
Manuscript prepared for Atmos. Chem. Phys.
with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls.
Date: 18 July 2015

Ensemble data assimilation of total column ozone
using a coupled meteorology-chemistry model and its
impact on the structure of Typhoon Nabi (2005)
S. Lim1,3,4, S. K. Park1,2,3,4, and M. Zupanski5

1Department of Atmospheric Science and Engineering, Ewha Womans University, Seoul, Republic
of Korea
2Department of Environmental Science and Engineering, Ewha Womans University, Seoul,
Republic of Korea
3Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul,
Republic of Korea
4Severe Storm Research Center, Ewha Womans University, Seoul, Republic of Korea
5Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins,
CO, USA

Correspondence to: S. K. Park (spark@ewha.ac.kr)

Abstract. Ozone (O3) plays an important role in chemical reactions and is usually incorporated in

chemical data assimilation (DA). In tropical cyclones (TCs), O3 usually shows a lower concentration

inside the eyewall and an elevated concentration around the eye, impacting meteorological as well

as chemical variables. To identify the impact of O3 observations on TC structure, including meteo-

rological and chemical information, we developed a coupled meteorology-chemistry DA system by5

employing the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and

an ensemble-based DA algorithm – the maximum likelihood ensemble filter (MLEF). For a TC case

that occurred over East Asia, Typhoon Nabi (2005), our results indicate that the ensemble forecast is

reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern

China. Similarly, the assimilation of O3 observations impacts meteorological and chemical variables10

near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was

over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest

impact on chemical variables adjustment was at higher levels. The impact on meteorological vari-

ables was similar in both over China and near the TC. The analysis results are verified using several

measures that include the cost function, root-mean-squared (RMS) error with respect to observa-15

tions, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on

the analysis – the cost function and RMS error have decreased by 16.9 and 8.87 %, respectively. In

particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker

maximum over northeast China.
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1 Introduction20

The air quality forecast is related to emissions, transport, transformation and removal processes, and

to the prevailing meteorological conditions. Therefore, the coupled meteorology–chemistry model

is essential for the air quality and weather forecasting (e.g., Carmichael et al., 2008). The coupled

system forecast is improved through coupled meteorology–chemistry data assimilation (DA), which

estimates the best initial conditions by combining the information from the model and observations25

in a mathematically consistent manner (e.g., Houtekamer and Mitchell, 1998; Elbern and Schmidt,

1999; Wang et al., 2001; Evensen, 2003; Park and Zupanski, 2003; Navon, 2009; Zupanski, 2009;

Park et al., 2015).

Ozone (O3) has a relatively long photochemical lifetime and high concentrations at high latitude

and in the stratosphere, except during ozone hole conditions. It is a passive tracer at synoptic scale or30

smaller; thus variations of total column O3 in space and time are a result of the atmospheric flow, and

is highly correlated to many meteorological variables in the upper troposphere (Wu and Zou, 2008).

Assimilation of O3 has several motivations such as (Lahoz et al., 2007): 1) taking better account of

stratospheric O3 when assimilating satellite radiance data; 2) leading to better radiative forcing when

used by the model radiation scheme; 3) providing useful dynamical information via the motion of O335

in the atmosphere; and 4) improving the accuracy of UV index forecasting. Moreover, the improved

stratospheric O3 distribution by DA can affect meteorological variables such as stratospheric winds

and temperature as well as other chemical variables (e.g., Lahoz et al., 2007; Park et al., 2015).

O3 is also relevant to the structure of tropical cyclones (TCs), showing a lower concentration just

inside the eyewall and elevated concentration around the eye (e.g., Carsey and Willoughby, 2005;40

Zou and Wu, 2005; Wu and Zou, 2008), which is caused by the updraft in the eyewall and subsi-

dence in the eye (Zou and Wu, 2005). Using these relations, the daily total column O3 from Total

Ozone Mapping Spectrometer (TOMS) showed that mutual adjustment occurred between the TC

and its upper tropospheric environment on a synoptical timescale (Rodgers et al., 1990; Stout and

Rodgers, 1992). The linear relationship between total column O3 from TOMS and mean vertically-45

integrated potential vorticity (MPV) was used to improve hurricane or winter storm prediction (e.g.,

Jang et al., 2003; Zou and Wu, 2005; Wu and Zou, 2008). However, these studies employed a mete-

orological model, not the coupled meteorology–chemistry model. They used the standard dynamical

variables as control variables and empirical regressions to develop a cross-correlation between O3

and dynamical model variables.50

In this study, we directly assimilate the total column O3 from the Ozone Monitoring Instrument

(OMI) to identify the impact of O3 observations on TC structure including meteorological and chem-

ical information in a coupled meteorology–chemistry model (e.g., WRF-Chem) with ensemble-

based DA system (e.g., Maximum Likelihood Ensemble Filter; MLEF). We define an augmented

control variable that contains both meteorological and chemical variables. Here meteorological vari-55

ables consist of dynamical variables (e.g., wind components) and physical variables (e.g., water
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vapor, cloud water, etc.). Therefore, the cross-correlations between meteorological and chemical

variables are obtained directly from ensemble forecasts (e.g., Park et al., 2015). Section 2 describes

the methodology, and Sect. 3 presents results. Conclusions are provided in Sect. 4.

2 Methodology60

2.1 Model

In this research, we use the Weather Research and Forecasting (WRF) model coupled with Chem-

istry (WRF-Chem) version 3.4.1 as a prediction model on a regional scale. It simulates the emission,

transport, mixing and chemical transformation of trace gases and aerosols simultaneously with me-

teorology (Grell et al., 2005). The WRF-Chem uses configuration options for various meteorological65

processes such as the WRF Single-Moment 6-class (WSM6) scheme for the microphysics, the Com-

munity Atmospheric Model (CAM) scheme for the radiation physics, the Monin–Obukhov scheme

for the surface layer, the Noah land surface model for the land surface, the Yonsei University (YSU)

scheme for the planetary boundary layer, and the Kain–Fritsch scheme for the cumulus parameteriza-

tion. These are the recommended physics options for the regional climate case at 10–30 km grid size.70

As an advection option, the monotonic transport is applied to turbulent kinetic energy and scalars

such as mixing ratios of water vapor, cloud water, rain, snow and ice and chemical species, which

is commonly used for real-time and research applications (e.g., Chapman et al., 2009; Yang et al.,

2011). Regarding the chemical mechanism, the Carbon Bond Mechanism version Z (CBM-Z) with-

out Dimethylsulfide scheme is used for gas-phase chemistry. The CBM-Z includes the prediction of75

O3 and several other chemical constituents (Fast et al., 2006).

In terms of the DA system, we use an ensemble-based DA method called the Maximum Like-

lihood Ensemble Filter (MLEF; Zupanski, 2005; Zupanski et al., 2008). The MLEF generates the

analysis solution which maximizes the likelihood of the posterior probability distribution, obtained

by minimization of a cost function. The MLEF belongs to the family of deterministic ensemble fil-80

ters, hence it is a hybrid between variational and ensemble DA methods. The MLEF employs a cost

function derived using a Gaussian probability density function and produces both the analysis and

the background error covariance (Zupanski, 2005). It is well suited for use with highly nonlinear

observation operators, for a small additional computational cost of minimization using the Hessian

preconditioning (Zupanski, 2005; Zupanski et al., 2007b, 2008), and has been employed in many85

studies including uncertainty analysis, parameter estimation and data assimilation (e.g., Zupanski

and Zupanski, 2006; Zupanski et al., 2007a; Lokupitiya et al., 2008; Kim et al., 2010; Apodaca

et al., 2014; Tran et al., 2014; Park et al., 2015).

The coupling between the MLEF and WRF-Chem is made through an interface module that trans-

forms the MLEF control variables into the netcdf file of WRF-Chem, and vice versa. This inter-90

face module is a component of MLEF, and hence the WRF-Chem is not altered.
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2.2 Observations

Satellite retrievals often provide estimates of chemical concentration as a total vertical column, and

they cover a wide geographical range compared to other measurements (e.g., Silver et al., 2013). In

our study, the total column O3 obtained by OMI is used as an observation. OMI is a nadir-viewing95

near-UV/Visible CCD spectrometer aboard NASA’s Aura satellite (OMI Team, 2012). The total

column O3 is Level 2 data (OMTO3) based on the Total Ozone Mapping Spectrometer (TOMS)

v8.5 algorithm, which is obtained from an orbital swath with a resolution of 13km× 24km at nadir

(OMI Team, 2012). It achieves global coverage in one day. In this experiment, we did not apply

the quality flags because the first appearance of the row anomaly that affects particular viewing100

directions, corresponding to the rows on the CCD detectors (OMI Team, 2012) did not occur in

2005, when the TC case considered occurred (i.e., Typhoon Nabi, 2005). Therefore, we employ the

OMI data without quality flags.

Figure 1 shows the total column O3 from OMI at 04:05 UTC 3 September 2005. It shows a lower

concentration just inside the eyewall and elevated concentration around the eye. This distinct dis-105

tribution is well described when the TC has the strongest intensity in the intensifying stages (e.g.,

Carsey and Willoughby, 2005). Note that OMI switches from its normal global mode to zoom-

in mode, to perform spatial zoom (higher resolution) measurements, for a 24 h period about once

a month. It occurs when OMI finishes its last orbital pass over Europe, and returns to global mode

after 14–15 orbits or about 24 h later. During this period of zoom-in mode, OMI has no global110

coverage of data (OMI Team, 2012). Typhoon Nabi (2005) reached the maximum intensity on 2

September when OMI entered in the zoom-in mode. Due to the lack of O3 data in our domain on 2

September, we have alternatively chosen 3 September for the analysis of O3 properties during the

maximum development of the TC case.

2.3 Experimental design115

For the TC case, we choose Typhoon Nabi (2005), which lasted several days from 29 August 2005

until 8 September 2005. Nabi moved westward after its formation and passed near Saipan on 31 Au-

gust as an intensifying TC, transformed to a super typhoon on 1 September, and reached its peak with

winds of 175 km h−1 (10-min average) on 2 September. It became weak while turning to the north

and striking Kyushu on 6 September. Nabi turned to the northeast after passing by South Korea, and120

transformed to an extratropical cyclone passing over Hokkaido on 8 September.

In general the DA is composed of two components – prediction and analysis. A meaningful cy-

cling of DA is inherently related to the prediction component, as every new cycle begins from the

forecast guess from the previous cycle. The analysis component of DA is also important, as it pro-

vides the impact of observations on the analysis produced by DA. In the current research, we focus125
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on the analysis component of DA, as the first step towards the eventual DA system for OMI obser-

vations.

Conducting the DA cycling with several cycles can make DA more powerful. Although one can

potentially have 4 cycles with a 6-hour assimilation window in a day, the limited availability of OMI

observations over the model domain allows only one DA cycle per day. Therefore, we only perform130

the first DA cycle, which has the strongest impact among the cycles. We believe that this single cycle

DA experiment is sufficient to illustrate the effect of coupled meteorology-chemistry DA.

We focused on a single DA cycle from 00:00 to 06:00 UTC 3 September 2005, which is one of the

strongest periods of its lifetime. We conduct the experiment with 32 ensembles and 6 h assimilation

window. Note that the OMI observations have an approximate frequency of once per day over the135

typhoon and the surrounding geographical area. Therefore, adding more DA cycles would not be

beneficial since no additional data are available. In the future we plan to add a capability to assim-

ilate other observations, such as meteorological observations and all-sky infrared radiances from a

geostationary satellite.

The initial and lateral boundary conditions for meteorological states are provided by the National140

Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS), while those for

chemical variables are obtained from the Model for Ozone and Related chemical Tracers (MOZART)

chemistry global model of the National Center for Atmospheric Research (NCAR)/Atmospheric

Chemistry Division (ACD). The WRF-Chem is set up with a horizontal resolution of 30 km and

51 vertical levels with the bottom at the ground and the top at 10 hPa using a terrain-following145

hydrostatic pressure coordinate (Skamarock et al., 2008).

The model domain is centered over the Korean Peninsula, covering an area of approximately

3900km×4400km with 132×147 horizontal grid points. The control variables defined in the cou-

pled meteorology–chemistry DA are the WRF-Chem prognostic variables that contain meteorolog-

ical variables such as winds, perturbation potential temperature, perturbation geopotential, water150

vapor mixing ratio and perturbation dry air mass in a column, and the chemical variables such as

ozone (O3), nitrates (NO, NO2, NO3), and sulfur dioxide (SO2). The experiments consist of (i) the

forecast (without DA) which is useful to understand the synoptic situation and background error

covariance, and (ii) the analysis (with DA) which is useful to understand the assimilation impacts.

2.4 Bias correction of total column O3155

We define the observation operator transforming the WRF-Chem O3 forecast to the total column O3

observation. It contains the calculation of total column O3 with unit conversion and bi-linear inter-

polation, that is; 1) to transform the physical units of O3 from the model-produced concentrations in

parts-per-million-volume (ppmv) units to the OMI data in Dobson Units (DU), and 2) to transform

the O3 amount from the model grid levels to vertically integrated value at the observation location.160
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Mathematically, the operator can be written as

h(x) = hihchu(x) (1)

where x denotes an input model variable (e.g., concentration), and hi represents the horizontal in-

terpolation operator, hc the vertical column integration and hu the unit transformation from ppmv to

DU. The unit transformation for ozone, hu, is given by165

hu(x) =
A · 10−8∆p

g ·md
·x (2)

where A= 6.02252× 1023 is the Avogadro number, ∆p is the vertical increment of pressure in the

layer (hPa), g is the gravity constant, and md is the molecular weight of dry air (kg/mol). The

vertical column integration, hc, is simply

hc(s) =

K∑
k=1

sk (3)170

where sk is the ozone in DU at layer k, and K denotes the number of vertical layers. Finally the

bi-linear horizontal interpolation, hi, is

hi(r) =

I∑
i=1

wiri (4)

where ri is the vertically-integrated ozone at grid point i, wi is the bi-linear observation weights at

grid point i, and I denotes the number of grid points used in interpolation (I = 4 in our case). After175

combining (2)-(4) into (1), the observation operator for OMI observations becomes

h(x) =

I∑
i=1

wi

(
K∑

k=1

A · 10−8(∆p)k
g ·md

·xk

)
i

. (5)

In these processes, the most demanding part of the observation operator is bias correction of total

column O3 observation. Although we use the reference pressure at the model top as 10 hPa, which

is the highest value we could use in the current model version, there are still considerable amounts180

of O3 in the stratosphere that could not be included in the calculation of the model guess (e.g.,

background). Since this creates a negative bias in the mean observation error, we introduce a mul-

tiplicative bias correction ε to preserve positive-definiteness of the bias-corrected guess (Apodaca

et al., 2014) as

hB(x) = ε ·h(x) (6)185

where x is the model state vector. With the multiplicative bias correction in Eq. (6), we can make

a new cost function in unbiased form as

J(x) =
1

2
(x−xb)TP−1

f (x−xb) +
1

2
[y−hB(x)]TR−1[y−hB(x)] (7)
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where xb is the prior (background) state, y is the observation vector, and the superscript T means

a transpose. Here, h is the nonlinear observation operator, Pf is the background (forecast) error co-190

variance matrix in the ensemble subspace, and R is the observation error covariance matrix. Equation

(7) is the cost function used in DA, provided ε can be estimated. The optimal value of parameter ε

is obtained by implicitly assuming lognormal probability density function errors for a multiplicative

bias correction in Eq. (6) (e.g., Apodaca et al., 2014) as

ε= ε0 exp


1
N

N∑
i=1

log
(

yi

ε0h(x)i

)
1 + r0

w0

 (8)195

where ε0 is a guess parameter value and N is the number of observations. The empirical weighting

values are set to r0 = w0 = 0.5 which implies having the same confidence in observations and the

guess. We assume the starting value of the bias to be

ε0 =
y

h(x)
where y =

1

N

N∑
i=1

yi, h(x) =
1

N

N∑
i=1

h(x)i (9)

Equation (8) is calculated once in every DA cycle.200

3 Results

A specific characteristic of our experiments is that both meteorological and chemical variables are

used as control variables in DA. Regarding the meteorological variables, we focus on what is related

to the TC formation and development, such as the temperature, wind, and water vapor. Regarding

the chemical variables, we select the chemical constituents such as O3, NO2 and SO2. These are205

used to identify the impact of O3 observations on the TC structure in a WRF-Chem-MLEF system.

3.1 Synoptic situation with ensemble WRF-Chem forecast

In general, observations show that SO2 has larger concentrations in the troposphere while O3 and

NO2 have larger concentrations in the stratosphere (e.g., Meena et al., 2006). However, in East Asia,

especially in eastern China, there is a significant tropospheric NO2 concentration because of the210

industrialized and urbanized part of China (Richter et al., 2005; Ohara et al., 2007). Regarding the

meteorological variables, temperature and water vapor have higher values in the troposphere, while

wind has larger speed near the tropopause. To consider these characteristics, we focused on two pres-

sure levels: (i) 850 hPa (lower troposphere) and (ii) 200 hPa (upper troposphere/lower stratosphere;

UTLS). Our ensemble WRF-Chem forecast also supports these general distributions of control vari-215

ables, which are not shown in this paper.

7

Reviewer
Sticky Note
What do you mean by "supports". Please clarify



3.2 Background error covariance

The background error covariance represents the background state uncertainty (e.g., Zupanski and

Zupanski, 2007; Kim et al., 2010). These are estimated by taking the difference between the ensem-

ble perturbation forecasts (total of 32) and the control forecast in the ensemble system (Zupanski,220

2005; Zhang et al., 2013). In our study, the ensemble WRF-Chem-MLEF estimates the background

error covariance defined in Zupanski (2005) as

Pf = P
1/2
f

(
P

1/2
f

)T
, P

1/2
f =

(
pf1 · · ·pfN

)
, pfn =m(x0

n)−m(x0) (10)

where the index n is an ensemble member, N is the total number of ensemble forecasts, m is the

WRF-Chem model, and the subscript 0 denotes the initial time of the forecast with correspond-225

ing initial conditions x0 (i.e., control forecast) and ensemble initial conditions x0
n (i.e., ensemble

forecasts). In this experiment, the initial ensemble perturbations are generated by using the lagged

forecast outputs (Zhang et al., 2013).

Being calculated from the WRF-Chem ensemble forecast, the flow-dependent background error

covariance is defined for meteorological and chemical variables, which allows chemistry observa-230

tions to impact meteorological variables in DA. In Zhang et al. (2013), a larger background state

uncertainty was found in the storm region. Our results also identify the larger background state un-

certainty near the TC, similar to Kim et al. (2010). Figure 2 shows the standard deviation (SD) of

background error covariance for chemical variables. O3 in particular (Fig. 2a and d, respectively)

shows a large background state uncertainty near the TC, with the maximum of 0.024 ppmv at235

200 hPa (Fig. 2d). The background state uncertainties of NO2 and SO2 at 200 hPa (Fig. 2e and

f, respectively) are located near the TC, characterized by small magnitude and weak influence on

tropospheric pollution. On the other hand, the background state uncertainties of NO2 and SO2 at

850 hPa (Fig. 2b and c, respectively) have more impact on central eastern China, implying no visi-

ble (or obvious) impact of the low-level NO2 and SO2 on the TC.240

The SD of background error covariance for meteorological variables appear to be more related to

the TC structure (see Fig. 3). In particular, wind (Fig. 3a and d, respectively) shows a larger back-

ground state uncertainty near the TC at both pressure level, especially in the eye region at 850 hPa

(Fig. 3a). Temperature (Fig. 3b and e, respectively) also shows a larger background state uncertainty

near the TC, especially at 200 hPa (Fig. 3d). Regarding the water vapor mixing ratio (Fig. 3c and f,245

respectively), there is a larger background state uncertainty in the eye region at both pressure levels.

Larger background state uncertainty potentially implies a stronger analysis correction, provided that

total column O3 observations are available.

3.3 Analysis increment through the O3 data assimilation

We assess the impact of the assimilated O3 observations using analysis increments (xa−xb), which250

show the correction of the background state using the observations. It is calculated by the following
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variable transformation (Zhang et al., 2013; Zupanski, 2005)

xa −xb = P
1/2
f

{
I+ [Z(xb)]TZ(xb)

}−1/2
ζ (11)

where ζ is the control variable in the ensemble space; the matrix in Eq. (11) is equal to the inverse of

the square root Hessian of the cost function in Eq. (7); Z is the observation information matrix with255

column vectors zi = R−1/2[h(xi)−h(xb)], where the index i denotes the ensemble member.

Figure 4 shows the analysis increments (xa−xb) of chemical variables obtained by assimilating

O3 observations. By comparing Figs. 2 and 4 one can notice that the O3 analysis increments are

in agreement with background state uncertainties, as expected from Eq. (11). At 850 hPa, the O3

analysis increment has an increase near the TC, but a decrease over China (Fig. 4a). At 200 hPa,260

however, there is an increase of O3 near the TC, and marginal change over China (Fig. 4d). The

strong positive response has the largest value of approximately 0.024 ppmv. At 200 hPa, positive

O3 analysis increments are correlated with positive NO2 (Fig. 4e) and SO2 (Fig. 4f) increments in

the TC region, while no clear correlation is found in other regions. Note that NO2 and SO2 are not

related to the TC at 850 hPa while the O3 analysis increments are correlated with NO2 (Fig. 4b) and265

SO2 (Fig. 4c), increasing in central eastern China and Korea and decreasing in northeastern China.

Figure 5 shows the analysis increments (xa−xb) of meteorological variables by O3 assimilation.

Corresponding to background state uncertainties, the analysis increments of wind show notable im-

pact on both lower and upper pressure levels. Positive O3 increments correspond to positive wind

increments at 850 hPa (Fig. 5a), especially in the eye region, and to positive wind increments at270

200 hPa (Fig. 5d) in the TC and in the northeastern China and Korea. Regarding the temperature

impact (Fig. 5b and e, respectively), the positive O3 increments generate temperature cooling near

the TC and warming over northeastern China. Regarding the water vapor mixing ratio, positive O3

increments generate a reduction of water vapor mixing ratio (Fig. 5c and f, respectively) near the

TC as well as in the eye region at both pressure levels. At 850 hPa, the water vapor mixing ratio is275

increasing with positive O3 increments over the northeastern China (Fig. 5c). These results illustrate

that chemical observations can impact not only the chemical variables but also the meteorologi-

cal variables, due to using the ensemble-based coupled meteorology–chemistry background error

covariance, as indicated by Park et al. (2015).

3.4 Verification of O3 data assimilation280

As a verification measure, we examine the O3 assimilation impact on the cost function and on the

root mean square (RMS) error with respect to O3 observations, the same data used in the analy-

sis. The cost function of O3 driven by Eq. (7) has decreased from 0.36924× 104 (background) to

0.30689× 104 (analysis), i.e., it is reduced by approximately 16.9 %. The RMS error, calculated as

RMSa =

√
1

N

∑
[y−h(xa)]2, RMSb =

√
1

N

∑
[y−h(xb)]2 (12)285
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where subscripts a and b denotes analysis and background, respectively, has also decreased from

0.16684×102 DU (background) to 0.15204×102 DU (analysis), i.e., by about 8.87 %. These results

suggest that O3 assimilation has produced a significant improvement in the initial conditions.

In addition, the impact of total column O3 observations is also quantified in terms of the uncer-

tainty reduction. With the Gaussian probability assumption, the information content of observations290

can be represented as the degrees of freedom for signal (DFS; Rodgers, 2000), ds, as

ds = tr
[
I−PaP

−1
f

]
(13)

where tr is trace functions, I is the identity matrix, and Pa and Pf are the analysis and background

error covariances. Here ds can also be expressed as

ds =
∑
i

λ2i
1 +λ2i

(14)295

where λi are the eigenvalues of the observation information matrix (e.g., Zupanski et al., 2007b).

Note from Eq. (14) that the ds are strictly a non-negative measure: zero values indicate no impact

of observations, while positive values indicate a reduction of uncertainty due to assimilation. As

shown in Zupanski et al. (2007b), the estimation of Eq. (14) is also useful in a reduced-rank setting

of ensemble DA.300

Figure 6 shows the DFS of assimilated total column O3 observations. One can note that it gen-

erally coincides with the satellite path, and thus with observations, as expected. The area with the

maximum impact is near the TC location, indicating that it is the area where the total column O3

observation had the strongest impact. In agreement with the analysis increments, there exists a sec-

ondary maximum over northeast China, and a smaller one over the Yellow Sea. Given that the DA305

system includes meteorological and chemical control variables, this result also indicates that O3 total

column observations have a positive impact on both the meteorological and chemical components of

the WRF-Chem system, especially in the TC area.

4 Conclusions

In this study, we investigated the impact of ozone (O3) assimilation on the structure of a tropical310

cyclone (TC). We directly assimilated the total column O3 from the Ozone Monitoring Instrument

(OMI) in a coupled meteorology–chemistry modelling system – the Weather Research and Fore-

casting (WRF) model coupled with Chemistry (WRF-Chem). An ensemble-based data assimilation

(DA) method, the maximum likelihood ensemble filter (MLEF), is employed and interfaced with the

WRF-Chem. We include only a single DA cycle since the OMI observations are covering the model315

domain only once per day (i.e., 06:00 UTC), and no other observations are available at that time.

Our results show that the O3 assimilation has a notable impact on the analyses of other chemical

variables (e.g., NO2 and SO2) as well as O3 itself, and meteorological variables (e.g., wind, tem-

perature, water vapor, etc.), especially near the TC case considered. These meteorological variables
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are closely related to the TC structure and other properties. The O3 observations can affect other320

chemical and meteorological variables, and thus the TC itself. For example, temperature is related

to development, wind to intensity, and water vapor to precipitation of the TC. Therefore, the im-

plied corrections of these variables in TC regions have a potential to improve the understanding, and

eventually the forecast of TCs.

In our DA experiments, the ensemble forecast error, given by the background error standard devi-325

ation, appears reasonable with larger uncertainty over the TC area and also over eastern China. The

root mean square error reduction indicates an improvement of the optimal analysis state, while the

degrees of freedom for signal indicate a reduction of the uncertainty of the optimal analysis.

The use of a single DA cycle limits the conclusions that can be drawn regarding the robust-

ness of the DA system, but it does not impact the performance and implications of using a coupled330

meteorology–chemistry DA system. It is desired to perform a DA cycling with multiple cycles (i.e.,

the prediction component of DA); however, it has several difficult aspects that are not possible to

resolve in the current setup. It is known that the realistic DA is not perfect in providing dynamically

balanced initial conditions, typically resulting in a forecast spin-up period where some of the anal-

ysis adjustments are filtered out. A practical remedy is to produce an improved fit to observations,335

bringing about the related stronger impact on dynamical model variables (e.g., wind, temperature

and pressure), which would eventually result in a longer, sustained influence into the forecast. How-

ever, given that the assimilation of OMI observations exerts a stronger impact on chemical variables

than dynamical initial conditions, the 24-hour forecast that we need for the next cycle would not be

strongly influenced by the OMI observations. Thus we need to assimilate additional observations.340

As a future study, we plan to explore the longer DA periods (e.g., several days) to assess the

impact of O3 observation on the track, intensity and precipitation of TCs. Although we have only

one available observation product per day for O3, we anticipate a positive impact of assimilation.

In order to obtain more improved DA effects, in addition to O3, we plan to assimilate NO2 and

SO2 observations, as well as meteorological observations and all-sky infrared satellite radiances345

from a geostationary satellite that will be launched in the near future. Noting that NO2 and SO2

show high concentrations in East Asia, especially over eastern China, we expect to improve our

understanding of the TC structure and the transboundary air pollution as well through assimilation

of such chemical compositions from satellite observations.

Acknowledgements. This work is supported by the Korea Environmental Industry & Technology Institute350

through the Eco Innovation Program (ARQ201204015), and partly by the National Research Foundation of Ko-

rea grant (No. 2009-0083527) funded by the Korean government (MSIP). The third author would also like to ac-

knowledge a partial support from the National Science Foundation Collaboration in Mathematical Geosciences

Grant 0930265 and the NASA Modeling, Analysis and Prediction (MAP) Program Grant NNX13AO10G.

11

Reviewer
Sticky Note
How do they improve the understanding?

Reviewer
Sticky Note
Can you provide a reference for this statement?



References355

Apodaca, K., Zupanski, M., DeMaria, M., Knaff, J. A., and Grasso, L. D.: Development of a hybrid variational-

ensemble data assimilation technique for observed lightning tested in a mesoscale model, Nonlin. Processes

Geophys., 21, 1027–1041, doi:10.5194/npg-21-1027-2014, 2014.

Buehner, M.: Ensemble-derived stationary and flow-dependent background-error covariances, Q. J. Roy. Mete-

orol. Soc., 131, 1013–1043, 2005.360

Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., and Tang, Y.: Predicting air

quality: improvements through advanced methods to integrate models and measurements, J. Comput. Phys.,

227, 3540–3571, 2008.

Carsey, T. P. and Willoughby, H. E.: Ozone measurements from eyewall transects of two Atlantic tropical

cyclones, Mon. Weather Rev., 133, 166–174, 2005.365

Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.:

Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of

elevated point sources, Atmos. Chem. Phys., 9, 945–964, doi:10.5194/acp-9-945-2009, 2009.

Elbern, H. and Schmidt, H.: A four-dimensional variational chemistry data assimilation scheme for Eulerian

chemistry transport modeling, J. Geophys. Res., 104, 18583–18598, 1999.370

Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dynam.,

53, 343–367, 2003.

Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A.,

and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity

of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res., 111, D21305,375

doi:10.1029/2005JD006721, 2006.

Fletcher, S. J. and Zupanski, M.: A data assimilation method for log-normally distributed observational errors,

Q. J. Roy. Meteorol. Soc., 132, 2505–2519, 2006.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully

coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.380

Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an ensemble Kalman filter technique, Mon.

Weather Rev., 126, 796–811, 1998.

Jang, K. I., Zou, X., De Pondeca, M. S. F. V., Shapiro, M., Davis, C., and Krueger, A.: Incorporating TOMS

ozone measurements into the prediction of the Washington, DC, winter storm during 24–25 January 2000, J.

Appl. Meteorol., 42, 797–812, 2003.385

Kim, H. H., Park, S. K., Zupanski, D., and Zupanski, M.: 2010: Uncertainty analysis using the maximum

likelihood ensemble filter and WRF and comparison with dropwindsonde observations in Typhoon Sinlaku

(2008), Asia-Pac. J. Atmos. Sci., 46, 317–325, 2010.

Lahoz, W. A., Errera, Q., Swinbank, R., and Fonteyn, D.: Data assimilation of stratospheric constituents: a

review, Atmos. Chem. Phys., 7, 5745–5773, doi:10.5194/acp-7-5745-2007, 2007.390

Lokupitiya, R. S., Zupanski, D., Denning, A. S., Kawa, S. R., Gurney, K. R., and Zupanski, M.: Estimation of

global CO2 fluxes at regional scale using the maximum likelihood ensemble filter, J. Geophys. Res., 113,

D20110, doi:10.1029/2007JD009679, 2008.

12

http://dx.doi.org/10.5194/npg-21-1027-2014
http://dx.doi.org/10.5194/acp-9-945-2009
http://dx.doi.org/10.5194/acp-7-5745-2007
http://dx.doi.org/10.1029/2007JD009679


Meena, G. S., Bhosale, C. S., and Jadhav, D. B.: Retrieval of stratospheric O3 and NO2 vertical profiles using

zenith scattered light observations, J. Earth Syst. Sci., 115, 333–347, 2006.395

Navon, I. M.: Data assimilation for numerical weather prediction: a review, in: Data Assimilation for Atmo-

spheric, Oceanic and Hydrologic Applications, edited by: Park, S. K. and Xu, L., Springer, Berlin, Heidel-

berg, 21–65, 2009.

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission

inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444,400

doi:10.5194/acp-7-4419-2007, 2007.

OMI Team: Ozone Monitoring Instrument (OMI) Data User’s Guide, NASA, Greenbelt, 62, 2012.

Park, S. K. and Zupanski, D.: Four-dimensional variational data assimilation for mesoscale and storm-scale

applications, Meteorol. Atmos. Phys., 82, 173–208, 2003.

Park, S. K., Lim, S., and Zupanski, M.: Structure of forecast error covariance in coupled atmosphere–chemistry405

data assimilation, Geosci. Model Dev., 8, 1315–1320, 2015.

Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide

over China observed from space, Nature, 437, 129–132, 2005.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: theory and Practice, World Scientific, Singapore,

256 pp., 2000.410

Rodgers, E. B., Stout, J., Steranka, J., and Chang, S.: Tropical cyclone-upper atmospheric interaction as inferred

from satellite total ozone observations, J. Appl. Meteorol., 29, 934–954, 1990.

Silver, J. D., Brandt, J., Hvidberg, M., Frydendall, J., and Christensen, J. H.: Assimilation of OMI NO2 retrievals

into the limited-area chemistry-transport model DEHM (V2009.0) with a 3-D OI algorithm, Geosci. Model

Dev., 6, 1–16, doi:10.5194/gmd-6-1-2013, 2013.415

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W.,

and Powers, J. G.: A description of the Advanced Research WRF version 3. NCAR/TN-475+ STR, National

Center For Atmospheric Research, Boulder, CO, 113 pp., 2008.

Stout, J. and Rodgers, E. B.: Nimbus-7 total ozone observations of western North Pacific tropical cyclones, J.

Appl. Meteorol., 31, 758– 783, 1992.420

Tran, A. P., Vanclooster, M., Zupanski, M., and Lambot, S.: Joint estimation of soil moisture profile and hy-

draulic parameters by ground-penetrating radar data assimilation with maximum likelihood ensemble filter,

Water Resour. Res., 50, 3131–3146, doi:10.1002/2013WR014583, 2014.

Wang, K.-Y., Lary, D. J., Shallcross, D. E., Hall, S. M., and Pyle, J. A.: A review on the use of the adjoint

method in four-dimensional atmospheric–chemistry data assimilation, Q. J. Roy. Meteor. Soc., 127, 2181–425

2204, 2001.

Wu, Y. and Zou, X.: Numerical test of a simple approach for using TOMS total ozone data in hurricane envi-

ronment, Q. J. Roy. Meteor. Soc., 134, 1397–1408, 2008.

Yang, Q., W. I. Gustafson Jr., Fast, J. D., Wang, H., Easter, R. C., Morrison, H., Lee, Y.-N., Chapman, E. G.,

Spak, S. N., and Mena-Carrasco, M. A.: Assessing regional scale predictions of aerosols, marine stratocumu-430

lus, and their interactions during VOCALS-REx using WRF-Chem, Atmos. Chem. Phys., 11, 11951–11975,

doi:10.5194/acp-11-11951-2011, 2011.

13

http://dx.doi.org/10.5194/acp-7-4419-2007
http://dx.doi.org/10.5194/gmd-6-1-2013
http://dx.doi.org/10.1002/2013WR014583
http://dx.doi.org/10.5194/acp-11-11951-2011


Zhang, R., Sanger, N. T., Orville, R. E., Tie, X., Randel, W., and Williams, E. R.: Enhanced NOx by lightning in

the upper troposphere and lower stratosphere inferred from the UARS global NO2 measurements, Geophys.

Res. Lett., 27, 685–688, 2000.435

Zhang, S. Q., Zupanski, M., Hou, A. Y., Lin, X., and Cheung, S. H.: Assimilation of precipitation-affected

radiances in a cloud-resolving WRF ensemble data assimilation system, Mon. Weather Rev., 141, 754–772,

2013.

Zou, X. and Y. Wu.: On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and

hurricanes, J. Geophys. Res.–Atmos., 110, D06109, doi:10.1029/2004JD005019, 2005.440

Zupanski, D. and Zupanski, M.: Model error estimation employing an ensemble data assimilation ap-

proach, Mon. Wea. Rev., 134, 1337–1354, 2006.

Zupanski, D., Denning, A. S., Uliasz, M., Zupanski, M., Schuh, A. E., Rayner, P. J., Peters, W., and

Corbin, K. D.: Carbon flux bias estimation employing Maximum Likelihood Ensemble Filter (MLEF), J.

Geophys. Res., 112, D17107, doi:10.1029/2006JD008371, 2007a.445

Zupanski, D., Hou, A. Y., Zhang, S. Q., Zupanski, M., Kummerow, C. D., and Cheung, S. H.: Applications of

information theory in ensemble data assimilation, Q. J. Roy. Meteor. Soc., 133, 1533–1545, 2007b.

Zupanski, M.: Maximum likelihood ensemble filter: theoretical aspects, Mon. Weather Rev., 133, 1710–1726,

2005.

Zupanski, M.: Theoretical and practical issues of ensemble data assimilation in weather and climate, in: Data450

Assimilation for Atmospheric, Oceanic and Hydrologic Applications, edited by: Park, S. K. and Xu, L.,

Springer, Berlin, Heidelberg, 67–84, 2009.

Zupanski, M., Navon, I. M., and Zupanski, D.: The Maximum Likelihood Ensemble Filter as a non-

differentiable minimization algorithm, Q. J. Roy. Meteor. Soc., 134, 1039–1050, 2008.

14

http://dx.doi.org/10.1029/2006JD008371
Reviewer
Sticky Note
You need to place the Zupanski references in the correct alphabetical order



Figure 1. Total column O3 (in DU) from OMI at 04:05 UTC, 3 September 2005.
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Figure 2. Standard deviation of background error covariance for chemical variables valid on 06:00 UTC,

3 September 2005 at 850hPa (left panel) for (a) O3, (b) NO2 and (c) SO2, and at 200hPa (right panel)

for (d) O3, (e) NO2 and (f) SO2. Units are ppmv.
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Figure 3. Standard deviation of background error covariance for atmospheric variables valid on 06:00 UTC,

3 September 2005 at 850hPa (left panel) for (a) wind, (b) temperature and (c) water vapor mixing ratio, and at

200hPa (right panel) for (d) wind, (e) temperature and (f) water vapor mixing ratio. Units are m s−1 for wind,

K for temperature and g kg−1 for water vapor mixing ratio.
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Figure 4. Same as in Fig. 2 except for analysis increment (xa −xb) of chemical variables in response to total

column O3. Units are ppmv.
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Figure 5. Same as in Fig. 3 except for analysis increment (xa −xb) of atmospheric variables in response to

total column O3. Units are m s−1 for wind, K for temperature and g kg−1 for water vapor mixing ratio.
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Figure 6. Degrees of freedom for signal (DFS) of assimilated total column O3 observation valid at 06:00 UTC,

3 September 2005. The units are non-dimensional.
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