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Abstract

Inverse models use observations of a system (observation vector) to quantify the vari-
ables driving that system (state vector) by statistical optimization. When the obser-
vation vector is large, such as with satellite data, selecting a suitable dimension for
the state vector is a challenge. A state vector that is too large cannot be effectively5

constrained by the observations, leading to smoothing error. However, reducing the di-
mension of the state vector leads to aggregation error as prior relationships between
state vector elements are imposed rather than optimized. Here we present a method
for quantifying aggregation and smoothing errors as a function of state vector dimen-
sion, so that a suitable dimension can be selected by minimizing the combined er-10

ror. Reducing the state vector within the aggregation error constraints can have the
added advantage of enabling analytical solution to the inverse problem with full error
characterization. We compare three methods for reducing the dimension of the state
vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2)
clustering with principal component analysis (PCA), and (3) applying a Gaussian mix-15

ture model (GMM) with Gaussian pdfs as state vector elements on which the native-
resolution state vector elements are projected using radial basis functions (RBFs). The
GMM method leads to somewhat lower aggregation error than the other methods, but
more importantly it retains resolution of major local features in the state vector while
smoothing weak and broad features.20

1 Introduction

Inverse models quantify the state variables driving the evolution of a physical system
by using observations of that system. This requires a physical model F, known as the
forward model, that relates a set of input variables x (state vector) to a set of output
variables y (observation vector),25

y = F(x)+ε (1)
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The observational error ε includes contributions from both the forward model and
the measurements. Solution to the inverse problem involves statistical optimization to
achieve a best error-weighted estimate of x given y.

A critical step in solving the inverse problem is determining the amount of informa-
tion contained in the observations and choosing the state vector accordingly. This is5

a non-trivial problem when using large observational datasets with large errors. An
example that will guide our discussion is the inversion of methane emissions on the
basis of satellite observations of atmospheric methane concentrations (Turner et al.,
2014). Methane concentrations can be predicted on the basis of emissions by using
a chemical transport model (CTM) that solves the 3-D continuity equation for methane10

concentrations. Here the CTM is the forward model F, the satellite provides a large
observation vector y, and we need to choose the resolution at which to optimize the
methane emission vector x.

The simplest approach would be to use the native resolution of the CTM in order
to extract the maximum information from the observations. However, the observations15

may not be sufficiently dense or precise to optimize emissions at that level of detail,
resulting in an underdetermined problem. Bocquet et al. (2011) refer to this as the
“resolution problem”. The inverse solution must then rely on some prior estimate for
the state vector and may not be able to depart sufficiently from that knowledge. This
is known as the smoothing error (Rodgers, 2000) and increases with size of the state20

vector (Bousquet et al., 2000; Kaminski and Heimann, 2001; Kaminski et al., 2001;
Bocquet et al., 2011; von Clarmann, 2014). Wecht et al. (2014) illustrate the severity of
this problem in their inversion of methane emissions using satellite data.

An additional drawback of using a large state vector is the computational cost of the
inversion. Analytical solution to the inverse problem requires calculation of the Jacobian25

matrix, ∇xF, and inversion and multiplication of the error covariance matrices (Rodgers,
2000). It has the advantage of providing complete error statistics on the solution but it
becomes impractical as the state vector becomes too large. Numerical solutions using
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variational methods circumvent this problem but do not inherently provide error char-
acterization as part of the solution.

Reducing the dimensionality of the state vector in the inverse problem thus has two
advantages. It improves the observational constraints on individual state vector ele-
ments and it facilitates analytical solution. Reduction can be achieved by aggregating5

state vector elements. For a state vector of gridded time-dependent emissions, the
state vector can be reduced by aggregating grid cells and time periods. However, this
introduces error in the inversion as the underlying spatial and temporal patterns of
the aggregated emissions are now imposed from prior knowledge and not allowed to
be optimized as part of the inversion. The resulting error is called the aggregation er-10

ror (Kaminski and Heimann, 2001; Kaminski et al., 2001; Schuh et al., 2009).
Here we present a method for optimizing the selection of the state vector in the so-

lution of the inverse problem for a given ensemble of observations. As the dimension
of the state vector decreases, the smoothing error decreases while the aggregation
error increases. We show how to derive an optimum where the overall error is mini-15

mized. We derive an analytical expression for the aggregation error covariance matrix
and show how this can guide selection of a reduced-dimension state vector where the
aggregation error remains below an acceptable threshold. We also show how intelli-
gent selection of the state vector can extract more information from the observations
for a given state vector dimension.20

2 Formulating the inverse problem

Inverse problems are commonly solved using Bayes’ theorem,

P (x|y) ∝ P (y|x)P (x) (2)

where P (x|y) is the posterior probability density function (pdf) of the state vector x
(n×1) given a vector of observations y (m×1), P (x) is the prior pdf of x, and P (y|x) is25
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the conditional pdf of y given the true value of x. Assuming Gaussian distributions for
P (y|x) and P (x) allows us to write the posterior pdf as

P (x|y) ∝ exp
{
−1

2
(y −F(x))TS−1

O (y −F(x))− 1
2

(xa −x)TS−1
a (xa −x)

}
(3)

where xa is the n×1 prior state vector, SO is the m×m observational error covariance
matrix, and Sa is the n×n prior error covariance matrix. The most probable solution x̂5

(called the maximum a posteriori or MAP) is defined by the maximum of P (x|y), i.e.,
the minimum of the cost function J (x):

J (x) =
1
2

(y −F(x))TS−1
O (y −F(x))+

1
2

(xa −x)TS−1
a (xa −x) (4)

This involves solving

∇xJ = ∇xF(x)TS−1
O (F(x)−y)+S−1

a (xa −x) = 0 (5)10

Solution to Eq. (5) can be done analytically if F is linear, i.e., F(x) = Kx+c where
K ≡ ∇xF = ∂y/∂x is the Jacobian of F and c is a constant that can be set to zero in
the general case by subtracting c from the observations. This yields

x̂ = xa +G (y −Kxa) (6)

where G = ŜKTS−1
O is the gain matrix and Ŝ is the posterior covariance matrix,15

Ŝ =
(

KTS−1
O

K+S−1
a

)−1
(7)

The MAP solution can also be expressed in terms of the true value x as

x̂ = xa +A (x−xa)+Gε (8)
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where A is the averaging kernel matrix that measures the error reduction resulting from
the observations:

A = GK = I− ŜS−1
a (9)

and Gε is the observation error in state space with error covariance matrix GSOGT .
The analytical solution to the inverse problem thus provides full error characterization5

as part of the solution. It does require that the forward model be linear. The Jacobian
matrix must be generally constructed numerically, requiring n sensitivity simulations
with the forward model, and subsequent matrix operations are also of dimension n. This
limits the practical size of the state vector. The matrix operations also depend on the
dimensionm of the observation vector but this can be easily addressed by splitting that10

vector into uncorrelated packets, a method known as sequential updating (Rodgers,
2000).

The limitation on the state vector size can be lifted by finding the solution to ∇xJ = 0
numerically, rather than analytically, for example by using the adjoint of the forward
model to calculate ∇xJ iteratively at successive approaches to the solution (e.g., Henze15

et al., 2007). This variational method allows for optimization of state vectors of any
size because the Jacobian is not explicitly constructed. But it only yields the MAP
solution, x̂, with no error statistics. Several approaches have been presented to obtain
approximate error characterization (e.g., Desroziers et al., 2005; Chevallier et al., 2007)
but they are computationally expensive. An excessively large state vector relative to20

the strength of the observational constraints also incurs smoothing error, as discussed
above.

3 Quantifying aggregation and smoothing errors

The resolution of the forward model (e.g., grid resolution of the CTM) places an up-
per limit on the dimension for the state vector, which we call the native dimension. As25

we reduce the dimension of the state vector from this native resolution, the smoothing
1006
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error decreases while the aggregation error increases. Here we present analytical ex-
pressions for the aggregation and smoothing error covariance matrices and show how
they can be used to select an optimal state vector dimension.

3.1 Aggregation error

As in Bocquet et al. (2011), we define a restriction (aggregation) operator that maps5

the native-resolution state vector x of dimension n to a reduced-resolution vector xω of
dimension p. We assume a linear restriction operator Γω as a p×n matrix relating xω
to x:

xω = Γωx (10)

Bocquet et al. (2011) provide a detailed analysis of aggregation error for reduced-10

resolution state vectors. Their analysis relies heavily on the probabilistic construction
of a prolongation operator (Γ?) mapping xω back to x: x = Γ?xω. However, construction
of this prolongation operator is not a well-posed problem because the operator is not
unique. We present here a simpler and more robust method.

Aggregation error is the error introduced by aggregating state vector elements in15

the inversion. The relationship between the aggregated elements is not optimized as
part of the inversion anymore and instead becomes an unoptimized parameter in the
forward model, effectively increasing the forward model error and inhibiting the ability
of the model to fit the observations. The aggregation error is thus a component of the
observational error.20

The aggregation error can be quantified by comparing the observational error in-
curred by using the native-resolution state vector,

ε = y −Kx (11)

to that using the aggregated state vector,

εω = y −Kωxω (12)25
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Here y is the observation vector (common in both cases), and x and xω are the true
values of the native-resolution and aggregated state vectors. The only difference be-
tween ε and εω is the aggregation of state vector elements. As such,

εω = ε+εA (13)

where εA is the aggregation error. Rearranging,5

εA = (K−KωΓω)x (14)

Obtaining the error statistics for εA requires knowledge of the pdf of x for the ensemble
of possible true states. Let x represent the mean value of this ensemble and Se the
corresponding covariance matrix. The aggregation error covariance matrix is:

SA = E
[
(εA −E [εA]) (εA −E [εA])T

]
(15)10

where E [ ] is the expected value operator. E [εA] = (K−KωΓω)x is the bias introduced
by the aggregation. Replacing into Eq. (15):

SA = (K−KωΓω)E
[(
x−x

)(
x−x

)T ]
(K−KωΓω)T

= (K−KωΓω)Se(K−KωΓω)T (16)

In designing our inversion system we use xa as our best estimate of x and Sa as our15

best estimate of Se. If xa = x there is no aggregation error since the prior relationship
assumed between state vector elements is correct, thus K = KωΓω and the aggregation
bias is zero. Furthermore, assuming Sa = Se allows us to calculate the aggregation
error covariance matrix as

SA = (K−KωΓω)Sa(K−KωΓω)T (17)20

and we will use this expression in the analysis that follows.
1008

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/1001/2015/acpd-15-1001-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/1001/2015/acpd-15-1001-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 1001–1026, 2015

Balancing
aggregation and
smoothing errors

A. J. Turner and
D. J. Jacob

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2 Smoothing error

Following Rodgers (2000), we can express the smoothing error on x̂ by rearranging
Eqs. (6) and (1):

x̂−x = (I−A) (xa −x)+Gε (18)

where εS = (I−A) (xa −x) is the smoothing error. As pointed out by Rodgers (2000),5

the smoothing error statistics must be derived from the pdf of possible true states, in
the same way as for the aggregation error and characterized by the error covariance
matrix Se. For purposes of designing the inverse system we assume that Se = Sa. Thus
we have

SS = (I−A)Sa(I−A)T (19)10

We can also express the smoothing error in observation space, ε∗S, (i.e., as a difference
between y and Kx̂) by multiplying both sides of Eq. (18) by the Jacobian matrix:

K
(
x̂−x

)
= K (I−A) (xa −x)+KGε (20)

so that

ε∗
S
= K (I−A) (xa −x) (21)15

The corresponding smoothing error covariance matrix in observation space is

S∗
S
= K (I−A)Sa(I−A)TKT (22)

This expression can be generalized to compute the smoothing error covariance matrix
in observation space for any reduced-dimension state vector xω with Jacobian Kω,
prior error covariance matrix Sa,ω, and averaging kernel matrix Aω:20

S∗
S
= Kω (I−Aω)Sa,ω(I−Aω)TKTω (23)
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3.3 Total error budget

From Eq. (18) we can see that the total error on x̂ without aggregation is εT = εS +Gε
in the state space, or ε∗T = ε

∗
S +KGε in the observation space. The KG term in the

observation space appears because we are interested in the error on x̂. If x̂ = x then
KG = I and A = I, thus εS = 0 and our total error reverts to ε,5

ε∗T|x̂=x = K (I−A) (xa −x)+KGε = ε (24)

Additional consideration of aggregation error for a reduced-dimension state vector
xω yields a total error in the state space

εT = εS +Gωε+GωεA (25)

where Gω is the gain matrix for the reduced-dimension state vector. In the observation10

space we get

ε∗T = ε
∗
S
+KωGωε+KωGωεA (26)

From these relationships we derive the total error covariance matrix as

ST,ω = (I−Aω)Sa,ω(I−Aω)T︸ ︷︷ ︸
Smoothing Error

+Gω (K−KωΓω)Sa(K−KωΓω)TGT
ω︸ ︷︷ ︸

Aggregation Error

15

+ GωSOGT
ω︸ ︷︷ ︸

Observation Error

(27)
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in the state space and

S∗T,ω = Kω (I−Aω)Sa,ω(I−Aω)TKTω︸ ︷︷ ︸
Smoothing Error

+KωGω (K−KωΓω)Sa(K−KωΓω)TGT
ωKTω︸ ︷︷ ︸

Aggregation Error

+KωGωSOGT
ωKTω︸ ︷︷ ︸

Observation Error

(28)

in the observation space.5

Each of these three error terms depends on state vector dimension. Because the
smoothing error increases with state vector dimension while the aggregation error de-
creases, we expect to find an optimal dimension where the total error is minimum. To
enable an analytical inversion we may wish to decrease the state vector dimension
further within a tolerance on aggregation error, such as requiring that the aggregation10

error remain smaller than the observation error. We give an example in Sect. 5.
A caveat in the above expressions for the aggregation and smoothing error covari-

ance matrices is that they are valid only if the prior xa is the mean value x for the pdf
of true states and if the error covariance matrix Sa is the covariance matrix for that
pdf. These conditions define the assumption for the prior, so the expressions can be15

taken as valid for the purpose of selecting an appropriate state vector dimension in an
inverse problem. However, they should not be used to diagnose errors on the inversion
results.

4 Aggregation methods

Aggregation of state vector elements to reduce the state vector dimension introduces20

aggregation errors, as described in Sect. 3.1. The aggregation error can be reduced by
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grouping elements with correlated errors. Analyzing the off-diagonal structure of a pre-
cisely constructed prior error correlation matrix would provide the best objective way
to carry out the aggregation. We generally lack such information but do have some
qualitative knowledge of prior error correlation that can be used to optimize the aggre-
gation. Bocquet et al. (2011) used tiling and tree-based aggregation methods, while5

Wecht et al. (2014) used a hierarchal clustering method based on prior error patterns.
Here we compare three aggregation methods: (1) simple grid coarsening, (2) princi-
pal component analysis (PCA) clustering, and (3) a Gaussian mixture model (GMM)
with radial basis functions (RBFs) to project native-resolution state vector elements to
Gaussian pdfs. A qualitative illustration of these methods is shown in Fig. 1 for the ag-10

gregation of a native-resolution state vector of methane emissions with 1
2
◦ × 2

3
◦

native
grid resolution over North America (Turner et al., 2014). We focus here on spatial ag-
gregation and assume that the state vector has no temporal dimension. However, the
same methods can be used for temporal aggregation.

The simplest method for reducing the dimension of the state vector is to merge adja-15

cent elements, i.e., neighboring grid cells. This method considers only spatial proximity
as source of error correlation. It may induce large aggregation errors if proximal but oth-
erwise dissimilar regions are aggregated together. In the case of methane emissions,
aggregating neighboring wetlands and farmland would induce large errors because
different processes drive methane emissions from these two source types.20

The other two methods enable consideration of additional similarity factors besides
spatial proximity when aggregating state vector elements. These similarity factors are
expressed by vectors of dimension n describing correlative properties of the original
native-resolution state vector elements. In the case of a methane source inversion,
for example, we can choose as similarity vectors latitude and longitude to account25

for spatial proximity, but also wetland fraction to account for error correlations in the
bottom-up wetland emission estimate used as prior.
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4.1 Similarity matrix for aggregation

Table 1 lists the similarity vectors chosen for our example problem of estimating
methane emissions (Turner et al., 2014). The first two vectors account for spatial prox-
imity, the third represents the scaling factors from the first iteration of an adjoint-based
inversion at native resolution (Wecht et al., 2014), and the others are the source type5

patterns from the bottom-up inventories used as prior. All similarity vectors are nor-
malized and then weighted by judgment of their importance. Let {c1, . . .,cK } represent
the K similarity vectors chosen for the problem (K = 14 in our example of Table 1). We
assemble them into a n×K similarity matrix C. We will also make use of the ensemble
of similarity vector values for individual state vector elements, which we assemble into10

vectors {c′1, . . .,c′n} representing the rows of C. Thus:

C =




...
c1
...




...
c2
...

 · · ·


...
cK
...


 =


(
· · ·c′1· · ·

)(
· · ·c′2· · ·

)
...(

· · ·c′n· · ·
)
 (29)

In this work all of the aggregation methods except for grid coarsening will use the same
similarity matrix to construct the restriction operator.

This approach of using a similarity matrix C to account for prior error covariances15

bears some resemblance to the geostatistical approach for inverse modeling (e.g.,
Michalak et al., 2004, 2005; Gourdji et al., 2008; Miller et al., 2012). The geostatis-
tical approach specifies the prior estimate as xa = Cβ where β is a vector of unknown
drift coefficients to be optimized as part of the inversion. Here we use the similarity
matrix to reduce the dimension of the state vector, rather than just as a choice of prior20

constraints.
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4.2 Clustering with principal component analysis

In this method we cluster state vector elements following the principal components of
the similarity matrix. It is generally not practical to derive the principal components in
state vector space because the n-dimension is large. Instead we derive them in in simi-
larity space (dimension K ) as the eigenvectors of CTC sorted in order of importance by5

their eigenvalues. The leading j principal components are kept for clustering. The re-
duced state vector is then constructed by grouping state vector elements that have the
same sign patterns for all j principal components. Each unique j -dimensional sign pat-
tern constitutes a cluster. The number of clusters defined in that way ranges between
j and 2j . Figure 1b shows an example of applying this method to methane emissions10

in North America with reduction of the state vector to n = 8. The separation into four
quadrants reflects the importance of latitude and longitude as error correlation factors.
The additional separation within each quadrant isolates large from weak sources as
defined by the prior.

4.3 Gaussian mixture model (GMM)15

Here we use a Gaussian mixture model (GMM; Bishop, 2007) to project the native-
resolution state vector onto p Gaussian pdfs using radial basis functions (RBFs). Mix-
ture models are probabilistic models for representing a population comprised of p sub-
populations. Each subpopulation is assumed to follow a pdf, in this case Gaussian.
The Gaussians are K -dimensional where K is the number of similarity criteria. Each20

native-resolution state vector element is fit to this ensemble of Gaussians using RBFs
as weighting factors.

The first step in constructing the GMM is to define a p×n weighting matrix W =
[w 1,w 2, . . .,w p]T . Each element wi ,j of this weighting matrix is the relative probability
for native-resolution state vector element j to be described by Gaussian subpopulation25
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i , i.e., “how much does element j look like Gaussian i?”. It is given by

wi ,j =
πiN (c′j |µi ,Λi )∑p
k=1πjN (c′j |µk ,Λk)

(30)

Here c′j is the j th row of the similarity matrix C, µi is a 1×K row vector of means for the

i th Gaussian, Λi is a K×K covariance matrix for the i th Gaussian, and π =
[
π1, . . .,πp

]T
is the relative weight of the p Gaussians in the mixture. N

(
c
′
j |µi ,Λi

)
denotes the5

probability density of vector c′j on the normal distribution of Gaussian i . We define
a p×K matrix M with rows µi and a K ×K ×p third-order tensor L = [Λ1, . . .,Λp] as
the set of covariance matrices.

Projection of the native-resolution state vector onto the GMM involves four un-
knowns: W, π, M, and L. This is solved by constructing a cost function to estimate10

the parameters of the Gaussians in the mixture model using maximum likelihood:

JGMM(C|π,M,L) =
n∑
j=1

ln

{ p∑
i=1

πiN (c′j |µi ,Λi )
}

(31)

Starting from an initial guess for π, M, and L we compute the weight matrix W using
Eq. (30). We then differentiate the cost function with respect to π, M, and L, and set
the derivative to zero to obtain (see Bishop, 2007):15

µi =Ψi

n∑
j=1

wi ,jc
′
j (32)

Λi =Ψi

n∑
j=1

wi ,j
(
c′j −µi

)T (
c′j −µi

)
(33)

πi =
1
nΨi

(34)
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where:

Ψi =
n∑
j=1

1
wi ,j

(35)

The weights are re-calculated from the updated guesses of W, π, M, and L from
Eqs. (32)–(35), and so on until convergence. The final weights define the restriction
operator as Γω = W.5

The GMM allows each native-resolution state vector element to be represented by
a unique linear combination of the Gaussians through the RBFs. For a state vector of
a given dimension, defined by the number of Gaussian pdfs, we can achieve high res-
olution for large localized sources by sacrificing resolution for weak or uniform source
regions where resolution is not needed. This is illustrated in Fig. 2 with the resolution10

of southern California in an inversion of methane sources for North America. The fig-
ure shows the three dominant Gaussians describing emissions in Southern California
and the corresponding RBF weights for each native-resolution grid square. Gaussian
1 is centered over Los Angeles and is highly localized, Gaussian 2 covers the Los An-
geles Basin, and Gaussian 3 is a Southern California background. The sum of these15

three Gaussians accounts for most of the emissions in southern California and Nevada
(which is mostly background). Additional Gaussians (not shown) resolve the southern
San Joaquin Valley (large livestock and oil/gas emissions) and Las Vegas (large emis-
sions from waste).

5 Application20

We apply the aggregation methods described above to our example problem of estimat-
ing methane emissions from satellite observations of methane concentrations, focusing
on selecting a reduced-dimension state vector that minimizes aggregation and smooth-
ing errors. The inversion is described in detail in Turner et al. (2014) and uses GOSAT
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satellite observations for 2009–2011 over North America. The forward model for the
inversion is the GEOS-Chem CTM with 1

2
◦ × 2

3
◦

grid resolution. The native-resolution
state vector of methane emissions as defined on that grid includes 7366 elements.

For purpose of selecting an aggregated state vector for the inversion we consider
a subset of observations for May 2010 (m = 6070) so that we can afford to construct5

the corresponding Jacobian matrix K at the native resolution; this is necessary to de-
rive the aggregation error covariance matrix following Eq. (17). The prior error covari-
ance matrix is specified as diagonal with 100 % uncertainty at the native resolution,
decreasing with aggregation following the central limit theorem (Turner et al., 2014).
The observational error covariance matrix is also diagonal and specified as the scene-10

specific retrieval error from Parker et al. (2011), which dominates the total observational
error as shown by Turner et al. (2014). We compare the three methods presented in
Sect. 4 for aggregating the state vector in terms of the implications for aggregation
and smoothing errors for different state vector dimensions. In addition to the GMM with
RBFs, we also consider a “GMM clustering” method where each native resolution state15

vector element is assigned exclusively to its dominant Gaussian pdf. This yields sharp
boundaries between clusters (Fig. 1) as in the grid coarsening and PCA methods.

Figure 3 shows the mean error SD in the aggregation and smoothing error covari-
ance matrices, computed as the square root of the diagonal terms, as a function of
state vector dimension. The aggregation error is zero by definition at the native res-20

olution (7366 state vector elements), and increases as the number n of state vector
elements decreases, following a roughly n−0.7 dependence. Conversely, the smoothing
error increases as the number of state vector elements increases, following roughly
a log(n) dependence. The different aggregation methods of Sect. 4 yield very simi-
lar smoothing errors but the aggregation error is somewhat improved using the GMM25

method. RBF weighting performs slightly better than GMM clustering (sharp bound-
aries). As discussed above, a major advantage of the GMM method is its ability to
retain resolution of large localized sources after aggregation.
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Figure 4 shows the sum of contributions from aggregation, smoothing, and ob-
servational error SD as a function of state vector aggregation using the GMM with
RBF weighting. In this application, aggregation error dominates for small state vectors
(n < 100), but drops below the observation error for n > 100 and below the smoothing
error for n > 1000. The smoothing error remains smaller than the observational error5

even at the native resolution (n = 7366). The observational error is not independent of
aggregation, as shown in Eq. (28), but we find here that the dependence is small.

From Fig. 4 we can identify a state vector dimension for which the total error is
minimum (n = 2208; circle in Fig. 4). However, error growth is small until n ≈ 200, below
which the aggregation error grows rapidly. A state vector of 369 elements, as adopted10

by Turner et al. (2014), does not incur significant errors associated with aggregation or
smoothing, and enables computation of an analytical solution to the inverse problem
with full error characterization.

6 Conclusions

We presented a method for optimizing the selection of the state vector in the solution15

of the inverse problem for a given ensemble of observations. The optimization involves
minimizing the total error in the inversion by balancing the aggregation error (which
increases as the state vector dimension decreases), the smoothing error (which in-
creases as the state vector dimension increases), and the observational error. We fur-
ther showed how one can reduce the state vector dimension within the constraints from20

the aggregation error in order to facilitate an analytical solution to the inverse problem
with full error characterization.

We explored different methods for aggregating state vector elements as a means
of reducing the dimension of the state vector. Aggregation error can be minimized by
grouping state vector elements with the strongest correlated prior errors. We showed25

that a Gaussian mixture model (GMM), where the state vector elements are multi-
dimensional Gaussian pdfs constructed from prior error correlation patterns, is a pow-
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erful aggregation tool. Reduction of the state vector dimension using the GMM retains
fine-scale resolution of important features in the native-resolution state vector while
merging weak or uniform features.
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Table 1. Similarity vectors for inverting methane emissions in North Americaa.

Similarity Weighting
Vector factorb

1. Latitudec 1.00
2. Longituded 1.00
3. Initial scaling factorse 0.15
4. Wetlandf 0.31
5. Livestockf 0.22
6. Oil/gasf 0.16
7. Wastef 0.15
8. Coalf 0.06
9. Soil absorptionf 0.05
10. Termitesf 0.02
11. Biomass burningf 0.02
12. Biofuelf 0.01
13. Ricef 0.01
14. Otherf 0.01

a The K = 14 similarity vectors describe prior error correlation criteria for the native-resolution state
vector, representing here the methane emission in North America at the 1

2
◦ × 2

3
◦

resolution of the
GEOS-Chem chemical transport model. The criteria are normalized and then weighted (weighting
factor).
b The weighting factors (dimensionless) measure the estimated relative importance of the different
similarity criteria in determining prior error correlations in the state vector. For the prior emission
patterns these weighting factors are the fractional contributions to total prior emissions in North
America.
c Distance in kilometers from the equator.
d Distance in kilometers from the prime meridian.
e Initial scaling factors from one iteration of an adjoint inversion at the native resolution.
f Prior emissions used in the GEOS-Chem model (Wecht et al., 2014; Turner et al., 2014).

1022

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/1001/2015/acpd-15-1001-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/1001/2015/acpd-15-1001-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 1001–1026, 2015

Balancing
aggregation and
smoothing errors

A. J. Turner and
D. J. Jacob

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. Illustration of different approaches for aggregating a state vector. Here the native
resolution state vector is a field of gridded methane emissions at 1

2
◦ × 2

3
◦

resolution over North
America. Extreme reduction to 8 state vector elements is shown with individual elements dis-
tinguished by color.
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Figure 2. Gaussian Mixture Model (GMM) representation of methane emissions in southern
California with Gaussian pdfs as state vector elements. The Gaussians are constructed from
a similarity matrix for methane emissions on the 1

2
◦× 2

3
◦

horizontal resolution of the GEOS-Chem
CTM used as forward model for the inversion. The figure shows the dominant three Gaussians
for southern California with contours delineating the 0.5, 1.0, 1.5, and 2.0 σ spreads for the
latitude–longitude dimensions. The RBF weights w 1, w 2, and w 3 of the three Gaussians for
each 1

2
◦ × 2

3
◦

grid square are also shown along with their sum.
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Figure 3. Aggregation and smoothing error dependences on the aggregation of state vector
elements in an inverse model. The application here is to an inversion of methane emissions
over North America using satellite methane data with 7366 native-resolution state vector ele-
ments (Sect. 5 and Turner et al., 2014). Results are shown as the square roots of the means of
the diagonal terms (mean error SD) in the aggregation and smoothing error covariance matri-
ces. Different methods for aggregating the state vector (Sect. 4) are shown as separate lines.
Note the log-scale on the x axis.
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Figure 4. Total error budget from the aggregation of state vector elements in an inverse model.
The application here is to an inversion of methane emissions over North America using satellite
methane data with 7366 native-resolution state vector elements (Sect. 5 and Turner et al.,
2014). Results are shown as the square roots of the means of the diagonal terms (mean error
SD) in the aggregation, smoothing, and observational error covariance matrices, and for the
sum of these matrices. Aggregation uses the GMM with RBF weighting (Sect. 4). There is an
optimum state vector size for which the total error is minimum and this is shown as the circle.
Gray shading indicates the 90 % confidence intervals for the total error as diagnosed from the
5th and 95th quantiles of diagonal elements in the total error covariance matrix. Note the log-
scale on the x axis.
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