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Abstract

In China, fast increase in passenger vehicles has procured the growing concern about
vehicle exhausts as an important source of anthropogenic secondary organic aerosols
(SOA) in megacities hard-hit by haze. In this study, the SOA formation of emissions
from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated
in China was investigated in a 30 m® smog chamber. Five photo-oxidation
experiments were carried out at 25 <€ with the relative humidity around 50%. After
aging at an OH exposure of 5x10° molecules cm™ h, the formed SOA was 12-259
times as high as primary OA (POA). The SOA production factors (PF) were 0.001-
0.044 g kg™ fuel, comparable with those from the previous studies at comparable OH
exposure. This quite lower OH exposure than that in typical atmospheric condition
might however lead to the underestimation of the SOA formation potential from
LDGVs. Effective SOA vyield data in this study were well fit by a one-product
gas-particle partitioning model and quite lower than those of a previous study
investigating SOA formation from three idling passenger vehicles (Euro 2—Euro 4).
Traditional single-ring aromatic precursors and naphthalene could explain 51%-90%
of the formed SOA. Unspeciated species such as branched and cyclic alkanes might
be the possible precursors for the unexplained SOA. A high-resolution time-of-flight
aerosol mass spectrometer was used to characterize the chemical composition of SOA.
The relationship between fs3 (ratio of m/z 43, mostly C,H30", to the total signal in

mass spectrum) and fs4 (mostly CO,") of the gasoline vehicle exhaust SOA is similar
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to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O:C
and H:C molar ratios of SOA in a Van Krevelen diagram. The slopes of AH:C/AQO:C
ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these

experiments was a combination of carboxylic acid and alcohol/peroxide formation.



o1

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

1. Introduction

The formation mechanisms, magnitude and chemical composition of airborne fine
particulate matter (PM,s) are important to evaluate its effects on human health and
climate (Hallquist et al., 2009). Organic aerosol (OA) contributes roughly ~20% — 50%
of the total fine particle mass at continental mid-latitudes (Saxena and Hildemann,
1996; Kanakidou et al., 2005). Atmospheric OA includes primary organic aerosol
(POA) emitted from sources such as combustion of fossil fuels, biomass burning and
volcanic eruptions, and secondary organic aerosol (SOA) formed via gas-particle
conversion such as nucleation, condensation, and heterogeneous and multiphase
chemistry or the aging of POA (Donahue et al., 2009; Jimenez et al., 2009). SOA is
ubiquitous and dominates the total OA in various atmospheric environments,
accounting for approximately two-thirds of the total OA in urban areas to almost 90%
in urban downwind and rural areas in Northern Hemisphere mid-latitudes (Zhang et
al., 2007). China, for example, has serious air quality problem due to PM, s pollution
in the recent decade (Chan and Yao 2008, Q. Zhang et al 2012), and SOA had
contributed 30% — 90% of OA mass in its megacities (He et al., 2001; Cao et al., 2003;
Duan et al., 2005, 2007; Yang et al., 2005; Hagler et al., 2006). However, models
generally underestimate the observed OA levels mainly due to the unclear sources and
formation processes of SOA (de Gouw et al., 2005; Heald et al., 2005; Johnson et al.,
2006; Volkamer et al., 2006).

Vehicle exhausts emit plenty of primary PM and volatile organic compounds
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(VOCs) containing precursors of SOA, influencing the near-surface atmospheric
chemistry and the air quality, especially in urban areas. SOA formation from diesel
generators and vehicles has been widely studied in smog chambers, demonstrating
that the SOA mass formed from the exhaust of diesel generators and medium-, and
heavy-duty diesel vehicles (HDDVs) usually exceeds the mass of emitted POA
(Robinson et al., 2007; Weitkamp et al., 2007; Chirico et al., 2010; Miracolo et al.,
2010; Samy and Zielinska, 2010; Nakao et al., 2011; Kroll et al., 2012). However,
there are few studies on the SOA formation from gasoline vehicle exhausts. Nordin et
al. (2013) investigated SOA formation from idling gasoline exhausts from three
passenger vehicles (Euro 2 — Euro 4), finding that Cg-Co light aromatics contributed
up to 60% of the formed SOA. While Platt et al. (2013) estimated aromatic precursors
including Cs-Cyp light aromatics and naphthalene were responsible for less than 20%
of the SOA formed from the aging of emissions from a Euro 5 gasoline car operated
during a New European Driving Cycle. To exclude the influence of a small sample
size, Gordon et al. (2014) studied aging of emissions from 15 light-duty gasoline
vehicles with model years ranging from 1987 to 2011, concluding that traditional
precursors could fully explain the SOA from oldest vehicles and unspeciated organics
were responsible for the majority of the SOA from the newer vehicles. Therefore,
chemical compositions of SOA formed from gasoline vehicle exhaust varied a lot
among vehicles with different types, model years and operating conditions.

In China, the number of LDGVs reached 98.8 million in 2012 and increased at a



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

rate of approximately 20% per year since 2005 (NBSC, 2013). Furthermore, gasoline
fuel in China has relatively higher mass content of alkenes and aromatic hydrocarbons
than that in US (Schauer et al., 2002; Zhang et al., 2013), and current emission
standards of LDGVs in China lag behind European countries and US. The emission
factors of PM;s, organic carbon (OC), element carbon (EC), NOy, SO,, NH3; and
non-methane hydrocarbons (NMHCs) for on-road vehicles in China were quite
different from those in other countries (Liu et al., 2014; Y. L. Zhang et al., 2015).
Therefore, it is urgent to investigate the SOA formation from vehicle exhaust in China
to help make suitable policies to mitigate air pollution and also to provide valuable
parameters to chemical transport models.

Here, we directly introduced dilute emissions from two idling light-duty gasoline
vehicles (LDGVSs) operated in China to a smog chamber to investigate the SOA
formation. The magnitude and composition of the SOA formed from gasoline vehicle
exhaust and whether traditional SOA precursors can explain the formed SOA was
evaluated and discussed in this paper.

2. Materials and methods

2.1 Experimental setup

The photochemical aging experiments were carried out in the smog chamber in
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIG-CAS). The
GIG-CAS smog chamber has a 30 m® fluorinated ethylene propylene (FEP) reactor

housed in a temperature-controlled room. Details of setup and facilities about the
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chamber have been described elsewhere (Wang et al., 2014). Briefly, black lamps
(2.2m-long, 60W Philips/10R BL, Royal Dutch Philips Electronics Ltd, The
Netherlands) are used as light source, providing a NO, photolysis rate of 0.49 min™.
Two Teflon-coated fans are installed inside the reactor to guarantee well mixing of the
introduced gas species and particles within 120 seconds. Temperature can be set in the
range from —10 to 40 °C at accuracy of 1 °C as measured by eight temperature
sensors inside the enclosure and one just inside the reactor. Relative humidity (RH)
inside the reactor is achieved by vaporizing Milli-Q ultrapure water contained in a 0.5
L Florence flask and then flushing the water vapor into the reactor with purified dry
air until target RH is reached. In the present study, temperature and RH inside the
reactor were all set to 25 € and 50%, respectively. During the experiments, the top
frame is automatically lowered to maintain a differential positive pressure inside the
reactor against the enclosure to avoid the contamination of the enclosure air.

Gasoline vehicle exhausts were injected to the reactor through Teflon lines using
two oil-free pumps (Gast Manufacturing, Inc, USA) at a flow rate of 40 L min™. The
injection time varied from a few minutes to more than one hour based on the primary
emissions of different vehicles. A schematic of the smog chamber and the vehicle
exhaust injection system is shown in Fig. 1.

2.2 Characterization of gas- and particle-phase chemical compositions and
particle sizes

Gas-phase ozone (Oz) and NO, were measured online with dedicated monitors
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(EC9810 and 9841T, Ecotech, Australia). Online monitoring of parent VOCs such as
Cs—Cyp single-ring aromatic hydrocarbons and their oxidation products were available
with a commercial proton-transfer-reaction time-of-flight mass spectrometer
(PTR-TOF-MS, Model 2000, lonicon Analytik GmbH, Austria). Detailed descriptions
of the PTR-TOF-MS technique can be found elsewhere (Lindinger et al., 1998; Jordan
et al., 2009). In this study the decay curve of toluene measured by PTR-TOF-MS
were also used to derive the average hydroxyl radical (OH) concentration during each
experiment. A wide spectrum of VOCs were also measured offline by drawing 250 ml
air inside the reactor to a Model 7100 Preconcentrator (Entech Instruments Inc., USA)
coupled with an Agilent 5973N gas chromatography-mass selective detector/flame
ionization detector (GC-MSD/FID, Agilent Technologies, USA). Detailed
descriptions of the method can be found elsewhere (Wang and Wu, 2008; Y. L. Zhang
et al., 2010, 2012, 2013). C2-C3 and C4-C12 hydrocarbons were measured by
GC-FID and GC-MSD, respectively. In this study, the offline measurement was the
standard method to determine the mass concentrations of VOCs. PTR-TOF-MS was
used for deriving the time-resolved concentrations of VOCs. The VOC concentrations
measured offline were also used as an independent check of that measured online by
the PTR-TOF-MS. To determine CO/ CO; concentrations before and after the
introduction of exhausts, air samples were also collected into 2 L cleaned Teflon bags.
CO was analyzed using a gas chromatography (Agilent 6980GC, USA) with a flame

ionization detector and a packed column (5A Molecular Sieve 60/80 mesh, 3 m < 1/8
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inch) (Y. L. Zhang et al., 2012), and CO, was analyzed with a HP 4890D gas
chromatography (Yi et al., 2007). The detection limits of CO and CO, were <30 ppb.
The relative SDs were all less than 3% based on 7 duplicates running 1.0 ppm CO and
CO; standards (Spectra Gases Inc, USA).

A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-MS,
Aerodyne Research Incorporated, USA) was used to measure the particle chemical
compositions (Jayne et al., 2000; DeCarlo et al., 2006). The instrument was operated
in the high sensitivity V-mode and high resolution W-mode alternatively every two
minutes. The toolkit Squirrel 1.51H was used to obtain time series of various mass
components (sulfate, nitrate, ammonium and organics). We used the toolkit Pika 1.1H
to determine the average element ratios of organics, like H:C, O:C, and N:C (Aiken et
al., 2007, 2008). The contribution of gas-phase CO, to the m/z 44 signal was
corrected using the measured CO, concentrations. The HR-TOF-MS was calibrated
using 300 nm monodisperse ammonium nitrate particles.

Particle number/volume concentrations and size distributions were measured
with a scanning mobility particle sizer (SMPS, TSI Incorporated, USA., classifier
model 3080, CPC model 3775). Flow rates of sheath and aerosol flow were 3.0 and
0.3 L min™, respectively, allowing a size distribution scanning ranging from 14 nm to
700 nm within 255 s. The accuracy of the particle number concentration is £10%. An
aerosol density of 1.4 g cm™® was assumed to convert the particle volume

concentration into the mass concentration (Zhang et al., 2005). Conductive silicon
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tubes were used as sampling lines for HR-TOF-MS and SMPS to reduce electrostatic
losses of particles.

2.3 Experimental procedure

Two light-duty gasoline-powered vehicles were used in this study, one Euro 1 and one
Euro 4 vehicles. They are both port fuel injected vehicles. More details of the vehicles
are listed in Table 1. Both of the vehicles were fueled with Grade 93# gasoline, which
complies with the Euro 111 gasoline fuel standard. Details of the oil compositions can
be found in our previous study (Zhang et al., 2013).

Prior to each experiment, the reactor was evacuated and filled with purified dry
air for at least 5 times, then the reactor was flushed with purified dry air for at least 48
h until no residual hydrocarbons, O3, NOy, or particles were detected in the reactor to
avoid carry-over problems from day-to-day experiments. Prior to the introduction of
exhaust, the temperature control system and Teflon coated fans were turned on. The
exhaust could be injected when the temperature in the reactor was stable at the set
temperature 25 <€.

The LDGV was parked outside the laboratory and tested at idling. Before the
injection of exhaust, the cars were at idling for at least half an hour to warm up the
three-way catalysts, and then the vehicle exhausts were injected into the reactor.
During the introduction, the raw exhausts were also sampled into 8 L cleaned
aluminum foil bags by a mechanical pump with a flow rate of about 5 L min™. VOCs

and CO; in these samples were measured offline by the same methods mentioned

10
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above to characterize the primary emissions from the exhaust pipe. The exhaust in the
reactor was diluted by a factor of 13-30 compared to the tailpipe.

Additional NO was then added to adjust the VOC/NOx ratios to around 10.0 or
2.0 (Table 2), within the range of 0.5-10 reported in gasoline vehicle exhaust tests and
downwind urban areas (Clairotte et al., 2013). The initial concentrations of NOy at the
start of the experiments ranged from 134 to 956 ppb. In each experiment CH3CN was
used as an indicator of dilution in the reactor. After being characterized in the dark for
more than 30 min, the exhaust was exposed to black light continuously for 5 h. After
the black lamps were switched off, the formed SOA was characterized for another 2 to
3 h to correct the particles wall loss. Blank experiments with no vehicle exhaust
introduced were performed to quantify the reactivity of the matrix gas. After 5 h of
irradiation, the number and mass of formed particles were <5 cm™ and 0.1 pg m™,
respectively.

During the introduction of exhausts, particles and VOCs might deposit to the
surface of the transfer lines. Therefore, a flow rate of as high as 20 L min™ and a
transfer line of as short as 5 m were used to provide residence time within seconds,
and thus reduce the losses of particles and VOCs in the transfer lines. Furthermore,
before being introduced into the reactor, exhausts were generally pumped through the
transfer lines for half an hour to saturate the transfer lines with particles and VOCs
while warming the catalytic converter. Losses of particles and VOCs in the

introduction lines were determined by comparing the concentrations of total particle

11
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number and VOCs in the directly emitted exhausts with the ones after passing through
the transfer lines. The loss of total particle number was estimated to be less than 3%.
The penetration efficiency of particles due to diffusion in a cylindrical tube, n(dp),
can be also estimated by a laminar diffusional deposition model (Gormley and
Kennedy, 1949). For particles with diameters larger than 10 nm, the penetration
efficiency was higher than 95%, indicating minor losses of particles in the transfer
line. The losses of VOCs in the transfer line were estimated to be less than 5%, which
might lead to a small underestimation of SOA production.

2.4 Data analysis

2.4.1 Wall loss corrections

The loss of particles and organic vapors to the reactor walls has to be accounted for to
accurately quantify the SOA formation. The loss of particles onto the walls has been
well constrained and is treated as a first-order process (McMurry and Grosjean, 1985).
The wall-loss rate constant was determined separately for each experiment by fitting
the SMPS and AMS data with first-order kinetics when UV lamps were turned off. By
applying this rate to the entire experiment, we use the same method as Pathak et al.
(2007) treating the particle wall loss as a first order process to correct the wall loss of
the particles. The wall loss of particles is a size-dependent process, therefore, the
influence of nucleation need to be examined due to the rapid loss of nucleation mode
particles. In this study, the impact of the nucleation event on wall-loss estimate is

considered to be negligible for only less than 3% of the particle mass is in the

12
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nucleation mode ten minutes after nucleation for all the experiments (Fig. S1 in the
Supplement). In general, the loss of condensable organic vapors to the walls is
estimated for two limiting cases (Weitkamp et al., 2007; Hildebrandt et al., 2009). In
the first case (designated o =0), no organic vapors is lost to the walls (only to
suspended particles). In the second case (designated  =1), the particles on the walls
are in equilibrium with the organic vapors; therefore condensation to the particles on
the walls is identical to the suspended particles. We use the o =0 wall-loss correction
assuming the organic vapors only condensation onto suspended particles. The o =1
wall-loss correction is not suitable for the experiments here in which nucleation
occurred and no seed particles were added (Henry et al., 2012).

2.4.2 AMS data corrections

Theoretically, the sum of the PM mass measured by AMS should be equal to the mass
calculated from the SMPS mass size distributions. However, both methods have
limitations. One must assume a particle shape and density to convert the volume
concentration measured by SMPS to the mass concentration. Here, we assume that
particles are spherical with an average density of 1.4 g cm™ (Zhang et al., 2005).
Fractal-like particles will cause the overestimate of the spherical equivalent diameter,
thus overestimating the particle mass. AMS tends to underestimate the PM mass due
to the transmission efficiency (Liu et al., 2007) and the AMS collection efficiency
(Gordon et al., 2014), leading to the discrepancy between the AMS data and SMPS

data. Fig. S2 shows the particle volume distribution measured by SMPS for a typical
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smog chamber experiment (experiment 2). Most particles were in the range 40-120
nm after SOA formation. Since the transmission window of the standard lens of
HR-TOF-AMS is 60-600 nm (aerodynamic diameter) (Liu et al., 2007), particles with
diameter lower than 40 nm (mobility diameter) were cut from the lower edge of the
volume distribution. After 1 h since nucleation occurred, only <5% of the mass was
outside the transmission window of HR-TOF-MS, indicating that HR-TOF-AMS
might underestimate the PM in the early stage of SOA formation. In this study, we use
the same method as Gordon et al. (2014) to correct the AMS data.

For all the experiments with discrepancies between the AMS and SMPS data
(Fig. S3), we assume that the difference in mass has the same composition as the
measured components. We then calculate scaling factors, AMSg;, to correct the PM
mass measured by AMS and make it accordant with the SMPS measurements. The

scaling factor is

AMSSf — CSMPS (1)
C +C504 +CN03 +CNH4

org
where Cgsvps is the total particle mass concentration derived by the SMPS, Corg, Csos,
Cnos and Cypg are the mass concentrations of organics, sulfate, nitrate and ammonium
measured by the AMS. As shown in Fig. S3, the mass of primary particles measured
by SMPS was comparable with that measured by HR-TOF-AMS, thus we assumed
that the mass of black carbon (BC) in the reactor was negligible. The AMSs; for each
time step after nucleation is calculated and used to scale the AMS data for the entire

experiment.
14
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2.4.3 Effective SOAYyields

To compare the SOA formation with other studies, we calculated effective SOA yields
for all experiments. The effective SOA yield Y was defined as the ratio of the
wall-loss-corrected SOA mass to the mass of reacted organic precursors (Odum et al.,
1996, 1997; Donahue et al., 2006). In this study, reacted organic precursors included
in calculation are only those quantified by GC-MSD, including benzene, toluene, C2—
benzene, C3-benzene, C4-benzene and naphthalene. A detailed list of these
compounds is presented in Table S2. At the beginning and end of each experiment, air
samples in the reactor were collected into 2 L electropolished and evacuated stainless
steel canisters and analyzed by GC-MSD to determine the mass of reacted organic
precursors.

2.4.4 Emission factors

Emission factor (EF) of a pollutant P is calculated on a fuel basis (g kg™):

EF —10° o[AP] o (-1 Weo. , MWeo  MWic | a
[ACO,] [ACO] [AHC] MW,

)

where [AP], [ACO;], [ACO], and [AHC] are the background corrected concentrations
of P, CO,, CO and the total hydrocarbons in the reactor in ug m>; MWeco,, MWco,
MWyc, and MW are the molecular weights of CO,, CO, HC and C. wc (0.85) is the

carbon intensity of the gasoline (Kirchstetter et al., 1999).

2.4.5 Determination of OH exposure

15
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Decay of toluene measured by PTR-TOF-MS is used to derive the average OH
concentration during each experiment. Changes in the toluene concentration over time
can be expressed as:

% = —k -[OH]-[toluene] (3)
where Kk is the rate constant for the reaction between toluene and OH radical.

Assuming a constant OH concentration during an experiment, we can integrate Eq. (3)

to get EQ. (4):

in(Oeeloy _y roHT-t ()
[toluene],

So by plotting In([toluene]o/[toluene];) versus time t, we can obtain a slope that equals

k>{OH]. The average OH concentration is therefore calculated as:

[oH] = 2% 5)

The OH exposure is then determined through multiplying the average OH
concentration by time.

3. Results and discussion

3.1 VOC composition

Fig. 2 shows the average composition of gasoline vehicle exhausts from vehicle |
(Euro 4) and 11 (Euro 1). For Euro 4 and 1 vehicle, alkanes contributed about 42.9%
and 66.2% of the total speciated VOCs measured with the GC-FID/MSD by mass,
respectively, dominating the speciated VOCs emissions in gasoline vehicle exhausts.

Due to the high concentrations of isopentane and methylpentane, branched alkanes

contributed approximately 44.9% of the total VOCs for Euro 1 vehicle, quite higher
16



322  than that for Euro 4 vehicle (23.3%). Aromatic hydrocarbons accounted for about 38.0%
323 and 22.5% of the total VOCs for Euro 4 and 1 vehicle, respectively, relatively higher
324  than 10-15% observed by Nordin et al. (2013) for idling Euro 2, 3 and 4 vehicles. The
325  mass fraction of aromatic hydrocarbons for Euro 4 vehicle was comparable with 32.2%
326  for idling private cars in Hong Kong (Guo et al., 2011) and 38.3% for Euro 3
327  light-duty gasoline vehicles operated through ECE cycles with an average speed
328 around 18.7 km h™* (Wang et al., 2013). Both Schauer et al. (2002) and Gentner et al.
329  (2013) observed that aromatic hydrocarbons contributed around 27% of the total
330 VOCs for gasoline-powered automobiles driven through the cold-start Federal Test
331  Procedure urban driving cycle and on-road gasoline vehicles in the Caldecott tunnel,
332  similar with that of Euro 1 vehicle. Recently, Huang et al. (2015) reported that mass
333 fractions of aromatic hydrocarbons were as high as 46.4% for Euro 1, 2, and 3
334  light-duty gasoline vehicles operated through ECE cycles. Therefore, the variations of
335 the composition of LDGV exhausts in this study were within the range of previous
336  studies.

337 The averaged emission factors of VOCs and aromatic hydrocarbons for Euro 4
338  vehicle were 2.1 and 0.8 g kg™, approximately 26.0% and 43.5% of those for Euro 1
339  vehicle, respectively. Compared with a Euro 5 gasoline vehicle operated during a New
340  European Driving Cycle, the emission factor of VOCs for Euro 4 vehicle was about
341 1.7 times higher (Platt et al., 2013). Using 7.87 L/100 km as the average fuel

342  efficiency (Wagner et al., 2009), we obtained the VOCs emission factors based on g
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km™ for Euro 4 and 1 vehicles to be 0.12 and 0.46 g km™, respectively, comparable
with the previous reported values for Euro 1 and 4 gasoline vehicles in China (Huo et
al., 2012; Huang et al., 2015). According to previous studies, there is a clear reduction
of VOCs emissions from gasoline vehicles with stricter emission standards (Huo et al.,
2012; Huang et al., 2015). It is worth noting that emissions of HC from gasoline
vehicles during idling were observed to be lower than those in the acceleration and
deceleration modes (Tong et al., 2000; Yamamoto et al., 2012; Huang et al., 2013), but
in a similar level with those in the cruising mode (Tong et al., 2000). It is important to
note that the reported data are only based on five chamber experiments with two
LDGVs under idling conditions. More tests are needed to assess SOA formation from
gasoline vehicle exhausts in China.

3.2 SOA formation

Fig. 3 shows the temporal evolution of gas—phase and particle—phase species during a
typical smog chamber experiment. During -1.3 h to -0.85 h, the vehicle exhausts were
introduced into the reactor. At time = -0.55 h, the relative humidity was adjusted to
approximately 40%, and HR-TOF-AMS was connected to characterize the primary
PM. NO was injected to adjust the VOC/NOy ratio at approximately time = -0.25 h.
After the black lamps were turned on, NO was fast converted to NO; in less than 1 h,
and then O3 was accumulated and OH radical was formed. When NO concentration
decreased to a low level about 5 ppb, gas-phase light aromatics especially Cs—benzene

with higher reactivity, decayed rapidly due to the reaction with OH radical. SOA was
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thus rapidly formed and increased to a high level in less than 2 h. As shown in Table 3,
at the end of all the experiments, the formed SOA was 12-259 times as high as POA.
This enhancement is consistent with 9-500 recently reported by Nordin et al. (2013)
when studying SOA formation from idling European gasoline passenger vehicle
emissions. As shown in Fig. 3c, the total particle number concentration increased fast
from 82 to 116143 cm™, indicating dramatic new particle formation, which might be
due to that the starting surface concentrations of particles were all below a critical
value (100-2000 um? cm™, Table S1) (Wehner et al., 2004). As shown in Table S1,
primary particle numbers in the reactor in this study ranged from 82 to 18948 cm™,
1-2 orders of magnitude higher than that of a Euro 2 car operated at idling with a
similar dilution ratio (Nordin et al., 2013), indicating that the small starting particle
number concentrations might mainly due to the idling condition of tested cars rather
than the losses in the introduction lines. In addition, upon entering into the chamber,
emitted particles would partition due to dilution similar as in the atmosphere,
regardless of the temperature and concentration in the sampling system, which might
lead to the decrease of starting number concentrations. A certain extent of primary
particles under the detection limit of 14 nm of SMPS also contributed to the measured
small starting number concentration of particles.

Deposition of SOA-forming vapors to the walls might lead to the
underestimation of SOA production. The wall loss rate coefficient of vapors is related

with the numbers of carbon and oxygen in the molecule (X. Zhang et al., 2015). Here,
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we take C;sHgQy, a product of the photo-oxidation of toluene as an example. The loss
of C;HgO4 to walls would be 7% in an hour before SOA formation when a wall
deposition rate of 210 s was used (X. Zhang et al., 2015). After SOA formation,
the surface concentrations of particles increased fast to as high as 2000 um? cm™ in an
hour, which would reduce the vapor wall losses.

SOA production factors (PF) for the LDGVs tested in this study were estimated
to vary from 0.001 to 0.044g kg™ fuel, which are within the results of Nordin et al.
(2013) and Gordon et al. (2014) with OH exposure around 5.0<10° molecules cm™ h.
A recent study investigating SOA formation from in-use vehicle emissions in a
highway tunnel in Pittsburg indicated that the peak SOA production was measured at
an OH exposure of 1.9x10® molecules cm™ h and current smog chamber studies may
underestimate the ultimate SOA production by a maximum factor of about 10 due to
the limited OH exposure (Tkacik et al., 2014).

The average OH radical concentration (Table 3) was determined to be 0.79-1.23
% 10® molecules cm™ during our experiments. This OH level was about ten times
lower than the average OH concentration of 1.5 10" molecules cm™ around noon
in summer in the Pearl River Delta, China (Hofzumahaus et al., 2009). The OH
exposure in this study is only 5% 10° molecules cm™ h, equivalent to 0.3 hour of
atmospheric oxidation. Therefore, the real-world SOA production factor from LDGVs
in the atmosphere in China may be even higher than our estimation.

3.3 SOAYyield
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Effective SOA vyield from vehicle exhaust calculated as described in 2.4.3 ranged
from 2.8% to 17.2%. Pankow (1994 a, b) and Odum et al. (1996) indicated that Y is a

function of Mg and the relation is described as:

ai Kom,i
1+ K,niMg ) (6)

Y= MOZ(
where Komi and «; are the mass-based absorption equilibrium partitioning coefficient
and stoichiometric coefficient of product i, respectively; My is the total mass
concentration of organic material. As shown in Table 3, SOA yields for Euro 1 vehicle
were around 3%, quite lower than 10%-17% for Euro 4 vehicle. The mass fraction of
aromatic hydrocarbons for Euro 4 vehicle was about two times higher than that for
Euro 1 vehicle (Fig. 2a), which would form more semi-volatile organic compounds
(SVOCs) partitioning into particle phase under similar OH exposure and thus lead to
the relatively higher SOA yields.

Comparison of effective yield data obtained for the LDGV exhaust in this study

with those of Nordin et al. (2013) is shown in Fig. 4. Effective yield data of this study

o, K
are well fit with the one-product model, namely Y =M (—"2~) . The
K, M,

omi
appropriate values for a; and Kom 1 When fitting the yields are 0.350+0.114 and 0.007
#0.004, respectively. The effective SOA vyields in the study of Nordin et al. (2013)
were 60%-360% higher than those in this study at same concentrations of M. In their

calculation of the reacted SOA precursors, C4-benzene and naphthalene were

excluded. The effective SOA vyields would increase 7%-34% when C4-benzene and
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naphthalene were excluded in this study, which could explain a small portion of the
discrepancy. According to the estimation above, the loss of VOCs in the transfer lines
was less than 5%. A little higher than VOCs, if assumed to be 20%, losses of IVOCs
and SVOC:s in the transfer lines would increase the SOA effective yields by a factor
of 2%-10% when the unexplained SOA discussed later was all attributed to the
contribution from IVOCs and SVOCs. The existence of seed particles in the study of
Nordin et al. (2013) might reduce the wall loss of semi-volatile organic vapors and
thus increase the effective SOA yield (Kroll et al., 2007; Zhang et al., 2014; X. Zhang
et al., 2015). However, Cocker et al. (2001) found that SOA formation from m-xylene
and 1,3,5-trimethylbenzene photo-oxidation was unaffected by the presence of
ammonium sulfate seed aerosols. The influence of seed particles on SOA vyields still
needs further investigations. Faster oxidation rates caused by higher OH
concentrations in the study of Nordin et al. (2013) would also result in higher SOA
yields (Ng et al., 2007).Additionally, the different VOCs profiles of exhausts might
also influence the SOA yields.

SOA production from the reacted organic precursors can be estimated by the
following formula:

ASOA | gitea = Z,: (AX; xY;)(7)

where ASOApredicted 1S the predicted SOA concentration in ug m=: AX;j is the mass of
reacted aromatic hydrocarbon X; in pg m; and Y; is the corresponding SOA yield of

X;. In this study, the SOA yield of benzene and other single-ring aromatics were
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estimated using the two-product model curves taken from Borr& et al. (2012) and
Odum et al. (1997), respectively. While the SOA vyield of naphthalene was taken from
Shakya et al. (2010). SOA yield curves of toluene and m-xylene from Ng et al. (2007)
were also widely used to estimate SOA production (Platt et al., 2013). However, the
introduction of seed aerosols and OH precursor made the SOA yield curves in the
study of Ng et al. (2007) not suitable for this study. Considering that the study of
Odum et al. (1997) provided a systematic estimation of SOA vyields from toluene,
C2-benzene, C3-benzene and C4-benzene, we mainly used the two-product curves
from Odum et al. (1997) to estimate the SOA production. The aerosol yield curves
from literature were converted to the same aerosol density of 1.4 g cm™ as this study.
The SOA vyield for each precursor was calculated for the measured concentration of
OA in the reactor. Then the predicted SOA production from each precursor can be
calculated (Table S2).

Fig. 5 shows the contributions of the predicted benzene SOA, toluene SOA, C—
benzene SOA, Cs—benzene SOA, Cs—benzene SOA and naphthalene SOA to the total
measured SOA in all experiments. C,—benzene contributed negligible SOA because of
the very low emissions of C,—benzene from light-duty gasoline vehicles (Fig. 2b).
Though benzene took relatively higher percentage of the total VOCs, benzene also
accounted for a negligible proportion of the formed SOA due to its low reactivity with
OH radicals. Naphthalene was previously estimated to contribute around 5% of the

vehicle SOA mass (Nordin et al., 2013). While in this study naphthalene was
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calculated to contribute 8%-52% of the formed SOA. The initial concentrations of
naphthalene in this study ranged from 8.5 to 39.5 ppb, much higher than 2.8-4.4 ppb
in the study of Nordin et al. (2013). The high contributions of naphthalene are
probably attributed to its relatively higher initial concentrations and higher mass yield
than single-ring aromatics for similar experimental conditions (Odum et al., 1997; Ng
et al., 2007).

Totally, single-ring aromatics and naphthalene accounted for 51%-90% of the
measured SOA, comparable to the estimation that classical C6—C9 light aromatics
were responsible for 60% of the formed SOA from gasoline vehicle exhausts (Nordin
et al., 2013), indicating that there are other SOA precursors in the LDGV exhausts.
Platt et al. (2013) attributed the unexplained SOA formed from the aging of emissions
from a Euro 5 gasoline car to highly oxygenated hydrocarbons. In addition, IVOCs
such as branched and cyclic alkanes were recognized as important SOA precursors
derived from wood burning, diesel engine and aircraft exhaust (Robinson et al., 2007;
Weitkamp et al., 2007; Grieshop et al., 2009; Tkacik et al., 2012). Gordon et al. (2014)
found that unspeciated species including branched and cyclic alkanes contributed
about 30% of the nonmethane organic gas emissions from LDGVs with model years
of 1995 or later and be associated with the majority of the SOA formation. Tkacik et
al. (2014) also found that unspeciated species were predicted to contribute twice as
much SOA from in-use vehicle emissions as traditional precursors. It is worth noting

that photooxidation of aromatic hydrocarbons in a complex mixture such as gasoline
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vehicle exhausts might alter the SOA yield compared to pure precursor experiments,
thus probably influencing the estimation in this study (Song et al., 2007). Wall losses
of organic vapors were not considered in this study, which would lead to the
underestimation of SOA production. Therefore, the mass closure analysis estimated
the maximum amount of SOA that could be explained by aromatics.
3.4 SOA composition
Fragmentations derived from the AMS data have been widely used to explore the
oxidation degree of the organic aerosols (Zhang et al., 2005; Ng et al., 2010; Heald et
al., 2010). The usually used ion fragments include m/z 43, 44 and 57. The dominating
organic peaks in gasoline vehicle exhaust SOA are m/z 43 and 44 (Nordin et al.,
2013), while m/z 57 is a main hydrocarbon fragment in diesel SOA (Chirico et al.,
2010). Here, we use the approach of Ng et al. (2010) by plotting the fractions of total
organic signal at m/z 43 (fs3) vs. m/z 44 (fi) together with the triangle defined
according to the analysis of ambient AMS data. The m/z 43 signal includes C3H;" and
C,H30" ions, indicating fresh less oxidized organic aerosols. The m/z 44 signal,
dominated by CO," and formed from the thermal decarboxylation of organic acids, is
an indicator of highly oxygenated organic aerosols (Ng et al., 2010).

Fig. 6a shows the f43 vs. f44 at the end of each experiment and the results of
Nordin et al. (2013) and Presto et al. (2014), together with the triangle developed by
Ng et al. (2010). The ambient low-volatility oxygenated OA (LV-OOA) and

semi-volatile OOA (SV-OOA) factors fall in the upper and lower portions of the
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triangle, respectively. Our data mainly lie in the SV-OOA region, similar to the results
of Nordin et al. (2013) and Presto et al. (2014). However, SOA in one experiment
show relatively lower oxidation degree. This phenomenon reflects the different SOA
compositions among different experiments and might be caused by the different
VOC:s profiles, OH exposure and organic mass loadings (Ng et al., 2010).

The O:C ratio can also be used to characterize the oxidation degree of the
organic aerosols. After 5 h irradiation the H:C ratios varied from 1.22 to 1.37 and the
O:C ratios from 0.43 to 0.69 for all the experiments. Almost all the O:C values were
lower than 0.6, comparable to the SV-OOA compounds, which typically has O:C
ratios between 0.3 and 0.6 (Jimenez et al., 2009). Platt et al. (2013) observed a
relatively higher O:C ratio of 0.7 on the aging (OH = 12X 10° molecules cm™ h) of
emissions from a Euro 5 gasoline car operated during a New European Driving Cycle.
As a higher OH exposure will lead to a higher O:C ratio, if the gasoline exhaust in this
study was irradiated under a similar OH exposure to that of Platt et al. (2013) , the
O:C ratios might reach to the similar level or higher, comparable to the LV-OOA
factor (Jimenez et al., 2009).

In Fig. 6b we plot the O:C and H:C molar ratios after SOA was formed during
experiments 1, 2 and 3 on a Van Krevelen diagram (Heald et al., 2010). The slopes
ranged from -0.59 to -0.36, similar to previous laboratory studies of Tkacik et al.
(2012) for cyclic, linear and branched alkanes, Jathar et al. (2013) for unburned fuel

and Presto et al. (2014) for light-duty gasoline vehicle exhaust. They are also similar
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to the ambient data (Ng et al., 2011). A slope of -1, -0.5 and 0 in the Van krevelen
diagram represents the addition of alcohol/peroxide, the addition of carboxylic acid
with fragmentation, and the addition of carboxylic acid without fragmentation,
respectively (Heald et al., 2010; Ng et al., 2011). Consequently, the slopes in this
study indicate that the SOA formation is a combination of the addition of both
carboxylic acid and alcohol/peroxide function groups without C-C bond cleavage
and/or the addition of carboxylic acid with C-C bond breakage (Heald et al., 2010; Ng

etal., 2011).
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897  Table 1. Detailed information of the two light-duty gasoline vehicles.

Emission . . .
D standard  Vehicle Model  Mileage Dlsglacement Power  Weight
year (km) (cm?) (kW) (kg)
class
I Euro4 Golf 2011 25000 1598 77 1295
| Eurol Accord 2002 237984 2298 110 1423
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900 Table 2. Initial conditions for the light-duty gasoline vehicle photooxidation

901  experiments.

Experiment \ehicle T RH VOC/ VOCs NO NO;
# ID (®) (%)* NO,  (ppbv)°  (ppbv)  (ppbv)
1 | 25.8+0.7 52.0+1.8 10.2 1368 115.1 18.4
2 I 241+06  57.0%+20 6.0 2583 431.0 0.6
3 [ 25.0+08 529+20 9.3 2896 300.6 9.5
4 [ 242+08  525+27 2.0 1885 794.1 161.9
5 I 25.0+03 526+1.3 7.2 1507 210.4 0.7

902 % Stated uncertainties (1c) are from scatter in temperature and relative humidity, respectively.
903 " C2-C3and C4-C12 hydrocarbons were measured by GC-FID and GC-MSD, respectively.
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904 Table 3. Summary of the results for the light-duty gasoline vehicle photooxidation

905  experiments.

Vehicle OH POA SOA Effective

Exp# ID (X 10° molecules cm®) (mgm®  (ugm?) SOA/POA yield

1 | 1.23 1.1 51.1 46 0.103

2 | 0.73 0.2 17.6 88 0.038

3 | 0.88 0.3 77.6 259 0.119

4 | 1.20 1.0 125.4 125 0.172

5 | 0.79 0.3 4.0 12 0.028
906
907

908
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916  Fig. 2. Composition of (a) VOCs and (b) aromatics of gasoline vehicle exhausts from
917 Euro 1 and Euro 4 private cars, presented as weight percentage of speciated VOCs.
918 C2-C3 and C4-C12 hydrocarbons were measured by GC-FID and GC-MSD,
919  respectively. The error bars (1 0) represent variability from measurements for each
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vehicle exhaust was introduced into the reactor between -1.3 h and -0.85 h; the
primary emissions were characterized from -0.85 h to 0 h; at time = 0 h, the black

lamps were turned on.
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Fig. 4. Comparison of yield data obtained for the gasoline experiments in this study
with that of Nordin et al. (2013). The green line is the best fit one-product model («; =
0.311, Kom1 = 0.043) for the data set of Nordin et al. (2013). The orange line is the
best one-product fit to the effective SOA yield in this study (a; = 0.350, Koy 1 = 0.007).
Organic precursors in the calculation of effective yields included benzene, toluene,

C2-benzene, C3-benzene, C4-benzene and naphthalene.
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942  Fig. 5. Contributions of the predicted benzene SOA, toluene SOA, C2-benzene SOA,
943  C3-benzene SOA, C4—benzene SOA and naphthalene SOA to the total formed SOA
944  in all experiments.

945
946

53



947

948
949
950
951
952

0.30

® This study (@)
NN A Results of Nordin et al.(2013)
B Results of Presto et al.(2014)
025
0.20 |
J01s |
““‘ % A A
A
A
010 I ‘\“‘ [ ) A )
0.05 | e
0.00 L : :
0.00 0.05 0.10 0.15 0.20
fa3
2.5
(b)
20 R
15 0 e T

..

H:C

...

slope =2~

00 1 1 1 1 .."I 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6
0o:C

Fig. 6. (a) The fractions of total organic signal at m/z 43 (f43) vs. m/z (f44) at the end
of each experiment together with the triangle plot of Ng et al. (2010). The solid square
and triangles represent the results of Presto et al. (2014) and Nordin et al. (2013),

respectively. The dotted lines define the space where ambient OOA components fall.
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953  The ranges of f44 observed for SV-OOA and LV-OOA components are 0.03-0.11 and
954  0.13-0.21, respectively. (b) Van Krevelen diagram of SOA from light-duty gasoline
955  vehicle exhaust. Dotted lines are to show slopes of 0, -1 and -2. AMS data of the

956  experiment 5 were unavailable.
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