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Abstract

It was recently found that spectral solar incident flux (SIF) as a function of the ultraviolet
wavelengths exhibits 1/f -type power-law correlations. In this study, an attempt was made
to explore the residues of the SIF with respect to the Planck law over a wider range of
wavelengths, from 115.5 to 629.5 nm. Using spectral and Haar and Detrended Fluctuation
analyses, we show that over the range from 10-20 nm to the maximum lag (≈ 500 nm),
the SIF residues have a scaling regime with fluctuation exponent H ≈ 0.37 but with high
intermittency (C1 ≈ 0.16, multifractal index α≈ 1.7) and spectral exponent ≈ 1.46. Over the
shorter wavelengths range we found on the contrary low intermittency (C1 ≈ 0) with spectral
exponent ≈ 1 and H ≈ 0.

1 Introduction

As is well known, electromagnetic radiation is continuously emitted by every physical body.
This radiation is described by Planck’s law near thermodynamic equilibrium at a definite
temperature. There is a positive correlation between the temperature of an emitting body
and the Planck radiation at every wavelength. As the temperature of an emitting surface
increases, the maximum wavelength of the emitted radiation increases too. Smith and Got-
tlieb (1974) re-examined the subject of photon solar flux and its variations vs. wavelength
and showed that variations in the extreme ultraviolet (UV) spectrum and in the X-ray of
solar flux may reach high orders of magnitude causing significant changes in the Earth’s
ionosphere, especially during major solar flares (Kondratyev et al., 1995; Kondratyev and
Varotsos, 1996; Ziemke et al., 2000; Varotsos et al., 2001; Melnikova, 2009; Tzanis et al.,
2009; Xue et al., 2011; Cracknell et al., 2014).

Solanki and Unruh (1998) proposed simple models of the total solar irradiance variations
vs. wavelength showing that variations on solar flux are mainly caused by magnetic fields at
the solar surface. Solar observations may be reproduced by a model of three parameters:
the quiet Sun, a facular component and the temperature stratification of sunspots.
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Tobiska et al. (2000) developed a forecasting solar irradiance model, called SOLAR2000,
covering the spectral range of 1–1 000 000 nm. Using this tool, the authors attempted to
describe solar variation vs. wavelength and through time from X-ray through infrared wave-
lengths, in order to predict the solar radiation component of the space environment.

Very recently, Varotsos et al. (2013a, b) suggested the existence of strong persistent
long-range correlations in spectral space of the solar flux fluctuations for UV wavelengths
in the range 278–400 nm. More precisely, by applying the detrending fluctuation analysis
(DFA) to the initial SIF vs. UV wavelengths data set, power-law correlations of the type 1/f
were found pointing to a scaling feature in the UV spectral domain.

However, Varotsos et al. (2013a) tried to formulate the above-shown finding, i.e., that
the solar spectral irradiance obeys 1/f power-law as a function of UV wavelength, using
the well-known Planck’s law: I(λ,T ) = 2hc2

λ5(e
hc
λkT −1)

which, in the limit of small wavelengths

tends to the Wien approximation: I(λ,T ) = 2hc2

λ5 e
− hc
λkT , where I(λ,T ) is the amount of en-

ergy emitted at a wavelength λ per unit surface area per unit time per unit solid angle per
unit wavelength, T is the temperature of the black body, h is Planck’s constant, c is the
speed of light, and k is Boltzmann’s constant. By applying the DFA method on the various
values of I(λ,T ) Varotsos et al. (2013a) showed that the calculated I(λ,T ) values do not
obey the 1/f -type scaling vs. ∆λ (i.e., for fluctuations in I(λ,T ) over a range ∆λ in wave-
length). Thus, the latter may reflect a scaling in its fluctuations which might be related with
the complex physical processes taking place at the solar atmosphere (e.g. see Avrett and
Loeser (2008) and references therein).

In the present study, focusing on these fluctuations, we examine whether the 1/f scaling
feature is apparent in a wider spectrum of SIF including both UV and visible spectrum,
namely for wavelengths (WL) between 115.5 and 629.5 nm.
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2 Data and analysis

As mentioned above, the solar incident flux data for WL ranging from 115.5 to 629.5 nm
with a step of 1 nm were analyzed. The spectrophotometric data of spectral extrater-
restrial solar flux have been taken from the book by Makarova et al. (1991) (see also
Makarova et al., 1994; Melnikova and Vasilyev, 2005). Figure 1a depicts SIF values
for the wavelength range of 115.5–629.5 nm. The principal feature shown in this figure
is the existence of “apparent” non-stationarities vs. WL into the solar spectral distribu-
tion and the strong upward trend up to about 450 nm. The detrending of this data set

was accomplished (Fig. 1a) by applying the Planck formula B1

(
b1
λ

)5
/
[
exp
(
b1
λ

)
− 1
]

with
b1 = 2486.4 nm based on the Sun’s effective temperature (T sun = 5778 K) reported by
NASA (http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html) and the derived param-
eter was found to be B1 = 85.8± 0.7 (0.82 %) mWm−2 nm−1. Hereafter, we focus on these
“detrended” SIF data (i.e. the residuals with respect to the Planck function) which are shown
with the blue line in Fig. 1a; these are the deviations from a pure black body spectrum. To
estimate the scaling exponents, we first applied the well-known DFA method (Peng et al.,
1994; Weber and Talkner, 2001; Varotsos, 2005; Varotsos et al., 2008, 2009, 2011, 2012;
Sarlis et al., 2010; Skordas et al., 2010; Efstathiou and Varotsos, 2010, 2013; Efstathiou et
al., 2011; Chattopadhyay and Chattopadhyay, 2014).

Furthermore, we calculated the power spectrum for the detrended SIF data set using
Fast Fourier Transform (FFT) algorithm as well as the maximum entropy method (MEM)
(Hegger et al., 1999).

A brief description of DFA-n tool may be given as follows:

1. Consider the SIF data set x(i) of length N which is integrated over WL. Therefore,
the integrated data set, y(i), is consisting of the following points:

y(1) = x(1), y(2) = x(1) +x(2) . . . , y(i) =
i∑

k=1

x(k) (1)
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2. We split the integrated data set into non-overlapping boxes of equal length, τ . In each
box, a best polynomial local trend (of order n) is fitted in order to detrend the integrated
profile (by subtracting the locally fitted trend).

3. The root-mean-square fluctuations Fd(τ) of this integrated and detrended profile is
calculated over all scales (box sizes). For each interval, the detrended fluctuation Fk
within the kth box (Kantelhardt et al., 2002) is defined by:

F 2
k (τ) =

1

τ

(k+1)τ∑
i=kτ+1

[y(i)− z(i)]2, k = 0,1,2, . . . ,

(
N

τ
− 1

)
(2)

where z(i) is the corresponding polynomial least-square fit to the τ data contained
and (Peng et al., 1994):

F 2
d =

1

(N/τ)

(N/τ)−1∑
k=0

F 2
k (τ). (3)

In case the signals involve scaling, a power-law behavior for the root-mean-square fluc-
tuation function Fd(τ) is observed:

Fd(τ)∼ τa (4)

where a is the scaling exponent, a self-affinity parameter that represents the long-range
power-law correlation (Ausloos and Ivanova, 2001).

The above is fine for the nonintermittent, quasi-Gaussian case, but in the general (mul-
tifractal) case - of interest here - it is more convenient to define the mean fluctuation of
the running sum F ′d using the mean F ′d = 1

(N/τ)

∑(N/τ)−1
k=0 Fk(τ) in Eq. (3) rather than Fd

which is the RMS fluctuation of the running sum. Defining the mean fluctuation exponent
a′ by: F ′d ∼ τa

′
, we find that in the quasi Gaussian case, a′ = a= the usual Hurst expo-

nent H , although if we want the H of the process (rather than its sum), we must subtract
5
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unity: a= a′ = 1 +H . In the general multifractal case, we can define the fluctuations of
the process by F ′d/τ and we can quantify the statistics via the qth order structure function
Sq(τ) = 〈(F ′d/τ)q〉 ∼ τ ξ(q). We see that a= 1 + ξ(2)/2 whereas a′ = 1 + ξ(1). Finally, we
can decompose ξ(q) into linear and convex parts: ξ(q) = qH −K(q) where K(q) charac-
terizes the intermittent, multifractal contribution. With this, we obtain a= 1 +H − ξ(2)/2,
a′ = 1 +H ; the two are equal when K(q) = 0. In this special case where the process is
quasi-Gaussian then – unlike the general multifractal case – a single exponent is suffi-
cient to characterize the scaling of the process. If the process is exactly Gaussian, then
when 0< a < 1, (−1<H < 0), the process is a fractional Gaussian noise (fGn) and when
1< a < 2 (0<H < 1), it is a fractional Brownian motion (fBm).

For uncorrelated quasi Gaussian data, the scaling exponent is a= 1/2, (H =−1/2).
Scaling generally implies the existence of long range statistical dependencies. However in
the special Gaussian case, when a= 1/2, then one has a Gaussian white noise and there
are no long range dependencies. However, the fact that a= 1/2, can only be used to in-
fer an absence of long range dependencies if it can be shown that the process is indeed
quasi-Gaussian (in practice it has to be shown that it is not significantly intermittent, i.e.
multifractal) in a certain range of τ values. If 0< a < 0.5 (and if the data set is noninter-
mittent), power-law anticorrelations are present (antipersistence). When 0.5< a≤ 1.0 (and
if again the data set is nonintermittent), then persistent long-range power-law correlations
prevail (the case a= 1 corresponds to the so-called 1/f noise) (Weber and Talkner, 2001).

Finally, the scaling properties of SIF-WL data set were also studied using Haar fluctu-
ation analysis (Lovejoy and Schertzer, 2012a, b). In the DFA method above, fluctuations
are defined by the standard deviation of the residues of the polynomial regressions of the
integrated process (the Fk; to obtain the fluctuation of the series rather than its sum, we
must divide by τ : Fk(τ)/τ ). In the more general framework of wavelets, they are defined
by convolutions with respect to (almost) arbitrarily shaped “mother wavelets”. While both
DFA and wavelet based fluctuations give essentially the same accuracy when used for
estimating scaling exponents (such as H , see e.g., Lovejoy and Schertzer, 2012a), if the
wavelet is appropriately chosen, then the interpretation of the fluctuations becomes very

6
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simple so that the analysis can be used much more generally (i.e. when there is more
than a single scaling regime, or even there is no scaling at all). The difficulty in inter-
preting the DFA fluctuations is the reason why in published plots, units are typically not
even provided for the fluctuation axes! In contrast, for the series x(t) the simple (and
indeed first wavelet) – Haar fluctuations ∆x(∆t) – are defined simply as the difference
between the averages of a series over the first and second halves of an interval τ = ∆t:
∆x(∆t) = 2[

∑
t+∆t/2<t′<t+∆tx(t′)−

∑
t<t′<t+∆t/2x(t′)]/∆t (∆t is the time scale, time lag,

it is the same as the τ in the DFA method). They have the property that in regions where
−1<H < 0, they can be interpreted simply as resolution ∆t anomalies. Whereas in re-
gions where 0<H < 1, they can be interpreted as differences: ∆x(∆t) = [x(t+∆t)−x(t)].
Once the Haar fluctuations have been determined one can characterize them statistically
by taking averages of various powers q; the “generalized” qth order structure function
Sq(∆t) = 〈∆x(∆t)q〉, where the symbol 〈.〉 stands for ensemble averaging. In a scaling
regime, Sq(∆t)≈∆tξ(q), where the exponent ξ(q) = qH −K(q) and K(q) is in general
non linear and convex and characterizes the intermittency (satisfying K(1) = 0). In the pre-
vious DFA discussion, the process was assumed to be quasi-Gaussian, this implies the
assumption K(q) = 0 (the DFA fluctuations are of course valid without this restriction). For
universal multifractals (e.g. Schertzer and Lovejoy, 1987),

K(q) = C1
(qα− q)

(α− 1)
, (5)

where C1(≥ 0) indicates the scaling intermittency and α(0≤ α≤ 2) – not to be confused
with the DFA exponent – is the multifractality index (the Lévy index of the generator). Note
that in the DFA literature, sometimes the exponent h(q) = 1 + ξ(q)/q is introduced, the
motivation being that in quasi Gaussian process, K(q) = 0 so that h(q) =H = constant
(independent of q). However, when C1 6= 0 this leads to h(q)→∞ as q→ 0 for all α≤
1. Since α = 0 is the monofractal limit, we obtain h(0) =∞ which is neither intuitive nor
convenient.

7
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3 Discussion and results

Varotsos et al. (2013a) studying the high-resolution observations of SIF reaching the ground
and the top of the atmosphere, suggested that SIF vs. UV WL exhibits 1/f -type power-law
correlations. This result was derived by applying the DFA method on the SIF dataset ob-
tained from the Villard St. Pancrace station of the Lille University of Sciences and Tech-
nology and was based on the slope (i.e., a= 1.02± 0.02, hence H = 0.02± 0.02) of the
log–log plot of the root mean square fluctuation function of SIF vs. the WL segment size
τ≡∆t= ∆λ.

In the present study, the scaling dynamics of a wider spectrum of SIF vs. WL data set was
studied, for wavelengths between 115.5 and 629.5 nm. Firstly, DFA-n seemed to take care
of the trends revealing a DFA-exponent close to unity (after DFA-1), as shown in Fig. 1b.

In the following we plotted the power spectral density (using FFT) of the detrended SIF
data set. The derived power spectral density showed that the power-law fitting gives an
exponent β = 0.99 (±0.08) (see also below and Fig. 2). We can see that the slope inferred
from the Haar analysis (below, β = 1.46) also fits quite well, this is discussed below. In terms
of the structure function exponent, we have the relation β = 1 +ξ (2) which follows from the
Wiener–Khintchin theorem (the spectrum is the Fourier transform of the autocorrelation
function, which is a second order statistic, hence the q = 2). On the other hand, the DFA-
1 exponent was 1.09 (±0.04), while by applying the DFA-n with n > 1 on the detrended
SIF data, the derived exponents ranged from 0.98 to 1.01. Note that the DFA exponent for
the fluctuation (a q = 1 statistic) cannot in general be used to estimate β which is a q = 2
statistic (unless one assumes K(q) = 0, the quasi-Gaussian assumption).

Next, to summarize our results we analysed the detrended SIF-WL data set by us-
ing Haar analysis (Lovejoy and Schertzer, 2012a, b) using the software available at
http://www.physics.mcgill.ca/~gang/software/doc/haarpack.zip. According to Haar analysis,
as also mentioned in the Sect. 2, the variation of SIF fluctuations vs. wavelength τ can be
defined using the “generalized” qth order structure function Sq(τ) = 〈∆SIF(τ)q〉, for which
it holds that in a scaling regime Sq(τ)≈ τ ξ(q), where the exponent ξ(q) = qH −K(q) and

8
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K(q) illustrates the scaling intermittency (satisfying K(1) = 0 and ξ(1) =H). Figure 3b
shows that H=0.37 and that the intermittency of SIF data set is very high (C1 = 0.16, also,
α≈ 1.7), hence the RMS exponent = ξ(2)/2 = 0.23 is quite different from the q = 1 ex-
ponent (H) and the data are far from Gaussian. In the classical quasi-Gaussian case,
K(q) = 0 so that ξ(q) is linear. More generally, if the field is intermittent – for example if
it is the result of a multifractal process – then the exponent K(q) is generally non linear
and convex and characterizes the intermittency, as already mentioned. The physical signif-
icance of H is thus that it determines the rate at which mean fluctuations grow (H > 0) or
decrease (H < 0) with scale τ . According to Fig. 3a and b, the exponent ξ(2) of the struc-
ture function equals to zero (at scales below 20 nm), a fact which means that the power
spectrum exponent β = 1 + ξ(2) equals to 1 (1/f structure). On the other hand, at larger
scales, the exponents ξ(2) and β seem to equal to 0.46 and 1.46, respectively.

To clarify this aspect, we revisited the results of DFA-1 (see Fig. 4a) and calculated
the power spectrum for the detrended SIF-WL data set, using the MEM (see Fig. 4b). In
Fig. 4a, we plot the root-mean-square fluctuation function Fd(τ) of DFA-1 together with the
corresponding least-squares fits for τ up to 15 nm (blue) – leading to a= 0.91 (±0.08) –
and above 20 nm (green) with a= 1.20 (±0.09). We observe a cross-over approximately at
τ = 23 nm, leading to β values (cf., β = 2a−1, Talkner and Weber, 2000) above and below
this cross-over scale which are comparable to those found in the previous paragraph. In
order to complement this finding, we plotted in Fig. 4b the MEM power spectral density vs.
WL together with the aforementioned algebraic behaviors for WL above and below 20 nm.
Interestingly, the results show that the β = 1.46 exponent better describes the long WL body
of the spectrum while the β = 1 the short WL part of it.

We observe that the DFA method gives results similar to those of the Haar analysis, but
obscures the break that is clearly seen in the Haar analysis (Fig. 3). Finally, we have to
recall that the 1/f scaling dynamics observed in SIF concerns not Planck’s law but the
fluctuations about the law.

9
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4 Conclusions

The main conclusions of the present survey were:

1. DFA-n applied on the detrended SIF data set revealed DFA-exponents close to unity.
In other words, the SIF fluctuations around the Planck’s law obey the 1/f scaling
dynamics.

2. Power spectral density for the detrended SIF data set showed that the power-law
fitting gives β = 0.99 (±0.08) while DFA-1 exponent was a= 1.09 (±0.04) and DFA-n
exponents ranged from 0.98 to 1.01.

3. To better understand our results we analysed the detrended SIF-WL data set by using
Haar analysis. As it was derived, the intermittency of SIF data set was very high and
the data were far from Gaussian. Specifically, the parameter characterizing the inter-
mittency near the mean C1 was ≈ 0.16 and α≈ 1.7. In comparison, in atmospheric
turbulence, the wind field has C1 ≈ 0.07 (also with α≈ 1.7). At scales below 20 nm,
the power spectrum exponent β was almost 1 (1/f structure), while at larger scales,
the exponents ξ(2) and β are equal to 0.46 and 1.46, respectively. This prompted us
to revisit DFA-1 and search for such a crossover. Indeed a crossover at 20 nm can
be observed leading to compatible β exponents. The DFA method analyzed the run-
ning sum rather than the process directly; this made the scale break (crossover) very
difficult to discern.

4. The results of the power spectral density for the detrended SIF-WL data set (using the
MEM) vs. frequency are compatible with the aforementioned two β exponents.

Acknowledgements. This study was partly funded by Greek General Secretariat for Research and
Technology (GSRT) through the project 12CHN350.
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 Figure 1. (a) SIF values (red, left scale) on the top of the atmosphere vs. WL from 115.5 to 629.5 nm
together with the fitting employed (green, left scale). The detrended SIF data (blue, right scale) are
also shown. (b) Log-log plot of the root mean square fluctuation function Fd(τ) of the detrended SIF
vs. the WL segment size τ , for the wavelengths between 115.5 and 629.5 nm. The a values for DFA-
1, DFA-2, DFA-3, DFA-4 are 1.09 (±0.04), 1.00 (±0.03), 1.01 (±0.03), 0.98 (±0.03), respectively.
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 Figure 2. Power spectral density of the detrended SIF data set together with the least squares fit
with power-law exponent β = 0.99 (±0.08) (blue line) and the β = 1.46 as determined with the Haar
analysis (green line) vs. (a) the wavenumber, and (b) the wavelength.
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 Figure 3. (a) Haar analysis on the detrended SIF data set for moments q = 1 (red) and
RMS (blue). ξ(1) = ξ(2)≈ 0 at scales below 10-20 nm, whereas for larger scales up to 316 nm
we have slopes ξ(2)/2 = 0.23 (green) and ξ(1) =H = 0.37 (magenta). (b) Red: log-log plot
of E1 = S1/(S1+δq/S1−δq)

1
2δq vs. τ whose slope is K ′(1)(= C1), blue: log-log plot of E2 =

(S1+2δqS1−2δq/S
2
1 )
− 1

2δq2 vs. τ whose slope is K ′′(1)(= αC1) for δq = 0.1 (see Lovejoy and
Schertzer 2013, ch. 10 for these estimators). The first yields an estimate C1 ≈ 0.16 indicating high
intermittency, the ratio yields an estimate α = 1.7. For smaller scales (up to 10-20 nm), the corre-
sponding slopes are close to 0 indicating Gaussianity. With these parameters and Eq. (5) (i.e., the
universal multifractal equation forK(q) in Sect. 2), we find ξ(2)/2 =H−K(2)/2≈ 0.37−0.14 = 0.23
in agreement with the direct estimate in (a).
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Figure 4. (a) Log-log plot of the root mean square fluctuation function Fd(τ) of the detrended SIF
vs. the WL segment size τ for DFA-1 together with corresponding least-squares fits for τ ≤ 15 nm
(blue) and τ > 20 nm (green). (b) Power spectrum using the MEM for the detrended SIF data set
with the two power-law behaviours fits β = 1 (blue) – from a least squares fit up to 20 nm – and
β = 1.46 (green) for the 1/f and 1/f1.46 structure, respectively, vs. the wavelength.
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