxes are both positive (directed up-1501 

wards) and the CO2 flux is negative (directed downwards). In (4), the absolute 1502 

value is used, so that 𝑎𝑎∗ is always positive. The scalar 𝑎𝑎 represents virtual temper-1503 

ature 𝜃𝜃𝑣𝑣 (measured by the sonic anemometer), specific humidity 𝑞𝑞, and CO2 mix-1504 

ing ratio 𝑐𝑐. 1505 

The analysis is made in terms of the dimensionless standard deviation 1506 

functions, 𝜙𝜙𝑤𝑤(𝜁𝜁) and 𝜙𝜙𝑎𝑎(𝜁𝜁), defined above. The overall results for vertical veloci-1507 

ty, virtual temperature, and CO2 concentration are shown in Fig. 10. The solid 1508 

lines in the figure give representative functions found in the literature for the sur-1509 

face layer well above the roughness sublayer (see, for example, Dias et al., 2009). 1510 

Similar figures were drawn for specific times of day, namely 0700-0900, 1511 

0900-1100, 1100-1300, 1300-1500 and 1500-1700 LT, in an attempt to identify 1512 

periods of the day when better agreement (or even a systematic departure, for ex-1513 

ample by a constant vertical shift) with the surface-layer curves could be identi-1514 

fied. Temperature and humidity are somewhat better behaved in this case, but not 1515 

CO2, for reasons that are not clear. Because no conclusive explanation can be 1516 

found, we do not show these analyses here. 1517 
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Finally, we tried to apply some concepts recently developed by Cancelli et 1526 

al. (2012) to relate the applicability of MOST to the strength of the surface forc-1527 

ing. Cancelli et al. (2012) found that the applicability of MOST can be well pre-1528 

dicted by their “surface flux number”, 1529 

Sf𝑎𝑎 = ∣𝑤𝑤ʹ𝑎𝑎ʹ∣(𝑧𝑧−𝑑𝑑0)
𝜈𝜈𝑎𝑎𝛥𝛥𝑎𝑎

,       (5) 1530 

where 𝜈𝜈𝑎𝑎 is the molecular diffusivity of scalar 𝑎𝑎 in the air, and 𝛥𝛥𝑎𝑎 is the gradient 1531 

of its mean concentration between the surface and the measurement height. 1532 

In our case, there is no easy way to obtain 𝛥𝛥𝑎𝑎, so instead we use 1533 

Sf𝑎𝑎 = ∣𝑤𝑤ʹ𝑎𝑎ʹ∣(𝑧𝑧−𝑑𝑑0)
𝜈𝜈𝑎𝑎𝜎𝜎𝑎𝑎

.       (6) 1534 

As a measure of the applicability of MOST, we use the absolute value of the dif-1535 

ference between the observed value of 𝜙𝜙𝑎𝑎(𝜁𝜁) and its reference value for the sur-1536 

face layer, as used by Dias et al. (2009), and shown by the solid lines in Fig. 10. 1537 

The results are shown in Fig. 11. A relatively stronger forcing is clearly related to 1538 

a behavior that is closer to that expected by MOST for both temperature and hu-1539 

midity, but not for CO2. This suggests that CO2 presents even greater challenges 1540 

for our proper understanding of its turbulent transport in the roughness sublayer 1541 

over the Amazon Forest. 1542 

 Ultimately, the lack of conformity to MOST found in these investigations 1543 

(a fact that has been generally observed in the roughness sublayer over other for-1544 

ests) implies that scalar fluxes over the Amazon forest derived from standard 1545 

models, which use MOST, are bound to have larger errors here than over lower 1546 

vegetation, such as grass or crops. We can expect this to affect any chemical spe-1547 

cies, and therefore the implications for ATTO are quite wide-ranging. On the oth-1548 

er hand, once the 325-m tall tower is instrumented and operational, a much better 1549 

picture will emerge on the extent of the roughness sublayer and the best strategies 1550 

to model scalar fluxes over the forest. 1551 
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4.2.4 Nighttime vertical coupling mechanisms between the canopy and 1556 

the atmosphere 1557 

During daytime, intense turbulent activity provides an effective and vigor-1558 

ous coupling between the canopy layer and the atmosphere above it. As a conse-1559 

quence, vertical profiles of chemical species do not commonly show abrupt varia-1560 

tions induced by episodes of intense vertical flux divergence. Accordingly, scalar 1561 

fluxes between the canopy and the atmosphere are relatively well-behaved during 1562 

daytime, so that their inference from the vertical profiles of mean quantities can 1563 

be achieved using established similarity relationships. At night, on the other hand, 1564 

the reduced turbulence intensity often causes the canopy to decouple from the air 1565 

above it (Fitzjarrald and Moore, 1990; Betts et al., 2009; van Gorsel et al., 2011; 1566 

Oliveira et al., 2013). In these circumstances, vertical fluxes converge to shallow 1567 

layers in which the scalars may accumulate intensely over short time periods. In 1568 

the absence of convective turbulence, which is the main factor for daytime 1569 

transport, other physical processes become relevant in the stable boundary layer 1570 

(SBL), such as drainage flow (Sun et al., 2004), vertical divergence of radiation 1571 

(Drüe and Heinemann, 2007; Hoch et al., 2007), global intermittency (Mahrt, 1572 

1999), atmosphere-surface interactions (Steeneveld et al., 2008), and gravity 1573 

waves (Nappo, 1991; Brown and Wood, 2003; Zeri and Sa, 2011). 1574 

In this section, we discuss the role of intermittent turbulent events of vari-1575 

able intensity and periodicity, which provide episodic connection between the 1576 

canopy and the atmosphere and can induce oscillatory behavior in the nocturnal 1577 

boundary layer (Van de Wiel et al., 2002). They are characterized by brief epi-1578 

sodes of turbulence with intervening periods of relatively weak or unmeasurably 1579 

small fluctuations (Mahrt, 1999). In some cases, such events may comprise almost 1580 

the entirety of the scalar fluxes during a given night. The effects of gravity waves 1581 

are discussed in the next section. 1582 

Nocturnal decoupling occurs rather frequently at the ATTO site, usually 1583 

punctuated by intermittent mixing episodes, in agreement with previous studies 1584 

made over the Amazon forest (Fitzjarrald and Moore, 1990; Ramos et al., 2004). 1585 

During a typical decoupled, intermittent night, the horizontal wind components 1586 

are weak in magnitude and highly variable temporally, often switching signs in an 1587 
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unpredictable manner (Fig. 12). As a consequence, it is common that winds from 1602 

all possible directions occur in such a night. The example from the ATTO site 1603 

indicates that despite such a large variability, both horizontal wind components 1604 

are generally in phase above the canopy, from the 42-m to the 80-m level. Vertical 1605 

velocity at the 42-m level is highly intermittent, with various turbulent events of 1606 

variable intensity scattered throughout the night. While being less turbulent, the 1607 

80-m level is also less intermittent, presenting a more continuous behavior. The 1608 

relevance of the intermittent events to characterize canopy-atmosphere exchange 1609 

becomes clear when one looks at the fluxes of the scalars, such as CO2 (Fig. 12, 1610 

bottom panel). During this night, the majority of the exchange just above the can-1611 

opy (42 m) happened during two specific events, at around 02:00 and 03:30 LT. 1612 

A proper understanding of nocturnal vertical profiles and fluxes of scalars 1613 

above any forest canopy depends, therefore, on explaining the atmospheric con-1614 

trols on intermittent turbulence at canopy level. In the Amazon forest, this neces-1615 

sity is enhanced, as there are indications that turbulence is more intermittent here, 1616 

possibly as a consequence of flow instabilities generated by the wind profile at 1617 

canopy level (Ramos et al., 2004). This is corroborated by early observations at 1618 

the ATTO site, which indicated decoupling and intermittency occurring during 1619 

more than half of the nights. 1620 

It is not yet clear what triggers these intermittent events. In general, previ-1621 

ous studies indicate that the more intense events are generated above the nocturnal 1622 

boundary layer, propagating from above (Sun et al., 2002; Sun et al., 2004). On 1623 

the other hand, less intense events that occur in the decoupled state have been 1624 

characterized as natural modes of turbulence variability generated near the surface 1625 

(Costa et al., 2011). At ATTO, the occurrence of the highest intensity at 42 m in-1626 

dicates that intermittency is generated at the canopy level. Is it possible, then, to 1627 

identify the mechanisms that trigger their occurrence? 1628 

Some evidence can be gathered from a spectral decomposition of the tur-1629 

bulent flow at the different observation levels. Although the horizontal velocities 1630 

in Fig. 12 are highly in phase between 42 and 80 m, it is clear from this plot that 1631 

the wind speed is generally higher at 80 m, while there are more turbulent fluctua-1632 

tions at 42 m. When these signals are decomposed in terms of their time scale to 1633 
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provide a turbulent kinetic energy (TKE) spectrum (Acevedo et al., 2014), the 1636 

more intense turbulence at 42 m appears as a peak at time scales just greater than 1637 

10 s (Fig. 13). At longer time scales, on the other hand, there is a sharp energy 1638 

increase at 80 m, making this the most energetic level for scales larger than 100 s. 1639 

This low-frequency flow at 80 m is characterized by the large wind direction vari-1640 

ability apparent in Fig. 12. These are non-turbulent flow patterns that have been 1641 

recently classified as “submeso” (Mahrt, 2009). Submeso flow has low intensity, 1642 

with large and apparently unpredictable temporal variability. It is usually present 1643 

in the atmospheric boundary layer, becoming dominant in conditions when the 1644 

turbulent scales are highly reduced, such as in the decoupled nocturnal boundary 1645 

layer. 1646 

Evidence from ATTO indicates that it is possible to associate the intermit-1647 

tent events at canopy level with the mean wind shear above the canopy. In Figure 1648 

14, it is evident that the two intense events at 42 m, around 21:30 and 02:00 LT, 1649 

are triggered by episodes of intense wind shear between 42 and 80 m. In condi-1650 

tions where the 80-m wind field is dominated by submeso processes, such as in 1651 

the examples in Figs. 12 and 14, it is this portion of the flow that determines the 1652 

occurrence of intense wind shear episodes. Furthermore, it is clear from these ex-1653 

amples that flow patterns at levels as high as 80 m exert important controls on the 1654 

exchange of scalars at canopy level. Questions such as the height variation of 1655 

submeso flow have yet to be answered. Tall tower observations, such as those 1656 

planned to be carried on at ATTO, are very important to provide the data for this 1657 

kind of analysis and to deepen the understanding of exchange processes between 1658 

the canopy and the atmosphere during the calm nights that are common in the 1659 

Amazon forest. 1660 

4.2.5 Orographically induced gravity waves in the stable boundary layer 1661 

above the Amazon forest 1662 

Gravity waves (GWs) may occur in the forest boundary layer during rela-1663 

tively calm nights. Depending on the magnitude of the turbulent drag, they influ-1664 

ence the exchange processes that take place in the stable boundary layer of the 1665 

atmosphere (Steeneveld et al., 2009). Internal gravity waves can be generated by 1666 

several forcing mechanisms, including sudden changes of surface roughness, to-1667 
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pography, convection, terrain undulations, etc. (Nappo, 2002). These features can 1689 

reallocate energy and momentum and are significant in determining atmospheric 1690 

vertical structure and the coupling of mesoscale to microscale phenomena 1691 

(Steeneveld et al., 2008; Steeneveld et al., 2009). Chimonas and Nappo (1989) 1692 

showed that under typical conditions of the planetary boundary layer, GWs can 1693 

interact with the mean flow resulting in turbulence at unexpected altitudes. 1694 

Fast response data of vertical wind velocity, w, and temperature, T, meas-1695 

ured in the nocturnal boundary layer (NBL) at the ATTO site were analyzed to 1696 

detect the occurrence of GWs, and to identify under which situations they would 1697 

be generated by terrain undulations, using the methodology proposed by 1698 

Steeneveld et al. (2009). One of the goals of this study is to investigate the struc-1699 

ture of turbulence associated with the conditions under which GWs would be 1700 

forced by ground undulations (class I) in contrast to those under which GWs 1701 

would be expected to be forced by other mechanisms (class II). To reach this goal, 1702 

the methodology of Steeneveld et al. (2009), based on Chimonas and Nappo 1703 

(1989), has been used to define whether a specific measurement belongs to class I 1704 

or class II, based on the condition:  1705 

2222 /"/ kUUUNLS >−=         (7) 1706 

where k is the wave number associated with the ground undulations, L is the 1707 

Scorer parameter, U is the mean wind speed, and U” is second derivative of the 1708 

wind speed in relation to the height, z, computed as 1709 

22" zUU ∂∂=         (8) 1710 

N is the Brunt-Väisälä frequency, defined as: 1711 

θθ /zgN ∆=         (9) 1712 

where g is the gravity acceleration and θθ /z∆  is the dimensionless gradient of the 1713 

virtual potential temperature. 1714 

Two kinds of data were used: topographic and meteorological. A digital 1715 

topographic image of the region surrounding the experimental site (Fig. 15a) was 1716 

used to analyze the features of surface undulations and their scales of occurrence, 1717 

as well as the space-scale analysis by complex Morlet wavelet transforms (Farge, 1718 
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1992; Thomas and Foken, 2005). Local geomorphometric variables were derived 1722 

from the Shuttle Radar Topographic Mission (SRTM) data (Valeriano, 2008). 1723 

These data were refined to 1 arcsecond (~30 m) from the original spatial resolu-1724 

tion of 3 arcsecond (~90 m) and are available on the site 1725 

www.dsr.inpe.br/topodata/dados.php. 1726 

Time series of the vertical wind velocity and of the fast response tempera-1727 

ture data provided by a sonic anemometer and thermometer were used to detect 1728 

GW events at a height of 81 m above the ground. The sampling rate of the meas-1729 

ured turbulence data was 10 Hz. Wind speed and temperature vertical profiles 1730 

were provided by cup anemometer and thermometer measurements, respectively, 1731 

with a sampling rate of 60 Hz for both, making it possible to compute the Brunt–1732 

Väisälä frequency, the vertical gradients of wind velocity, and the Scorer parame-1733 

ter for GW classification (Steeneveld et al., 2009). Data from five nights were 1734 

analyzed, consisting of 120 files of 30 minutes each between Julian days 42 and 1735 

46 of the year 2012, representing the first observational data available from the 1736 

ATTO site. The analyses were carried out for the time between 18:00 and 06:00 1737 

LT for each night with available data (Fig. 15).  1738 

The black points on the arrows in Fig. 15b represent the GW events that 1739 

were induced by the topography of the terrain, whereas the gray points represent 1740 

GW events that were not generated by terrain orography. The results show that a 1741 

considerable fraction of the analyzed situations represent GWs induced by terrain 1742 

undulations. This finding is very important for the environmental studies that are 1743 

being carried out at the ATTO site, as it indicates that some mixing characteristics 1744 

of the nocturnal boundary layer depend on the characteristics of terrain undula-1745 

tions and therefore change with the wind direction. 1746 

4.2.6 Coherent structure time scale above the ATTO site 1747 

Coherent structures (CSs) are a ubiquitous phenomenon in the turbulent 1748 

atmospheric flow, particularly over forests (Hussain, 1986). They occur in the 1749 

roughness sub-layer immediately above the plant canopy, where the CSs of the 1750 

scalar signals show a "ramp-like" shape associated with the two-phase movement 1751 

of sweep and ejection of the flow interacting with the canopy. Coherent structures 1752 

play an important role in biosphere-atmosphere exchange processes (Gao and Li, 1753 
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1993; Serafimovich et al., 2011). There is some consensus that CSs are associated 1773 

with turbulent flows, although there is no full agreement on the percentage of the 1774 

turbulent fluxes associated with them (Lu and Fitzjarrald, 1994; Thomas and 1775 

Foken, 2007; Foken et al., 2012). There has been much research on the dominant 1776 

scale of occurrence of CSs (Collineau and Brunet, 1993; Thomas and Foken, 1777 

2005) and the physical mechanisms responsible for their generation (Paw U et al., 1778 

1992; Raupach et al., 1996; McNaughton and Brunet, 2002; Campanharo et al., 1779 

2008; Dias Júnior et al., 2013). Considerable research has also been devoted to the 1780 

detection of CSs (Collineau and Brunet, 1993; Krusche and Oliveira, 2004) and 1781 

the dissimilarity between CSs associated with the transport of momentum and 1782 

scalars (Li and Bou-Zeid, 2011). However, many aspects of their occurrence are 1783 

still poorly known, particularly: i) their vertical variability (Lohou et al., 2000); ii) 1784 

the manifestations of their interaction with gravity waves (Sorbjan and Czerwin-1785 

ska, 2013); iii) the influence of surface heterogeneity on their features; iv) aspects 1786 

of their numerical simulation (Patton, 1997; Bou-Zeid et al., 2004; Dupont and 1787 

Brunet, 2009; Wan and Porte-Agel, 2011), particularly in the nocturnal boundary 1788 

layer (Durden et al., 2013; Zilitinkevich et al., 2013), and v) implications of the 1789 

existence of CSs for the chemistry of the atmosphere (Steiner et al., 2011; Foken 1790 

et al., 2012).  1791 

A study on the structure of atmospheric turbulence was performed at the 1792 

ATTO site under daytime conditions, with the aim of contributing to the detection 1793 

of CSs and developing a better understanding of their vertical and temporal varia-1794 

bility over a very uneven terrain covered by primary forest in central Amazonia. 1795 

Wind, temperature, and humidity data were obtained using sonic anemometers 1796 

and gas analyzers, installed at 42 m and 81 m above ground, as specified in the 1797 

methods section. The scales of coherent structures were determined following the 1798 

methodology proposed by Thomas and Foken (2005). Figure 16 shows the aver-1799 

age duration of CSs for horizontal and vertical wind velocities (u, w), temperature 1800 

(T), and humidity (q). For the data at 81 m height, the CS of u and w exhibit tem-1801 

poral scales around 46 s and 29 s, respectively. For the two scalars, T and q, the 1802 

time scales of the CS are about 44 s and 55 s, respectively. For the height of 42 m 1803 

the coherent structure time scales of u, w, T, and q were approximately equal to 1804 

33 s, 26 s, 30 s, and 31 s, respectively. 1805 
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The results revealed that the CS time scale of the vertical wind velocity is 1808 

often smaller than the scales of the horizontal velocity and the scalar properties, 1809 

for both levels. This can be explained by the fact that the scalar spectra exhibit 1810 

greater similarity to the spectra of the horizontal velocity than to the vertical ve-1811 

locity for low frequencies. Another interesting feature is that the temporal scale of 1812 

the CSs for both the wind velocity and scalars are considerably shorter for the data 1813 

measured at 81 m compared with those at 42 m, i.e., the region immediately above 1814 

the forest canopy appears to be under the influence of a high-pass filter that re-1815 

moves the lower frequency oscillations of the turbulent signals (Krusche and 1816 

Oliveira, 2004; Thomas and Foken, 2005). 1817 

4.2.7 Characteristics of the nocturnal boundary layer  1818 

The characteristics of the nocturnal boundary layer (NBL) at the ATTO 1819 

site near the Uatumã River were analyzed for the wet and the dry seasons, based 1820 

on two methodologies: i) the thermodynamic classes of the NBL proposed by 1821 

Cava et al. (2004) and ii) the turbulence regimes proposed by Sun et al. (2012).  1822 

Cava et al.’s (2004) classification of nocturnal time series is based on the 1823 

existence of a dominant pattern in scalar data, such as CO2 concentration, temper-1824 

ature, or specific humidity. It also takes into account the variability of nocturnal 1825 

net radiation (Rn), measured at a sufficiently high sampling rate, which allows 1826 

cloud detection (with passage of clouds being identified by rapid Rn changes 1827 

greater than 10 W m-2). Classes (I), (II), (III), are defined by atmospheric condi-1828 

tions free of the influence of clouds, which can disturb the stable boundary layer 1829 

above the forest. The classes are defined as followed by Cava et al. (2004): (I) the 1830 

occurrence of coherent structures in the form of "ramps" in scalar time series; (II) 1831 

the presence of sinusoidal signals (“ripples”) that simultaneously occur in the time 1832 

series of scalars above the canopy and that are typical for gravity waves; (III) the 1833 

existence of turbulence fine structure (i.e., according to Cava et al. (2004), “peri-1834 

ods that lack any geometric structure or periodicity in the time series data”). The 1835 

last two categories, (IV) and (V), of Cava et al.’s classification refer to the simul-1836 

taneous occurrence of clouds and organized movements with variations in Rn >10 1837 

W m-2. They are: (IV) cases where the net radiation induces organized move-1838 
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ments, and (V) those where the change in net radiation is not correlated with 1842 

changes in organized movements.  1843 

The search of parameters to characterize the turbulent regimes of the noc-1844 

turnal boundary layer is based on Sun et al. (2012). The three turbulent regimes in 1845 

the NBL are defined as follows: Regime 1 shows weak turbulence generated by 1846 

local shear instability and modulated by the vertical gradient of potential tempera-1847 

ture. Regime 2 shows strong turbulence and wind speed exceeding a threshold 1848 

value (Vλ), above which turbulence increases systematically with increasing wind 1849 

speed. This describes the turbulence generated by bulk shear instability, defined as 1850 

the mean wind speed divided by the measuring height. In Regime 3, the turbu-1851 

lence occurs at wind speeds lower than Vλ, but is associated with occasional bursts 1852 

of top-down turbulence. In Regimes 1 and 2 the scale of turbulent velocity (VTKE) 1853 

is related to the mean wind velocity, V. The turbulent velocity, VTKE, is defined as:  1854 

          ( ) ( )[ ] 2/12
w

2
v

2
uTKE 2/1V   σσσ ++=      (10) 1855 

where u, v, and w are the components of the zonal, meridional and vertical winds, 1856 

respectively, and σ represents the standard deviation of each variable. 1857 

We analyzed 53 data files from the wet season and 79 data files collected 1858 

during the dry season at the ATTO site. Our results show that the prevailing con-1859 

ditions in the NBL are represented by Cava’s classes I, II, and V for both wet and 1860 

dry seasons (Table 5). Furthermore, during the wet season the classes I and V 1861 

show their highest percentage of occurrence associated with turbulent Regime 3. 1862 

Class IV is more frequent when turbulence Regime 1 prevails. For the dry season 1863 

we observe that turbulent classes I, IV and V occur most frequently in situations 1864 

associated with Regime 1 (Table 6).  1865 

4.3 Measurements of atmospheric composition 1866 

In March 2012, a basic set of measurements (CO, CO2, CH4, and equiva-1867 

lent black carbon, BCe) was initiated at the site, which has been running almost 1868 

continuously up to the present. As CO2 and BCe were measured with multiple 1869 

instruments in parallel (see Table 2) an almost complete time series since March 1870 

2012 is available for these quantities. In November 2012, the long-term measure-1871 
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ment setup was upgraded to include measurements of ozone, aerosol scattering, 1874 

aerosol size distribution, and aerosol number concentration. Due to the complex 1875 

logistics at this remote site, there are a few large data gaps in some of these time 1876 

series, but the datasets are almost complete from the middle of May 2013 to No-1877 

vember 2013 and from February 2014 to now. Continuous measurements of aero-1878 

sol chemical composition by an aerosol mass spectrometer were also initiated in 1879 

February 2014. Furthermore, several intensive campaigns were conducted with 1880 

additional measurements of aerosol properties, VOC, OH reactivity, and NOx.  1881 

4.3.1 CO2, CH4, and CO 1882 

Figures 17a-c show the diurnal cycles of the vertical distributions of CO2, 1883 

CH4, and CO at the ATTO site. CO2 and CO show a nighttime accumulation in 1884 

the sub-canopy space and a corresponding steepening of the vertical concentration 1885 

gradient, which is greatly reduced during daytime due to the enhanced vertical 1886 

mixing throughout the canopy. In addition, CO2 exhibits a clear minimum during 1887 

daytime at mid-canopy level induced by photosynthesis. Interestingly, the build-1888 

up of the nighttime maximum of CH4 proceeds from above the canopy (Fig. 17b). 1889 

The origin of this behavior, which seems to be linked to multiple processes, is 1890 

under investigation. During daytime, CO2, CH4, and CO still exhibit a small verti-1891 

cal gradient below the canopy, indicating a local source near the ground. 1892 

Additional evidence for local surface sources are sporadic concurrent in-1893 

creases of CH4 and CO, predominantly at the lowest measurement level. Exam-1894 

ples are shown in Fig. 18. The origin of this local CH4 and CO source is not 1895 

known. A remote source (e.g., from the large water reservoir behind the Balbina 1896 

Dam, 60 km northwest of ATTO) seems unlikely, as such a signal would be verti-1897 

cally diluted before reaching the ATTO site. A combustion source also appears 1898 

unlikely, as the observed CH4/CO ratios are several orders of magnitude higher 1899 

than the values typical of combustion emissions.  1900 

Apart from these CH4 and CO peaks, we occasionally observe, mostly dur-1901 

ing nighttime, short CH4 peaks of up to more than 100 ppb amplitude. These peaks 1902 

last a few hours, they do not always concur with increases in CO concentrations, 1903 

and often coincide with “bursts” of particles with a diameter of a few tens of na-1904 

nometers.  1905 
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Figure 19 shows the statistics of monthly daytime (defined as between 1917 

1300-1600 LT, or 1700-2000 UT) 30-min measurements of CO2 from three levels 1918 

(4 m, 38 m, and 79 m). The values at the 4-m level are consistently higher than at 1919 

the upper levels, while the 38-m level consistently shows lower values during day-1920 

time than the top level (79 m). This indicates that photosynthesis is active 1921 

throughout the year. The record is still too short to reveal a clear seasonality. Nev-1922 

ertheless, it appears that CO2 from June to August is about 5 ppm above the val-1923 

ues during the months from December to February. 1924 

Statistics of monthly daytime 30-min measurements of CH4 and CO are 1925 

shown in Fig. 20 (from the 79-m level only). Because of a large data gap due to a 1926 

malfunctioning of the analyzer, a seasonal cycle is not discernible in the present 1927 

CH4 record. CO does show a seasonal cycle at ATTO with concentrations higher 1928 

by about 50 ppb during the dry months with a significant fraction of air coming 1929 

from the south-east (see Fig. 3), where vegetation fires are very active at this time.  1930 

Monthly daytime concentrations of CO2, CH4, and CO are compared in 1931 

Fig. 21 with measurements upstream of ATTO: Cape Verde (green symbols) re-1932 

flecting the subtropics of the northern hemisphere, and Ascension Island (brown 1933 

symbols) representing conditions in the southern hemisphere. At least during the 1934 

period of July to December, CO2 concentrations clearly reach lower values than at 1935 

both upstream locations, reflecting the regional carbon sink in the Amazon do-1936 

main. In contrast, CH4 levels at ATTO lie almost on northern hemisphere levels 1937 

throughout the year, even when the ITCZ is north of ATTO in austral winter and 1938 

the site is in the atmospheric southern hemisphere with its lower background CH4 1939 

concentrations. This suggests the presence of regional CH4 emissions in the 1940 

airshed of ATTO. The CO concentrations at ATTO during the wet season are 1941 

close to those at Cape Verde, reflecting the absence of significant combustion 1942 

sources in the South American part of the fetch during this season. In contrast, dry 1943 

season CO mixing ratios at ATTO are about 80 ppb higher than those at Ascen-1944 

sion Island, reflecting biomass burning emissions in the southeastern Amazon 1945 

(Andreae et al., 2012).  1946 
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4.3.2 Biogenic volatile organic compounds and OH reactivity 1954 

The first successful vertical gradients of biogenic VOCs and total OH re-1955 

activity were measured in November 2012 at the walk-up tower using the gradient 1956 

system as described in Section 3.4. Diurnal fluctuations of isoprene are apparent 1957 

at all heights (Fig. 22). Under daylight conditions, isoprene mixing ratios were 1958 

always highest at the 24 m level, reaching up to 19.9±2.0 ppb (average ± standard 1959 

deviation) and indicating a source at the canopy top. During nighttime, the light-1960 

driven emissions of isoprene cease and the in-canopy mixing ratio fell to 1.1±0.5 1961 

ppb, which was lower than observed above the forest at 79 m (2.3±0.3 ppb). 1962 

Measurements in the canopy (24 m) vary by a factor of ten from day to night, 1963 

while measurements close to the ground (0.05 m) vary only by a factor of two. 1964 

This clearly demonstrates a canopy emission of isoprene, with a peak around 1965 

noon, when light and temperature are at their maximum. Isoprene mixing ratios at 1966 

the ground level were always the lowest, indicating a potential sink at the 1967 

soil/litter level or relatively slow downward mixing. A detailed discussion of 1968 

measurements of isoprene and other biogenic VOC at ATTO was published re-1969 

cently (Yañez-Serrano et al., 2015). 1970 

In November 2012, the high levels of isoprene measured above the canopy 1971 

contributed significantly (on average about 85%) to the total OH reactivity. From 1972 

Fig. 23, it can be seen that median isoprene mixing ratios of between 0.5 ppb at 1973 

6:00 LT and 8 ppb in the late afternoon above the canopy give an OH reactivity of 1974 

about 1-20 s-1. The gap between the two curves is the fraction of total OH reactivi-1975 

ty that is not due to isoprene. For most of the time this gap is small and within the 1976 

uncertainty of the measurements. On two occasions, however, the total OH reac-1977 

tivity was significantly higher than the isoprene contribution, these being in the 1978 

early morning (0900 LT) coincident with a drop in light levels, and in the after-1979 

noon just after sunset (1700 LT). For all other times in the course of the day, iso-1980 

prene was the major sink for OH above the canopy. Overall, a distinct diel varia-1981 

bility in total OH reactivity can be observed, similar to that of its major contribu-1982 

tor, isoprene. The median lifetime of OH radicals during the dry-to-wet transition 1983 

season above the forest canopy at 80 m varied from about 50 ms by day to 100 ms 1984 
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at night. Ongoing measurements will determine the seasonal variability in total 1991 

OH reactivity and the relative contribution of isoprene.  1992 

4.3.3 Ozone profiles 1993 

The O3 mixing ratios (Fig. 24) show typical diurnal cycles for both sea-1994 

sons, with values increasing from the morning to the afternoon and subsequently 1995 

decreasing due to deposition and chemical reactions. The afternoon O3 maxima at 1996 

the uppermost height (79 m) are about a factor of 1.4 higher during the dry season 1997 

than during the wet season, averaging about ~11 ppb and ~8 ppb, respectively. As 1998 

found in previous studies, its deposition to surfaces causes O3 to exhibit pro-1999 

nounced vertical gradients (Fig. 24), which makes a direct intercomparison to 2000 

measurements at other sites difficult. However, the mixing ratios above the cano-2001 

py from different studies in the Amazonian rain forest during the wet season are 2002 

within a narrow range of 7 to 12 ppb, and the value measured at ATTO falls near 2003 

the lower end of this range (Kirchhoff et al., 1990; Andreae et al., 2002; Rummel 2004 

et al., 2007; Artaxo et al., 2013). A budget study by Jacob and Wofsy (1990) re-2005 

vealed that downward transport of O3 mainly controlled the losses near the sur-2006 

face, with only a minor contribution from photochemical formation above the 2007 

canopy. This may explain the similar mixing ratios in the different studies. Fur-2008 

thermore, only small O3 differences were measured between 38 m (just above the 2009 

canopy) and the top of the tower at 79 m during the wet season.  2010 

A different picture is observed during the dry season, with much higher O3 2011 

mixing ratios at more polluted sites (~40 ppb in Rondônia: Kirchhoff et al., 1989; 2012 

Andreae et al., 2002; Rummel et al., 2007; Artaxo et al., 2013), which can be re-2013 

lated to biomass burning emissions causing photochemical O3 formation (Crutzen 2014 

and Andreae, 1990). A site comparable to the ATTO site is the ZF2 site, located 2015 

about 60 km north-west of Manaus, which has been used extensively in the past 2016 

(Artaxo et al., 2013), but which is occasionally affected by the Manaus urban 2017 

plume (Kuhn et al., 2010; Trebs et al., 2012). At the ZF2 site, mean maximum O3 2018 

mixing ratios measured at 39 m from 2009-2012 (Artaxo et al., 2013) match ex-2019 

actly those measured at the ATTO site for the wet season, but are about a factor of 2020 

1.5 higher during the dry season. This may be attributed to the more pristine char-2021 

acter of the ATTO site, but could also be related to the different measurement 2022 
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periods or different biogenic emissions at the sites. In order to distinguish these 2031 

different influences, high-quality long-term measurements are required, which are 2032 

now being generated within the ATTO project.  2033 

During the wet season, the amplitude of the mean diurnal cycle at 79 m is 2034 

only about 2 ppb, whereas it is 3-4 ppb during the dry season. The highest ampli-2035 

tudes are observed within the canopy and the understory with up to 5 ppb (24 m) 2036 

in the dry season. These variations can be attributed to downward mixing of O3, 2037 

which is “stored” within the canopy (so called storage flux, see Rummel et al., 2038 

2007). It is subsequently depleted by chemical reactions, mostly with soil biogenic 2039 

NO, and deposition after the forest canopy becomes decoupled from the atmos-2040 

phere above at nighttime. During the wet season, the largest decrease in O3 mixing 2041 

ratios occurs at the canopy top. This might be attributed to a lower canopy re-2042 

sistance to O3 deposition due to enhanced stomatal aperture during the wet season 2043 

as proposed by Rummel et al. (2007) and will be the subject of future work. Fur-2044 

ther investigations will also focus on the interactions between turbulence (supply 2045 

of O3) and trace gases that react with O3, especially nitric oxide (NO).  2046 

4.3.4 Aerosol optical properties 2047 

The aerosol optical properties measured at the ATTO site are shown as a 2048 

time series in Fig. 25 and summarized in Table 7. The averages were calculated 2049 

for the dry season, August-October, and the wet season, February-May (2012-13 2050 

for the absorption measurements and 2013 for the scattering measurements). The 2051 

transition periods between these two seasons are not included in the summary, in 2052 

order to show the contrast between the cleanest and “more polluted” periods. The 2053 

scattering coefficients are similar to those reported by Rizzo et al. (2013) from 2054 

measurements performed at the ZF2 site (60 km N of Manaus). The regional 2055 

transport of biomass burning emissions and fossil-fuel derived pollution is the 2056 

main source of particles during the dry season. Its influence is pronounced, as can 2057 

be seen by comparing the scattering and absorption coefficients from both sea-2058 

sons, which average about 3-6 times higher during the dry than during the wet 2059 

season. During the wet season, ATTO is meteorologically located in the NH and 2060 

the scattering and absorption coefficients reach their minimum values; however, 2061 
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episodes of long-range transport of aerosols from the Atlantic Ocean and Africa 2068 

still lead to episodically elevated values. 2069 

The contrast between the wet and dry seasons can be attributed to a com-2070 

bination of higher removal rates by wet deposition during the wet season and the 2071 

dominant influence from biomass burning and fossil fuel emissions during the dry 2072 

season, which are the main sources of submicron particles at that time. The scat-2073 

tering Ångström exponent (ås) averages 1.25 during the wet season, lower than the 2074 

1.62 obtained for the dry season. This behavior results from the high relative pro-2075 

portion of larger particles (mostly primary biogenic particles, but also dust and 2076 

seaspray) during the wet season, because in contrast to the large seasonal variabil-2077 

ity of the submicron particles, the supermicron fraction shows less intense season-2078 

al changes. 2079 

The seasonality of the absorption coefficient, σa, is comparable to that of 2080 

the scattering coefficient. The regional transport of biomass burning emissions, 2081 

most important between August and October, produces a rise in the σa values, 2082 

reaching an average of 3.46 Mm-1 during this period. In contrast, during the wet 2083 

season, σa is very low, around 0.52 Mm-1 on average.  2084 

The absorption Ångström exponent (åa) is often used to estimate the com-2085 

position of light absorbing aerosols. An åa ~ 1 indicates the aerosol is in the Ray-2086 

leigh regime, and the absorption is dominated by soot-like carbon and is therefore 2087 

wavelength independent (Moosmüller et al., 2011). Higher åa values indicate the 2088 

presence of additional light absorbing material, like brown carbon (BrC) (Andreae 2089 

and Gelencsér, 2006). This kind of yellowish or brown organic material, abundant 2090 

in biomass burning aerosols, usually has an åa ~ 2.0 or greater (Bond et al., 1999). 2091 

Our measurements show only relatively minor seasonal differences in åa, with 2092 

somewhat higher values during the wet season (1.53) than in the dry season 2093 

(1.40), suggesting that soot carbon is the most important contributor to aerosol 2094 

light absorption throughout the year. The contribution of the different light ab-2095 

sorbing components of the aerosol to the total observed aerosol absorption is cur-2096 

rently being investigated. 2097 

We conducted the first long-term refractory black carbon (rBC) measure-2098 

ments by an SP2 instrument at a remote Amazonian site. The mass absorption 2099 
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cross section (αa) has been calculated by applying an orthogonal regression to the 2103 

MAAP absorption coefficient measurements at 637 nm vs. rBC mass concentra-2104 

tions measured by the SP2. The average αa obtained for the 2013-2014 wet season 2105 

measurements was 13.5 m2 g-1, which is much higher than the 4.7 m2 g-1 reported 2106 

previously for another Amazonian forest site (Gilardoni et al., 2011), who used a 2107 

thermal-optical method to determine the apparent elemental carbon content. The 2108 

high apparent αa could be partly explained by the fact that the SP2 size dynamic 2109 

range was 70-280 nm and thus the technique did not account for rBC particles 2110 

larger than 280 nm. However, it is also likely related to an enhancement of light 2111 

absorption by coatings on the rBC particles, or to the presence of additional light-2112 

absorbing substances besides rBC (Bueno et al., 2011; McMeeking et al., 2014). 2113 

Single-particle studies (Section 4.3.7) on aerosols from the ATTO site consistent-2114 

ly show thick coatings on the soot carbon particles. Our preliminary results indi-2115 

cate that the constant αa (6.6 m2 g-1), implemented by the MAAP in order to re-2116 

trieve the BC mass concentration, is not representative of the true optical proper-2117 

ties of Amazonian aerosol particles. 2118 

4.3.5 Aerosol number concentrations and size distributions 2119 

Continuous measurements of aerosol particle size and concentration have 2120 

been conducted at the ATTO site since March 2012. Over the last years, the extent 2121 

of the sizing instrumentation has been increased stepwise to provide uninterrupted 2122 

and redundant aerosol size and concentration time series. Figure 26 shows one of 2123 

the frequent instrument intercomparisons, including four different instruments that 2124 

are based on optical and electromobility sizing. It confirms the overall consistency 2125 

and comparability of the different sizing techniques. Integrated particle number 2126 

concentrations agree within 15% with measurements of total particle number con-2127 

centrations by a CPC. The sample air for this intercomparison was collected 2128 

through the main aerosol inlet at 60 m height, which is also used for instruments 2129 

measuring aerosol scattering, absorptivity, hygroscopicity, and chemical composi-2130 

tion. 2131 

At the ATTO site, the atmospheric aerosol burden shows remarkable dif-2132 

ferences in terms of size distribution and concentration depending on the seasons. 2133 

Figure 27 displays the average particle number and volume size distributions for 2134 
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typical wet (6-13 May 2014) and dry season (13-20 Sep 2014) conditions, cover-2146 

ing an aerosol size range from 10 nm to 10 µm. The wet season is characterized 2147 

by clean air masses from NE directions (Fig. 3), which result in a near-pristine 2148 

atmospheric state at the ATTO site. Total particle concentrations typically range 2149 

from 100-400 cm-3 and aerosol size spectra reveal the characteristic “wet season 2150 

shape”. A representative example is shown in Fig. 27. The size spectrum is char-2151 

acterized by a 3-modal shape with pronounced Aitken and accumulation modes as 2152 

well as a noticeable coarse mode. Aitken (maximum at ~70 nm) and accumulation 2153 

(maximum at ~150 nm) modes are separated by the so called Hoppel minimum (at 2154 

~110 nm), which is thought to be caused by cloud processing (e.g., Zhou et al., 2155 

2002; Rissler et al., 2004; Artaxo et al., 2013). 2156 

The near-pristine conditions that prevail at the ATTO site during the wet 2157 

season, when the aerosol concentrations are remarkably low and dominated by 2158 

local and/or regional biogenic sources, are episodically interrupted by long-range 2159 

transport of sea spray, Saharan dust, and/or African biomass burning and fossil 2160 

fuel combustion aerosol (e.g., Talbot et al., 1990; Martin et al., 2010a; Martin et 2161 

al., 2010b; Baars et al., 2011). Figure 28 displays characteristic changes in the wet 2162 

season size distribution during selected episodes with long-range transport intru-2163 

sions. Typically, the aerosol abundance in the accumulation and coarse mode size 2164 

range is substantially increased and the Hoppel minimum almost completely dis-2165 

appears. The aerosol volume distribution clearly indicates a pronounced en-2166 

hancement of coarse particles, which increases the integrated particle volume con-2167 

centration by almost one order of magnitude (Fig.28b).  2168 

During the dry season, the dominant wind direction is E to SE (Fig. 3), 2169 

which brings polluted air from urban sources and deforestation and pasture fires in 2170 

in the southeastern Amazon and the Brazilian Nordeste to the ATTO site. Dry 2171 

season aerosol number concentrations typically range from 500-2000 cm-3. A 2172 

characteristic dry season size spectrum is illustrated in Fig. 27, which shows in-2173 

creased particle concentrations across the entire size range. Typically, the accu-2174 

mulation mode (maximum at ~140 nm) shows the highest relative increase and 2175 

therefore partly ‘swamps’ the Aitken mode (shoulder at ~70 nm). 2176 
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Besides the Aitken and accumulation modes, which dominate the total 2188 

aerosol number concentration, a persistent coarse mode is observed at about 3 µm, 2189 

which accounts for a significant fraction of the total aerosol mass (Fig. 27). The 2190 

coarse mode peak occurs throughout the year, with higher abundance in the dry 2191 

season. In the absence of long-range transport, primary biological aerosol particles 2192 

(PBAP) are assumed to dominate the coarse mode (Pöschl et al., 2010; Huffman 2193 

et al., 2012).  2194 

Autofluorescence-based techniques such as the Wideband Integrated Bio-2195 

aerosol Sensor, WIBS-4A) are an efficient approach to probe fluorescent biologi-2196 

cal aerosol particles (FBAP) in online measurements (Kaye et al., 2005; Healy et 2197 

al., 2014). Figure 29 shows the first measurements of the FBAP number and vol-2198 

ume size distributions from the WIBS instrument at the ATTO site. The FBAP 2199 

size distributions are dominated in number by a narrow peak at 2.7 µm and in vol-2200 

ume by a broad peak from 2 to 5 µm (Fig. 29). For particles larger than 1 µm, the 2201 

mean integral FBAP number concentration is 0.22 cm-3 (40% of the concentration 2202 

of supermicron particles), and the corresponding volume concentration is calcu-2203 

lated to be 3.0 µm3 cm-3 (62%). The ratio of FBAP to total particles (number con-2204 

centration) shows a clear size dependence, starting from 10% at 1 µm and rising 2205 

to a peak value ~70-80% in the size range of 3-10 µm. These observations are 2206 

consistent with FBAP measurements made with an alternative instrument 2207 

(UVAPS) during the AMAZE-08 campaign at the ZF2 rainforest site north of 2208 

Manaus (Pöschl et al., 2010; Huffman et al., 2012). 2209 

CCN size/supersaturation spectra have been measured since 2014 and are 2210 

being continued. The long-term data set provides unique information on the size 2211 

dependent hygroscopicity of Amazonian aerosol particles throughout the seasons. 2212 

The results will complement and extend the results from previous campaigns (e.g., 2213 

Gunthe et al., 2009; Rose et al., 2011; Levin et al., 2014). The measurements of 2214 

CCN and other aerosol properties at the ATTO site will also be an important refer-2215 

ence for the analysis of the results from the  ACRIDICON-CHUVA aircraft cam-2216 

paign, which took place in central Amazonia in September 2014 (Wendisch et al., 2217 

2015). 2218 
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4.3.6 Aerosol chemical composition 2236 

For the continuous determination of aerosol composition, an Aerosol 2237 

Chemical Speciation Monitor (ACSM) was installed at the ATTO site in February 2238 

2014 with the objective of making long-term measurements. The data reported 2239 

here summarize the annual cycle of aerosol concentrations and composition from 2240 

May 2014 to April 2015 (Fig. 30). 2241 

During the middle of the rainy season (March to May), the aerosol concen-2242 

trations at ATTO reach their annual minimum and are in relatively good agree-2243 

ment with previous wet season studies, including those conducted at the ZF2 site, 2244 

ca. 140 km SW of ATTO (Chen et al., 2009; Pöschl et al., 2010; Artaxo et al., 2245 

2013). With the onset of the dry season, the shift of airmass origins to the south-2246 

east, and the transition of ATTO into the atmospheric southern hemisphere (Fig. 2247 

3), aerosol concentrations increase sharply and remain high until the end of De-2248 

cember, well into the rainy season. Trajectory analyses suggest that burning in 2249 

Africa may contribute significantly to pollution levels at ATTO during this part of 2250 

the year. Only when the rainy conditions in the Amazon combine again with dom-2251 

inant airmass origins in the tropical and subtropical North Atlantic and with the 2252 

waning of biomass burning in West Africa can aerosol concentrations at ATTO 2253 

drop again to their seasonal lows.   2254 

The composition of the aerosol at ATTO shows surprisingly little variation 2255 

throughout the year in spite of the huge change in total concentrations between 2256 

seasons. Organic aerosol is always the dominant mass fraction at about 70%, sul-2257 

fate comprises about 10-15%, followed by BCe (5-11%), ammonium (~5%), ni-2258 

trate (~4%) and chloride. Elevated concentrations of chloride were observed dur-2259 

ing a few episodes, when this species represented up to 13% of the total submi-2260 

cron particulate mass, which is consistent with earlier observations of long-range 2261 

transport of sea salt, going back to the ABLE-2B campaign (Talbot et al., 1990). 2262 

The ionic mass balance indicates that the aerosol was approximately acid-2263 

base neutral. While sulfate is mostly in the form of ammonium sulfate, there is 2264 

some indication that part of the nitrate could be present in the form of organic 2265 

nitrate. This is because the ratio between the fragments NO+ and NO2
+ (main ni-2266 

trate fragments measured by the ACSM at mass-to-charge ratios 30 and 46) is 2267 
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expected to be large (~10) when this ion is in organic forms, and low (2-3) when 2300 

in inorganic forms, such as ammonium nitrate (Alfarra et al., 2006; Fry et al., 2301 

2009). Large values for this ratio were often observed during this period and may 2302 

indicate the presence of organic nitrate.  2303 

The bulk composition of PM2.5 was measured for up to 10 elements by 2304 

EDXRF analysis on a set of samples obtained in March/April 2012. The analysis 2305 

showed a high abundance of crustal elements, illustrating one exemplary episode 2306 

of long-range dust transport from Africa (Fig. 31). Back trajectories indicate that 2307 

this period was indeed influenced by dust transport from Africa, which is a phe-2308 

nomenon observed annually and particularly pronounced in February, March, and 2309 

April (Prospero et al., 1981; Swap et al., 1992; Ben-Ami et al., 2012). Local 2310 

sources of mineral dust aerosol can be excluded, especially during the wet season, 2311 

because of the wetness of the soils. The prevalence of mineral dust aerosols dur-2312 

ing the wet season, when airmass trajectories reach from the North African deserts 2313 

to the Amazon Basin, in combination with observations of transatlantic dust 2314 

plumes by lidar, is strong evidence for the long-range origin of the observed crus-2315 

tal elements. 2316 

To explore the bioavailability of important trace elements, the oxidation 2317 

state and solubility of iron (Fe) in the PM2.5 aerosols were analyzed. The soluble 2318 

(and therefore bioavailable) fraction of Fe is an important parameter in the overall 2319 

biogeochemical cycles, with impact on the phosphorus cycle and biomass produc-2320 

tion (Liptzin and Silver, 2009). A soluble fraction of only 1.5% (1.8 ng m-3 Fe(III) 2321 

of 120 ng m-3 of total Fe) was found, suggesting that aeolian transport of Fe is not 2322 

likely to make a significant contribution of bioavailable Fe to the ecosystem at 2323 

ATTO. 2324 

The extended measurements of aerosol composition at the ATTO site, now 2325 

reaching well over a full year, suggest the need for a reassessment of the relative 2326 

contributions of biogenic and anthropogenic sources even in this very remote re-2327 

gion. Black carbon, a unique tracer of combustion, is present in a roughly equal 2328 

fraction throughout the year. Sulfate, which has a more complex mixture of 2329 

sources, also contributes a fairly constant fraction. In the rainy season, much of 2330 

this sulfate could come from biogenic or marine sources (Andreae et al., 1990), 2331 
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but the high concentrations during the August to December period suggest sub-2348 

stantial contributions from fossil fuel burning. Periods with aerosol compositions 2349 

suggesting pristine conditions (low BCe and sulfate, dominant organic matter) 2350 

occur more as episodes at ATTO than as seasonal characteristics, similar to what 2351 

is observed at the remote ZOTTO site in Siberia (Chi et al., 2013). 2352 

4.3.7 Microspectroscopic analysis of single aerosol particles 2353 

The microspectroscopic analysis of aerosol samples can be seen as a 2354 

‘snapshot’ of the aerosol population at a given time. In combination with the long-2355 

term aerosol measurements at the ATTO site, single particle characterization pro-2356 

vides detailed insights into the highly variable aerosol cycling in the rain forest 2357 

ecosystem. In the soft X-ray regime, STXM-NEXAFS is a powerful microscopic 2358 

tool with high spectroscopic sensitivity for the light elements carbon (C), nitrogen 2359 

(N), and oxygen (O) as well as a variety of other atmospherically relevant ele-2360 

ments (e.g., K, Ca, Fe, S, and Na). The technique allows analyzing the microstruc-2361 

ture, mixing state, and the chemical composition of individual aerosol particles. 2362 

As an example, Fig. 32 displays the STXM-NEXAFS analysis of an aerosol sam-2363 

ple with substantial anthropogenic pollution, collected at the ATTO site during the 2364 

dry season. X-ray microspectroscopy reveals a substantial fraction of internally 2365 

mixed particles with soot cores (strong π-bond signals) and organic coatings of 2366 

variable thickness. The spectral signature of the organic coating is characteristic 2367 

for secondary organic material (SOM) (Pöhlker et al., 2014). These observations 2368 

underline the dominance of aged pyrogenic aerosols at the ATTO site during the 2369 

dry season. During the rainy season, when biomass burning is absent and undis-2370 

turbed biosphere-atmosphere interactions prevail in the region, the aerosol popula-2371 

tion is dominated by biogenic aerosol, such as primary biological aerosol particles 2372 

(PBAP), biogenic SOA, and biogenic salts (Pöhlker et al., 2012). Figure 33 dis-2373 

plays STXM elemental maps of this typical rainy season aerosol population. 2374 

As mentioned in the previous section, the biogenic background aerosol in 2375 

the wet season (i.e., February to April) is episodically superimposed by transatlan-2376 

tic dust and smoke events. Statistical analysis of the electron microscope (EPMA) 2377 

results by hierarchical clustering reveals the abundance of the various particle 2378 

types observed at the ATTO tower in this season (Table 8). In order to determine 2379 

Formatted: Subscript

Deleted: 4 

Deleted: 5 

Deleted: 7 



 59 

the sources and possible chemical interactions, particles were classified into repre-2383 

sentative groups according to their chemical composition. They are classified as 2384 

“mineral” when Al, Si, O, and Ca are dominant, and also contain minor elements 2385 

like K, Na, Mg, and Fe. Particles are identified as being “organic”, when the con-2386 

centrations of C and O in the particles are similar and when they also contain 2387 

some P and S (<10 weight %). “Biogenic” particles occur in the larger size clas-2388 

ses; they have smooth boundaries and always contain C, O, S, N, P, and K. Irregu-2389 

lar crystallized particles with Na, Mg, S, O and C are classified as “salt” particles. 2390 

Soot particles can be distinguished by their morphology, and always contain the 2391 

elements C and O. 2392 

With single particle analysis, important information was obtained concern-2393 

ing the contribution from organic aerosol particles and the agglomeration of vari-2394 

ous types of particles. The majority of particles in the fine fraction consist of or-2395 

ganic matter with traces of S and K. This observation corroborates that small bio-2396 

genic potassium and sulfur-containing particles from primary emissions can act as 2397 

seeds for the condensation of organic material (Pöhlker et al., 2012).  2398 

4.3.8 Chemical composition of secondary organic aerosol 2399 

Measurements of the organic chemical composition of the aerosol over the 2400 

Amazon rainforest are rare. Levoglucosan, several mono- di- and polycarboxylic 2401 

acids, as well as isoprene tracer compounds have been identified in the aerosol 2402 

phase (Mayol-Bracero et al., 2002; Claeys et al., 2004; Schkolnik et al., 2005; 2403 

Claeys et al., 2010), whereas the contribution of highly reactive compounds, such 2404 

as monoterpenes and sesquiterpenes, to SOA in this region is still largely un-2405 

known.  2406 

The concentrations of monoterpene and sesquiterpene oxidation products 2407 

in ambient aerosol collected in November 2012 at the ATTO research site are 2408 

shown in Fig. 34. A median concentration of 102 ng m-3 was measured for the 2409 

sum of terpene oxidation products in the aerosol sampled over the Amazon rain 2410 

forest. As can be seen in Fig. 34, monoterpene oxidation products accounted for 2411 

the major part of the terpene oxidation products. Their concentration showed a 2412 

high variance during November ranging between 23 and 146 ng m-3. The oxida-2413 
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tion products derived from the pinene skeleton (α- and ß-pinene) were most abun-2414 

dant in the sampled aerosols, followed by limonene oxidation products. Among 2415 

the pinene derived oxidation products, MBTCA (3-methyl-1,2,3-2416 

butanetricarboxylic acid) was observed to be the most abundant individual mono-2417 

terpene oxidation product, with concentrations of up to 73 ng m-3, followed by 2418 

pinonic acid with a maximum concentration of 46 ng m-3 (van Eijck, 2013). Inter-2419 

estingly, these concentrations are in the same range as monoterpene oxidation 2420 

products measured during summertime in boreal forest environments (Vestenius 2421 

et al., 2014), ecosystems which are known to strongly emit monoterpenes. How-2422 

ever, these observations of high monoterpene product concentrations match with 2423 

the high monoterpene mixing ratios measured at the same site (Yañez-Serrano et 2424 

al., 2015).  2425 

The products from sesquiterpene oxidation showed much lower concentra-2426 

tions (Fig. 34). On average the sesquiterpene oxidation products reached about 2427 

10% of the monoterpene oxidation product concentration; however, on some days 2428 

they were as high as 26% of the total monoterpene oxidation product concentra-2429 

tion. Overall, twenty-three individual oxidation products of sesquiterpenes were 2430 

identified in the aerosol collected in the Amazonian rainforest. The total concen-2431 

tration of these sesquiterpene oxidation products ranged from 6 to 12 ng m-3. The 2432 

oxidation products could be assigned to four sesquiterpene precursors: β-2433 

caryophyllene, aromadendrene, cedrene, and isolongifolene. Among them, the 2434 

products from the oxidation of β-caryophyllene were the most abundant (van 2435 

Eijck, 2013). Very few measurements exist of sesquiterpene oxidation product 2436 

concentrations and actually none in tropical forests, which complicates a compari-2437 

son. Measurements in boreal ecosystems (Vestenius et al., 2014) showed mean 2438 

summertime concentrations of caryophyllinic acid (one of the β-caryophyllene 2439 

oxidation products) of about 8 ng m-3, which is a high concentration for a single 2440 

compound compared to the concentrations measured at ATTO, where the meas-2441 

ured concentration range of caryophyllinic acid is 0.26 – 1.38 ng m-3.    2442 

In summary, the contribution of monoterpene oxidation products to SOA 2443 

at ATTO is relatively high and essentially comparable with their contribution to 2444 
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boreal forest SOA, whereas the contribution of sesquiterpene products is much 2445 

less (about one tenth) than in boreal forest ecosystems.   2446 

5 Summary and Future Outlook 2447 

Our initial ecological studies have shown the ATTO site to be located in 2448 

an area of high biodiversity, containing forest and wetland ecosystems that are 2449 

representative of many regions in the central Amazon Basin. The meteorological 2450 

measurements reflect rainfall, temperature, and wind conditions typical of the 2451 

region, with pronounced seasonality in rainfall and airmass origins, but they also 2452 

show substantial interannual variability. Early micrometeorological studies have 2453 

characterized the nocturnal boundary layer and its coupling with the overlying 2454 

atmosphere, the properties of turbulence structures in the boundary layer, and the 2455 

formation of orographically induced gravity waves.  2456 

Continuous measurements of the carbon gases CO2, CO, and CH4 at five 2457 

heights reveal the effects of photosynthesis and respiration on the vertical distribu-2458 

tion of CO2, the presence of a source of CO at the forest floor, and yet unidenti-2459 

fied intensive and episodic sources of CH4. Ozone, VOC, and OH reactivity 2460 

measurements indicate an active photochemical cycle in the tropical boundary 2461 

layer and a strong forest sink for ozone.  2462 

The Amazonian aerosol is strongly influenced by seasonal variations in 2463 

airmass origins. In the rainy season, when airmasses come from the northeast 2464 

across almost undisturbed rain forest, there are long periods when natural, biogen-2465 

ic aerosols prevail, characterized by low particle number concentrations and a 2466 

very large fraction of organic matter. In spite of considerable research efforts, the 2467 

mode of formation of these aerosols remains enigmatic. Nucleation and new parti-2468 

cle formation events are almost never observed in clean air over Amazonia. The 2469 

deployment of instrumentation that explores the size range at the border between 2470 

gases and particles, and the measurement of species that are involved in the for-2471 

mation and growth of aerosol particles, such as H2SO4, extremely low volatility 2472 

organic compounds (ELVOCs), ammonia, and amines may shed light on the pro-2473 

cesses responsible for the formation of biogenic aerosols over the tropical forest 2474 

(Kulmala et al., 2014).  2475 
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During the rainy season, the biogenic aerosol over Amazonia is overprint-2504 

ed periodically by episodes of intense transatlantic transport, which bring Saharan 2505 

dust, smoke from fires in West Africa, Atlantic marine aerosols, and possibly pol-2506 

lution from fossil fuel burning in Africa, Europe, and North America to the site. In 2507 

contrast, during the dry season the dominant airmass source regions lie to the east 2508 

and southeast, where biomass and fossil fuel combustion result in persistent and 2509 

substantial production of pollution aerosols. 2510 

Overall, our measurements at ATTO support the view that there is no 2511 

longer any place on Earth that can be considered truly pristine. Even at this remote 2512 

site, trace gas and aerosol concentrations show the impact of anthropogenic emis-2513 

sions. For long-lived species, like CO2 and CH4, this reflects the secular increase 2514 

in concentrations as a result of global emissions. For shorter-lived trace gases and 2515 

aerosols, the effects of regional sources and long range transport can be detected 2516 

almost at all times, even though they may be very small during the cleanest peri-2517 

ods.  2518 

During 2015, we expect that many measurements will be relocated from 2519 

the 80-m towers to the 325-m tall tower. This will significantly enlarge the foot-2520 

print of the measurements of long-lived trace gases, especially CO2. Integration of 2521 

ATTO into networks for the study of carbon cycling, such as the proposed long-2522 

term, pantropical network that assesses NPP using multiple approaches 2523 

(Cleveland et al., 2015) could significantly increase the knowledge that can be 2524 

gained from this site. The challenge for the future will be to maintain these meas-2525 

urements over the coming decades, so that they can reveal secular trends in at-2526 

mospheric composition and the health of the Amazonian ecosystem. 2527 
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Figure captions 2574 

Figure 1: (a) Location of the ATTO site. The main map shows the access to the 2575 
site via the road and riverboat connections (background map from Google 2576 
Earth). (b) Topography in the region around the ATTO site. The Balbina 2577 
Reservoir is in the northwestern corner of the map. 2578 

Figure 2: Land cover and population density map of northern South America. The 2579 
land cover map (GlobCover 2009, downloaded from: http://www.esa-2580 
landcover-cci.org/, 11/07/14, ESA and UCLouvain) highlights vegetated 2581 
areas in green tones (deciduous forest, broadleaf forest, evergreen forest, 2582 
and mixed broadleaf and needleleaf forest) and water bodies in blue tones 2583 
(regularly flooded and permanently flooded areas). Populated areas (given 2584 
as population density map) span a range from 1 (light red) to 1000+ (dark 2585 
red) persons per km2 (from: Gridded Population of the World, Version 3 2586 
(GPWv3) provided by the Center for International Earth Science Infor-2587 
mation Network (CIESIN), Columbia University). The ATTO site is 2588 
marked by a star. 2589 

Figure 3: Back trajectory frequency plots and satellite fire maps for the ATTO site 2590 
in 2014. Back trajectories (9 days) have been calculated with HYSPLIT 2591 
(NOAA-ARL, GDAS1, start height 1000 m) (Draxler and Rolph, 2015). 2592 
Four back trajectories have been initiated per day (0:00, 06:00, 12:00, 2593 
18:00 UTC) – frequency plots are based on monthly trajectory ensembles. 2594 
Color coding of frequency plots: >10% (green), >1% (blue), >0.1% (cyan). 2595 
Monthly fire map derived from GFAS (Global Fire Assimilation System) 2596 
and averaged to 1 degree grid resolution (Kaiser et al., 2012). 2597 

Figure 4: Species turnover of the four inventoried forest types at the ATTO site. 2598 
Turnover is expressed as Shmida & Wilson’s (1985) index: SMI = (g+l) / 2599 
(a+b); where g and l are gained and lost species from site 1 to site 2; a and 2600 
b are the numbers of species in site 1 and site 2. TF = terra firme forest 2601 
upon plateau, Terr = terra firme forest upon fluvial terrace, Camp = cam-2602 
pinarana, and IG = seasonally flooded black-water forest (igapó). 2603 

Figure 5: Portion of camera view, contrast enhanced. Spatial and temporal crown 2604 
color differences are most evident in the five driest months (July to No-2605 
vember) when crowns present rapidly changing phenostages associated 2606 
with leaf flush -- briefly deciduous pre-flush abscission, young red unex-2607 
panded leaves, or bright green recently expanded leaves. 2608 

Figure 6: Plot of bulk density (g cm-3) and carbon stocks (Mg ha-1) against soil 2609 
depth. Pronounced differences of belowground carbon stocks between ter-2610 
race and plateau occur in deeper layers (Depth > 100 cm). 2611 

Figure 7: Wind roses for (a) dry season (15 June - 30 Nov) and (b) wet season (1 2612 
Dec - 14 June) based on half-hourly averages of wind speed and direction 2613 
measured at 81 m a.g.l. for the period from 18 Oct 2012 to 23 July 2014. 2614 

Figure 8: Diurnal profiles of temperature for a) wet season (March 2014) and b) 2615 
dry season (September 2013). Contour plots interpolate from measure-2616 
ments at 0.4 m, 1.5 m, 4 m, 12 m, 26 m, 36 m, 40 m, 55 m, 73 m, and 81 2617 
m. 2618 
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Figure 9: Monthly sums of precipitation at the ATTO site for the years 2012 to 2625 
2014. For comparison the data from the Manaus INMET-station 2626 
(www.inmet.gov.br) for the standard reference period (1961-1990) are 2627 
shown.  2628 

Figure 10: The dimensionless standard deviation function for a) vertical velocity 2629 
, b) virtual temperature ϕθv(ζ), and c) CO2 concentration ϕc(ζ) for 2630 

the ATTO site from measurements at 39.5 m. 2631 

Figure 11: From top to bottom, the departure of the dimensionless standard devia-2632 
tion function, ϕa(ζ), from its surface-layer behavior for θv, q, and c, re-2633 
spectively. 2634 

Figure 12: Upper panels: Temporal evolution of the three wind components for 2635 
the night of 27 April 2012 at each of the ATTO observation levels. The 2636 
lower panel shows the corresponding eddy covariance CO2 fluxes. 2637 

Figure 13: Mean multi-resolution turbulent kinetic energy (TKE) spectra at the 2638 
three observation levels. 2639 

Figure 14: Upper panel: Multi-resolution 42-m vertical velocity spectra for the 2640 
night of 04 May 2012 (colors and contours), and mean wind difference be-2641 
tween the 80-m and 42-m levels (red line, scale at the right side). Lower 2642 
panel: temporal evolution of vertical velocity at the 42-m level for the 2643 
same night. 2644 

Figure 15: (a) Area of approximately 900 km2 surrounding the ATTO site. The 2645 
axes represent the directions (0°, 5°, 10°, 15°, ..., 175°, 180°) from the 2646 
ATTO tower. The color scale represents terrain elevation in meters above 2647 
sea level. (b) Schematic with axes corresponding to (a); the black dots in-2648 
dicate gravity wave events induced by terrain undulations and the gray 2649 
points represent gravity wave events not induced by terrain effects. 2650 

Figure 16: Coherent structures time scale of w, u, T, and q, recorded at heights of 2651 
42 m and 81 m at the ATTO site. 2652 

Figure 17: Diurnal cycle of a) CO2 , b) CH4, and c) CO. The CO2 plot is computed 2653 
from the measurements in January 2013, the CH4 and CO plots from all 2654 
available measurements until the end of 2014. Time is given in UT, with 2655 
the first 12 hours repeated for clarity. The white vertical lines indicate the 2656 
times of local sunrise (10 UT) and sunset (22 UT), respectively. Black 2657 
dashed horizontal lines show the heights of the 5 inlets.  2658 

Figure 18: Examples of sporadic concurrent increases in CH4 and CO recorded at 2659 
the lowermost (4 m) inlet in 2012.  2660 

Figure 19: Statistics of monthly daytime (1700-2000 UT) 30-min measurements 2661 
of CO2 at the 80-m walk-up tower. Shown are whisker plots indicating 2662 
min/max and quartiles of the monthly measurements. The white line in the 2663 
box indicates the median. Brown: 4-m level, green: 38-m level, blue: 79-m 2664 
level. 2665 

Figure 20: Statistics of monthly daytime (1700-2000 UT) 30-min measurements 2666 
of CH4 and CO at the 79-m level of the 80-m walk-up tower. Shown are 2667 
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whisker plots indicating min/max and quartiles of the monthly measure-2701 
ments. The white line in the box indicates the median. 2702 

Figure 21: Monthly averaged daytime (1700-2000 UT) measurements of CO2, 2703 
CH4 and CO at the 79 m level of the ATTO tower (blue line, standard de-2704 
viation indicated by shading) in comparison with monthly averaged con-2705 
centration measurements from Ascension Island (brown; data for 2014 are 2706 
preliminary; Dlugokencky et al., 2014; Novelli and Masarie, 2014) and 2707 
Cape Verde (green: Carpenter et al., 2010, updated). 2708 

Figure 22: Profiles of isoprene derived from measurements at three different 2709 
heights (0.05 m, 24 m, and 79.3 m) below, within, and above the cano-2710 
py,respectively, in November 2012 (transition period from dry to wet sea-2711 
son). 2712 

Figure 23: Isoprene and total OH reactivity measurements during November 2012 2713 
at the highest point above the canopy (79 m), binned as 60 minute medians 2714 
for all periods when both data were available (about 4 days). The isoprene 2715 
mixing ratio scale (left axis) was set to match its contribution to the total 2716 
OH reactivity (1 ppb isoprene = 2.46 s-1 isoprene OH reactivity), which is 2717 
presented on the right axis. The upper panel shows the diel variation of 2718 
temperature (measured at 81 m) and the net radiation. 2719 

Figure 24: Mean diurnal profiles of O3 mixing ratios measured on the walk-up 2720 
tower during the dry season (left panel, 15 August to 14 September 2013) 2721 
and the wet season (right panel, 1 February to 3 March 2014). 2722 

Figure 25: Time series of scattering and absorption coefficients and particle num-2723 
ber concentration (diameter > 80 nm). 2724 

Figure 26: Intercomparison of the median particle number size distributions from 2725 
the SMPS, OPS, WRAS, and UHSAS instruments. Instruments were oper-2726 
ated for 6 h using the same inlet line during clean rainy-season conditions 2727 
(26 Jan 2015). 2728 

Figure 27: Median particle number (a) and volume (b) size distributions from the 2729 
SMPS and OPS instruments, representative for conditions during the wet 2730 
(dashed lines) and dry (solid lines) seasons. Plotted data sets comprise 2731 
continuous SMPS and OPS data covering 7-day periods for wet (06-13 2732 
May 2014) and dry (13-20 Sep 2014) season conditions. Integrated 2733 
number and volume concentrations for the selected wet season period: 2734 
NAit,wet = 141 cm-3, NAcc,wet = 130 cm-3, NTotal,wet = 282 cm-3; 2735 
Vsub-µ,wet = 0.5 µm3 cm-3, Vsuper-µ,wet = 1.5 µm3 cm-3, 2736 
VTotal,wet = 2.0 µm3 cm-3. Integrated number and volume concentrations for 2737 
the selected dry season period: NAit,dry = 395 cm-3, NAcc,dry = 967 cm-3, 2738 
NTotal,dry = 1398 cm-3; Vsub-µ,dry = 4.0 µm3 cm-3, Vsuper-µ,dry = 3.5 µm3 cm-3, 2739 
VTotal,dry = 7.5 µm3 cm-3. 2740 

Figure 28: Median particle number (a) and volume (b) size distributions from the 2741 
SMPS and OPS instruments, showing the contrast between pristine wet 2742 
season conditions and episodes with long-range transport influence (i.e., 2743 
Saharan dust, African biomass burning, and sea salt). Wet season number 2744 
and volume size spectra are taken from Fig. 27. The long-range transport 2745 
size spectrum is averaged from three selected episodes in Feb and Mar 2746 
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2014. Integrated number and volume concentrations for the long-range 2758 
transport episodes: NAit,long = 80 cm-3, NAcc,long = 308 cm-3, 2759 
NTotal,long = 409 cm-3; Vsub-µ,long = 2.3 µm3 cm-3, Vsuper-µ,long = 12.7 µm3 cm-2760 
3, VTotal,long = 15.0 µm3 cm-3. 2761 

Figure 29: Average number (a) and volume (b) size distributions of the total and 2762 
fluorescent aerosol particles measured by WIBS. Orange lines refer to the 2763 
size-resolved fraction of FBAP. 2764 

Figure 30: Time series of monthly mean aerosol mass concentrations and chemi-2765 
cal speciation at the ATTO site, measured by ACSM from May 2014 to 2766 
April 2015. 2767 

Figure 31: Average bulk elemental concentrations (in weight-percent) of PM 2.5 2768 
aerosols collected at 80 m height between 7 March and 21 April 2012. 2769 

Figure 32: STXM images and elemental maps with corresponding NEXAFS spec-2770 
tra of aerosol particles collected at the ATTO site during a period with an-2771 
thropogenic pollution. (a) Carbon post-edge image (293 eV) of a charac-2772 
teristic region showing internally mixed droplet-like particles with cores 2773 
(black arrows) and coatings of variable thickness (green boxes). (a) Car-2774 
bon elemental map (pre-edge 280 eV, post-edge 293 eV) showing the dis-2775 
tribution of carbonaceous material. (a) NEXAFS spectra showing high 2776 
abundance of pi- (C=C) and keto (O=C) functional groups in cores. Coat-2777 
ing reveals high abundance of carboxylic acid groups (CCOH) and weaker 2778 
signals for keto and pi groups. 2779 

Figure 33: Microscopic images of aerosol particles during rainy season. (a) SEM 2780 
images of representative region. (b) STXM carbon post-edge image 2781 
(293 eV) and (c-f) STXM elemental maps of same region. The particle 2782 
types are indicated in panel (b): primary biological aerosol particles (re-2783 
gion i), droplet-like SOA particles (region ii), and potassium-rich biogenic 2784 
salts (region iii). 2785 

Figure 34: Concentration of monoterpene and sesquiterpene oxidation products in 2786 
ambient aerosol collected in November 2012 over the Amazon rain forest. 2787 
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Tables 4054 

Table 1: Location and specifications of the towers and masts at the ATTO site. 4055 

 4056 

Towers/masts Coordinates 

(WGS 84) 

Base elevation 

[m] 

Height  

[m] 

Walk-up tower S 02° 08.647’ 

W 58° 59.992’ 

130 80 

Triangular mast S 02° 08.602’ 

W 59° 00.033’ 

130 81 

ATTO Tall Tower S 2° 08.752' 

W 59° 00.335’ 

130 325 

 4057 

Formatted: Heading 1, Indent:
Left:  0 cm, Hanging:  0.76 cm
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Table 2: Overview of (micro)-meteorological sensors, trace gas and aerosol instrumentation installed at the walk-up tower. 

Quantity Instrument Height a.g.l./depth [m] Institution 

Soil heat flux Heat flux sensor (HFP01, Hukseflux, Neth-
erlands) 

0.05 INPA, EMBRAPA, 
MPIC 

Soil moisture Water content reflectometer (CS615, 
Campbell Scientific Inc., USA) 

0.1; 0.2; 0.3; 0.4; 0,6; 1.0 INPA, EMBRAPA 

Soil temperature Thermistor (108, Campbell Scientific Inc., 
USA) 

0.1; 0.2; 0.4 INPA, EMBRAPA, 
MPIC 

Shortwave radiation (incoming and re-
flected) 

Pyranometer (CMP21,Kipp & Zonen, 
Netherlands) 

75.0 INPA, EMBRAPA 

Longwave radiation (atmospheric and 
terrestrial) 

Pyrgeometer (CGR4, Kipp & Zonen, Neth-
erlands) 

75.0 INPA, EMBRAPA 

PAR (incoming and reflected) Quantum sensor (PAR LITE, Kipp & Zonen, 
Netherlands) 

75.0 USP 

Net radiation Net radiometer (NR-LITE2, Kipp & Zonen, 
Netherlands) 

75.0 INPA, EMBRAPA 

Ultra violet radiation UV radiometer (CUV5, Kipp & Zonen, 
Netherlands) 

75.0 INPA, EMBRAPA 

Rainfall Rain gauge (TB4, Hydrological Services 
Pty. Ltd., Australia) 

81.0 INPA, EMBRAPA 

Air temperature and relative humidity Termohygrometer (CS215, Rotronic 
Measurement Solutions, UK) 

81.0; 73.0; 55.0; 40.0; 36.0; 
26.0; 12.0; 4.0; 1.5; 0.4 

INPA, EMBRAPA 

Atmospheric pressure Barometer (PTB101B, Vaisala, Finnland) 75.0 INPA, EMBRAPA 

Wind speed and direction 2D sonic anemometer (Windsonic, Gill 
Instruments Ltd., UK) 

73.0; 65.0; 50.0; 42.0; 26.0; 
19.0 

INPA, EMBRAPA 
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Wind vector components (u, v, w)  3D sonic anemometer (Windmaster, Gill 
Instruments Ltd., UK) 

81.0; 46.0; 36.0; 4.0; 1.0 INPA, EMBRAPA 

CO2 and H2O molar density  IRGA (LI-7500A, LI-COR Inc., USA) 
IRGA (LI-7200, LI-COR Inc., USA) 

81.0; 46.0 
1.0 

INPA, EMBRAPA 

Vertical profile of CO2, CH4 and CO mix-
ing ratios 

G1301 (CFADS-109) and G1302 (CKADS-
018; both Picarro Inc., USA) 

4.0; 24.0; 38.0; 53.0; 79.0 MPI-BGC, MPI-C 

Vertical profile of NO, NO2, O3, CO2, and 
H2O mixing ratios 

CLD 780TR (Eco Physics, Switzerland), BLC 
(Droplet Measurement Technologies Inc., 
USA), TEI 49i (Thermo Electron Corp, USA), 
IRGA 7000 (LI-COR Inc., USA)  

0.05; 0.5; 4.0; 12.0; 24.0; 
38.3; 53.0; 79.3 

INPA, MPI-C, UEA 

Vertical profile of VOCs  Proton Transfer Mass Spectrometer (PTR-
QMS 500, Ionicon, Austria) 

0.05; 0.5; 4.0; 12.0; 24.0; 
38.3; 53.0; 79.3 

MPI-C, USP, INPA 

Vertical profile of total reactivity to OH Comparative Reaction Method, Proton 
Transfer Mass Spectrometer 

0.05; 0.5; 4.0; 12.0; 24.0; 
38.3; 53.0; 79.3 

MPI-C 

Black carbon equivalent Multi Angle Absorption Photometer 
(model 5012, Thermo-Scientific, USA) 

60.0 MPI-C 

Refractory black carbon Single Particle Soot Photometer (SP-2, 
Droplet Measurement Technologies, USA) 

60.0 MPI-C 

Black carbon equivalent Aethalometer (model AE31 or AE33, 
Magee Scientific Corporation, USA) 

60.0 USP 

Aerosol scattering Nephelometer (model 3563, TSI, USA) 

Ecotech Aurora 3000; wavelengths 450, 
525, and 635 nm 

60.0 USP 

Aerosol number concentration Condensation particle counter (model 
3022A,TSI, USA) 

60.0 MPI-C 

Aerosol size distribution  Ultra-High Sensitivity Aerosol Spectrome-
ter (Droplet Measurement Technologies, 

60.0 
 

MPI-C 

Deleted: B
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USA) 
Scanning Mobility Particle Sizer (SMPS, TSI 
model 3080, St. Paul, MN, USA; size range: 
10-430 nm) 
Optical Particle Sizer (OPS, TSI model 
3330; size range: 0.3-10 µm) 
Wide Range Aerosol Spectrometer (WRAS, 
Grimm Aerosol Technik, Ainring, Germa-
ny; size range: 6 nm - 32 µm) 

 
60.0 
 
 
60.0 
 
3.0 

Primary Biological Aerosol Particles 
(PBAP) 

Wideband Integrated Bioaerosol Spec-
trometer (WIBS-4, DMT) 

60.0 MPI-C 

Aerosol chemical composition Aerosol Chemical Speciation Monitor 
(ACSM, Aerodyne, USA) 

60.0 USP 
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Table 3: Tree species richness, forest structure, above-ground wood biomass (AGWB) and carbon stocks of the inventoried forest plots. 

 

Density DBH Tree height Basal area Species rich-
ness AGWB2 Carbon 

stock3 

 
 Mean±sd (max) Mean±sd (max)    AGWB 

 
(Trees ha-1) (cm) (m) (m2 ha-1) (spp. ha-1) (Mg ha-1) (Mg C ha-1) 

Floodplain (igapó)1        
plot1 695 19.5±8.1 (136) 12.2±3.8 (27) 26.8 26 126 63 
plot2 540 20.9±12.0 (78) 10.5±4.2 (29) 25.8 49 146 73 
plot3 928 17.9±9.4 (117) 11.5±1.9 (18) 30.3 31 173 87 
Mean±sd 721±195 19.4±1.5 11.4±0.9 27.6±2.4 35±12 148±24 74±12 
Campina/campinarana        
plot 1 560 20.1±12.1 (90) 15.2±4.7 (34) 24.3 82 190 95 
plot 2 503 17.2±10.4 (83) 11.2±3.6 (26) 16.3 46 98 49 
plot 3 786 18.3±17.7 (162) 12.9±5.0 (33) 27.8 65 185 93 
Mean±sd 616±150 18.5±1.5 13.1±2.0 22.8±5.9 64±18 158±52 79±26 
Ancient fluvial terrace        
plot 1 516 20.9±11.2 (100) 14.9±3.0 (30) 22.7 135 181 91 
plot 2 483 20.8±12.7 (117) 14.8±3.3 (32) 22.6 120 194 97 
plot 3 492 21.1±14.6 (177) 14.8±3.5 (38) 25.4 126 232 116 
Mean±sd 497±17 20.9±0.2 14.8±0.1 23.6±1.6 127±8 202±27 101±13 
Terra firme        
plot 1 522 21.3±13.9 (152) 20.5±4.6 (40) 26.4 132 318 159 
plot 2 644 20.5±12.0 (120) 20.4±4.3 (38) 28.6 142 335 168 
plot 3 624 22.1±12.5 (96) 21.1±4.4 (36) 31.7 137 368 184 
Mean±sd 597±65 21.3±0.8 20.7±0.4 28.9±2.7 137±5 340±25 170±13 

1 Mean flood height in the igapó floodplains: plot 1: 3.40±1.06 m; plot 2: 3.12±0.62 m; plot 3: 1.81±0.64 m 
2 Aboveground wood biomass (AGWB) was calculated using a pantropical allometric equation considering diameter (DBH in cm), tree height (H in m) and 

wood specific gravity (ρ in g cm-3) as independent parameters (Feldpausch et al., 2012): AGWB = -2.9205 + 0.9894 ×ln (DBH2 × H × ρ) 
3 The carbon stock was estimated by 50% of the AGWB (Clark et al., 2001) 
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Table 4: Carbon stocks, soil bulk density, concentrations of K, Mg, Ca, P, Total reserve bases (∑RB), clay, silt, and sand, and Quesada’s index 

of the forest plots. 

a) Total cumulative C stock up to 2 m depth. Mean per plot and their respective standard deviations 
b) Mean nutrient concentration up to 30 cm depth 
c) Quesada’s Index indicating soil physical constraints in which higher values of the index show stronger physical constraint. It is a semi-quantitative index and does not 
show intermediate values, therefore the value shown in the “means” line is the median value of the three plots. 

 
C stock 

 
(Mg ha-1) a 

Bulk 
density 
(g cm-3) 

K 
 

(mmolc kg-1)b 

Mg 
 

(mmolc kg-1)b 

Ca 
 

(mmolc kg-1)b 

P 
 

(mg kg-1) 

∑RB  
(mmolc kg-1 

clay)2 

Clay  
 

(%) 

Silt  
 

(%) 

Sand  
 

(%) 

Quesada’s 
Indexc 

 

PLATEAUS            
1 143.7±8.7 0.9 0.3 0.4 0.4 84.8 1.7 85.1 5.2 9.7 0 

2 160.7±7.6 0.9 0.4 0.4 0.8 125.9 1.8 86.2 4.6 9.2 0 

3 164.1±6.9 0.9 0.4 0.3 0.8 121.4 1.0 84.6 3.8 12.1 0 

Means 156.2±10.9 0.9 0.4 0.4 0.7 100.2 1.5 85.3 4.5 10.4 0 

            
TERRACES            

1 140.2±6.4 1.2 0.3 0.4 0.6 92.5 4.9 52.8 12.4 34.8 3 

2 129.4±6.8 1.1 0.3 0.4 0.7 181.1 5.1 70.7 7.1 24.8 2 

3 140.8±5.9 1.1 0.4 0.5 0.8 129.1 5.5 68.3 6.4 25.4 1 

Means 136.8±6.4 1.0 0.3 0.4 0.7 161.1 5.2 74.3 6.6 19.3 2 
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Table 5: Percentage of occurrence of Cava’s classes for dry and wet season obtained at the 1 

ATTO site and a comparison with the results found by Cava for the Duke Forest, North 2 

Carolina, USA.  3 

Class ATTO Duke 

 Wet Dry Avg. Avg. 

I 46.8 % 49.1 % 47.9 % 45.7 % 

II 14.0 % 28.3 % 21.2 % 5.9 % 

III 7.6 % 7.6 % 7.6 % 29.2 % 

IV 3.8 % 3.7 % 3.75 % 1 % 

V 27.8 % 11.3 % 19.6 % 18.2 % 

 4 

Table 6: Distribution of Cava’s classes associated with the turbulence regimes for the 5 

ATTO site nocturnal boundary layer. 6 

 7 

 Regime 1 Regime 2 Regime 3 

 Wet Dry Wet Dry Wet Dry 

Class I 19.2 % 49 % 38.5 % 16 % 42.3 % 35 % 

Class IV 100 % 67 % 0 % 0 % 0 % 33 % 

Class V 25 % 50 % 25 % 27 % 50 % 23 % 
 8 
  9 
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 12 

Table 7: Summary of aerosol optical parameters for the dry and wet seasons. Average and 13 
standard deviations are calculated from 60-min data. 14 

  Dry season Wet season 

  Mean Std. Dev. Mean Std. Dev. 

Scattering 
coefficient  
(σs, Mm-1) 

450 nm 31 15 8.0 7.4 

550 nm 23 11 6.4 6.5 

700 nm 15 8 4.8 5.3 

Scattering 
Ångström 
Exponent 
(ås) 
 

450/700 1.62 0.26 1.25 0.71 

Absorption 
coefficient  
(σa, Mm-1) 
 

637 nm 3.46 2.32 0.52 1.25 

Absorption 
Ångström 
Exponent 
(åa) 
 

470/960 1.40* 0.26 1.53* 0.36 

Mass  
absorption 
cross-
section  
(αa, m²/g) 

637 nm   13.5§  

 15 
* Calculated by a log-log linear fit including the last six wavelengths measured by the Ae-16 
thalometer (R² > 0.99).  17 
§ Obtained by orthogonal regression (R² = 0.92) 18 

19 
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Table 8: Relative abundance of single particle types obtained at top of the walk-up tower in 22 
April 2012 (in percent). 23 

 24 
Date 

April 2012 
Size fraction 

(μm)  Organic Organic  
with S,K Mineral Biogenic Salts Soot 

1 
0.25~0.5 70 13 17 0 0 0 
0.5~1.0 0 27 71 1.2 0 0 
1.0~2.0 24 28 47 1.7 0 0 

16 
0.25~0.5 42 58 0 0 0 0 
0.5~1.0 60 32 8 0 0 0 
1.0~2.0 50 5.3 16 13 16 0 

17 
0.25~0.5 82 6.1 3 9.1 0 0 
0.5~1.0 37 27 6.7 17 13 0 
1.0~2.0 0 79 21 0 0 0 

18 
0.25~0.5 72 28 0 0 0 0 
0.5~1.0 41 36 21 2.4 0 0 
1.0~2.0 34 31 17 5.7 0 11 

 25 
 26 
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