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Abstract 5 

We test the current generation of global chemistry-climate models in their ability to simulate 6 

observed, present-day surface ozone.  Models are evaluated against hourly surface ozone from 7 

4,217 stations in North America and Europe that are averaged over 1° x 1° grid cells, allowing 8 

commensurate model-measurement comparison.   Models are generally biased high during all 9 

hours of the day and in all regions.  Most models simulate the shape of regional summertime 10 

diurnal and annual cycles well, correctly matching the timing of hourly (~15:00) and monthly 11 

(mid-June) peak surface ozone abundance.  The amplitude of these cycles is less successfully 12 

matched.  The observed summertime diurnal range (~25 ppb) is underestimated in all regions 13 

by about 7 ppb, and the observed seasonal range (~21 ppb) is underestimated by about 5 ppb 14 

except in the most polluted regions where it is overestimated by about 5 ppb.  The models 15 

generally match the pattern of the observed summertime ozone enhancement, but they 16 

overestimate its magnitude in most regions.  Most models capture the observed distribution of 17 

extreme episode sizes, correctly showing that about 80% of individual extreme events occur 18 

in large-scale, multi-day episodes of more than 100 grid cells.  The models also match the 19 

observed linear relationship between episode size and a measure of episode intensity, which 20 

shows increases in ozone abundance by up to 6 ppb for larger-sized episodes.  We conclude 21 

that the skill of the models evaluated here provides confidence in their projections of future 22 

surface ozone. 23 

 24 

1 Introduction 25 

We test simulated present-day surface ozone in global chemistry-climate models on temporal 26 

scales from diurnal to multi-year variability and on statistics from median geographic patterns 27 

to the timing and size of extreme air quality episodes.  The tests use gridded hourly surface 28 

ozone abundances based on a decade of observations from 4,217 air quality monitoring sites 29 

in North America and Europe.  Chemistry-climate models provide a valuable means for 30 

projecting future air quality in a changing climate (Kirtman et al., 2013), but recent 31 
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assessments have lacked commensurate observational comparisons to establish their 1 

credibility in reproducing current cycles in surface ozone over polluted regions (Young et al., 2 

2013).  Model-measurement comparisons to date have identified model faults; yet, they often 3 

have been limited to monthly statistics, biased to picking clean-air sites over limited parts of 4 

the continents (Fiore et al., 2009; Doherty et al., 2013), and avoided evaluating diurnal cycles 5 

and the patterns of major pollution episodes (Schnell et al., 2014, henceforth S2014). 6 

The factors driving future surface ozone (O3) changes include: (1) local-to-regional emissions, 7 

(2) global-scale emissions of air pollution transported across continents and oceans, (3) global 8 

emissions and physical climate change that alters the hemispheric-scale abundances of 9 

tropospheric O3, and (4) climatic shifts in the meteorology that creates the worst pollution 10 

episodes.  Factors 1, 2, and 3 have been studied extensively with global chemical transport 11 

models (CTMs) and chemistry-climate models (CCMs), and there is some agreement on 12 

model projections given an emissions scenario (e.g., Prather et al., 2003; Reidmiller et al., 13 

2009; HTAP, 2010; Wild et al, 2012; Doherty et al., 2013; Young et al., 2013).  The 14 

importance of (4), however, lies in the recognition that air quality extremes (AQX), the worst 15 

pollution episodes in a decade, are triggered by meteorological conditions.  Air quality 16 

absolute exceedances are known to occur in multi-day, spatially-extensive episodes over the 17 

US (Logan, 1989; Seinfeld et al., 1991), but it was not until the regular gridding of all station 18 

data over North America and Europe and the statistical definition of extremes in S2014 that 19 

the extent, coherence, and decadal variability of the episodes became clear.  If climate change 20 

increases the duration and/or extent of the worst decadal AQX episodes, then the overall 21 

health impact of poor air quality may be worse than expected based on precursor emission 22 

changes alone (Fiore et al., 2012).  A warming climate appears to increase the number of 23 

stagnation days (Horton et al., 2014) and may decrease the frequency of ventilating mid-24 

latitude cyclones (e.g., Mickley et al., 2004), but it is unclear how these meteorological 25 

indices relate to surface O3 or particulate matter, especially with respect to the worst AQX 26 

episodes as identified in S2014.   27 

The models in the Atmospheric Chemistry and Climate Model Intercomparison Project 28 

(ACCMIP; Lamarque et al., 2013) were used in the recent assessment of the 29 

Intergovernmental Panel on Climate Change (IPCC; Kirtman et al., 2013) and represent the 30 

most advanced attempt to simulate global surface O3 in a future climate.  However, in order to 31 

place any confidence in their projections, their ability to simulate the observed, present-day 32 
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surface O3 climatology must be evaluated.  In this paper we present the first such model-1 

measurement comparisons, specifically addressing (4) by applying the methodologies from 2 

S2014 to the current generation of CCMs in an effort to quantify their ability to simulate the 3 

decadal statistics of the AQX episodes.  Due to the complexity and nonlinearity of the 4 

underlying processes, accurately simulating surface O3 over both clean and polluted 5 

environments is a formidable task for global models with resolutions of 100 km at best.  For 6 

example, it has been shown that choices in the parameterization of surface deposition can 7 

shift modeled surface O3 levels by ten ppb or more (Val Martin et al., 2014).  Moreover, there 8 

are new, phenologically-based land-surface models for interactions between atmospheric 9 

chemistry and the biosphere (Büeker et al., 2012) that have yet to be fully implemented in 10 

global models.  In any case, the history of land-use change - both recent and future - is 11 

expected to impact surface O3 abundances (Ganzeveld et al., 2010).  Thus, we recognize that 12 

this model-measurement comparison is just one of the first steps in evaluating global model 13 

simulations of surface O3 pollution.  A summary of the observational and model datasets as 14 

well as a brief overview of the methods developed in S2014, and used here, is presented in 15 

Sect. 2.  Model-measurement comparisons are presented in Sect. 3 with concluding remarks 16 

and further discussion in Sect. 4. 17 

 18 

2 Data and Methods 19 

2.1 Observations of surface O3 20 

We use 10 years (2000-2009) of hourly surface O3 measurements from air quality networks in 21 

North America (NA) and Europe (EU).  Following S2014, in NA we use 1,633 stations from 22 

the US Environmental Protection Agency’s (EPA) Air Quality System (AQS), but also 23 

increase the spatial coverage in NA by including 92 stations from the US EPA’s Clean Air 24 

Status and Trends Network (CASTNet) and 207 stations from Environment Canada’s 25 

National Air Pollution Surveillance Program (NAPS).  The datasets used for EU remain the 26 

same as S2014: 2,123 stations from the European Environment Agency’s air quality database 27 

(AirBase) and 162 stations from the European Monitoring and Evaluation Programme 28 

(EMEP; Hjellbrekke et al., 2013).  Table 1 provides a summary of the observational datasets. 29 

A major advance by S2014 was the generation of average surface O3 abundance in a grid cell 30 

from observational products, one that could be directly compared to gridded model output.  31 
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The station measurements are used to generate a 1° x 1° hourly grid cell average surface O3 1 

product over NA and EU using the interpolation scheme described in S2014.  The 2 

interpolation is similar to an inverse distance-weighted (IDW) interpolation, but additionally 3 

incorporates a declustering technique employed to reduce data redundancy, similar to that of 4 

Kriging (Wackernagel, 2003).  The method also avoids disproportionately representing 5 

stations that often are preferentially placed in the most polluted urban environments.  S2014 6 

first derived the maximum daily 8 h averages (MDA8) of the individual stations and then 7 

interpolated onto the 1° x 1° grid, while here we interpolate the hourly measurements and 8 

subsequently derive the MDA8 at each grid cell.  Differences between the two methods are 9 

small (e.g., some missing station data, different 8 h periods for nearby stations), but the new 10 

approach allows modeled diurnal cycles to be analyzed.  The effects of (i) the new hourly 1° x 11 

1° cells being used to calculate MDA8 and (ii) the addition of CASTNet and NAPS stations 12 

on the decadal 25th, 50th, and 95th percentiles at each grid cell in NA are shown in Fig. S1.  13 

Overall, the difference (this work minus S2014) is about -0.6 parts per billion (ppb) O3 for 14 

each of the three percentiles.  These decreases are most likely a result of deriving MDA8 from 15 

the interpolated hourly abundances rather than first deriving each station’s MDA8 and then 16 

interpolating.  Other notable changes are: the northeast edge of the domain (-5 ppb) for all 17 

three percentiles due to the generally lower O3 abundances of Canadian NAPS stations; and 18 

Wyoming and Colorado at the 25th percentile (+5 ppb) possibly from CASTNet stations 19 

reflecting either cumulative production of O3 as polluted air reaches them or else more 20 

prevalent stratospheric influx. 21 

2.2 Description of Models (ACCMIP + UCI CTM) 22 

The Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP) consists 23 

of 16 global models (12 Chemistry Climate Models (CCMs), 2 Chemical Transport Models 24 

(CTMs), and 2 Chemistry-General Circulation Models (CGCMs)) and was designed with the 25 

intent to better understand the relationships between atmospheric chemistry and climate 26 

change (Lamarque et al., 2013).  We focus on the acchist experiment, designed to test the 27 

models’ ability to reproduce the observed climatology of quantities specifically relevant to 28 

chemistry modeling (Lamarque et al., 2013).  We use the eight ACCMIP models (6 CCMs, 1 29 

CTM, and 1 CGCM) with archived hourly surface O3, incorporating the years from each 30 

model most closely aligned with observations.  Most models provide 10 years of data, starting 31 

in either model year 2000 or 2001.  In any case, all ACCMIP simulations are climatologically 32 
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representative of the average 2000s with respect to meteorology and emissions.  Table 2 1 

provides a brief summary and the references of the models used in this study.  Detailed 2 

descriptions of the ACCMIP models can be found in Lamarque et al. (2013) and references 3 

therein.   4 

We also include a hindcast simulation over the same period as the observations from the 5 

University of California, Irvine Chemical Transport Model (UCI CTM) performed at T42L60 6 

resolution (Holmes et al., 2013) to both compare our model with the current generation 7 

models and to highlight differences between model simulations using free-running and 8 

hindcast meteorological conditions.  The UCI CTM had many updates since the 1° x 1° x L40 9 

version (Tang and Prather, 2010) used by S2014, but calculates similar, not unexpectedly 10 

high-biased patterns of surface O3.  11 

For commensurate comparison of the models and measurements, we regrid the modeled 12 

hourly O3 abundances (typically at 2° to 3° resolution) to the same 1° x 1° cells as the 13 

observations using first-order conservative mapping (i.e., proportion of overlapping grid cell 14 

areas).  Modeled hourly abundances are adjusted by 1 h per 15° longitude to be consistent 15 

with the local time of the observations.  Our two major domains are: NA bounded by 25°N-16 

49°N and 125°W-67°W; and EU bounded by 36°N-71°N and 11°W-34°E.  A further masking 17 

drops coastal grid cells for which the quality of prediction index, QP < 2/3 (the number of 18 

independent stations at an effective distance of 100 km used to calculate the grid-cell values), 19 

see S2014 and Fig. S2 in the Supplement.  Supplementary Table S1 provides the latitudes and 20 

longitudes used in the final masking for both domains.  Because of their differing chemical 21 

regimes, some of our analyses split the NA domain into Western (WNA) and Eastern (ENA) 22 

regions at 96°W, and EU into Southern (SEU) and Northern (NEU) regions at 53°N.   23 

2.3 Air quality extremes (AQX) 24 

We define air quality extreme (AQX) events on a daily basis using local (i.e., grid-cell) 25 

climatologies to identify the 10 times N worst days (i.e., highest MDA8) in an N-year period 26 

(i.e., the ~97.3 percentile; e.g., the 100 worst days in a decade).  The space-time 27 

connectedness of the AQX events into episodes is defined using a hierarchal clustering 28 

algorithm described in S2014.  Because AQX episodes span across the regions, statistics for 29 

these analyses are done only on the two major domains NA and EU.  The total size of an 30 

AQX episode (S, units = km2-days) is calculated by integrating the areal extent of an episode 31 
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(km2) through time (days).  For a given set of episodes, the mean size S̄ is calculated as a 1 

weighted geometric mean, with the weights equal to the AQX episode sizes (Eq. 6 in S2014).  2 

Because the lower native resolutions of the models typically map onto 4 to 8 contiguous 1° x 3 

1° grid cells, the modeled episode sizes have artificial minimums, however, S2014 4 

demonstrated that this has little effect on the resultant episode size distributions. 5 

 6 

3 Results 7 

3.1 Diurnal cycles 8 

We test the models’ abilities to reproduce the observed shape (i.e., phase and amplitude) of 9 

the diurnal cycle, averaged over summer (JJA) and winter (DJF) months.  For each of the four 10 

regions, average hourly values (local solar time) are calculated as the area-weighted mean of 11 

all grid cells’ O3 abundances.  We calculate the phase (h, hour of peak O3 abundance, with h = 12 

0.0 corresponding to 00:00 local time) and peak-to-peak amplitude (H, ppb difference from 13 

minimum to maximum) of the diurnal cycle using a cosine fit with a period of 24 hours.  14 

Although the diurnal cycle could be more accurately represented by a higher-order fit, this 15 

simple method provides objective and continuous measures of h and H for each dataset, 16 

avoiding subjective, ambiguous results in cases of flat and/or multiple maxima.  17 

Figure 1a-h shows the diurnal cycle of the observations and models averaged over JJA (top 18 

row) and DJF (second row) in WNA, ENA, SEU, and NEU (columns from left to right).  A 19 

triangle for each dataset is plotted as (x, y) = (h, H).  The large number of data points (~106 x 20 

24 h per model) provides a smooth and robust estimate of each dataset’s diurnal cycle. The 21 

color scheme and model abbreviations in the legend of Fig. 1 are common to all similar 22 

figures and text throughout.  The Taylor diagrams (Taylor, 2001) in Supplementary Fig. S3a-23 

h show an alternate, commonly-used summary of the results in terms of the correlation 24 

coefficient (R), the normalized standard deviation (NSD), and centered root-mean-square 25 

difference (RMSD).  Figures 1 and S3 show very similar quantities (e.g., model-measurement 26 

discrepancies in h and H roughly correspond to R and NSD, respectively); however, we 27 

consider the representation in Fig. 1 to be more useful.  The panels of Fig. S3 correspond to 28 

panels in Fig. 1 in terms of region and variable.  Summary statistics on diurnal cycles, annual 29 

cycles, and AQX events for ENA are presented in Table 3, with all regions and additional 30 

statistics provided in Supplementary Tables S2-S4. 31 
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The shape of the diurnal cycle of O3 is driven primarily by sunlight, meteorology (e.g., 1 

temperature and variations in boundary layer mixing), surface deposition, and the daily cycle 2 

of precursor emissions.  The hour of the maximum phase h occurs when these factors align, 3 

usually in midafternoon.  Indeed, for seven of eight region-seasons in Fig. 1a-h, the observed 4 

value of h ranges from 14.8 to 15.5 hours.  For DJF in NEU, where photochemical O3 5 

formation is negligible, there is no obvious diurnal cycle in observations and the double 6 

minimum may simply reflect the titration of O3 from the morning and afternoon peaks in 7 

transport NOx emissions.  In this case there is little information from the diurnal cycle except 8 

that the amplitude H is small.  The ACCMIP models, but not the UCI CTM, mostly show h 9 

within ±1 hour, generally later than observed (Tables 3 and S2).   10 

Although the ACCMIP models’ diurnal phase closely matches the observed, the peak-to-peak 11 

amplitude H is less successfully simulated.  For JJA the observed H is 27, 29, 24 and 14 ppb 12 

in WNA, ENA, SEU, and NEU, respectively; while for DJF, H is 10, 9, 5, and 0.2 ppb.  We 13 

characterize the three largest H’s as high-photochemical region-seasons (JJA in WNA, ENA 14 

and SEU), and the remaining five as low-photochemical.  In this sense JJA in NEU is closer 15 

to DJF in ENA in terms of near-surface O3 production.  The ACCMIP models generally 16 

underestimate H by about 7 ppb in the high-three region-seasons, but cluster around H for the 17 

low-five.  Model A is the only ACCMIP model to overestimate H in any of the high-three, 18 

possibly a result of its large total VOC (volatile organic compounds, excluding methane) 19 

emissions (55% larger than the average of the other 7 models).  The 24 h mean bias (MB, see 20 

Tables 3 and S2) for the ACCMIP models is typically positive in all 8 region-seasons (up to 21 

28 ppb), but with some models (e.g., C and E in JJA, E in DJF) showing little or no mean 22 

bias, even though they underestimate H in JJA by about 25% like all ACCMIP models.  23 

The underestimate of the summertime diurnal amplitude H by most ACCMIP models 24 

suggests that they either underestimate net daytime production or have too little nighttime loss 25 

of O3 or its precursors, through either in situ chemical loss or dry deposition.  From the 26 

derivative of the diurnal cycles in Fig. 1a-d, there are two periods of model-observation 27 

discrepancy: in the early morning (~06:00) models underestimate the observed slope; and in 28 

the early evening (~19:00) they overestimate it.  The models generally match the observed 29 

slope to within ±1% h-1 during midday and throughout the night.  Thus the model error is to 30 

underestimate net O3 production in the early morning and overestimate it in early evening, 31 

which may be caused by the lack of a diurnal emission cycle in these global models.  The 32 
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mismatch of the slope in the early morning, during which the boundary layer grows rapidly, 1 

may be caused by the models underestimating entrainment of free troposphere air.  We find 2 

no clear evidence that modeling errors in the nocturnal planetary boundary layer (Lin et al., 3 

2008) or missing near-surface processes affect the diurnal cycle on a regional average. 4 

Underestimated daytime production could result from limited representation of VOC 5 

chemistry, since discrepancies are largest in summer when VOCs play a larger role.  Indeed, 6 

model A, which simulates the most chemical species of all the ACCMIP models in addition 7 

having the largest VOC emissions, is one of the few models to consistently overestimate H.  8 

To the contrary, however, C and E are two of the better performing models despite their 9 

comparatively simple representation of VOC chemistry (C – only isoprene, E – none).  The 10 

only models to include the small and relatively uncertain fractional yield of HNO3 from the 11 

reaction of HO2 and NO are A, G, and H (Lamarque et al., 2013).  This reduces daytime 12 

production and could partly explain why the models G and H consistently underestimate H 13 

more than others, however model A overestimates H.  14 

The ACCMIP models reproduce the phase of the observed diurnal cycle in both seasons 15 

despite not accounting for hourly variation in emissions. The weekly, emission-driven cycles 16 

in MDA8 O3 were diagnosed by S2014, but we do not apply that diagnostic here because the 17 

models did not include such variability in emissions.  The lack of hourly variation of 18 

emissions may account for the overall underestimates of H by the ACCMIP models, since NO 19 

emissions can be lost heterogeneously at night, less effectively than those during the morning 20 

and afternoon peaks in traffic. In addition, if the early morning peak in transport NOx 21 

emission was included, the modeled morning rise in O3 would most likely be augmented, thus 22 

yielding larger values of H. The ACCMIP models use a wide range of boundary layer mixing 23 

schemes but consistently underestimate H.  The boundary layer schemes may be responsible 24 

for these underestimates, however, Menut et al., (2013) notes that at least for one model, 25 

increasing its vertical resolution results in very small surface O3 changes.   26 

The UCI CTM’s values of h and H show that it drastically overestimates net daytime O3 27 

production, especially during early morning hours.   Its values of h are about 2.4 hours earlier 28 

than observed in the high-three region-seasons, and in contrast to the ACCMIP models its H 29 

values are too large by 10s of ppb.  This diagnostic identifies a serious problem with the UCI 30 

CTM diurnal cycle over polluted regions that needs to be investigated (e.g., missing 31 

heterogeneous loss of NO2 at night, capped boundary layer in the morning) and which will be 32 
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done after submission of this manuscript.  S2014 found that the UCI CTM accurately hindcast 1 

the summertime probability distribution of MDA8 O3, the occurrence of AQX events, and the 2 

size of these episodes, albeit with high bias of about +29 ppb in JJA over both NA and EU.  3 

This new diurnal diagnostic has clearly identified model errors and pathways to improve our 4 

model as well as models like G, which gravely underpredicts the amplitude of the diurnal 5 

cycle.  The tests shown here emphasize a large-scale average over different photochemical 6 

regimes in the four regions, and thus individual model developers may wish to analyze the 7 

observations for smaller regions using the datasets generated here, which are available by 8 

request from the corresponding author. 9 

3.2 Annual cycle 10 

We test the models’ abilities to reproduce the observed phase and amplitude of the annual 11 

cycle over the four regions.  Average monthly values for each region are calculated as the 12 

area-weighted mean of all encompassed cells’ MDA8 O3 abundance, reflecting the EPA air 13 

quality metric (www.epa.gov/air/criteria.html).  Similar to the diurnal cycle, we derive the 14 

phase (m, month of peak O3 abundance, with m = 0.0 corresponding to 1 Jan) and peak-to-15 

peak amplitude (M, ppb difference from minimum to maximum) using a cosine fit assuming 16 

12 equally spaced monthly means.  Figure 1i-l shows the annual cycle of the observations and 17 

models over our 4 regions with triangles plotted for each model and dataset as (x, y) = (m, M).  18 

The filled gray curve shows ±1 standard deviation of each monthly mean based on 10 years of 19 

observations.  This interannual variability is quite narrow, much less than the spread across 20 

models.  As for the diurnal cycle, the Taylor diagrams in Fig. S3i-l show an alternate 21 

presentation of the annual cycle results with summary statistics given in Tables 3 and S3. 22 

In northern mid-latitudes, processes that drive the shape of the annual cycle are similar to 23 

those of the diurnal cycle (i.e., sunlight, temperature, and precursor emissions) but occur on 24 

continental to hemispheric scales.  Dry deposition through stomatal uptake, large-scale 25 

meteorological conditions including stratosphere-troposphere exchange and the position of 26 

the jet stream (Barnes and Fiore, 2013) also play important roles.  These surface observations 27 

show the same well-known cycle that has been seen in the northern hemisphere mid-latitude 28 

troposphere from ozone sondes and clean-air remote sites (Logan, 1999; Fiore et al., 2009): 29 

lowest values in late fall (ND), increasing through winter (JFM) followed by a broad flat peak 30 

over spring-summer (AMJJA).  The lower reactivity region NEU peaks in April and declines 31 

until January, indicating meteorologically driven increases through the winter (e.g., 32 
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stratospheric influx). The observations show a phase m = 5.6, 5.3, 5.5, and 4.3 month-of-year 1 

for WNA, ENA, SEU, and NEU, respectively; and corresponding amplitudes M = 22, 21, 26, 2 

and 17 ppb.  By fitting a cosine curve to each grid cell’s time series, we find that in terms of 3 

specific locations, the earliest m occur in Canada, Florida, and NEU while the latest m occur 4 

in California, south-central NA, and SEU (not shown).  Most ACCMIP models have m within 5 

±1 month of the observations, generally earlier in NEU, later in ENA and SEU, and split in 6 

WNA.  Models C and G have difficulty producing the observed seasonal cycles, and their 7 

derived phases are not meaningful.   8 

The amplitude M is controlled by both meteorology and photochemistry.  For the very large 9 

regional values of M, it is clearly chemical, occurring in regions with large O3 precursor 10 

emissions:  California, ~40 ppb; the Great Lakes region ~30 ppb; and northern Italy, ~45 ppb 11 

(not shown).  The smallest values of M (~15 ppb) are found in northwest and southeast NA, 12 

and NEU. The ACCMIP models generally underestimate M by about 5 ppb in WNA, SEU, 13 

and NEU, while they overestimate it by about 5 ppb in ENA.  The low values of M for C and 14 

G suggest they are either overestimating net production of O3 in winter or underestimating it 15 

in summer, however their wintertime biases (see Fig. 1e-h, Tables 3 and S2) indicate that 16 

wintertime production or representation of wintertime physical climate could be causing the 17 

low M values.    18 

The annual cycles here are constructed using the MDA8 O3 derived from hourly data.  Many 19 

models, including 8 other ACCMIP models not analyzed here, do not report hourly surface O3 20 

but only monthly means (i.e., the average of all hours within a month).  We chose MDA8 21 

values to conform to the US EPA primary air quality standards and statistics, but if we used 22 

monthly averages then more models could be evaluated.  Unfortunately, without at least daily 23 

diagnostics (e.g., daily mean or maximum value) analysis of percentile patterns and AQX 24 

events and episodes (see Sects. 3.3 - 3.7) are precluded.  Further, we tested the difference in 25 

annual cycles diagnosed both ways and found that the bias of a model can differ and thus 26 

these two diagnostics cannot be mixed.  For example, the ACCMIP ensemble mean bias for 27 

JJA using MDA8 averages is 2, 11, 11, and 8 ppb in WNA, ENA, SEU and NEU, 28 

respectively; however, the corresponding bias using 24 h averages is consistently larger at 6, 29 

14, 13, and 9 ppb.  This result was expected since the ACCMIP model ensemble generally has 30 

the largest biases outside of MDA8 hours.  These conclusions are generally true for all 31 
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seasons and models, as illustrated in Supplementary Fig. S4, which shows the mean bias 1 

(model minus observed) of MDA8 minus 24 h average for each model, season, and region.   2 

For the UCI model, excess production in the diurnal cycle is also evident in the annual cycle, 3 

overestimating M in all regions, most in ENA (+44 ppb) and least in NEU (+9 ppb).  In 4 

addition, the month of peak abundance is always later than observed, sometimes by more than 5 

1 month.  Not unexpectedly, the bias in M using 24 h averages is significantly less than that 6 

using MDA8 (e.g., +30 ppb vs. +44 ppb in ENA) because largest errors occur near midday.  7 

We conclude that using 24 h averages to construct the annual cycle is basically a different, 8 

almost independent diagnostic than that constructed from the daily MDA8 O3, and further it 9 

would predict different health impacts if used to project summertime surface O3 in a future 10 

climate. 11 

3.3 AQX events 12 

Next, we test the models’ ability to reproduce the annual cycle of the individual AQX events, 13 

identified for each grid cell as the 100 days with the highest MDA8 in the decade (40 in 4 14 

years for A, 50 in 5 years for G).  Figure 1m-p shows the annual cycle of AQX events for the 15 

observations and models over our 4 regions.  The filled gray curve shows ±1 standard 16 

deviation for each month based on 10 years of observations.  The interannual variability is 17 

much larger than that seen in the observed MDA8 cycle with most models falling in its range 18 

in SEU and NEU, but not in WNA or ENA.  An alternate presentation as Taylor diagrams is 19 

shown in Fig. S3, and the summary statistics are given in Tables 3 and S4.  The month of 20 

maximum AQX events for most models is within ±1 month of that observed in each region 21 

(mAQX in Tables 3 and S4). Based on S2014, we expect the annual cycle of AQX events to be 22 

highly correlated with that of MDA8, as the observations show correlations RMDA8 (i.e., AQX 23 

vs. MDA8) of 0.81 to 0.87 for all regions.  For the ACCMIP models this correlation is not as 24 

good, but they still show RMDA8 > 0.70 (Tables 3 and S4).  Models whose monthly MDA8 25 

correlates well with observed MDA8 also have monthly AQX events that correlate well with 26 

observed.  Nevertheless, matching the AQX events annual cycle is more difficult than 27 

matching the cycle of MDA8 (Tables 3, S3, S4, and Fig. S3) because AQX events are driven 28 

by meteorological extremes which are not necessarily represented in these climatological 29 

simulations.  30 
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The UCI CTM also reproduces the annual AQX events well, and since it is a hindcast, we can 1 

extend the analysis to how well it identifies each AQX event on an exact-match basis (‘model 2 

skill’ by S2014).  For a climatological model that exactly matches the annual cycle (i.e., 3 

matching the number of AQX events in each month) but is synoptically random in each 4 

month, a skill score of ~8% is expected; but the UCI hindcast correctly identifies 28%, 33%, 5 

33%, and 21% of AQX individual cell events in WNA, ENA, SEU, and NEU, respectively.   6 

3.4 Mapping O3 percentiles and enhancements 7 

We can define baseline levels of O3 from observations as the statistically lowest percentiles 8 

(NRC, 2009).  Baseline levels are independent of attribution to specific emissions or policy 9 

relevance implied by US EPA’s use of the term background.  We can expect, or possibly 10 

assume, that baseline levels are not influenced by recent, locally-emitted or produced 11 

pollution (HTAP, 2010).  To estimate the daytime enhancement in summertime O3, 12 

presumably caused by continental emissions, we first want to define a baseline level for each 13 

grid cell as a lower percentile of the daily surface O3.  We seek a percentile that represents the 14 

cleanest air possible over the summer season (even if it is never realized during the summer), 15 

and one that does not change across years.  We use MDA8 rather than 24 h average data to 16 

prevent nighttime values from determining the baseline.  We calculate percentiles for each 17 

cell on an annual basis and then derive regional area-weighted averages of the percentiles.  18 

The resulting percentiles by region (Fig. 2) show that the year-to-year variability is small 19 

below the 40th percentile, but the largest pollution years are evident at and above the 50th 20 

percentile.  Thus, we select the 30th percentile as each grid cell’s baseline level, which 21 

corresponds roughly to the lower levels of spring-fall days.  One might argue choosing, for 22 

example, the 10th percentile of JJA to estimate summertime enhancement, however, this 23 

assumes JJA in all models is the peak of the annual cycle and still sees clean air.  We define 24 

O3 enhancement (EX, unit = ppb) here as the difference between the 30th percentile and any 25 

larger value, where subscripts will describe the reference value.  26 

To estimate the summertime O3 enhancement from local to continental-scale pollution, we 27 

assume that the 92 days of JJA are the highest O3 values of the year, pick their median value 28 

(87th percentile), and subtract from it the spring-fall baseline (30th percentile).  Maps of the 29 

summer enhancement EJJA (i.e., 87th minus 30th percentile) in NA and EU in observations 30 

and models are shown in Fig. 3.  While O3 levels for the 87th, 30th, and other percentiles vary 31 
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considerably from cell-to-cell (see S2014), the maps of observed EJJA show mostly large-scale 1 

structures.     2 

Many models (A, B, D, E, F, H, I) have similar patterns of EJJA over NA, with large 3 

enhancements (30 to 50 ppb) from the Mississippi through the Ohio River valley to the 4 

Northeast, whereas the observations show such a pattern but with smaller enhancements (25 5 

to 30 ppb).  Model A greatly overestimates EJJA in the most polluted areas (e.g., California, 6 

northeast NA, south and central EU) as well as coastal areas near the Gulf of Mexico.  The 7 

extremely large bias near the Gulf of Mexico is unique to model A, presumably resulting from 8 

natural JJA emission sources such as lighting NOx, wildfires, or biogenic VOCs since the area 9 

is not known for large anthropogenic sources.  Two models (C, G) are unusually uniform 10 

across NA (except California).  Surprisingly, this sorting of the models does not hold for EU.  11 

For example, there must be some clue as to why model B greatly overestimates EJJA over NA 12 

but underestimates it over EU.  Such behavior from model C (uniform EJJA) may be expected 13 

since the tropospheric VOC chemistry is highly simplified.  The uniform pattern of EJJA is 14 

also somewhat evident in EU for model E, which has even simpler VOC chemistry compared 15 

to C, although this may be due to biases in the representation of physical climate rather than 16 

chemistry.  17 

The EJJA diagnostic provides an excellent geographically resolved test for CCM development.  18 

It also provides a useful measure of O3 regional pollution changes in a future climate with 19 

shifting O3 baselines due to hemispheric-scale changes in methane, water vapor, temperature, 20 

and stratospheric influx.  Over each of our four regions, we calculate the average summertime 21 

enhancement ĒJJA (see Tables 3 and S3), expecting to find the values and model-measurement 22 

differences similar to those found in the seasonal amplitude M. Indeed, this is true, albeit EJJA 23 

is generally smaller than M.  In addition, the spatial pattern of the values and model-24 

measurement differences are also consistent between EJJA and M (not shown).   25 

3.5 AQX episode size 26 

We examine the models’ ability to simulate the observed distribution of AQX episode sizes 27 

over the decade 2000-2009.  Our hierarchical clustering analysis identifies connected-cell, 28 

multi-day AQX episodes of size S (given here in units of 104 km2-days).  We do not split the 29 

NA and EU domains here because episodes span across regions.  Figure 4a-b shows the 30 

distribution of episode sizes in the observations and each model as the complementary 31 
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cumulative distribution (CCD, %), i.e., the fraction of total AQX area-day events occurring in 1 

episodes of size S or larger.   2 

For NA observations, the fraction of AQX area-weighted events that occur in episodes with S 3 

> 100 x 104 km2-days (CCD100) is 79%; and those with S > 1000 x 104 km2-days (CCD1000) is 4 

38%.  For EU observations, most AQX events also occur in large episodes:  CCD100 = 80% 5 

and CCD1000 = 35%.  Model C is aberrant in having extremely large episodes (e.g., NA 6 

CCD100 = 93%), which fall mostly in the spring rather than summer months (see Fig. 1m-p).  7 

This may result from the model’s simplified chemistry or unrealistic, widespread stratospheric 8 

intrusion of O3.  In any case, this model’s summertime high ozone events are obscured.  9 

Model A, with much more complex chemistry, however, shows significantly smaller 10 

episodes.  For CCD100, the other models (B, D-I) are close to the observed:  73-85% for NA, 11 

and 71-85% for EU.  For CCD1000, however, this model spread diverges substantially, 13-69% 12 

for NA, and 15-70% for EU.  In general, models A, B, E, and G do not produce the larger 13 

episodes and thus their physical climate may lack the synoptically correlated persistent 14 

stagnation episodes.  The UCI CTM, using observed meteorology, captures the shape of the 15 

observed CCDs extremely well compared to the free-running climate of the ACCMIP models. 16 

Integrating over all episodes, we calculate the weighted geometric mean size S̄ (see S2014).  17 

Observations have mean episode sizes S̄ of 415 (104 km2-days) and 444 in NA and EU, 18 

respectively.  Models C, D, F, H, and I are biased high in S̄, while models A, B, E, and G are 19 

biased low for both NA and EU (Fig. 4a-b, Tables 3 and S4). 20 

3.6 Non-stationarity and possible trends 21 

One problem with diagnosing decadal AQX size statistics is that they can be biased if more 22 

AQX events occur at one end of the decade due to a trend in O3 precursor emissions.  A 23 

greater density of events in one summer generally means larger episodes.  A linear fit of 24 

annually derived O3 percentiles calculated over years 2000-2008 (2009 was excluded due to 25 

lack of NOx and VOC emission data, see below) for each of the 4 regions (Fig. S5) shows 26 

clearly decreasing surface O3 abundances at the higher percentiles (see also Fig. 2), 27 

presumably through reductions in NOx and VOC emissions (Hudman et al., 2009; Xing et al., 28 

2014).  To test if these trends are emissions-driven or artifacts of the meteorological time 29 

slice, we analyze the UCI CTM results (dashed lines, Fig. S5), which are forced by observed 30 

meteorology but have constant anthropogenic pollution emissions over the time period.  We 31 
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also obtain total NOx and VOC emissions from version 4.2 of the Emission Database for 1 

Global Atmospheric Research (EDGAR, EC-JRC/PBL, 2009) for years 2000-2008 (2009 was 2 

unavailable at time of publication) and calculate their trends over the period.  Over WNA and 3 

ENA, meteorology seems to be driving the small positive trends at lower O3 percentiles 4 

(where UCI and observed trends roughly agree), but above the 60th percentile (where UCI 5 

and observed trends diverge) emissions reductions are the most likely cause.  In SEU and 6 

NEU the trends are less conclusive for either meteorology or emission based, but most EU 7 

NOx reductions occurred prior to 2000 (Xing et al., 2015).  Koumoutsaris and Bey (2012) 8 

compare GEOS-Chem hindcasts with NA and EU trends at a limited number of stations from 9 

CASTNet and EMEP (~40 in each domain) and find similar trends.  They also attribute the 10 

negative trends at high percentiles to reduced precursor emissions, however they attribute the 11 

positive trends at low percentiles to changing background O3 as opposed to changing 12 

meteorology posited here.   13 

In an effort to correct the AQX decadal statistics for changes in O3 precursors, we searched 14 

for correlations on a cell-by-cell basis between high-percentile MDA8 O3 vs. NOx emissions 15 

on an annual basis for years 2000-2008.  No simple linear relation emerged, and we could 16 

find no satisfactory way to “correct” the observations for this regionally varying, monotonic, 17 

but non-linear, decline in NOx and VOC emissions that did not corrupt the data.  The post-18 

CMIP5 plans for the Chemistry-Climate Model Initiative (CCMI) include hindcast 19 

simulations with time-dependent emissions that will allow for the simulation of the observed 20 

O3 non-stationarity. 21 

One option for analyzing extremes in a non-stationary decadal data set is to define AQX 22 

events annually on a 10-per-year basis.  This approach greatly dampens the observed episode 23 

mean size and across-year standard deviation from 415 ± 307 (100 per decade) to 249 ± 67 24 

(10 per year) in NA and from 444 ± 720 to 355 ± 48 in EU.  Moreover, it gives a false 25 

positive impression of the severity of air pollution in extreme years.  Thus, we maintain our 26 

primary analysis with AQX defined as 100-per-decade.  In parallel with Fig. 4a-b, we show 27 

the CCDs using a 10-per-year basis for AQX in Supplementary Fig. S6a-b. 28 

3.7 Severity of pollution in largest episodes 29 

As a measure of O3 produced during AQX events/episodes, we map out the enhancement at 30 

the AQX threshold level EAQX (~97.3 percentile) as shown in Fig. S7 (parallel to Fig. 3, also 31 
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relative to the local 30th percentile).  We also calculate the average AQX enhancement ĒAQX 1 

over our regions (Tables 3 and S4).   For ENA, the ACCMIP modeled range of ĒAQX is 29-52 2 

ppb, spanning the observed of 35 ppb (Table 3).  This average result is encouraging for the 3 

ACCMIP models except that, as for EJJA (Fig. 3), the pattern match is not as good (Tables 3, 4 

S3 and S4).   5 

Of the 100 AQX events in each cell, many will lie above the local AQX threshold value.  We 6 

expect that larger, longer-duration episodes accumulate more O3, and thus these super 7 

episodes might have O3 enhancements (relative to the 30th percentile) well above the AQX 8 

threshold enhancement, EAQX.  For each AQX event, we calculate an enhancement (ppb) as 9 

the MDA8 value of that AQX event minus the local 30th percentile value.  For each episode 10 

of size S, we calculate the area-weighted average enhancement ES.  Figure 4c-d plots the 11 

observed density distribution of all ES, quantized every 2.5 ppb for ES and every decade in 104 12 

km2-days for S.  These plots show large variability in the observed ES frequency (gray pixels), 13 

but a consistent picture of the mean enhancements as a function of S (open circles).  For 14 

episode sizes of 0.3 (i.e., 0.1 to 0.99), 3 and 30, ES is almost constant (~32 ppb for both NA 15 

and EU), but for sizes 300 and 3000 it increases almost linearly per decade.  We calculate this 16 

slope ΔĒS as the average of the 30-to-300 increase (1 decade in S) plus half of 30-to-3000 17 

increase (2 decades), getting values of 2.9 (NA) and 1.7 (EU) ppb increase per decade of 18 

episode size.  Similar results are seen for the 10-per-year AQX definition (Fig. S6c-d), with 19 

ΔĒS of 2.7 (NA) and 3.3 (EU).  The slope ΔĒS is not simply an expected result from our 20 

statistical sorting since in NA we find that compared to the observations, model C has slope 21 

that is a factor of about 4 smaller, while A has a slope nearly a factor of 4 larger, and F has a 22 

negative slope. 23 

The models generally produce the shape of ES vs. S, although most models (except A and I, 24 

see Fig. 4 caption) underestimate the enhancement for all sizes.  The obvious discrepancies 25 

are for NA episodes, where many models predict that the largest enhancements occur in the 26 

smallest episodes (S = 0.3).  This anomaly does not occur for EU episodes.  These small 27 

episodes are uncommon, representing only a small fraction of events (see Sect. 3.5), and we 28 

find them mostly along the coasts at the edge of the mask.  We understand them to be the 29 

effect of very polluted air masses being advected to the neighboring ocean cells which are 30 

typically low-O3 regions with very low 30th percentile baselines, resulting in large 31 

enhancements from the highly polluted air.  The observations are interpolated and not capable 32 
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of following a pollution shift offshore.  Thus the models are probably correct, but the method 1 

of masking and station interpolation makes this discrepancy a systematic feature.  The lack of 2 

such a feature in EU can be understood by the lack of such sharp coastal gradients.  Overall, 3 

most models agree with the observations, showing that the super-episodes have the largest O3 4 

enhancements. 5 

 6 

4 Conclusions and Discussion 7 

Confidence in modeled projections of future air quality is based fundamentally on our ability 8 

to accurately simulate the present-day observed climatology of surface O3 and particulate 9 

matter over North America (NA) and Europe (EU) where dense, long-term, reliable 10 

measurements are available.  In this work we evaluate the surface O3 climatologies from 8 11 

global models (6 CCMs, 1 CTM, and 1 CGCM) that reported hourly surface O3 as part of the 12 

ACCMIP.   In addition we test the UCI CTM simulation as an exact hindcast of the 2000-13 

2009 decade of observations used here.  Our tests follow the unique approach of S2014 in 14 

which over 4,000 heterogeneously spaced air quality stations are used to calculate the hourly 15 

O3 averaged over 1° x 1° grid cells that can then be compared unambiguously with the 16 

modeled grid.  Diagnostics include the hourly diurnal cycle, monthly seasonal cycles, and 17 

sizes and intensity of air quality extreme (AQX) episodes.  For the most part, the models are 18 

biased high during all hours of the day, all months of the year, and in all regions.   19 

Averaged over large regions, the ACCMIP models simulate the shape of the observed 20 

summertime diurnal cycle well, with the hour of maximum within ±1 hours of observed 21 

(~15:00).  The observed peak-to-peak amplitude (25 to 29 ppb over the more polluted 22 

regions) is not as well matched and typically underestimated by about 7 ppb.  The UCI CTM 23 

hindcast, which performed well in the S2014 tests except for a uniform high bias, clearly fails 24 

these new diurnal tests and indicates model error in the morning boundary layer chemistry.  In 25 

general, the ACCMIP models simulate the observed regional annual cycle of monthly mean 26 

MDA8 O3.  They match the month of maximum to within ±1 months of observed (mid-June), 27 

although two models are in error with almost no annual cycle and no clear maximum.  The 28 

other models overestimate the peak-to-peak amplitude of the observed cycle by about 5 ppb 29 

(20%) in the most polluted region (Eastern North America) while underestimating it by about 30 

5 ppb in the other three regions.  Model skill in matching the annual cycle of AQX events is 31 

fair but not good.  This annual cycle has much larger interannual variability than that of 32 
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MDA8 O3, and many models shift the month of maximum AQX events to later in the summer 1 

than is observed.   2 

Measures of the enhancement in surface O3 driven by pollution are derived from the statistics 3 

of the decade of daily gridded MDA8 values.  For our measure of summertime enhancement 4 

(87th minus 30th percentile), the models generally replicate the observed spatial structures but 5 

overestimate the magnitude in the most polluted regions.  Two models are surprisingly 6 

uniform across both continents and fail to highlight areas with the largest emissions of O3 7 

precursors.  Typically, modeled high biases appear in the upper percentiles, not the 30th 8 

percentile, which appears to be a good measure of the baseline O3 across the decade. 9 

About 80% of the AQX events in NA and EU occur in large, connected, multi-day episodes 10 

consisting of 100 grid cells or more. This result is closely matched by all but two models, 11 

with C producing much larger episodes and A, much smaller ones.  It remains unclear 12 

whether such errors result from chemical or physical processes.  The observations show that 13 

super-sized episodes of 100 cells or more have successively greater O3 levels as they become 14 

bigger, with the 100-times-larger episodes having 4-6 ppb greater O3.  Most, but not all of the 15 

models match this increase.  It is likely that larger, longer-lasting episodes allow for greater 16 

accumulation of O3 from neighboring pollution sources.   17 

4.1 What are the best air quality diagnostics for model development? 18 

For testing and identifying the model strengths and weaknesses and improving simulations of 19 

air quality, modelers save a large number of diagnostics during the model development 20 

process.  This typical model development process is far less limiting than the experiment 21 

analyzed here, which is based on the voluntary contributions of many models and many 22 

terabytes of diagnostics imposed in the ACCMIP.  We would still recommend saving the 23 

diagnostic of hourly surface O3 over a decade or more of simulation from which all of the 24 

primary diagnostics here can be readily derived and compared with the observations.  To 25 

segue from the surface O3 over NA and EU to the sondes and remote sites, a monthly 26 

averaged 3-D O3 would probably suffice.  Hourly data observed at coastal or mountain sites 27 

likely includes a diurnal meteorology that is not represented in the global models, even at a 28 

resolution of 0.5° x 0.5°.  Furthermore, the 24 h and MDA8 averages show different biases, 29 

and should not be treated as the same diagnostic. There may be inventive ways to avoid the 30 

massive hourly data sets by storing the diurnal cycle as a monthly mean and calculating 31 
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MDA8 inline or just storing the maximum daily O3 value, which would then require similar 1 

analysis of the observations.  2 

The open questions are what model simulations are practical and which would be most useful 3 

to identify model errors.  The ACCMIP simulations forced by a decade of 2000s climate-4 

model sea surface temperatures are useful in comparing decadal statistics, but the UCI CTM 5 

hindcast provides unique tests on the ability to simulate specific events and years.  Even if the 6 

observed sea surface temperatures were used, the synoptic extreme events would not likely 7 

coincide with the observed, so a hindcast meteorology based on reanalysis for forecast fields 8 

provides an important test of the model.   9 

The surface O3 data here is based on an interpolation algorithm that was optimized for the 50-10 

100 km scale averages.  Thus, the supplied grid-cell averaged data could be regenerated at 11 

0.5° resolution, but if one wants 10 km cell averages for regional models then the parameters 12 

in the current algorithm would need to be revised and re-optimized.  The surface O3 data set 13 

will be expanded to include more than 2 decades (1993-2015) and thus longer simulations 14 

would be desirable to investigate interannual variability.   15 

4.2 What are the most important tests for these chemistry-climate models, 16 

assuming that hindcasts and detailed emission data are not being used?  17 

Another major question is what emissions to use.  With ACCMIP the choice of a single year 18 

of representative emissions for the decade was the optimal choice.  The downward trending 19 

emissions in NA and EU over the 2000-2009 decade, however, created a non-stationary data 20 

set.  Going to a longer data set, 1993-2015, will make the comparison between models and 21 

measurements more awkward.  Model developers will need to take some account of this non-22 

stationarity, possibly as a sensitivity study using two different emissions sets representative of 23 

the early and late periods of observations, when not tracking emission changes each year.   24 

An emissions problem not resolved here is whether the modeled diurnal cycle over heavily 25 

polluted regions in summer would be affected by imposing a more accurate diurnal and 26 

weekly cycle in emissions.  This is probably beyond what can be imposed in a MIP, but 27 

should be part of the individual model development as a sensitivity assessment. 28 

The four-region decadal average statistics here provide a fairly broad view of the models’ 29 

ability to predict the buildup of O3 and extreme events in polluted regions.  Clear examples of 30 

model error are identified. The general agreement of the diurnal cycle between models and 31 
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measurements still needs to be tested with diurnal emissions.  Going beyond the mean 1 

regional cycles, the ability to test models at the grid cell level provides clear geographic 2 

coverage, identifying patterns of the discrepancy that are sometimes disturbing, as shown in 3 

Fig. 3, but not developed further in this paper.  The next study of the CMIP-generated surface 4 

O3 needs to evaluate this.  5 

4.3 What tests provide the best confidence in model prediction of future air 6 

quality? 7 

Accurate projections of future air quality rely on our ability to predict the changes in both 8 

baseline level and pollution buildup in response to both specified future climatic conditions 9 

and a change in local-to-global emissions.  Both the baseline and the amount of O3 produced 10 

from pollution are likely to change and need to be assessed separately.  For that purpose, we 11 

find that the maps of summertime (87th percentile) and baseline (30th percentile) and their 12 

difference are one of the more important tests of a model’s simulation of the present-day.  The 13 

annual cycle of monthly means is also in some way a measure of the summertime 14 

enhancement, but not as useful as the percentiles.  One key measure of future change would 15 

be in the size and intensity of extreme episodes.  The intensity needs to be assessed relative to 16 

the baseline, but the size of the episodes clearly relates to their intensity and would be 17 

independent of shifts in baseline.  Thus the AQX statistics based on the daily MDA8 values 18 

here are an important model test.   19 
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Table 1.  Observational datasets (2000 to 2009). 

Domain Surface ozone network No. stations  URL or reference 

North 

America 

(NA) 

US EPA Air Quality System (AQS) 1633 http://www.epa.gov/ttn/airs/aqsdatamart 

US EPA Clean Air Status and Trends 

Network (CASTNet) 
92 http://epa.gov/castnet/javaweb/index.html 

Environment Canada’s National Air 

Pollution Surveillance Program (NAPS) 
207 

http://maps-cartes.ec.gc.ca/rnspa-

naps/data.aspx?lang=en 

Europe 

(EU) 

European Monitoring and Evaluation 

Programme (EMEP) 
162 Hjellbrekke et al. (2013) 

European Environment Agency’s air 

quality database (AirBase) 
2123 

www.eea.europa.eu/data-and-

maps/data/airbase-the-european-air-quality-

database-8 
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Table 2. Model summary. 

(abbreviation) Model Modeling Center Membera Resolution (lat. x lon) No. years Reference(s) 

(A) MOCAGE MeteoFrance r2i1p1, v2 2° x 2° 4 
Josse et al. (2004) 

Teyssèdre et al. (2007) 

(B) GFDL-AM3 GFDL r1i1p1, v2 2° x 2.5° 10 
Donner et al. (2011) 

Naik et al. (2013) 

(C) CESM-CAM-SF LLNL-NCAR r1i1p1, v4 ~1.9° x 2.5° 10 
Cameron-Smith et al. (2006) 

Lamarque et al. (2013) 

(D) UM-CAM NIWA r1i1p1, v2 2.5° x 3.75° 10 Zeng et al. (2008, 2010) 

(E) CMAM CCCma r1i1p1, v2 ~3.7° x 3.75° 10 Scinocca et al. (2008) 

(F) MIROC-CHEM 
JAMSTEC-NU-

NIES 
r1i1p1, v2 ~2.8° x 2.8125° 10 Watanabe et al. (2011) 

(G) GISS-E2-R GISS r1i1p3, v1 2° x 2.5° 5 
Koch et al. (2006) 

Shindell et al. (2013) 

(H) GEOSCCM NASA-GSFC r1i1p1, v1 2° x 2.5° 10 Oman et al. (2011) 

(I) UCI CTM UCI - - ~2.8° x 2.8125° 10 Holmes et al. (2013) 

aThe format r<N>i<M>p<L>, vX distinguishes among closely related simulations by a single model where the set 

of integers (N, M, L, X) formatted as shown (e.g., r2i1p1, v2) define each model simulation’s realization number 

(N), initialization method (M), perturbed physics version (L), and version of publication-level dataset (X). 
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Table 3.  Example summary statistics for the observations (OBS), the ACCMIP models (A-H), and the UCI CTM 

(I) for Eastern North America’s (ENA) summer (JJA) and winter (DJF) diurnal cycles, annual cycle of MDA8, 

annual cycle of AQX events, and North America’s (NA, combined Western North America (WNA) and ENA) 

AQX episodes (100 AQX events per decade case). 

Data Metric, description (unit) OBS A B C D E F G H I 

JJA 

diurnal 

cycle 

h, maximum phase (hour) 15.0 17.0 16.1 16.5 15.5 15.8 15.2 15.7 16.0 12.7 

H, peak-to-peak amplitude (ppb) 29.1 28.3 28.4 21.8 22.7 21.8 22.6 12.1 18.5 54.0 

MB, mean bias (ppb) - 19.0 24.4 1.1 12.2 3.5 17.9 21.1 12.9 37.0 

DJF 

diurnal 

cycle 

h, maximum phase (hour) 15.1 18.0 16.7 15.7 15.3 14.0 15.9 14.8 16.3 16.1 

H, peak-to-peak amplitude (ppb) 9.1 6.7 7.5 11.3 7.8 5.8 6.9 2.4 10.6 12.6 

MB, mean bias (ppb) - 10.2 13.2 9.8 -1.5 -4.6 4.0 30.1 5.5 4.8 

MDA8 

annual 

cycle 

m, maximum phase (month) 5.3 5.8 6.0 3.7 5.8 5.7 6.1 6.0 6.2 6.3 

M, peak-to-peak amplitude (ppb) 20.7 29.8 29.1 12.8 32.7 25.9 31.5 3.5 20.3 64.6 

MB, mean bias (ppb) - 16.9 16.6 6.8 4.2 -4.2 8.1 20.1 8.0 24.8 

ĒJJA, 87th – 30th percentile (ppb) 22.8 33.0 27.5 19.4 27.0 22.4 28.3 19.1 21.9 56.0 

RE-JJA, spatial correlation of EJJA maps 1.00 0.70 0.81 0.52 0.69 0.69 0.34 0.27 0.69 0.71 

AQX 

event 

annual 

cycle 

mAQX, maximum phase (month) 5.5 6.2 6.8 3.2 6.2 6.4 6.6 6.8 7.7 6.6 

RMDA8, correlation of AQX and MDA8 cycles 0.84 0.76 0.78 0.88 0.78 0.82 0.80 0.78 0.70 0.83 

ĒAQX, AQX threshold – 30th percentile (ppb) 34.7 53.8 39.9 29.1 36.1 30.4 41.1 32.1 31.5 82.3 

RE-AQX, spatial correlation of EAQX maps 1.00 0.70 0.78 0.28 0.63 0.53 0.44 0.60 0.74 0.68 

NA 

AQX 

episodes 

S̄, weighted geometric mean AQX episode 

size (104 km2-days) 
415 128 229 1426 461 290 522 243 774 463 

CCD100, fraction of AQX events’ areas in 

AQX episodes > 100 x 104 km2-days (%) 
79.0 56.1 73.7 92.6 85.3 76.1 80.3 73.0 83.0 80.2 

CCD1000, fraction of AQX events’ areas in 

AQX episodes > 1000 x 104 km2-days (%) 
38.0 9.7 12.8 69.2 30.8 19.2 43.6 12.7 48.7 37.5 

ΔĒS, average increase in ES for AQX episodes 

of size S (ppb-dec-1) 
2.9 9.9 4.6 0.8 2.3 2.9 -0.1 3.5 2.9 6.0 
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Figure 1.  (a-h) Diurnal cycles of hourly O3 abundances (ppb) for the observations (O), ACCMIP models (A-H), 2 
and UCI CTM (I) averaged over (a-d) summer (JJA) and (e-h) winter (DJF) months in (a, e) WNA, (b, f) ENA, 3 
(c, g) SEU, and (d, h) NEU.  Triangles show the observation’s and models’ cosine fit derived values of the hour 4 
of maximum phase h and peak-to-peak amplitude H plotted as (x, y) = (h, H) for each season, region, 5 
observation, and model. (i-p) Annual cycles of (i-l) MDA8 O3 and (m-p) AQX events in (i, m) WNA, (j, n) 6 
ENA, (k, o) SEU, and (l, p) NEU.  The filled gray curve shows ±1σ for each month (calculated across years) for 7 
the observations.  Triangles show the observations’ and models’ cosine fit derived values of the MDA8 cycle 8 
month of maximum phase m and peak-to-peak amplitude M plotted as (x, y) = (m, M) for each region, 9 
observation, and model. 10 
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 1 
Figure 2. Values of MDA8 O3 (ppb) for years 2000 to 2009 corresponding to the 10th, 20th,…, 90th, 95th, and 2 
97.3 (i.e., AQX threshold) percentiles in (a) WNA, (b) ENA, (c) SEU, and (d) NEU.  The percentile for each 3 
line is shown at the beginning of the curves in each panel. 4 
 5 
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Figure 3.  Summertime O3 enhancement EJJA = difference between the 87th and 30th percentile of the gridded 2 
surface MDA8 O3 (ppb) over (left two columns) NA and (right two columns) EU for the observations (O), 3 
ACCMIP models (A-H), and UCI CTM (I).  The values of model I are scaled by 0.5 so the same color scale can 4 
be used. 5 
 6 

 7 

 8 

 9 

 10 

 11 



 35 

     

  0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

P
er

ce
nt

ag
e 

of
 e

ve
nt

s 
in

 e
pi

so
de

s 
w

ith
 a

re
as

 >
 S

a)

 

 

1 10 100 1,000 10,000

15

20

25

30

35

40

45

50

55

NA AQX Episode Size S  (10  km - days)
4 2

E
nh

an
ce

m
en

t (
E

S
, p

pb
 a

bo
ve

 3
0th

 p
er

ce
nt

ile
) c)

     

  0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100
b)

 

 

1 10 100 1,000 10,000

15

20

25

30

35

40

45

50

55

4 2

d)

O  (415 / 444)

A  (128 / 173)

B  (229 / 198)

C (1426/2106)

D  (461 / 656)

E  (290 / 290)

F  (522 / 616)

G  (243 / 498)

H  (774 / 606)

 I  (463 / 535)

EU AQX Episode Size S  (10  km - days)

 1 
Figure 4.  (a-b) Complementary cumulative distribution (CCD) of the percentage of total areal extent of all 2 
individual AQX events (100-per-decade case) as a function of AQX episode size, (S, 104 km2-days) for the 3 
observations (O), ACCMIP models (A-H), and UCI CTM (I) in (a) NA and (b) EU.  Dashed vertical lines show 4 
the graphical representations of CCD100 and CCD1000.  Mean episode size S̄ for each dataset and domain is given 5 
in the legend as (NA/EU).  (c-d) Density scatterplot of the observations enhancement of AQX episodes ES versus 6 
their size S (ES binned at 2.5 ppb increments from <15 ppb to >55 ppb, S binned at each log-decade) in (c) NA 7 
and (d) EU.  The gray scale represents the relative percentage of AQX episodes in each (x, y) = (S, ES) bin and 8 
includes percent ranges of ≤5% (white), 5-10%, 10-15%, and >15% (darkest gray) where the size bins (i.e., 9 
columns) are normalized to sum to 100%.  The overlain curves show the observation’s and each model’s area-10 
weighted mean enhancement ES for each size bin.  The values of ES in each size bin for models A and I have 11 
been scaled by 0.5 since they are largely outside the range of the others. 12 
 13 
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