
Reply to the Comments by Referee #1 for Manuscript acpd-15-11573-2015

We appreciate the positive comments by the Referee #1 along with many valuable suggestions, which
helped us improve the manuscript significantly. In the following, we have provided an item-by-item
reply to the referee’s comments.

General comments:

1. The fact that only one assimilation cycle is used reduced the scientific impact of this study. The
authors argue that OMI data are only available in the morning so only one DA cycle was done, on 3
September in the morning. The period of the Nabi cyclone is between 29 August and 8 September,
2005. The switch of OMI from normal to zoom mode occurred on September 2 where no OMI data
were available over the TC region for that day. If I understand well, OMI data is then available for
the other days during the Nabi cyclone but only in the morning (around 4 UTC).

To me, the entire period of the Nabi cyclone could be addressed. Cycles without OMI data
(between 6 and 24 UTC) might be replaced by a forecast run. In this way, the performance of DA
experiment could be evaluated by measuring the skill of the system to forecast OMI data of the
next days. This is one question to which the current state of the study does not answer: is DA of
OMI data improve the forecast of the cyclone. Also, increasing the number of cycle would reinforce
the results of section 3.4.

⇒ We greatly appreciate the suggestions by the Referee #1, and agree that performance of data
assimilation (DA) cycling with several cycles could make the DA more powerful. Although
one can potentially have 4 cycles with a 6-hour assimilation window in a day, the limited
availability of OMI observations over the model domain allows only one DA cycle per day.
This is an extremely unfavorable situation for DA. Therefore, we only conducted the first DA
cycle, which has the strongest impact among the cycles. We believe that our current single
cycle DA experiment is sufficient to illustrate the effect of coupled meteorology-chemistry DA
and demonstrate its potential.

A meaningful cycling of DA is inherently related to the prediction component of DA, as
every new cycle begins from the forecast guess from the previous cycle. However, the analysis
component of DA is also important, as it provides the impact of observations on the analysis
produced by DA. In the current research, we focus on the analysis component of
DA, as the first step towards the eventual DA system for OMI observations. We
believe that there are sufficient new results in the context of the analysis component, which
are relevant for coupled DA presented in this work. We plan to address some important issues
related to the prediction component in the future studies.

Although including the prediction component (e.g., cycling) is desirable, it has, unfortunately,
several difficult aspects that are not possible to resolve in the current setup. It is known that
realistic DA, including ours, is not perfect in providing dynamically balanced initial conditions,
typically resulting in a forecast spin-up period where some of the analysis adjustments are fil-
tered out. A practical remedy is to produce an improved fit to observations, bringing about the
related stronger impact on dynamical model variables such as wind, temperature and pressure,
which would eventually result in a longer, sustained impact into the forecast. However, given
that the assimilation of OMI observations produces a stronger impact on chemical variables
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and some but insufficient impact on dynamical initial conditions, the 24-hour forecast that we
need for the next cycle would not be strongly influenced by the OMI observations. Thus we
need to assimilate additional observations. Unfortunately, for typhoon this implies the need
for assimilating satellite data, which are currently not available for the employed DA system,
and thus would require additional development that is outside of the scope of this paper and
is planned for the future step.

2. In the paper the terminologies “atmosphere chemistry model” or “atmospheric and chemical
variables” is used. The chemical composition is part of the atmosphere state so I would change these
terminologies by, e.g., “circulation chemistry model” and “physical (or dynamical) and chemical
variables”

⇒ We agree to the referee’s suggestion and introduce adequate changes throughout the manuscript.
Given that the chemical composition is part of the atmospheric states, we suggest to change
“atmosphere-chemistry model” to “meteorology-chemistry model”, and “atmospheric and chem-
ical variables” to “meteorological and chemical variables”. Here “meteorological” variables
include both “physical” and “dynamical” variables.

Technical corrections:

P11576-L7: I would not use the term blending to describe DA method because it is too subjective
while DA methods are an objective way to use model, a priori and observation information, as well
as their error covariances to produce an analysis. Please, update the sentence.

⇒ We have changed this part from “by blending the model and observations · · ·” to “· · · by
combining the information from the model and observations in a mathematically
consistent manner · · ·”

P11576-L10-13: This sentence is not very clear. They are many reasons to assimilate ozone which
are reviewed in Lahoz et al. (2007) for the stratosphere. Please, clarify the sentence.

⇒ We have rewritten this part as “Ozone (O3) has a relatively long photochemical life-
time and high concentrations at high latitude and in the stratosphere, except
during ozone hole conditions. It is a passive tracer at synoptic scale or smaller;
thus variations of total column O3 in space and time are a result of the atmo-
spheric flow, and is highly correlated to many meteorological variables in the
upper troposphere (Wu and Zou, 2008). Assimilation of O3 has several motiva-
tions such as (Lahoz et al., 2007): 1) taking better account of stratospheric O3

when assimilating satellite radiance data; 2) leading to better radiative forcing
when used by the model radiation scheme; 3) providing useful dynamical infor-
mation via the motion of O3 in the atmosphere; and 4) improving the accuracy
of UV index forecasting. Moreover · · ·”

P11579-L11-17: Some readers will probably not know the locations of Saipan, Kyushu, South Korea
and Hokkaido. Would it be possible to mark these locations in Figure 1?

⇒ We have redrawn Fig. 1 by marking those locations in the revised manuscript.

P11580-L17-19: “It contains · · ·” The description of the observation operator that transforms
modelled Ozone volume mixing ratio to total column is very short. Can you add more information;
in particular are the averaging kernels used in the observation operator?
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⇒ Following the referee’s suggestion we described the observation operator in more detail in the
revised manuscript (please see the newly added equations from Eq. (1) to (5)). Please note
that we are not using averaging kernels, following standard practice in DA, since we rely on
the (multivariate) ensemble forecast error covariance for processing the information from the
observation and the prior.

P11582-L13: “(ii) 200 hPa (lower stratosphere)”. 200 hPa is usually in the upper troposphere lower
stratosphere (UTLS) so I would replace lower stratosphere by upper troposphere lower stratosphere.

⇒ It is rewritten as “(ii) 200 hPa (upper troposphere/lower stratosphere; UTLS)”.

P11582-L18-19: “These are · · ·” This sentence is not clear in particular after “· · · and the control
forecast · · ·” Please, clarify.

⇒ It is rewritten as “These are estimated by taking the difference between the ensem-
ble perturbation forecasts (total of 32) and the control forecast in the ensemble
system (Zupanski, 2005; Zhang et al., 2013).” For further clarification, we have also
rewritten P11583-L1 as “forecasts with corresponding initial conditions x0 (i.e., con-
trol forecast) and ensemble initial conditions x0

n (i.e., ensemble forecasts)”.

P11583-L25-26: “· · ·, provided total · · ·” This latter part of the sentence lack of clarity. Please,
rephrase.

⇒ It is rewritten as “· · ·, provided that total · · ·”.

P11584-L16: Do you mean Fig. 4b (instead of d)?

⇒ Fig. 4d is right. Please note that Fig. 4d (i.e., analysis increment of O3 at 200 hPa) is right
beside Fig. 4a (i.e., analysis increment of O3 at 850 hPa).

P11584-L19: I would replace “· · · while the correlation is mixed · · ·” by “· · · while no clear corre-
lation is found for · · ·”

⇒ It is rewritten as “· · ·, while no clear correlation is found in other regions.”

P11585-L10: The term “validation” is in general used when the analyses are “validated” w.r.t.
independent observations. Here, it is more a verification. Please, update the title of Sect. 3.4.

⇒ It is now changed to “3.4 Verification of O3 data assimilation” in the revised manuscript.
We have also corrected the Abstract (P11575-L18) accordingly as “The analysis results
are verified using · · ·”.

P11587-L2: “· · · at the time” The meaning of this sentence is not clear. Please, rephrase.

⇒ It is rewritten as “We include only a single data assimilation cycle since the OMI
observations are covering the model domain only once per day (i.e., 06:00 UTC),
and no other observations are available at that time.”
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Reply to the Comments by Referee #2 for Manuscript acpd-15-11573-2015

General Comments:
An ensemble-based data assimilation, the maximum likelihood ensemble filter (MLEF) is employed
and interfaced with the WRF-Chem to investigate the impact of ozone (O3) assimilation on the
structure of a tropical cyclone (TC). The results show that the O3 assimilation has a notable
impact on the analyses of other chemical variables (e.g., NO2 and SO2) as well as O3 itself, and
atmospheric variables (e.g., wind, temperature and specific humidity), especially near the TC case
considered.

Please indicate in some detail: a) How was the coupling between MLEF and WRF-Chem
implemented?; b) Please highlight the impact of including/excluding MLEF had on final result; c)
Please highlight where in the WRF-Chem package is ozone taken into account.

Apart from these minor issues, this is a well-written and presented ms and I recommend pub-
lication once the minor comments are addressed.

⇒ We appreciate the positive comments by the Referee #2 along with valuable suggestions. In the
following, we have provided an item-by-item reply to the referee’s comments.

a) How was the coupling between MLEF and WRF-Chem implemented?

⇒ The coupling between the MLEF and WRF-Chem is done through an interface module that
transforms the MLEF control variables into a WRF-Chem netcdf file, and vice versa. This
interface module is a component of MLEF, and thus the WRF-Chem is not altered.

b) Please highlight the impact of including/excluding MLEF had on final result.

⇒ The impact of including/excluding MLEF on the final result has been described in detail in
Section 3. In overview, the ozone observations had an impact on ozone analysis, as expected.
The important new impact of ozone observations, enabled through the use of ensemble-based
forecast error covariance, includes changes in the initial conditions of dynamical variables,
such as wind and temperature, and to some extend moisture. More specific impacts of includ-
ing MLEF assimilation of O3 are discussed in Figs. 4 and 5 in detail – changes of chemical
variables in Fig. 4 and changes of atmospheric variables in Fig. 5, respectively.

c) Please highlight where in the WRF-Chem package is ozone taken into account.

⇒ The WRF-Chem chemistry package is chosen in the namelist.input as a standard option #6
(CBMZ). This chemistry package includes the prediction of ozone and several other chemical
constituents. Since the control variable list in the MLEF includes the ozone, it makes possible
adjustment of ozone initial conditions in data assimilation.
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Abstract. Since the air quality forecast is related to both chemistry and meteorology, the coupled

atmosphere–chemistry data assimilation (DA) system is essential to air quality forecasting. Ozone

(O3) plays an important role in chemical reactions and is usually assimilated in chemical DA
::::::::::
incorporated

::
in

:::::::
chemical

::::
data

:::::::::::
assimilation

::::
(DA). In tropical cyclones (TCs), O3 usually shows a lower concen-

tration inside the eyewall and an elevated concentration around the eye, impacting atmospheric5

::::::::::::
meteorological

:
as well as chemical variables. To identify the impact of O3 observations on TC

structure, including atmospheric
::::::::::::
meteorological

:
and chemical information, we employed

::::::::
developed

:
a
:::::::
coupled

:::::::::::::::::::
meteorology-chemistry

:::
DA

:::::::
system

::
by

:::::::::
employing

:
the Weather Research and Forecasting

model coupled with Chemistry (WRF-Chem) with
:::
and an ensemble-based DA algorithm – the max-

imum likelihood ensemble filter (MLEF). For a TC case that occurred over the East Asia,
:::::::
Typhoon10

::::
Nabi

::::::
(2005),

:
our results indicate that the ensemble forecast is reasonable, accompanied with larger

background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of

O3 observations impacts atmospheric
::::::::::::
meteorological and chemical variables near the TC and over

eastern China. The strongest impact on air quality in the lower troposphere was over China, likely

due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical15

variables adjustment was at higher levels. The impact on atmospheric
::::::::::::
meteorological

:
variables was

similar in both over China and near the TC. The analysis results are validated
::::::
verified using several

measures that include the cost function, root-mean-squared
::::::
(RMS) error with respect to observa-
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tions, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on

the analysis – the cost function and root mean square
:::::
RMS error have decreased by 16.9 and 8.87 %,20

respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area,

with a weaker maximum over northeast China.

1 Introduction

The air quality forecast is related to emissions, transport, transformation and removal processes, and

to the prevailing meteorological conditions. Therefore, the coupled atmosphere–chemistry
:::::::::::::::::::
meteorology–chemistry25

model is essential for the air quality and weather forecasting (e.g., Carmichael et al., 2008). The cou-

pled system forecast is improved through coupled atmosphere–chemistry
:::::::::::::::::::
meteorology–chemistry

data assimilation (DA), which estimates the best initial conditions by blending the
:::::::::
combining

:::
the

:::::::::
information

:::::
from

:::
the model and observations

::
in

:
a
:::::::::::::
mathematically

::::::::
consistent

::::::
manner

:
(e.g., Houtekamer

and Mitchell, 1998; Elbern and Schmidt, 1999; Wang et al., 2001; Evensen, 2003; Park and Zupan-30

ski, 2003; Navon, 2009; Zupanski, 2009
:
;
::::
Park

::
et

:::
al.,

::::
2015).

Ozone (O3) is usually assimilated in a chemical DA because it represents the atmospheric flow as

a passive tracer at synoptic or smaller scales and has a
:::
has

::
a relatively long photochemical lifetime

and high concentrations
::
at

::::
high

::::::
latitude

::::
and in the stratosphere, except during ozone hole conditions,

and at high latitudes (e.g., Lahoz et
:
.
::
It

:
is
::
a

::::::
passive

:::::
tracer

::
at

:::::::
synoptic

:::::
scale

::
or

:::::::
smaller;

:::
thus

:::::::::
variations35

::
of

::::
total

::::::
column

:
O3 ::

in
:::::
space

:::
and

::::
time

:::
are

::
a
:::::
result

::
of

:::
the

::::::::::
atmospheric

:::::
flow,

:::
and

::
is
::::::
highly

:::::::::
correlated

::
to

::::
many

:::::::::::::
meteorological

::::::::
variables

::
in

:::
the

:::::
upper

::::::::::
troposphere

::::
(Wu

:::
and

::::
Zou,

::::::
2008).

:::::::::::
Assimilation

::
of O3

:::
has

::::::
several

::::::::::
motivations

::::
such

::
as

:::::::
(Lahoz

::
et al., 2007; Wu and Zou, 2008)

:
):

::
1)

::::::
taking

:::::
better

:::::::
account

::
of

:::::::::::
stratospheric O3 :::::

when
::::::::::
assimilating

:::::::
satellite

:::::::
radiance

:::::
data;

::
2)

::::::
leading

:::
to

:::::
better

:::::::
radiative

:::::::
forcing

::::
when

::::
used

:::
by

:::
the

:::::
model

::::::::
radiation

:::::::
scheme;

::
3)

::::::::
providing

:::::
useful

:::::::::
dynamical

::::::::::
information

:::
via

:::
the

::::::
motion40

::
of O3::

in
:::
the

:::::::::::
atmosphere;

:::
and

:::
4)

:::::::::
improving

:::
the

:::::::
accuracy

:::
of

:::
UV

::::::
index

:::::::::
forecasting. Moreover, the

improved stratospheric O3 distribution by DA can affect atmospheric
::::::::::::
meteorological variables such

as stratospheric winds and temperature as well as other chemical variables (e.g., Lahoz et al., 2007
:
;

::::
Park

::
et

:::
al.,

::::
2015).

O3 is also relevant to the structure of tropical cyclones (TCs), showing a lower concentration45

just inside the eyewall and elevated concentration around the eye (e.g., Carsey and Willoughby,

2005; Zou and Wu, 2005; Wu and Zou, 2008), which is caused by the updraft in the eyewall and

subsidence in the eye (Zou and Wu, 2005). Using these relations, the daily total column O3 from

Total Ozone Mapping Spectrometer (TOMS) showed that mutual adjustment occurred between the

TC and its upper tropospheric environment on a synoptical timescale (Rodgers et al., 1990; Stout and50

Rodgers, 1992). The linear relationship between total column O3 from TOMS and mean vertically-

integrated potential vorticity (MPV) was used to improve hurricane or winter storm prediction (e.g.,

Jang et al., 2003; Wu and Zou , 2008; Zou
:::
Zou and Wu, 2005;

:::
Wu

::::
and

::::
Zou,

:::::
2008). However, these
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studies employed an atmospheric
:
a

::::::::::::
meteorological

:
model, not the coupled atmosphere–chemistry

:::::::::::::::::::
meteorology–chemistry model. They used the standard dynamical variables as control variables and55

empirical regressions to develop a cross-correlation between O3 and dynamical model variables.

In this study, we directly assimilate the total column O3 from the Ozone Monitoring Instrument

(OMI) to identify the impact of O3 observations on TC structure including atmospheric
::::::::::::
meteorological

and chemical information in a coupled atmosphere–chemistry
:::::::::::::::::::
meteorology–chemistry

:
model (e.g.,

WRF-Chem) with ensemble-based DA system (e.g., Maximum Likelihood Ensemble Filter; MLEF).60

We define an augmented control variable that includes both dynamical
::::::
contains

::::
both

:::::::::::::
meteorological

and chemical variables.
::::
Here

:::::::::::::
meteorological

:::::::
variables

:::::::
consist

::
of

:::::::::
dynamical

::::::::
variables

:::::
(e.g.,

:::::
wind

::::::::::
components)

::::
and

::::::::
physical

::::::::
variables

:::::
(e.g.,

:::::
water

::::::
vapor,

:::::
cloud

::::::
water,

::::
etc.).

:
Therefore, the cross-

correlations between dynamical
::::::::::::
meteorological

:
and chemical variables are obtained directly from

ensemble forecasts .
::::
(e.g.,

::::
Park

::
et
::::

al.,
::::::
2015). Section 2 describes the methodology, and Sect. 365

presents results. Conclusions are provided in Sect. 4.

2 Methodology

2.1 Model

In this research, we use the Weather Research and Forecasting (WRF) model coupled with Chem-

istry (WRF-Chem) version 3.4.1 as a prediction model on a regional scale. It simulates the emission,70

transport, mixing and chemical transformation of trace gases and aerosols simultaneously with me-

teorology (Grell et al., 2005). The WRF-Chem uses configuration options for various atmospheric

::::::::::::
meteorological

:
processes such as the WRF Single-Moment 6-class (WSM6) scheme for the micro-

physics, the Community Atmospheric Model (CAM) scheme for the radiation physics, the Monin–

Obukhov scheme for the surface layer, the Noah land surface model for the land surface, the Yonsei75

University (YSU) scheme for the planetary boundary layer, and the Kain–Fritsch scheme for the cu-

mulus parameterization. These are the recommended physics options for the regional climate case at

10–30 km grid size. As an advection option, the monotonic transport is applied to turbulent kinetic

energy and scalars such as mixing ratios of water vapor, cloud water, rain, snow and ice and chem-

ical species, which is commonly used for real-time and research applications (e.g., Chapman et al.,80

2009; Yang et al., 2011). Regarding the chemical mechanism, the Carbon Bond Mechanism version

Z (CBMZ
:::::::
CBM-Z) without Dimethylsulfide scheme is used for gas-phase chemistry.

:::
The

:::::::
CBM-Z

:::::::
includes

:::
the

::::::::
prediction

::
of

:
O3 :::

and
::::::
several

::::
other

::::::::
chemical

::::::::::
constituents

:::::
(Fast

::
et

:::
al.,

:::::
2006).

:

In terms of the DA system, we use an ensemble-based DA method called the Maximum Like-

lihood Ensemble Filter (MLEF; Zupanski, 2005; Zupanski et al., 2008). The MLEF generates the85

analysis solution which maximizes the likelihood of the posterior probability distribution, obtained

by minimization of a cost function. The MLEF belongs to the family of deterministic ensemble fil-

ters, hence it is a hybrid between variational and ensemble DA methods. The MLEF employs a cost
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function derived using a Gaussian probability density function and produces both the analysis and

the background error covariance (Zupanski, 2005). It is well suited for use with highly nonlinear90

observation operators, for a small additional computational cost of minimization using the Hes-

sian preconditioning (Zupanski, 2005; Zupanski et al., 2007
:::::
2007b, 2008). ,

::::
and

:::
has

::::
been

:::::::::
employed

::
in

:::::
many

::::::
studies

::::::::
including

::::::::::
uncertainty

::::::::
analysis,

:::::::::
parameter

:::::::::
estimation

:::
and

::::
data

:::::::::::
assimilation

:::::
(e.g.,

:::::::
Zupanski

::::
and

:::::::::
Zupanski,

:::::
2006;

::::::::
Zupanski

::
et
:::

al.,
:::::::

2007a;
:::::::::
Lokupitiya

::
et
:::

al.,
::::::

2008;
::::
Kim

::
et

:::
al.,

::::::
2010;

:::::::
Apodaca

::
et

:::
al.,

:::::
2014;

::::
Tran

::
et

:::
al.,

:::::
2014;

::::
Park

::
et
:::
al.,

::::::
2015).95

:::
The

::::::::
coupling

:::::::
between

::::
the

::::::
MLEF

::::
and

::::::::::
WRF-Chem

::
is
:::::

made
::::::::

through
::
an

::::::::
interface

:::::::
module

::::
that

:::::::::
transforms

:::
the

::::::
MLEF

::::::
control

::::::::
variables

:::
into

:::
the

::::::::
netcdf

::
file

:::
of

:::::::::::
WRF-Chem,

:::
and

::::
vice

:::::
versa.

:::::
This

:::::::
interface

::::::
module

::
is
::
a
:::::::::
component

::
of

::::::
MLEF,

::::
and

:::::
hence

:::
the

::::::::::
WRF-Chem

::
is

:::
not

:::::::
altered.

2.2 Observations

Satellite retrievals often provide estimates of chemical concentration as a total vertical column, and100

they cover a wide geographical range compared to other measurements (e.g., Silver et al., 2013). In

our study, the total column O3 obtained by OMI is used as an observation. OMI is a nadir-viewing

near-UV/Visible CCD spectrometer aboard NASA’s Aura satellite (OMI Team, 2012). The total

column O3 is Level 2 data (OMTO3) based on the Total Ozone Mapping Spectrometer (TOMS)

v8.5 algorithm, which is obtained from an orbital swath with a resolution of 13km× 24km at nadir105

(OMI Team, 2012). It achieves global coverage in one day. In this experiment, we did not apply

the quality flags because the first appearance of the row anomaly that affects particular viewing

directions, corresponding to the rows on the CCD detectors (OMI Team, 2012) did not occur in

2005, when the TC case considered occurred (i.e., Typhoon Nabi, 2005). Therefore, we employ the

OMI data without quality flags.110

Figure 1 shows the total column O3 from OMI at 04:05 UTC 3 September 2005. It shows a lower

concentration just inside the eyewall and elevated concentration around the eye. This distinct dis-

tribution is well described when the TC has the strongest intensity in the intensifying stages (e.g.,

Carsey and Willoughby, 2005). Note that OMI switches from its normal global mode to zoom-

in mode, to perform spatial zoom (higher resolution) measurements, for a 24 h period about once115

a month. It occurs when OMI finishes its last orbital pass over Europe, and returns to global mode

after 14–15 orbits or about 24 h later. During this period of zoom-in mode, OMI has no global

coverage of data (OMI Team, 2012). Typhoon Nabi (2005) reached the maximum intensity on 2

September when OMI entered in the zoom-in mode. Due to the lack of ozone O3 data in our domain

on 2 September, we have alternatively chosen 3 September for the analysis of O3 properties during120

the maximum development of the TC case.
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2.3 Experimental design

For the TC case, we choose Typhoon Nabi (2005), which lasted several days from 29 August 2005

until 8 September 2005. Nabi moved westward after its formation and passed near Saipan on 31 Au-

gust as an intensifying TC, transformed to a super typhoon on 1 September, and reached its peak with125

winds of 175 km h−1 (10-min average) on 2 September. It became weak while turning to the north

and striking Kyushu on 6 September. Nabi turned to the northeast after passing by South Korea, and

transformed to an extratropical cyclone passing over Hokkaido on 8 September.

::
In

::::::
general

::::
the

:::
DA

::
is
:::::::::

composed
:::

of
::::
two

::::::::::
components

::
–
:::::::::
prediction

:::
and

:::::::
analysis.

:::
A

::::::::::
meaningful

::::::
cycling

::
of

::::
DA

::
is

:::::::::
inherently

::::::
related

::
to

:::
the

:::::::::
prediction

::::::::::
component,

::
as

:::::
every

::::
new

:::::
cycle

::::::
begins

:::::
from130

::
the

:::::::
forecast

:::::
guess

:::::
from

:::
the

::::::::
previous

:::::
cycle.

::::
The

:::::::
analysis

:::::::::
component

::
of
::::

DA
::
is

::::
also

:::::::::
important,

::
as

::
it

:::::::
provides

:::
the

::::::
impact

::
of
:::::::::::

observations
:::
on

:::
the

:::::::
analysis

::::::::
produced

:::
by

::::
DA.

::
In

:::
the

:::::::
current

::::::::
research,

:::
we

::::
focus

:::
on

:::
the

:::::::
analysis

:::::::::
component

:::
of

::::
DA,

::
as

:::
the

::::
first

::::
step

::::::
towards

:::
the

::::::::
eventual

:::
DA

::::::
system

:::
for

:::::
OMI

:::::::::::
observations.

:::::::::
Conducting

:::
the

::::
DA

::::::
cycling

::::
with

:::::::
several

:::::
cycles

:::
can

:::::
make

::::
DA

::::
more

:::::::::
powerful.

::::::::
Although

:::
one

::::
can135

:::::::::
potentially

::::
have

:
4
::::::
cycles

::::
with

:
a
::::::
6-hour

::::::::::
assimilation

:::::::
window

::
in

:
a
::::
day,

:::
the

::::::
limited

:::::::::
availability

::
of

:::::
OMI

::::::::::
observations

::::
over

:::
the

::::::
model

::::::
domain

::::::
allows

::::
only

:::
one

:::
DA

:::::
cycle

:::
per

::::
day.

:::::::::
Therefore,

:::
we

::::
only

:::::::
perform

::
the

::::
first

:::
DA

:::::
cycle,

::::::
which

:::
has

:::
the

:::::::
strongest

::::::
impact

::::::
among

:::
the

::::::
cycles.

:::
We

::::::
believe

::::
that

:::
this

:::::
single

:::::
cycle

:::
DA

:::::::::
experiment

::
is

::::::::
sufficient

::
to

::::::::
illustrate

:::
the

:::::
effect

::
of

:::::::
coupled

:::::::::::::::::::
meteorology-chemistry

:::
DA.

:

We focused on a single DA cycle from 00:00 to 06:00 UTC 3 September 2005, which is one of140

the strongest periods of its lifetime. We conduct the experiment with 32 ensembles and 6 h assimila-

tion window. Note that the OMI observations have an approximate frequency of once per day over

the typhoon and the surrounding geographical area. Therefore, adding more data assimilation
:::
DA

cycles would not be beneficial since no additional data are available. In the future we plan to add

a capability to assimilate other observations, such as atmospheric
::::::::::::
meteorological observations and145

all-sky infrared radiances from a geostationary satellite.

The initial and lateral boundary conditions for atmospheric
::::::::::::
meteorological states are provided

by the National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS),

while those for chemical variables are obtained from the Model for Ozone and Related chemi-

cal Tracers (MOZART) chemistry global model of the National Center for Atmospheric Research150

(NCAR)/Atmospheric Chemistry Division (ACD). The WRF-Chem is set up with a horizontal res-

olution of 30 km and 51 vertical levels with the bottom at the ground and the top at 10 hPa using

a terrain-following hydrostatic pressure coordinate (Skamarock et al., 2008).

The model domain is centered over the Korean Peninsula, covering an area of approximately

3900km×4400km with 132×147 horizontal grid points. The control variables defined in the cou-155

pled atmosphere–chemistry
:::::::::::::::::::
meteorology–chemistry

:
DA are the WRF-Chem prognostic variables

that contain dynamical
::::::::::::
meteorological

:
variables such as winds, perturbation potential temperature,

perturbation geopotential, water vapor mixing ratio and perturbation dry air mass in a column, and
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the chemical variables such as ozone (O3), nitrates (NO, NO2, NO3), and sulfur dioxide (SO2). The

experiments consist of (i) the forecast (without DA) which is useful to understand the synoptic situ-160

ation and background error covariance, and (ii) the analysis (with DA) which is useful to understand

the assimilation impacts.

2.4 Bias correction of total column O3

We define the observation operator transforming the WRF-Chem O3 forecast to the total column O3

observation. It contains the calculation of total column O3 , unit conversion from ppmv (parts per165

million by volume) to
:::
with

::::
unit

:::::::::
conversion

::::
and

:::::::
bi-linear

:::::::::::
interpolation,

::::
that

:::
is;

::
1)

::
to

:::::::::
transform

:::
the

:::::::
physical

::::
units

::
of
:
O3 ::::

from
:::
the

::::::::::::::
model-produced

::::::::::::
concentrations

::
in
:::::::::::::::::::::

parts-per-million-volume
:::::::
(ppmv)

::::
units

::
to

:::
the

::::
OMI

::::
data

::
in Dobson Units (DU)and

:
,
:::
and

::
2)

::
to
:::::::::
transform

:::
the O3 ::::::

amount
::::
from

:::
the

::::::
model

:::
grid

:::::
levels

::
to

::::::::
vertically

:::::::::
integrated

::::
value

::
at
:
the bi-linear interpolation to the observation location. The

:::::::::::::
Mathematically,

:::
the

:::::::
operator

:::
can

:::
be

::::::
written

::
as

:
170

h(x) = hihchu(x)
::::::::::::::

(1)

:::::
where

::
x

:::::::
denotes

::
an

:::::
input

::::::
model

:::::::
variable

:::::
(e.g.,

:::::::::::::
concentration),

::::
and

:::
hi ::::::::

represents
::::

the
:::::::::
horizontal

::::::::::
interpolation

::::::::
operator,

::
hc:::

the
:::::::
vertical

::::::
column

:::::::::
integration

::::
and

::
hu:::

the
::::
unit

::::::::::::
transformation

:::::
from

:::::
ppmv

::
to

:::
DU.

::::
The

::::
unit

::::::::::::
transformation

:::
for

::::::
ozone,

:::
hu,

::
is

::::
given

:::
by

hu(x) =
A · 10−8∆p

g ·md
·x

:::::::::::::::::::

(2)175

:::::
where

:::::::::::::::::
A= 6.02252× 1023

::
is

:::
the

::::::::
Avogadro

:::::::
number,

:::
∆p

::
is
:::
the

:::::::
vertical

::::::::
increment

::
of

::::::::
pressure

::
in

:::
the

::::
layer

:
(hPa

:
),
::
g

::
is

:::
the

::::::
gravity

::::::::
constant,

::::
and

:::
md:::

is
:::
the

::::::::
molecular

:::::::
weight

::
of

:::
dry

:::
air

::
(kg/mol

:
).

::::
The

::::::
vertical

::::::
column

::::::::::
integration,

:::
hc,

::
is

::::::
simply

hc(s) =

K∑
k=1

:::::::::

sk
:

(3)

:::::
where

::
sk::

is
::::

the
:::::
ozone

::
in

::::
DU

::
at

::::
layer

:::
k,

:::
and

:::
K

:::::::
denotes

:::
the

::::::
number

:::
of

::::::
vertical

::::::
layers.

:::::::
Finally

:::
the180

:::::::
bi-linear

::::::::
horizontal

::::::::::::
interpolation,

::
hi,::

is
:

hi(r) =

I∑
i=1

:::::::::

wiri
:::

(4)

:::::
where

::
ri::

is
:::
the

:::::::::::::::::
vertically-integrated

:::::
ozone

::
at

::::
grid

::::
point

::
i,
:::
wi::

is
:::
the

:::::::
bi-linear

::::::::::
observation

:::::::
weights

::
at

:::
grid

:::::
point

::
i,

:::
and

:
I
:::::::
denotes

:::
the

:::::::
number

::
of

::::
grid

:::::
points

::::
used

::
in

:::::::::::
interpolation

::::::
(I = 4

::
in

:::
our

:::::
case).

:::::
After

:::::::::
combining

:::::
(2)-(4)

::::
into

:::
(1),

:::
the

::::::::::
observation

:::::::
operator

:::
for

::::
OMI

:::::::::::
observations

:::::::
becomes

:
185

h(x) =

I∑
i=1

:::::::::

wi

 K∑
k=1

A · 10−8(∆p)k
g ·md

·xk
:::::::::::::::


i

:::::::::::::::::::::::::

. (5)
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::
In

::::
these

:::::::::
processes,

:::
the most demanding part of the observation operator is bias correction of total

column O3 observation. Although we use the reference pressure at the model top as 10 hPa, which

is the highest value we could use in the current model version, there are still considerable amounts

of O3 in the stratosphere that could not be included in the calculation of the model guess (e.g.,190

background). Since this creates a negative bias in the mean observation error, we introduce a mul-

tiplicative bias correction ε to preserve positive-definiteness of the bias-corrected guess (Apodaca

et al., 2014) as

hB(x) = ε ·h(x). (6)

:::::
where

::
x

::
is

:::
the

:::::
model

::::
state

::::::
vector.

:
With the multiplicative bias correction in Eq. (1

:
6), we can make195

a new cost function in unbiased form as

J(x) =
1

2
(x−xb)TP−1

f (x−xb) +
1

2
[y−hB(x)]TR−1[y−hB(x)] (7)

where x is the model state vector, xb is the prior (background) state, y is the observation vector,

and the superscript T means a transpose. Here, h is the nonlinear observation operator, Pf is the

background (forecast) error covariance matrix in the ensemble subspace, and R is the observation200

error covariance matrix. Equation (2
:
7) is the cost function used in DA, provided ε can be estimated.

The optimal value of parameter ε is obtained by implicitly assuming lognormal probability density

function errors for a multiplicative bias correction in Eq. (1
:
6) (e.g., Apodaca et al., 2014) as

ε= ε0 exp


1
N

N∑
i=1

log
(

yi

ε0h(x)i

)
1 + r0

w0

 (8)

where ε0 is a guess parameter value and N is the number of observations. The empirical weighting205

values are set to r0 = w0 = 0.5 which implies having the same confidence in observations and the

guess. We assume the starting value of the bias to be

ε0 =
y

h(x)
where y =

1

N

N∑
i=1

yi, h(x) =
1

N

N∑
i=1

h(x)i (9)

Equation (3
:
8) is calculated once in every DA cycle.

3 Results210

A specific characteristic of our experiments is that both atmospheric
::::::::::::
meteorological

:
and chemical

variables are used as control variables in DA. Regarding the atmospheric
::::::::::::
meteorological

:
variables,

we focus on what is related to the TC formation and development, such as the temperature, wind,

and water vapor. Regarding the chemical variables, we select the chemical constituents such as O3,

NO2 and SO2. These are used to identify the impact of O3 observations on the TC structure in215

a WRF-Chem-MLEF system.
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3.1 Synoptic situation with ensemble WRF-Chem forecast

In general, observations show that SO2 has larger concentrations in the troposphere while O3 and

NO2 have larger concentrations in the stratosphere (e.g., Meena et al., 2006). However, in East

Asia, especially in eastern China, there is a significant tropospheric NO2 concentration because of220

the industrialized and urbanized part of China (Richter et al., 2005; Ohara et al., 2007). Regard-

ing the atmospheric
::::::::::::
meteorological

:
variables, temperature and water vapor have higher values in

the troposphere, while wind has larger speed near the tropopause. To consider these characteris-

tics, we focused on two pressure levels: (i) 850 hPa (lower troposphere) and (ii) 200 hPa (lower

stratosphere
::::
upper

:::::::::::::::
troposphere/lower

:::::::::::
stratosphere;

::::::
UTLS). Our ensemble WRF-Chem forecast also225

supports these general distributions of control variables, which are not shown in this paper.

3.2 Background error covariance

The background error covariance represents the background state uncertainty (e.g.,
:::::::
Zupanski

::::
and

::::::::
Zupanski,

:::::
2007;

:
Kim et al., 2010). These are estimated by

:::::
taking the difference between each of

the 32 ensemble members
:::
the

::::::::
ensemble

::::::::::
perturbation

::::::::
forecasts

:::::
(total

::
of

:::
32)

:
and the control forecast230

in the ensemble system (Zhang et
::::::::
Zupanski,

:::::
2005;

::::::
Zhang

::
et al., 2013). In our study, the ensemble

WRF-Chem-MLEF estimates the background error covariance defined in Zupanski (2005) as

Pf = P
1/2
f

(
P

1/2
f

)T
, P

1/2
f =

(
pf1 · · ·pfN

)
, pfn =m(xn

0
0
n
:
)−m(x0

0) (10)

where the index n is an ensemble member, N is the total number of ensemble forecasts, m is the

WRF-Chem model, and the subscript 0 denotes the initial time of the forecast with corresponding235

initial conditions x0 ::
x0

::::
(i.e.,

::::::
control

:::::::
forecast)

:
and ensemble initial conditions xn

0 .
:::
x0
n ::::

(i.e.,
::::::::
ensemble

::::::::
forecasts).

:
In this experiment, the initial ensemble perturbations are generated by using the lagged

forecast outputs (Zhang et al., 2013).

Being calculated from the WRF-Chem ensemble forecast, the flow-dependent background error

covariance is defined for atmospheric
::::::::::::
meteorological

:
and chemical variables, which allows chem-240

istry observations to impact atmospheric
::::::::::::
meteorological

:
variables in DA. In Zhang et al. (2013),

a larger background state uncertainty was found in the storm region. Our results also identify the

larger background state uncertainty near the TC, similar to Kim et al. (2010). Figure 2 shows the

standard deviation (SD) of background error covariance for chemical variables. O3 in particular

(Fig. 2a and d, respectively) shows a large background state uncertainty near the TC, with the max-245

imum of 0.024 ppmv at 200 hPa (Fig. 2d). The background state uncertainties of NO2 and SO2 at

200 hPa (Fig. 2e and f, respectively) are located near the TC, characterized by small magnitude and

weak influence on tropospheric pollution. On the other hand, the background state uncertainties of

NO2 and SO2 at 850 hPa (Fig. 2b and c, respectively) have more impact on central eastern China,

implying no visible (or obvious) impact of the low-level NO2 and SO2 on the TC.250
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The SD of background error covariance for atmospheric
::::::::::::
meteorological

:
variables appear to be

more related to the TC structure (see Fig. 3). In particular, wind (Fig. 3a and d, respectively) shows

a larger background state uncertainty near the TC at both pressure level, especially in the eye region

at 850 hPa (Fig. 3a). Temperature (Fig. 3b and e, respectively) also shows a larger background

state uncertainty near the TC, especially at 200 hPa (Fig. 3d). Regarding the water vapor mixing255

ratio (Fig. 3c and f, respectively), there is a larger background state uncertainty in the eye region

at both pressure levels. Larger background state uncertainty potentially implies a stronger analysis

correction, provided
:::
that total column O3 observations are available.

3.3 Analysis increment through the O3 data assimilation

We assess the impact of the assimilated O3 observations using analysis increments (xa−xb), which260

show the correction of the background state using the observations. It is calculated by the following

variable transformation (Zhang et al., 2013; Zupanski, 2005)

xa −xb = P
1/2
f

{
I+ [Z(xb)]TZ(xb)

}−1/2
ζ (11)

where ζ is the control variable in the ensemble space; the matrix in Eq. (6
::
11) is equal to the inverse

of the square root Hessian of the cost function in Eq. (2
:
7); Z is the observation information matrix265

with column vectors zi = R−1/2[h(xi)−h(xb)](
:
, where the index i denotes the ensemble member).

Figure 4 shows the analysis increments (xa−xb) of chemical variables obtained by assimilating

O3 observations. By comparing Figs. 2 and 4 one can notice that the O3 analysis increments are

in agreement with background state uncertainties, as expected from Eq. (6
::
11). At 850 hPa, the O3

analysis increment has an increase near the TC, but a decrease over China (Fig. 4a). At 200 hPa,270

however, there is an increase of O3 near the TC, and marginal change over China (Fig. 4d). The

strong positive response has the largest value of approximately 0.024 ppmv. At 200 hPa, positive

O3 analysis increments are correlated with positive NO2 (Fig. 4e) and SO2 (Fig. 4f) increments in

the TC region, while the correlation is mixed for
::
no

::::
clear

:::::::::
correlation

::
is

:::::
found

::
in other regions. While

::::
Note

:::
that

:
NO2 and SO2 are not related to the TC at 850 hPa ,

:::::
while the O3 analysis increments are275

correlated with NO2 (Fig. 4b) and SO2 (Fig. 4c),
:
increasing in central eastern China and Korea and

decreasing in northeastern China.

Figure 5 shows the analysis increments (xa −xb) of atmospheric
::::::::::::
meteorological

:
variables by

O3 assimilation. Corresponding to background state uncertainties, the analysis increments of wind

show notable impact on both lower and upper pressure levels. Positive O3 increments correspond280

to positive wind increments at 850 hPa (Fig. 5a), especially in the eye region, and to positive wind

increments at 200 hPa (Fig. 5d) in the TC and in the northeastern China and Korea. Regarding

the temperature impact (Fig. 5b and e, respectively), the positive O3 increments generate temper-

ature cooling near the TC and warming over northeastern China. Regarding the water vapor mix-

ing ratio, positive O3 increments generate a reduction of water vapor mixing ratio (Fig. 5c and285
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f, respectively) near the TC as well as in the eye region at both pressure levels. At 850 hPa, the

water vapor mixing ratio is increasing with positive O3 increments over the northeastern China

(Fig. 5c). These results illustrate that chemical observations can impact not only the chemical vari-

ables but also the atmospheric
::::::::::::
meteorological

:
variables, due to using the ensemble-based coupled

atmosphere–chemistry
:::::::::::::::::::
meteorology–chemistry background error covariance.

:
,
::
as

::::::::
indicated

::
by

:::::
Park290

:
et
:::
al.

::::::
(2015).

:

3.4 Validation
::::::::::
Verification of O3 data assimilation

As a verification measure, we examine the O3 assimilation impact on the cost function and on the

root mean square (RMS) error with respect to O3 observations, the same data used in the analysis.

The cost function of O3 driven by Eq. (2
:
7) has decreased from 0.36924× 104 (background) to295

0.30689× 104 (analysis), i.e., it is reduced by approximately 16.9 %. The RMS error, calculated as

RMSa =

√
1

N

∑
[y−h(xa)]2, RMSb =

√
1

N

∑
[y−h(xb)]2 (12)

:::::
where

:::::::::
subscripts

:
a
::::
and

:
b
:::::::

denotes
:::::::
analysis

::::
and

:::::::::::
background,

::::::::::
respectively,

:
has also decreased from

0.16684×102 DU (background) to 0.15204×102 DU (analysis), i.e., by about 8.87 %. These results

suggest that O3 assimilation has produced a significant improvement in the initial conditions.300

In addition, the impact of total column
::::
total

::::::
column

:
O3 observations is also quantified in terms

of the uncertainty reduction. With the Gaussian probability assumption, the information content

of observations can be represented as the degrees of freedom for signal (ds) (e.g.,
::::
DFS;

:
Rodgers,

2000)as ,
:::
ds,::

as
:

ds = tr
[
I−PaP

−1
f

]
(13)305

where tr is trace functions, I is the identity matrix, and Pa and Pf are the analysis and background

error covariances. Here ds can also be expressed as

ds =
∑
i

λ2i
1 +λ2i

(14)

where λi are the eigenvalues of the observation information matrix (e.g., Zupanski et al., 2007
:::::
2007b).

Note from Eq. (9
::
14) that the ds are strictly a non-negative measure: zero values indicate no impact of310

observations, while positive values indicate a reduction of uncertainty due to assimilation. As shown

in Zupanski et al. (2007
:::::
2007b), the estimation of Eq. (9

::
14) is also useful in a reduced-rank setting

of ensemble data assimilation
:::
DA.

In Fig.
::::::
Figure 6 we show the degree of freedom for signal of the

:::::
shows

:::
the

:::::
DFS

::
of

:
assimilated

total column O3 observations. One can note that it generally coincides with the satellite path, and315

thus with observations, as expected. The area with the maximum impact is near the TC location,

indicating that it is the area where the total column O3 observation had the strongest impact. In

agreement with the analysis increments, there exists a secondary maximum over northeast China, and
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a smaller one over the Yellow Sea. Given that the DA system includes atmospheric
::::::::::::
meteorological

and chemical control variables, this result also indicates that O3 total column observations have320

a positive impact on both the atmospheric
::::::::::::
meteorological

:
and chemical components of the WRF-

Chem system, especially in the TC area.

4 Conclusions

In this study, we investigated the impact of ozone (O3) assimilation on the structure of a tropical

cyclone (TC). We directly assimilated the total column O3 from the Ozone Monitoring Instrument325

(OMI) in a coupled atmosphere–chemistry
:::::::::::::::::::
meteorology–chemistry modelling system – the Weather

Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem). An ensemble-based

data assimilation
::::
(DA)

:::::::
method, the maximum likelihood ensemble filter (MLEF)

:
, is employed and

interfaced with the WRF-Chem. We include only a single data assimilation
:::
DA cycle since the

OMI observations are covering the model domain only once per day ,
:::
(i.e.,

:::::
06:00

::::::
UTC),

:
and no330

other observations were available at the time. The use of a single data assimilation cycle limits

the conclusions that can be drawn regarding the robustness of the data assimilation system, but it

does not impact the performance and implications of using a coupled atmosphere–chemistry data

assimilation system.
::
are

::::::::
available

::
at

:::
that

:::::
time.

Our results show that the O3 assimilation has a notable impact on the analyses of other chemical335

variables (e.g., NO2 and SO2) as well as O3 itself, and atmospheric
::::::::::::
meteorological

:
variables (e.g.,

wind, temperatureand specific humidity,
:::::
water

::::::
vapor,

:::
etc.), especially near the TC case considered.

These atmospheric
::::::::::::
meteorological variables are closely related to the TC structure and other prop-

erties. The O3 observations can affect other chemical and dynamical
::::::::::::
meteorological

:
variables, and

thus the TC itself. For example, temperature is related to development, wind to intensity, and specific340

humidity
::::
water

:::::
vapor to precipitation of the TC. Therefore, the implied corrections of these variables

in TC regions have a potential to improve the understanding, and eventually the forecast of TCs.

In our data assimilation
:::
DA experiments, the ensemble forecast error, given by the background

error SD
:::::::
standard

::::::::
deviation, appears reasonable with larger uncertainty over the TC area and also

over eastern China. The RMS
::::
root

:::::
mean

::::::
square error reduction indicates an improvement of the345

optimal analysis state, while the degrees of freedom for signal indicate a reduction of the uncertainty

of the optimal analysis.

:::
The

:::
use

:::
of

:
a
::::::
single

:::
DA

:::::
cycle

:::::
limits

:::
the

::::::::::
conclusions

::::
that

:::
can

:::
be

:::::
drawn

:::::::::
regarding

:::
the

:::::::::
robustness

::
of

:::
the

::::
DA

::::::
system,

::::
but

::
it

::::
does

:::
not

:::::::
impact

:::
the

:::::::::::
performance

::::
and

::::::::::
implications

:::
of

:::::
using

::
a

:::::::
coupled

:::::::::::::::::::
meteorology–chemistry

:::
DA

:::::::
system.

::
It

:
is
:::::::
desired

::
to

:::::::
perform

:
a
:::
DA

:::::::
cycling

::::
with

:::::::
multiple

::::::
cycles

::::
(i.e.,350

::
the

:::::::::
prediction

::::::::::
component

::
of

:::::
DA);

::::::::
however,

:
it
::::

has
::::::
several

:::::::
difficult

::::::
aspects

::::
that

:::
are

:::
not

:::::::
possible

:::
to

::::::
resolve

::
in

:::
the

::::::
current

:::::
setup.

::
It

::
is

::::::
known

:::
that

:::
the

:::::::
realistic

:::
DA

::
is

:::
not

::::::
perfect

::
in

::::::::
providing

:::::::::::
dynamically

:::::::
balanced

:::::
initial

:::::::::
conditions,

::::::::
typically

:::::::
resulting

::
in

:
a
:::::::
forecast

:::::::
spin-up

:::::
period

:::::
where

:::::
some

::
of

:::
the

:::::::
analysis
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::::::::::
adjustments

:::
are

::::::
filtered

::::
out.

:::
A

:::::::
practical

:::::::
remedy

::
is
:::

to
:::::::
produce

:::
an

::::::::
improved

:::
fit

::
to

::::::::::::
observations,

:::::::
bringing

:::::
about

::
the

::::::
related

:::::::
stronger

::::::
impact

::
on

:::::::::
dynamical

::::::
model

:::::::
variables

:::::
(e.g.,

::::
wind,

::::::::::
temperature

::::
and355

::::::::
pressure),

:::::
which

::::::
would

::::::::
eventually

:::::
result

::
in
::
a
::::::
longer,

::::::::
sustained

::::::::
influence

:::
into

:::
the

::::::::
forecast.

::::::::
However,

::::
given

::::
that

:::
the

::::::::::
assimilation

::
of

:::::
OMI

::::::::::
observations

:::::
exerts

::
a
:::::::
stronger

::::::
impact

::
on

::::::::
chemical

::::::::
variables

::::
than

::::::::
dynamical

::::::
initial

:::::::::
conditions,

::::
the

:::::::
24-hour

:::::::
forecast

::::
that

:::
we

::::
need

:::
for

::::
the

::::
next

:::::
cycle

::::::
would

:::
not

:::
be

:::::::
strongly

::::::::
influenced

:::
by

:::
the

::::
OMI

:::::::::::
observations.

:::::
Thus

:::
we

::::
need

::
to

::::::::
assimilate

:::::::::
additional

:::::::::::
observations.

:

As a future study, we plan to explore the longer data assimilation
:::
DA

:
periods (e.g., several days) to360

assess the
::::::
impact

::
of O3 observation impact on the track, intensity and precipitation of TCs. Although

we have only one available observation product per day for O3, we anticipate a positive impact of

assimilation. In
::::
order

::
to

::::::
obtain

::::
more

:::::::::
improved

:::
DA

::::::
effects,

::
in
:
addition to O3, we plan to assimilate

NO2 and SO2 observations, as well as atmospheric
::::::::::::
meteorological

:
observations and all-sky infrared

satellite radiances from a geostationary satellite that will be launched in the near future. Noting that365

NO2 and SO2 show high concentrations in East Asia, especially over eastern China, we expect to

improve our understanding of the TC structure and the transboundary air pollution as well through

assimilation of such chemical compositions from satellite observations.
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Figure 1. Total column O3 (in DU) from OMI at 04:05 UTC, 3 September 2005.
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Figure 2. Standard deviation of background error covariance for chemical variables valid on 06:00 UTC,

3 September 2005 at 850hPa (left panel) for (a) O3, (b) NO2 and (c) SO2, and at 200hPa (right panel)

for (d) O3, (e) NO2 and (f) SO2. Units are ppmv.
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Figure 3. Standard deviation of background error covariance for atmospheric variables valid on 06:00 UTC,

3 September 2005 at 850hPa (left panel) for (a) wind, (b) temperature and (c) water vapor mixing ratio, and at

200hPa (right panel) for (d) wind, (e) temperature and (f) water vapor mixing ratio. Units are m s−1 for wind,

K for temperature and g kg−1 for water vapor mixing ratio.

18



Figure 4. Same as in Fig. 2 except for analysis increment (xa −xb) of chemical variables in response to total

column O3. Units are ppmv.
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Figure 5. Same as in Fig. 3 except for analysis increment (xa −xb) of atmospheric variables in response to

total column O3. Units are m s−1 for wind, K for temperature and g kg−1 for water vapor mixing ratio.
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Figure 6. Degrees of Freedom
::::::
freedom

:
for signal

:::::
(DFS) of assimilated total column O3 observation valid at

06:00 UTC, 3 September 2005. The units are non-dimensional.
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