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Response to Reviewer Comments: 
 
We thank Dr. Marc Bocquet and an Anonymous Reviewer for their thorough comments, we 
think they have greatly improved the content of the manuscript. 
 
 
 
Reviewer #1 (Dr. Marc Bocquet) Comments: 
 
The authors overlooked the findings that have been reported by Bocquet et al. (2011); Wu et 
al. (2011). From the results of Bocquet et al. (2011); Wu et al. (2011), I believe that the 
optimal resolution as seen by the authors is the results of suboptimal choices. What is 
reported in the present manuscript is nevertheless interesting since those suboptimal 
choices could be made for the sake of numerical efficiency. It is problematic that the authors 
are (unintentionally) hiding what actually leads to the appearance of a minimum in the total 
error curve as a function of resolution. 
 
We have expanded the discussion of Bocquet et al. (2011), Bocquet and Wu (2011), and 
Wu et al. (2011).  (see response to Dr. Bocquet’s second comment below). 
 
 
1.)  Frankly, the notations are unfriendly. I understand the authors follow those of Rodgers 
(2000). Yet, they diverge a lot from standard data assimilation or inverse modelling notations 
that have been widely adopted in atmospheric chemistry data assimilation. For instance "a" 
usually refers to the analysis while the authors use it to refer to the prior, when "b" ("f" in a 
sequential context) is very often chosen. The gain is usually designated as K, not G; "H" is 
much preferred to "K" for the observation/Jacobian/source-receptor operator. That said, the 
choice of notations belongs to the authors. But, I guess that the present notations would 
significantly distract potential readers.  
 
We draw on notation from the inverse modelling and trace gas retrieval communities.  This 
notation is standard in the retrieval communities (e.g., Rodgers 2000) where most of the 
smoothing error discussion has previously taken place (e.g., von Clarmann 2014).  This is 
also the notation that has been used by the Jacob group for the better part of a decade (e.g., 
Jacob et al. 2002; Jones et al. 2003; Heald et al. 2004; Palmer et al. 2006; Kopacz et al. 
2009; Drury et al. 2011; Wecht et al. 2012; Zoogman et al. 2013; Wecht et al. 2014).  As 
such, we prefer to keep the present notation given the history of use in both inverse 
modelling and trace gas retrieval communities. 
 
 
2.)  One of the results of Bocquet et al. (2011) is that with a proper choice of prolongation 
operator, one can reduce the smoothing error as much as possible, so that the total error 
(smoothing+aggregation) is actually a monotonically decreasing function of the resolution. If 
this is correct, there is no optimal resolution but the finest one (CTM’s for instance), except 
from a numerical efficiency standpoint or if one introduces other sources of scale-dependant 
errors (such as model errors). The authors presumably obtain such (discrete) optimum 
because they make an arbitrary choice in the prolongation operator which restricts the 
transfer of information through scales. Mathematically speaking, this can be seen as an 
artifact. Had the authors made another implicit choice for the prolongation operator, they 
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would have found a different result, possibly leading to the finest grid being optimal. If this 
correct, the authors should clearly acknowledge this and give a fair account of the findings of 
(Bocquet et al., 2011). 
 
We appreciate Dr. Bocquet’s insightful discussion of the error and expanding on the findings 
of Bocquet et al (2011) and Wu et al. (2011).  However, we believe there may have been a 
slight misunderstanding in the interpretation of the local minimum.  Dr. Bocquet assumes the 
local minimum was due to the use of suboptimal restriction/prolongation operators.  As Dr. 
Bocquet pointed out, this issue was discussed in Bocquet et al. (2011) and Wu et al. (2011). 
In practice, we are generally unable to specify the true off-diagonal terms in the covariance 
matrices and typically resort to using a single correlation length scale for the entire domain.  
In reality, these length scales are not constant.  For example, regions dominated by wetland 
sources (e.g., the Hudson Bay Lowlands) will have large error correlation length scales 
because the underlying emissions for a large region are driven by a parameterized wetland 
model while a region like Los Angeles will be largely independent of the surrounding region 
and should not have a large error correlation length scale.  So, while we may not be able to 
specify the true off-diagonal terms in the covariance matrices we may be able to 
approximate them.  Thus, it was our goal to design our state vector such that it accounts for 
these off-diagonal terms that are generally missing from native-resolution inversions. 
 
Therefore, the appearance of the local minimum is due to the coarser state vector 
accounting for off-diagonal terms while the native-resolution inversion does not, thus 
reducing the error.  That said, this is not inconsistent with Dr. Bocquet’s reasoning that our 
local minimum is an “artifact”.  If the covariance matrices at the native resolution included 
realistic off-diagonal terms then this approach would indeed be “suboptimal” because our 
state vector design is not dependent on the Jacobian at the native resolution. 
 
As for Dr. Bocquet’s discussion of the total error, in many cases the state vector is not 
designed using any sort of “intelligent” method like tilings, qtrees, ftrees, PCA, GMM, k-
means, etc. but is instead designed based on predetermined regions like the TRANSCOM 
regions (as Review #2 touches on) or a simple coarse-graining scheme.  In this case, the 
simple derivations presented here are useful because they do not require any assumptions 
about the prolongation operator that Dr. Bocquet claims is hidden in Kω (minor comment 
#11).  We construct the Kω’s by perturbing the elements of our reduced state vector, thus 
explicitly constructing Kω for each different case at many resolutions.  We make a choice in 
designing the restriction operator (Γω) that gives us xω and Kω.  Correct me if I’m wrong, but I 
fail to see how we could simply “choose another prolongation operator”.  The only choice we 
make is the restriction operator.  Thus, the derivations presented here are valuable in that 
they do not require us to make a choice about a prolongation operator. 
 
We have updated the text to explain this: 
 
Lines 383-394: “Previous work by Bocquet (2009), Bocquet et al. (2011), Bocquet and Wu 
(2011), Wu et al. (2011), and Koohkan et al. (2012) analyzed the scale-dependence of 
different grids using the degrees of freedom for signal: DFS = Tr(I� S�1

a,!Ŝ!). These past 
works found this error metric to be monotonically increasing.  This implies that the native 
resolution grid will have the least total error and there is no optimal resolution, except from a 
numerical efficiency standpoint.  Here we find a local minimum that is, seemingly, at odds 
with this previous work.  However, the reasoning for this local minimum is that we have 
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allowed the aggregation to account for spatial error correlations that we are unable to specify 
at the native resolution.  As such, we are taking more information into account and obtaining 
a minimum total error at a state vector size that is smaller than the native resolution.  If the 
native resolution error covariance matrices were correct then, as previous work showed, the 
only reason to perform aggregation would be to reduce the computational expense and the 
grid used here would be suboptimal because it does not depend on the native-resolution 
grid.” 
 
In addition to updating the text to clarify this local minimum, we have added a paragraph 
discussing the findings of Bocquet (2009), Bocquet et al. (2011), Bocquet and Wu (2011), 
Wu et al. (2011), and Koohkan et al. (2012) and a distinction of our work: 
 
Lines 57-63: “Previous work by Bocquet (2009), Bocquet et al. (2011), Bocquet and Wu 
(2011), Wu et al. (2011), and Koohkan et al. (2012) developed optimal grids that allow the 
transfer of information across multiple scales.  These computationally efficient methods 
(Bocquet and Wu, 2011) generally require the use of the native-resolution grid to derive the 
optimal representation.  They also assume that the native-resolution prior error covariance 
matrices can be accurately constructed.  However, in practice we are generally unable to 
specify realistic prior error correlations and must resort to simple assumptions.” 
 
 
 
Minor Comments: 
 
1.)  Title: We all know there is no such thing as an “inverse model”. This is an abuse of 
language that I would personally avoid in a title. “Inverse modelling” is almost always 
preferred.  
 
“Inverse modelling” would awkwardly add another gerund in the title. 
 
 
2.)  p. 1002, l. 4-6: "When the observation vector is large, such as with satellite data, 
selecting a suitable dimension for the state vector is a challenge". Selecting a suitable 
dimension for the state vector space is always a challenge, even, and perhaps even more 
so when the observation vector is small. Let me just mention one paper directly related to 
what you are discussing and where the observations are in situ and far less abundant than 
in a satellite retrieval context: Koohkan et al. (2012).  
 
Indeed but that is not really the problem we are addressing.  We agree that choosing a 
suitable state vector is always challenging.  However, this work uses satellite data for the 
example problem and the companion paper performs a “real-inversion” using satellite data.  
The information content from in situ data is, generally, far more intuitive.  The observations 
provide a lot of information near the site and upwind.  One could conceivably design a 
decent state vector by placing many grid cells near the site with fewer upwind.  With satellite 
data (and total column observations) the information content is not immediately clear. 
 
 
3.)  p. 1003, l. 6-7: Same remark as above.  
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See above. 
 
 
4.)  p. 1003 l. 18-19: "and may not be able to depart from that knowledge". It all depends on 
the balance between the observation and background statistics. If the background is not 
informative enough, the solution may be highly oscillating. In a flux inversion context, the 
retrieved fluxes would increase around the observations sites, which is all but smoothing. In 
my humble opinion, the appellation is partially misleading. But I might not have understood 
its interpretation very clearly (from your manuscript or even Rogders’ book), in spite of some 
experience with inverse modelling. 
 
We have rephrased this and added additional citations: 
 
Lines 34-40: “The inverse solution must then rely on some prior estimate for the state vector 
and may not be able to depart sufficiently from that knowledge.  The associated error is 
known as the smoothing error (Rodgers, 2000; von Clarmann, 2014) and increases with size 
of the state vector (Bousquet et al., 2000; Kaminski and Heimann, 2001; Kaminski et al., 
2001; von Clarmann, 2014).” 
 
 
5.)  p. 1003 l. 18-19: "smoothing error" lacks a proper definition (although it is given later) 
and interpretation.  
 
See above. 
 
 
6.)  p. 28-29: "Numerical solutions using variational methods circumvent this problem but not 
inherently provide error characterisation as part of the solution": we know that this is not 
true. If that kind of statement was fine a few years ago, I believe it should be nowadays 
mitigated. Several researchers are using conjugate-gradient and quasi-Newton methods 
such as BFGS that inherently provide estimation of the posterior errors (for instance 
Bousserez et al., 2015).  
 
We have updated the text to mention these approximate methods in Sections 1 and 2: 
 
Lines 47-48: “Approximate error statistics can be obtained (e.g., Bousserez et al., 2015) but 
at the cost of additional computation.” 
 
Lines 115-118: “Several approaches have been presented to obtain approximate error 
characterization (e.g., Courtier et al., 1994; Desroziers et al., 2005; Chevallier et al., 2007; 
Bousserez et al., 2015) but they can be computationally expensive.” 
 
Furthermore, we compared the exact posterior covariance matrix to some of these 
approximate posterior covariance matrices and found the discrepancies were large to be 
useful for our analysis, thus we decided not to pursue that approach further.  
 
 
7.)  p. 1004: the literature is incomplete. I believe you have to mention Wu et al. (2011), 
given it is very close to your objective and analysis and also related to greenhouse gas flux 
inversions.  
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Done.  See, for example, our response to major comment #2.  
 
 
8.)  p. 1006, l. 5-12: This is incomplete or partially incorrect. The Jacobian can also be 
computed using the model adjoint, requiring m runs. By the Sherman-Morisson-Woobury 
lemma, the matrix algebra will scale like m3. Also, sequential updating by serial processing 
of observations usually (unless the scheme is sub-optimal) leads to the same numerical 
cost.  
 
Both points are true.  However, typically m >> n so using the adjoint to construct the 
Jacobian is usually not the most efficient method.  As for the latter point, the benefit comes 
in the reduced memory cost for the matrix operations (i.e. break a large matrix up into 
smaller matrices so you can perform the necessary matrix operations). 
 
 
9.)  p. 1007, l. 11: “Probabilistic” is one word too many. Bocquet et al. (2011) additionally 
provide a probabilistic interpretation. But it can be seen as an entirely deterministic process 
just as the Best Linear Unbiased Estimator (BLUE) formalism. Please remove the word 
“probabilistic” which conveys the wrong idea in the context of this sentence.  
 
Done.  See minor comment #10 (below) for updated text. 
 
 
10.)  p. 1007, l. 12: "However, construction of this prolongation operator is not a well-posed 
problem because the operator is not unique". Please rephrase the sentence. The 
construction as defined by Bocquet et al. (2011) is well-defined and well-posed. But in 
general the choice of the prolongation operator is not unique. Incidentally, you do make a 
choice for the operator without acknowledging it! That is why I disagree and think that your 
method might be less robust. But maybe you meant "more practical" rather than "more 
robust", did you? If you did intend "less robust", please justify your statement with precision. 
 
Our apologies.  Yes, “more practical” was the intended meaning.  We have corrected this 
phrasing. 
 
We have updated the text as: 
 
Lines 132-134: “Their analysis relies heavily on the construction of a prolongation operator 
(Γω�) mapping xω back to x: x = Γω�xω.  However, construction of this prolongation operator 
is not unique. We present here a simpler and more practical method.” 
 
 
11.)  p. 1007, Eq.(12): Please define Kω (the source-receptor matrix). That is where you put 
the definition of the prolongation operator under the carpet... This must be discussed.  
 
We explicitly constructed the Kω’s through perturbations to the reduced state vectors for all 
the different cases.  Thus, Kω was constructed in the same manner as K.  So all we needed 
was a reduced state vector (xω) which we defined in Eq. 10.  There was no use of a 
prolongation operator in the construction of Kω. 
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We have updated the text as: 
 
Lines 145-147: “Here y is the observation vector (common in both cases), x and xω are the 
true values of the native-resolution and aggregated state vectors, and K and Kω are the 
native resolution and the reduced-dimension Jacobians.” 
 
 
12.)  p. 1008, l. 7-8: The introduction of the concept of ensemble is cumbersome (just as it is 
in Rodgers (2000) to be fair). It requires more justification. It appears as a deus ex machina.  
 
This concept is not critical to our derivation.  Furthermore, this concept has been extensively 
discussed in the retrieval community.  We have included additional references directing the 
reader to more complete discussions of this concept. 
 
Lines 152-153: “Obtaining the error statistics for ϵA requires knowledge of the pdf of x for the 
ensemble of possible true states (cf. Rodgers, 2000; von Clarmann, 2014).” 
 
 
13.)  p. 1008; l. 5: "A" for aggregation, and "a" for background. Really? Why not use "b" for 
background instead of “a”?  
 
“a” for the a priori is consistent with the notation of Rodgers (2000). 
 
 
14.)  p. 1010, l. 10: Please define the gain Gω explicitly. As I explained, several choices can 
be made, one being more consistent. Without an explicit definition, you hide what is at the 
origin of the appearance of the fittest resolution.  
 
Done. 
 
Line 197: “ G! =

�
KT

!S
�1
O K! + S�1

a,!

��1
KT

!S
�1
O  ” 

 
 
15.)  p. 1011, l. 6-8: The sum of an increasing and decreasing function does not always 
possess a minimum.  
 
We have rephrased this line: 
 
Lines 210-213:  “Because the smoothing error increases with state vector dimension while 
the aggregation error decreases, analysis of the error budget can point to the optimal 
dimension where the total error is minimum.” 
 
 
16.)  Koohkan et al. (2012) discuss how to choose the optimal resolution and how it is 
impacted by the error balance (observation versus background, section 2.2). Since, 
ultimately, you end up making the same choice as all the papers I am referring to, that is to 
say choosing the resolution on a numerical cost basis, Koohkan et al. (2012)’ discussion is 
relevant and perhaps a bit more precise than only adjustment with respect to the 
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observation error only.  
 
Thank you for pointing us to Section 2.2 of Koohkan et al. (2012) for the discussion of the 
error balance, however Section 3 of our manuscript is mostly concerned with simply deriving 
the different error components.  We have added a brief discussion of Koohkan et al. (2012) 
(See response to minor comments #2 and #19). 
 
 
17.)  p. 1011, l. 12-18: Again, this discussion appears like a deus ex machina.  
 
See response to minor comment #4 from Reviewer #2. 
 
 
18.)  p. 1012, l. 5: Actually the adaptive grid method based on tiling was introduced in 
Bocquet (2009). Moreover, it’s worth mentioning that these grid are built to be optimal for the 
purpose of the inversion.  
 
We have added Bocquet (2009) to the discussion and amended the description: 
 
Lines 225-227: “Analyzing the off-diagonal structure of a precisely constructed prior error 
correlation matrix would provide the best objective way to carry out the aggregation, as 
described by Bocquet (2009), Bocquet et al. (2011), and Wu et al. (2011).” 
 
 
19.)  p. 1012, l. 8: Bocquet and Wu (2011) also use PCA coupled to the hierarchical grid to 
compute an optimal grid in a numerically efficient way yet capturing the variability of the 
prior. This should be acknowledged.  
 
We have added Bocquet et al. (2011), Bocquet and Wu (2011), Wu et al. (2011), and 
Koohkan et al. (2012) to the discussion: 
 
Lines 231-234: “Previous work by Bocquet et al. (2011), Wu et al. (2011), and Koohkan et 
al. (2012) used tiling and tree-based aggregation methods, while Wecht et al. (2014) used a 
hierarchal clustering method based on prior error patterns.  Bocquet and Wu (2011) also 
used principal component analysis (PCA) coupled to the hierarchal grid to compute an 
optimal grid.” 
 
 
20.)  p. 1013, l. 15-21: Rodgers (2000) also suggests projection over a specific function 
basis albeit in a different context.  
 
21.)  p. 1016, l. 5: Could you please briefly discuss the numerical cost of the approach?  
 
See response to minor comment #6 from Reviewer #2. 
 
 
22.)  p. 1016: The application of the GMM methods is very interesting. From the 
methodological standpoint, I believe the fact that the control space is defined with a 
probabilistic mixture is quite novel in this context.  
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23.)  p. 1017: What about the time dimension? Do you apply aggregation in time? I assume 
you didn’t, but you could have.  
 
This same approach should be applicable to the time dimension: 
 
Line 240: “However, the same methods can be used for temporal aggregation.” 
 
 
24.)  p. 1017: What if the background error covariance matrices were not diagonal? Could 
you discuss the issue a little? Apart from the numerical problem, we can see from Eq. (2) 
that properly transferring information through the scales is more tricky. If one chooses a 
pragmatical Γω� as you do (or as I could as well for a very high-dimensional application), it is 
possible that the resulting “optimal” resolution would be more pronounced.  
 
This is an excellent question and goes back to the main issue discussed in your second 
major comment.  The two main benefits of these methods would be: (1) computational cost 
and (2) accounting for spatial correlations that are difficult to specify.  If one could specify 
realistic off-diagonal error correlations then the only benefit to a multi-scale approach would 
be the computational benefits.  However, in practice we are unable to specify those realistic 
off-diagonal error correlations and, thus, have neglected valuable information.  See our 
response to major comment #2 for the added text on this. 
 
 
25.)  p. 1017, l. 18: Please spell out SD (standard deviation?).  
 
Done. 
 
 
26.)  p. 1018, l. 8-13: Your result is not surprising. Because of the baseline results of 
Bocquet et al. (2011), I was expected that kind of results with a non-pronounced minimum 
(unless your implicit prolongation operator is badly chosen). Above all, you end up choosing 
the optimal resolution on a numerical efficiency criterion, just as we did (for not only practical 
but also theoretical reasons). This should be acknowledged. 
 
See response to major comment #2. 
 
 
27.)  p. 1018-1019: The conclusion should be amended. 
 
 
 
 
 
Reviewer #2 Comments: 
 
1.)  My biggest complaint, however, is the choice of the journal. When I read or review a 
paper in Atmospheric Chemistry and Physics, my first question is "What have I learned 
about the physics or chemistry of the atmosphere from this paper?" Unfortunately for this 
manuscript, the answer to that question is "Nothing!". This is not to say that the work is not 
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good or not important; it is both, and should be published. However, it is a technical study 
that will be of relevance only to a class of modelers during their model development, and 
therefore I think Geoscientific Model Development (from the same publishers) is a much 
better journal for publishing this work. I would strongly urge the authors to consider 
submitting this specific work to that journal instead. I do not think this suggestion should 
come as a surprise to the authors. Previous work on the same problem (which they cite) was 
published in the Quarterly Journal of the Royal Meteorological Society, and similar technical 
developments are routinely published in Geoscientific Model Development. 
 
We considered Geoscientific Model Development (GMD) but ultimately chose to 
Atmospheric Chemistry and Physics (ACP) for three reasons: 

1.) This is a companion paper to Turner et al. ACPD (2015) that performs a “real-world” 
inversion with 2.5 years of GOSAT methane data.  It seems fitting to keep the 
companion papers in the same journal. 

2.) The focal point of this paper is about a methodology, not code development. 
Furthermore, based on the journal scopes, this seems to be a more natural fit for 
ACP than GMD. 

ACP scope: “The journal scope is focused on studies with general implications 
for atmospheric science” (see: “http://www.atmospheric-chemistry-and-
physics.net/about/aims_and_scope.html”).  

GMD scope: “dedicated to the publication and public discussion of the 
description, development, and evaluation of numerical models of the Earth 
system and its components.” (see: “http://www.geoscientific-model-
development.net/about/aims_and_scope.html”). 

There have been previous “methods” papers that were published in ACP. 
3.) This is a methodology that is widely applicable to both atmospheric chemistry and 

physics.  We also directly apply this methodology to an atmospheric chemistry 
problem as an example. 

 
 
2.)  My second biggest complaint is the applicability of the technique detailed here. As 
someone who does atmospheric inversions off and on, my first impulse upon coming across 
a manuscript of this sort is to wonder "This looks great! Can I apply this technique to my 
inversions?" From the manuscript, it is not clear that I or any other atmospheric inverse 
modeler will be able to use the results presented here in real-world inversions. The authors 
choose the optimal number of state vector elements as the number which minimises the 
total error in Figure 3. If I understood correctly, generation of Figure 3 required performing 
the same inversion over and over again with different restriction operators \Gamma, to get 
the posterior covariance matrices. This was possible for the authors because their native 
resolution state vector was small, owing to their choice of focussing on the annual average 
emission over N America. In most real world inversions spanning multiple years with 
daily/weekly variability in the fluxes, performing the inversion is the most time consuming 
part, and so performing many inversions just to figure out the optimal size of the state vector 
seems like a waste of resources. After all, since the authors show that even at the native 
resolution the smoothing error does not become significant compared to the observational 
error, what’s wrong with just solving at the native (CTM) resolution? I would be happy to be 
proved wrong on this point, and to be shown that one doesn’t need to execute a bunch of 
inversions to estimate the optimal size. From the current manuscript, however, I do not see 
how one could use this technique in a real-world inversion, for example any of the CO2 
inversions in Peylin et al (Biogeosciences, 2013), or any of the CH4 inversions in Kirschke et 
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(Nature Geoscience, 2013). This is one more reason why I would prefer to have this 
manuscript published in a journal dedicated to technical developments (such as GMD) 
instead of ACP. 
 
We suspect the reviewer may not have noticed that the time period for this manuscript was 
greatly reduced from our “real-world” inversion presented in the companion paper (Turner et 
al. ACPD 2015).  So the reviewer is correct that we do use Figure 3 to guide the choice of 
state vector size but we do so using a shorter time period.  We have rephrased the text to 
mention this sooner: 
 
Lines 165-167: “Application of Eq. 17 requires computation of the native-resolution Jacobian 
K but this can be done for a limited test period only.  We will give an example below.” 
 
 

After all, since the authors show that even at the native resolution the smoothing error 
does not become significant compared to the observational error, what’s wrong with just 
solving at the native (CTM) resolution?  

 
We agree that the native CTM resolution would be ideal if we could specify the off-diagonal 
error correlations in a realistic manner.  However, in practice the off-diagonal error 
correlations are neglected or simply treated with a single correlation length scale.  In this 
framework we are able to, in essence, prescribe different correlation lengths for different 
regions (e.g., LA is distinct from the surrounding region whereas the HBL wetlands have a 
longer correlation length).  See our response to Dr. Bocquet’s major comment #2. 
 
 

From the current manuscript, however, I do not see how one could use this technique in a 
real-world inversion, for example any of the CO2 inversions in Peylin et al 
(Biogeosciences, 2013), or any of the CH4 inversions in Kirschke et (Nature Geoscience, 
2013) 

 
As for the applicability to “real-world” inversions, I believe this is a perfect example of the 
applicability.  In this manuscript we sampled the full range of possible state vector sizes and 
determined a reasonable state vector size.  We then used that state vector in a “real-world” 
inversion (Turner et al. ACPD 2015). 
 
 
 
 
Minor Comments: 
 
1.)  In the abstract and in section 5 (bottom of p1017), the authors make the point that the 
GMM method retains resolution of major local features in the state vector. This is true, but 
only if the prior already has that particular feature. Further, this is not always an advantage, 
since those major features can sometimes be wrongly located in the prior emission estimate 
(less of an issue with coal mines and power plants, big issue for wetlands and bovine 
methane). I would like the authors to mention this. 
 
Thank you for bringing this up.  The GMM method can retain major local features if they are 
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in the prior or the adjoint-constraint (“Similarity Vector” number 3; Table 1).  Our motivation 
for including the adjoint-constraint dataset was to allow the state vector to include potential 
“missing sources” seen by the observations.  Further, one could add other datasets (or 
replace sectors in the prior) if they have reason to believe the other dataset is representative 
of prior error correlations.  We have expanded on this in the manuscript: 
 
Lines 255-256: “the third [similarity vector] represents the scaling factors from the first 
iteration of an adjoint-based inversion at native resolution” 
 
Lines 259-263: “We choose here to include initial scaling factors from the adjoint-based 
inversion because we have them available and they can serve to correct any prior patterns 
that are grossly inconsistent with observations, or to identify local emission hotspots missing 
from the prior.  One iteration of the adjoint-based inversion is computationally inexpensive 
and is sufficient to pick up major departures from the prior.” 
 
  
 
2.)  On page 1003, near line 25, the authors say that an additional cost of using a large state 
vector is the increased computational cost of the inversion. This is not correct. In fact, in 
most inversions beyond TRANSCOM-style basis region inversions, the costliest part of the 
inversion is the evaluation of the forward model F (and its adjoint, if needed), be it a CTM in 
variational/EnKF systems, or an LPDM for "batch" inversions. Irrespective of the aggregation 
chosen for the state vector, the atmospheric transport still needs to be run at the native 
resolution, which is the time limiting step. 
 
We were specifically referring to analytical inversions like the one performed here.  In an 
analytical inversion a larger state vector could increase the computational cost of the 
inversion in two ways: (1) it will increase the size of the matrices that need to be multiplied 
and inverted and (2) it may increase the number of forward run “batches”.  For example, 
simulating atmospheric transport at high resolution generally requires a lot of memory.  A 
modeler can quickly reach the allowable memory limits if they are running thousands of 
forward runs to construct the Jacobian.  This was the main limiting factor in our simulations; 
ultimately, we could only run a few hundred forward simulations at a time due to memory 
constraints on the cluster.  Thus, we had to run multiple batches of forward runs.  The 
second point does not apply to LPDM inversions.  We have rephrased the text to clarify this. 
 
Lines 43-44: “An additional drawback of using a large state vector is that analytical solution 
to the inverse problem may not be computationally tractable. Analytical solution requires…” 
 
 
3.)  On page 1008, near line 15, the authors mention the assumption that the prior is 
unbiased. While this is an assumption widely adopted theoretically, in practice it is rarely 
true. A biased prior leads to a biased posterior, a fact inverse modellers grudgingly live with, 
as long as they think that the posterior bias is lower than their posterior uncertainty estimate. 
I would like to know what the consequence of a biased prior is for determining the optimal 
length of the state vector. Is that estimate expected to change? 
 
Absolutely, a biased prior will bias the posterior.  The only reason that an additional error 
term would impact the optimal state vector length is if it exhibited scale-dependence.  
Intuitively, a bias term would not exhibit scale-dependence and would, presumably, behave 
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like the observation error term.  As such, a bias in the prior will bias the posterior but not 
affect the choice of the optimal state vector size.  We have added text to reflect this. 
 
Lines 208-209: “A bias term should exhibit similar scale-dependence to the observation error 
term and could be included by following the derivation from Rodgers (2000).” 
 
Lines 101-103: “We have assumed here that errors are unbiased, as is standard practice in 
the inverse modeling literature. An observational error bias bO would propagate as a bias 
GbO in the solution x̂ in Eq. 8.” 
 
 
4.)  On page 1011, near line 15, the authors have a caveat, which, if I understand correctly, 
says that one of the assumptions is that the error covariance matrix of the true state is the 
same as the error covariance matrix for the prior state. Did I understand correctly? If so, 
then that’s a big assumption; knowing the error covariance of the true state before doing an 
inversion seems like a big ask! If I misunderstood, I will be happy to be corrected. 
 
This is, indeed, correct.  In Section 5 we present a simple experiment where we pretend to 
know the true emissions, so for the purposes of this experiment our assumptions are valid.  
These expressions are useful for similar experiments where one wants to diagnose the 
different error components.  However, these expressions should not be used to diagnose 
errors in a “real-world” inversion because that assumption will not hold.  Rodgers (2000, p. 
49) and von Clarmann (2014) present a detailed discussion of this exact issue.  We have 
rephrased this paragraph: 
 
Lines 215-221: “A caveat in the above expressions for the aggregation and smoothing error 
covariance matrices is that they are valid only if the prior xa is the mean value x̄ for the pdf of 
true states and if the error covariance matrix Sa is the covariance matrix for that pdf (Se = 
Sa). Rodgers (2000, p. 49) and von Clarmann (2014) provide a detailed discussion of the 
errors induced by failing to meet this assumption. As such, these conditions define the 
assumption for the prior, so the expressions can be taken as valid for the purpose of 
selecting an appropriate state vector dimension in an inverse problem. However, they 
should not be used to diagnose errors on the inversion results.” 
 
 
5.)  One aggregation technique the authors do not discuss is K-means clustering. If we 
choose the number of clusters to be equal to the optimal number of state vector elements, 
and use the same 14 variables as the GMM model to determine the clusters, how would the 
smoothing and aggregation errors compare to the GMM+RBF case? Did the authors already 
look into that? If so, I would love to see the results. 
 
Excellent question.  As the reviewer may have surmised, there was a very large 
computational expense associated with explicitly constructing the Jacobian multiple state 
vector sizes with multiple methods.  As such, we considered including k-means clustering 
and performed some preliminary analysis with k-means.  The figure below shows example 
clusters created using the same similarity matrix and criteria as in Figure 1.  The k-means 
clustering used 100 replicates (different initializations) with 1000 iterations per replicate.  We 
ultimately decided to include the course-graining method instead of k-means.  However, the 
different methods perform comparably so, presumably, k-means would also give similar 
results. 
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Figure 1:  Same as Figure 1 from the manuscript but for k-means clustering. 

 
 
We have added the following text: 
 
Lines 365-368: “The different aggregation methods of Sect. 4 yield very similar smoothing 
errors, suggesting that any reasonable aggregation scheme (such as k-means clustering (cf.  
Bishop 2007)) would perform comparably.” 
 
 
6.)  On page 1016, line 4, the authors say that equations (32)-(35) are iterated until 
convergence. What counts as convergence, i.e., what is the convergence criterion? 
 
We used an absolute tolerance of τ < 10-10 where: 
⌧ =

X

i

X

j

��Mi,j �M?
i,j

��

+
X

i

X

j

X

k

��Li,j,k � L?
i,j,k

��

+
X

i

|⇡i � ⇡?
i |

 
and the superscript star indicates the value from the previous iteration.  We didn’t use a 
relative tolerance because the true value of one of the parameters could, potentially, be 
zero.  In any case, preliminary tests were insensitive to using a tolerance of 10-4.  In 
response, we have added the following text to the manuscript: 
 
Lines 319-326: “The computational complexity for the expectation-maximization algorithm is 
O(nK +pn2) (Chen et al., 2007), however the actual runtime will be largely dictated by the 
convergence criteria. Here we use an absolute tolerance of τ < 10−10 where 
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and the superscript star indicates the value from the previous iteration.” 
 
 
7.)  On page 1017, line 26, the authors say that RBF weighting performs slightly better than 
GMM clustering. Is this a general statement about RBF vs clustering, or is it because the 14 
variables used to construct the similarity matrix (table 1) are strongly correlated with CH4 
fluxes? 
 
This is a general statement about RBF weighting vs. GMM clustering (as well as coarse-
graining and PCA clustering).  However, it’s not necessarily a general statement about RBF 
weighting vs. other clustering methods.  That said, we suspect that RBF weighting would 
perform favorably against more clustering methods but we have only tested a small subset 
of clustering methods here. 
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Abstract. Inverse models use observations of a system (observation vector) to quantify the variables

driving that system (state vector) by statistical optimization. When the observation vector is large,

such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state

vector that is too large cannot be effectively constrained by the observations, leading to smooth-

ing error. However, reducing the dimension of the state vector leads to aggregation error as prior5

relationships between state vector elements are imposed rather than optimized. Here we present a

method for quantifying aggregation and smoothing errors as a function of state vector dimension,

so that a suitable dimension can be selected by minimizing the combined error. Reducing the state

vector within the aggregation error constraints can have the added advantage of enabling analytical

solution to the inverse problem with full error characterization. We compare three methods for reduc-10

ing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid

coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian

mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution

state vector elements are projected using radial basis functions (RBFs). The GMM method leads to

somewhat lower aggregation error than the other methods, but more importantly it retains resolution15

of major local features in the state vector while smoothing weak and broad features.

1 Introduction

Inverse models quantify the state variables driving the evolution of a physical system by using obser-

vations of that system. This requires a physical model F, known as the forward model, that relates

1



a set of input variables x (state vector) to a set of output variables y (observation vector),20

y = F(x)+ ✏ (1)

The observational error ✏ includes contributions from both the forward model and the measurements.

Solution to the inverse problem involves statistical optimization to achieve a best error-weighted

estimate of x given y.

A critical step in solving the inverse problem is determining the amount of information contained25

in the observations and choosing the state vector accordingly. This is a non-trivial problem when

using large observational datasets with large errors. An example that will guide our discussion is the

inversion of methane emissions on the basis of satellite observations of atmospheric methane con-

centrations (Turner et al., 2015). Methane concentrations can be predicted on the basis of emissions

by using a chemical transport model (CTM) that solves the 3-D continuity equation for methane30

concentrations. Here the CTM is the forward model F, the satellite provides a large observation

vector y, and we need to choose the resolution at which to optimize the methane emission vector x.

The simplest approach would be to use the native resolution of the CTM in order to extract the

maximum information from the observations. However, the observations may not be sufficiently

dense or precise to optimize emissions at that level of detail, resulting in an underdetermined prob-35

lem. Bocquet et al. (2011) refer to this as the “resolution problem”. The inverse solution must then

rely on some prior estimate for the state vector and may not be able to depart sufficiently from that

knowledge. This
:::
The

::::::::
associated

:::::
error is known as the smoothing error (Rodgers, 2000) and increases

::::::::::::::::::::::::::::::::::
(Rodgers, 2000; von Clarmann, 2014) and

:::::::
increase with size of the state vector (Bousquet et al., 2000; Kaminski and Heimann, 2001; Kaminski et al., 2001; Bocquet et al., 2011; von Clarmann, 2014)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bousquet et al., 2000; Kaminski and Heimann, 2001; Kaminski et al., 2001; von Clarmann, 2014) .

Wecht et al. (2014) illustrate the severity of this problem in their inversion of methane emissions us-40

ing satellite data.

An additional drawback of using a large state vector is the computational cost of the inversion.

Analytical
:::
that

:::::::::
analytical solution to the inverse problem

::::
may

:::
not

:::
be

:::::::::::::
computationally

:::::::::
tractable.

::::::::
Analytical

:::::::
solution

:
requires calculation of the Jacobian matrix, r

x

F, and inversion and multipli-

cation of the error covariance matrices (Rodgers, 2000). It has the
:::::
major

:
advantage of providing45

complete error statistics on
::
as

::::
part

::
of the solution but it becomes impractical as the state vector be-

comes too large. Numerical solutions using variational methods circumvent this problem but do not

inherently provide error characterization as part of the solution.
::::::::::
Approximate

:::::
error

:::::::
statistics

:::
can

:::
be

:::::::
obtained

::::::::::::::::::::::::::
(e.g., Bousserez et al., 2015) but

::
at

:::
the

::::
cost

::
of

:::::::::
additional

:::::::::::
computation.

Reducing the dimensionality of the state vector in the inverse problem thus has two advantages.50

It improves the observational constraints on individual state vector elements and it facilitates ana-

lytical solution. Reduction can be achieved by aggregating state vector elements. For a state vector

of gridded time-dependent emissions, the state vector can be reduced by aggregating grid cells and

time periods. However, this introduces error in the inversion as the underlying spatial and temporal

patterns of the aggregated emissions are now imposed from prior knowledge and not allowed to be55

2



optimized as part of the inversion. The resulting error is called the aggregation error (Kaminski and

Heimann, 2001; Kaminski et al., 2001; Schuh et al., 2009).

:::::::
Previous

::::
work

:::
by

::::::::::::::
Bocquet (2009) ,

::::::::::::::::::
Bocquet et al. (2011) ,

:::::::::::::::::::::
Bocquet and Wu (2011) ,

::::::::::::::
Wu et al. (2011) ,

:::
and

:::::::::::::::::::::::::::
Koohkan et al. (2012) developed

:::::::
optimal

:::::
grids

::::
that

:::::
allow

:::
the

:::::::
transfer

:::
of

::::::::::
information

::::::
across

:::::::
multiple

:::::
scales.

::::::
These

:::::::::::::
computationally

:::::::
efficient

:::::::
methods

:::::::::::::::::::::::::::::
(Bocquet and Wu, 2011) generally

::::::
require60

::
the

::::
use

::
of

::::
the

::::::::::::::
native-resolution

::::
grid

::
to

::::::
derive

:::
the

:::::::
optimal

::::::::::::
representation.

:::::
They

::::
also

:::::::
assume

::::
that

::
the

:::::::::::::::
native-resolution

::::
prior

:::::
error

:::::::::
covariance

::::::::
matrices

::::
can

::
be

:::::::::
accurately

:::::::::::
constructed.

::::::::
However,

:::
in

::::::
practice

:::
we

:::
are

::::::::
generally

::::::
unable

::
to

::::::
specify

:::::::
realistic

::::
prior

::::
error

::::::::::
correlations

::::
and

::::
must

:::::
resort

::
to

::::::
simple

::::::::::
assumptions.

:

Here we present a method for optimizing the selection of the state vector in the solution of the65

inverse problem for a given ensemble of observations .
::::::
without

::::::::
requiring

:::
an

:::::::
accurate

:::::::::::
specification

::
of

:::
the

:::::::::::::
native-resolution

:::::
prior

::::
error

:::::::::
covariance

::::::
matrix.

:::::::
Instead,

:::
we

:::
use

:::
the

:::::::
expected

:::::
error

::::::::::
correlations

:::::::
between

::::::::::::::
native-resolution

::::
state

::::::
vector

::::::::
elements

::
as

::::::
criteria

:::
in

:::
the

::::::::::
aggregation

:::::::
process.

:::::::
Relative

:::
to

::::::::::::::::::
Bocquet et al. (2011) ,

:::
our

:::::::
method

::
is
::::::::::

suboptimal
:::
but

::
is
:::::

more
::::::::

practical
::
to
::::::::::

implement.
:

As the di-

mension of the state vector decreases, the smoothing error decreases while the aggregation error70

increases. We show how to derive an optimum
:::::
There

:
is
::::::::
therefore

:::
an

:::::::
optimum

:::::::::
dimension

:
where the

overall error is minimized. We derive an analytical expression for the aggregation error covariance

matrix and show how this can guide selection of a reduced-dimension state vector where the aggre-

gation error remains below an acceptable threshold. We also show how intelligent selection of the

state vector can extract more information from the observations for a given state vector dimension.75

2 Formulating the inverse problem

Inverse problems are commonly solved using Bayes’ theorem,

P (x|y)/ P (y|x)P (x) (2)

where P (x|y) is the posterior probability density function (pdf) of the state vector x (n⇥ 1) given

a vector of observations y (m⇥ 1), P (x) is the prior pdf of x, and P (y|x) is the conditional pdf80

of y given the true value of x. Assuming Gaussian distributions for P (y|x) and P (x) allows us to

write the posterior pdf as

P (x|y)/ exp

⇢
�1

2

(y�F(x))T S�1
O (y�F(x))� 1

2

(xa �x)

T S�1
a (xa �x)

�
(3)

where xa is the n⇥ 1 prior state vector, SO is the m⇥m observational error covariance matrix,

and Sa is the n⇥n prior error covariance matrix.
::::
Here

:::
and

:::::::::
elsewhere,

:::
our

:::::::
notation

:::
and

:::::::::::
terminology85

:::::
follow

::::
that

::
of

::::::::::::::
Rodgers (2000) .

:
The most probable solution ˆ

x (called the maximum a posteriori or

MAP) is defined by the maximum of P (x|y), i.e., the minimum of the cost function J (x):

J (x) =

1

2

(y�F(x))T S�1
O (y�F(x))+

1

2

(xa �x)

T S�1
a (xa �x) (4)
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This involves solving

r
x

J =r
x

F(x)TS�1
O (F(x)�y)+S�1

a (xa �x) = 0 (5)90

Solution to Eq. (5) can be done analytically if F is linear, i.e., F(x) =Kx+ c where K⌘r
x

F=

@y/@x is the Jacobian of F and c is a constant that can be set to zero in the general case by sub-

tracting c from the observations. This yields

ˆ

x= xa +G(y�Kxa) (6)

where G=

ˆSKTS�1
O is the gain matrix and ˆS is the posterior

::::
error covariance matrix,95

ˆS=

�
KTS�1

O K+S�1
a

��1
(7)

The MAP solution can also be expressed in terms of the true value x as

ˆ

x= xa +A(x�xa)+G✏ (8)

where A is the averaging kernel matrix that measures the error reduction resulting from the obser-

vations:100

A=GK= I� ˆSS�1
a (9)

and G✏ is the observation error in state space with error covariance matrix GSOGT .
::
We

:::::
have

:::::::
assumed

::::
here

:::
that

::::::
errors

:::
are

::::::::
unbiased,

::
as

::
is

:::::::
standard

:::::::
practice

::
in

:::
the

::::::
inverse

::::::::
modeling

:::::::::
literature.

:::
An

:::::::::::
observational

::::
error

::::
bias

:::
bO :::::

would
:::::::::
propagate

::
as

:
a
::::
bias

:::::
GbO ::

in
:::
the

::::::
solution

::
ˆ

x

::
in

::::
Eq.

::
8.

The analytical solution to the inverse problem thus provides full error characterization as part of105

the solution. It does require that the forward model be linear. The Jacobian matrix must be generally

:::::::
generally

:::
be

:
constructed numerically, requiring n sensitivity simulations with the forward model,

and subsequent .
::::::::::
Subsequent matrix operations are also of dimension n. This limits the practical size

of the state vector. The matrix operations also depend on the dimension m of the observation vector

but this can be easily addressed by splitting that vector into uncorrelated packets, a method known110

as sequential updating (Rodgers, 2000).

The limitation on the state vector size can be lifted by finding the solution to r
x

J = 0 numer-

ically, rather than analytically, for example by using the adjoint of the forward model to calculate

r
x

J iteratively at successive approaches to the solution (e.g., Henze et al., 2007). This variational

method allows for optimization of state vectors of any size because the Jacobian is not explicitly115

constructed. But it only yields the MAP solution, ˆx, with no error statistics. Several approaches have

been presented to obtain approximate error characterization (e.g., Desroziers et al., 2005; Chevallier et al., 2007) but

they are
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Courtier et al., 1994; Desroziers et al., 2005; Chevallier et al., 2007; Bousserez et al., 2015) but

:::
they

::::
can

::
be

:
computationally expensive. An excessively large state vector relative to the strength of

the observational constraints also incurs smoothing error, as discussed above.120
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3 Quantifying aggregation and smoothing errors

The resolution of the forward model (e.g., grid resolution of the CTM) places an upper limit on the

dimension for the state vector, which we call the native dimension. As we reduce the dimension of

the state vector from this native resolution, the smoothing error decreases while the aggregation error

increases. Here we present analytical expressions for the aggregation and smoothing error covariance125

matrices and show how they can be used to select an optimal state vector dimension.

3.1 Aggregation error

As in Bocquet et al. (2011), we define a restriction (aggregation) operator that maps the native-

resolution state vector x of dimension n to a reduced-resolution vector x! of dimension p. We

assume a linear restriction operator �! as a p⇥n matrix relating x! to x:130

x! = �!x (10)

Bocquet et al. (2011) provide a detailed analysis of aggregation error for reduced-resolution state

vectors. Their analysis relies heavily on the probabilistic construction of a prolongation operator

(�?) mapping x! back to x: x= �?
x! . However, construction of this prolongation operator is not

a well-posed problem because the operator is not unique. We present here a simpler and more robust135

:::::::
practical method.

Aggregation error is the error introduced by aggregating state vector elements in the inversion. The

relationship between the aggregated elements is not optimized as part of the inversion anymore and

instead becomes an unoptimized parameter in the forward model, effectively increasing the forward

model error and inhibiting the ability of the model to fit the observations. The aggregation error is140

thus a component of the observational error.

The aggregation error can be quantified by comparing the observational error incurred by using

the native-resolution state vector,

✏= y�Kx (11)

to that using the aggregated state vector,145

✏! = y�K!x! (12)

Here y is the observation vector (common in both cases), and x and x! are the true values of

the native-resolution and aggregated state vectors,
::::
and

::
K

::::
and

:::
K!:::

are
:::
the

::::::
native

::::::::
resolution

::::
and

:::
the

:::::::::::::::
reduced-dimension

:::::::::
Jacobians. The only difference between ✏ and ✏! is the aggregation of state

vector elements. As such,150

✏! = ✏+ ✏A (13)
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where ✏A is the aggregation error. Rearranging,

✏A = (K�K!�!)x (14)

Obtaining the error statistics for ✏A requires knowledge of the pdf of x for the ensemble of pos-

sible true states
::::::::::::::::::::::::::::::::::
(cf. Rodgers, 2000; von Clarmann, 2014) . Let x represent the mean value of this155

ensemble and Se the corresponding covariance matrix. The aggregation error covariance matrix is:

SA = E
h
(✏A �E [✏A]) (✏A �E [✏A])

T
i

(15)

where E [ ] is the expected value operator. E [✏A] = (K�K!�!)x is the bias introduced by the

aggregation. Replacing into Eq. (15):

SA = (K�K!�!)E
h
(x�x)(x�x)

T
i
(K�K!�!)

T160

= (K�K!�!)Se (K�K!�!)
T (16)

In designing our inversion system we use xa as our best estimate of x and Sa as our best estimate of

Se. If
::::::
Indeed,

::
if xa = x there is

:::::
would

::
be

:
no aggregation error since the prior relationship assumed

between state vector elements is
:::::
would

::
be

:
correct, thus K=K!�! and the aggregation bias is zero.

Furthermore, assuming
:::::
would

:::
be

:::::
zero.

:::::::::
Assuming Sa = Se allows us to calculate the aggregation165

error covariance matrix as

SA = (K�K!�!)Sa (K�K!�!)
T (17)

and we will use this expression in the analysis that follows.
::::::::::
Application

::
of

:::
Eq.

::
17

:::::::
requires

:::::::::::
computation

::
of

:::
the

::::::::::::::
native-resolution

:::::::
Jacobian

:::
K

:::
but

:::
this

:::
can

:::
be

::::
done

:::
for

:
a
:::::::
limited

:::
test

::::::
period

::::
only.

:::
We

::::
will

::::
give

::
an

:::::::
example

::::::
below.170

3.2 Smoothing error

Following Rodgers (2000), we can express the smoothing error on ˆ

x by rearranging Eqs. (6) and (1):

ˆ

x�x= (I�A)(xa �x)+G✏ (18)

where ✏S = (I�A)(xa �x) is the smoothing error. As pointed out by Rodgers (2000), the smooth-

ing error statistics must be derived from the pdf of possible true states, in the same way as for the175

aggregation error and characterized by the error covariance matrix Se. For purposes of designing the

inverse system we assume that Se = Sa. Thus we have

SS = (I�A)Sa (I�A)

T (19)

We can also express the smoothing error in observation space, ✏⇤S, (i.e., as a difference between y

and Kˆ

x) by multiplying both sides of Eq. (18) by the Jacobian matrix:180

K(

ˆ

x�x) =K(I�A)(xa �x)+KG✏ (20)
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so that

✏

⇤
S =K(I�A)(xa �x) (21)

The corresponding smoothing error covariance matrix in observation space is

S⇤
S =K(I�A)Sa (I�A)

T KT (22)185

This expression can be generalized to compute the smoothing error covariance matrix in observation

space for any reduced-dimension state vector x! with Jacobian K! , prior error covariance matrix

Sa,! , and averaging kernel matrix A!:

S⇤
S =K! (I�A!)Sa,! (I�A!)

T KT
! (23)

3.3 Total error budget190

From Eq. (18) we can see that the total error on ˆ

x without aggregation is ✏T = ✏S +G✏ in the state

space, or ✏⇤T = ✏

⇤
S +KG✏ in the observation space. The KG term in the observation space appears

because we are interested in the error on ˆ

x. If ˆx= x then KG= I and A= I, thus ✏S = 0 and our

total error reverts to ✏,

✏

⇤
T|x̂=x

=K(I�A)(xa �x)+KG✏= ✏ (24)195

Additional consideration of aggregation error for a reduced-dimension state vector x! yields a to-

tal error in the state space

✏T = ✏S +G!✏+G!✏A (25)

where G!

G! =

�
KT

!S
�1
O K! +S�1

a,!

��1
KT

!S
�1
O

:::::::::::::::::::::::::::::::
(26)200

is the gain matrix for the reduced-dimension state vector. In the observation space we get

✏

⇤
T = ✏

⇤
S +K!G!✏+K!G!✏A (27)

From these relationships we derive the total error covariance matrix as

ST,! = (I�A!)Sa,! (I�A!)
T

| {z }
Smoothing Error

+G! (K�K!�!)Sa (K�K!�!)
T GT

!| {z }
Aggregation Error

205

+ G!SOG
T
!| {z }

Observation Error

(28)
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in the state space and

S⇤
T,! = K! (I�A!)Sa,! (I�A!)

T KT
!| {z }

Smoothing Error

+K!G! (K�K!�!)Sa (K�K!�!)
T GT

!K
T
!| {z }

Aggregation Error

+K!G!SOG
T
!K

T
!| {z }

Observation Error

(29)210

in the observation space.
::
A

:::
bias

:::::
term

::::::
should

::::::
exhibit

::::::
similar

:::::::::::::::
scale-dependence

:::
to

:::
the

::::::::::
observation

::::
error

::::
term

:::
and

:::::
could

:::
be

:::::::
included

:::
by

::::::::
following

:::
the

::::::::
derivation

:::::
from

::::::::::::::
Rodgers (2000) .

Each of these
::
the

:
three error terms depends

::::
above

:::::::
depend

:
on state vector dimension. Because

the smoothing error increases with state vector dimension while the aggregation error decreases, we

expect to find an
::::::
analysis

::
of

:::
the

::::
error

::::::
budget

:::
can

:::::
point

::
to

:::
the optimal dimension where the total error215

is minimum. To enable an analytical inversion we may wish to decrease the
:
It

:::
can

::::
also

:::::
point

::
to

:::
the

::::::::
minimum state vector dimension further within a tolerance on aggregation error, such as requiring

that
:::::
needed

:::
for

:
the aggregation error remain

:
to

:::
be

:::::
below

::
a

::::::
certain

::::::::
tolerance,

::::
e.g.,

:
smaller than the

observation error. We give an example in Sect. 5.

A caveat in the above expressions for the aggregation and smoothing error covariance matrices is220

that they are valid only if the prior xa is the mean value x for the pdf of true states and if the error co-

variance matrix Sa is the covariance matrix for that pdf . These conditions define the assumption for

the prior, so the expressions
::::::::
(Se = Sa).

::::::::::::::::::::::
Rodgers (2000, p. 49) and

::::::::::::::::::::::::
von Clarmann (2014) provide

::
a

::::::
detailed

:::::::::
discussion

::
of

:::
the

:::::
errors

:::::::
induced

::
by

::::::
failing

::
to

::::
meet

::::
this

::::::::::
assumption.

:::::
Since

::::
these

:::::::::::
assumptions

:::::
define

:::
our

:::::
prior,

::::
they can be taken as valid for the purpose of selecting an appropriate state vector di-225

mension in an inverse problem. However, they should not be used to diagnose errors on the inversion

results.

4 Aggregation methods

Aggregation of state vector elements to reduce the state vector dimension introduces aggregation

errors
::::
error, as described in Sect. 3.1. The aggregation error can be reduced by grouping elements230

with correlated errors. Analyzing the off-diagonal structure of a precisely constructed prior error

correlation matrix would provide the best objective way to carry out the aggregation,
::
as

::::::::
described

:::
by

::::::::::::::
Bocquet (2009) ,

::::::::::::::::::
Bocquet et al. (2011) ,

::::
and

::::::::::::::
Wu et al. (2011) . We generally lack such information

but do have some qualitative knowledge of prior error correlation that can be used to optimize the

aggregation. Bocquet et al. (2011)
::
By

::::::::::
aggregating

::::::
regions

::::
that

::::
have

::::::::
correlated

::::::
errors

::
we

::::
can

::::::
exploit235

::::::::
additional

::::::::::
information

::::
that

:::::
would

::::::::
otherwise

:::
be

::::::::
neglected

::
in

::
a

::::::::::::::
native-resolution

::::::::
inversion

::::::::
assuming

:::
(by

::::::
default)

:::::::::::
uncorrelated

::::::
errors.
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:::::::
Previous

:::::
work

::
by

:::::::::::::::::::
Bocquet et al. (2011) ,

::::::::::::::
Wu et al. (2011) ,

::::
and

::::::::::::::::::
Koohkan et al. (2012) used tiling

and tree-based aggregation methods, while Wecht et al. (2014) used a hierarchal clustering method

based on prior error patterns.
:::::::::::::::::::::::
Bocquet and Wu (2011) also

::::
used

::::::::
principal

:::::::::
component

:::::::
analysis

::::::
(PCA)240

::::::
coupled

::
to

:::
the

:::::::::
hierarchal

:::
grid

::
to
::::::::
compute

::
an

:::::::
optimal

::::
grid. Here we compare three aggregation meth-

ods: (1) simple grid coarsening, (2) principal component analysis (PCA )
::::
PCA

:
clustering, and (3)

a Gaussian mixture model (GMM) with radial basis functions (RBFs) to project native-resolution

state vector elements to Gaussian pdfs. A qualitative illustration of these methods is shown in Fig. 1

for the aggregation of a native-resolution state vector of methane emissions with 1
2
�⇥ 2

3
� native grid245

resolution over North America (Turner et al., 2015). We focus here on spatial aggregation and as-

sume that the state vector has no temporal dimension. However, the same methods can be used for

temporal aggregation.

The simplest method for reducing the dimension of the state vector is to merge adjacent ele-

ments, i.e., neighboring grid cells. This method considers only spatial proximity as source of error250

correlation. It may induce large aggregation errors if proximal but otherwise dissimilar regions are

aggregated together. In the case of methane emissions, aggregating neighboring wetlands and farm-

land would induce large errors because different processes drive methane emissions from these two

source types.

The other two methods enable consideration of additional similarity factors besides spatial prox-255

imity when aggregating state vector elements. These similarity factors are expressed by vectors of

dimension n describing correlative properties of the original native-resolution state vector elements.

In the case of a methane source inversion, for example, we can choose as similarity vectors lati-

tude and longitude to account for spatial proximity, but also wetland fraction to account for error

correlations in the bottom-up wetland emission estimate used as prior.260

4.1 Similarity matrix for aggregation

Table 1 lists the similarity vectors chosen for our example problem of estimating methane emis-

sions (Turner et al., 2015). The first two vectors account for spatial proximity, the third represents

the scaling factors from the first iteration of an adjoint-based inversion at native resolution (Wecht

et al., 2014), and the others are the source type patterns from the bottom-up inventories used as265

prior. All similarity vectors are normalized and then weighted by judgment of their importance.

:::
We

::::::
choose

::::
here

::
to

::::::
include

::::::
initial

::::::
scaling

::::::
factors

::::
from

:::
the

::::::::::::
adjoint-based

::::::::
inversion

::::::
because

:::
we

:::::
have

::::
them

::::::::
available

:::
and

:::::
they

:::
can

:::::
serve

::
to

:::::::
correct

:::
any

:::::
prior

:::::::
patterns

:::
that

::::
are

::::::
grossly

::::::::::
inconsistent

:::::
with

::
the

::::::::::::
observations,

::
or

::
to

:::::::
identify

::::
local

::::::::
emission

:::::::
hotspots

:::::::
missing

::::
from

:::
the

:::::
prior.

::::
One

:::::::
iteration

:::
of

:::
the

:::::::::::
adjoint-based

::::::::
inversion

:
is
::::::::::::::
computationally

::::::::::
inexpensive

:::
and

::
is
::::::::
sufficient

::
to

::::
pick

:::
up

:::::
major

:::::::::
departures270

::::
from

:::
the

:::::
prior.

Let {c1, . . . ,cK} represent the K similarity vectors chosen for the problem (K = 14 in our exam-

ple of Table 1). We assemble them into a n⇥K similarity matrix C. We will also make use of the

9



ensemble of similarity vector values for individual state vector elements, which we assemble into

vectors {c01, . . . ,c0n} representing the rows of C. Thus:275

C=

2

6664

0

BBB@

...

c1

...

1

CCCA

0

BBB@

...

c2

...

1

CCCA
· · ·

0

BBB@

...

cK

...

1

CCCA

3

7775
=

2

6666664

⇣
· · · c

0
1 · · ·

⌘

⇣
· · · c

0
2 · · ·

⌘

...⇣
· · · c

0
n · · ·

⌘

3

7777775
(30)

In this work all of the aggregation methods except for grid coarsening will use the same similarity

matrix to construct the restriction operator.

This approach of using a similarity matrix C to account for prior error covariances bears some

resemblance to the geostatistical approach for inverse modeling (e.g., Michalak et al., 2004, 2005;280

Gourdji et al., 2008; Miller et al., 2012). The geostatistical approach specifies the prior estimate as

xa =C� where � is a vector of unknown drift coefficients to be optimized as part of the inversion.

Here we use the similarity matrix to reduce the dimension of the state vector, rather than just as

a choice of prior constraints.

4.2 Clustering with principal component analysis285

In this method we cluster state vector elements following the principal components of the simi-

larity matrix. It is generally not practical to derive the principal components in state vector space

because the n-dimension is large. Instead we derive them in in similarity space (dimension K) as

the eigenvectors of CTC sorted in order of importance by their eigenvalues. The leading j prin-

cipal components are kept for clustering. The reduced state vector is then constructed by grouping290

state vector elements that have the same sign patterns for all j principal components. Each unique

j-dimensional sign pattern constitutes a cluster. The number of clusters defined in that way ranges

between j and 2

j . Figure 1b shows an example of applying this method to methane emissions in

North America with reduction of the state vector to n= 8. The separation into four quadrants re-

flects the importance of latitude and longitude as error correlation factors. The additional separation295

within each quadrant isolates large from weak sources as defined by the prior.

4.3 Gaussian mixture model (GMM)

Here we use a Gaussian mixture model (GMM; Bishop, 2007) to project the native-resolution state

vector onto p Gaussian pdfs using radial basis functions (RBFs). Mixture models are probabilistic

models for representing a population comprised of p subpopulations. Each subpopulation is assumed300

to follow a pdf, in this case Gaussian. The Gaussians are K-dimensional where K is the number of

similarity criteria. Each native-resolution state vector element is fit to this ensemble of Gaussians

using RBFs as weighting factors.
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The first step in constructing the GMM is to define a p⇥n weighting matrix W = [w1,w2, . . . ,wp]
T .

Each element wi,j of this weighting matrix is the relative probability for native-resolution state vec-305

tor element j to be described by Gaussian subpopulation i, i.e., “how much does element j look like

Gaussian i?”. It is given by

wi,j =
⇡iN (c

0
j |µi,⇤i)Pp

k=1⇡jN (c

0
j |µk,⇤k)

(31)

Here c

0
j is the jth row of the similarity matrix C, µi is a 1⇥K row vector of means for the ith

Gaussian, ⇤i is a K⇥K covariance matrix for the ith Gaussian, and ⇡ = [⇡1, . . . ,⇡p]
T is the relative310

weight of the p Gaussians in the mixture. N �
c

0
j |µi,⇤i

�
denotes the probability density of vector c0j

on the normal distribution of Gaussian i. We define a p⇥K matrix M with rows µi and a K⇥K⇥p

third-order tensor L= [⇤1, . . . ,⇤p] as the set of covariance matrices.

Projection of the native-resolution state vector onto the GMM involves four unknowns: W, ⇡, M,

and L. This is solved by constructing a cost function to estimate the parameters of the Gaussians in315

the mixture model using maximum likelihood:

JGMM(C|⇡,M,L) =

nX

j=1

ln

(
pX

i=1

⇡iN (c

0
j |µi,⇤i)

)
(32)

Starting from an initial guess for ⇡, M, and L we compute the weight matrix W using Eq. (31).

We then differentiate the cost function with respect to ⇡, M, and L, and set the derivative to zero

to obtain (see Bishop, 2007):320

µi = i

nX

j=1

wi,jc
0
j (33)

⇤i = i

nX

j=1

wi,j

�
c

0
j �µi

�T �
c

0
j �µi

�
(34)

⇡i =
1

n i
(35)

where:

 i =

nX

j=1

1

wi,j
(36)325

The weights are re-calculated from the updated guesses of W, ⇡, M, and L from Eqs. (33)–(36),

and so on until convergence. The final weights define the restriction operator as �! =W.
:::
The

:::::::::::
computational

::::::::::
complexity

:::
for

::
the

::::::::::::::::::::::
expectation-maximization

::::::::
algorithm

:
is
::::::::::::
O(nK + pn2

)

:::::::::::::::::
(Chen et al., 2007) ,

:::::::
however

:::
the

:::::
actual

:::::::
runtime

::::
will

:::
be

::::::
largely

:::::::
dictated

:::
by

:::
the

:::::::::::
convergence

:::::::
criteria.

:::::
Here

:::
we

:::
use

:::
an

11



:::::::
absolute

:::::::
tolerance

:::
of

:::::::::
⌧ < 10

�10
:::::
where

:
330

⌧
:
=

X

i

X

j

��Mi,j �M?
i,j

��

::::::::::::::::::::

(37)

+

X

i

X

j

X

k

��Li,j,k �L?
i,j,k

��

:::::::::::::::::::::::

(38)

+

X

i

|⇡i �⇡?
i |

::::::::::::

(39)

:::
and

:::
the

:::::::::
superscript

:::
star

::::::::
indicates

:::
the

:::::
value

::::
from

:::
the

::::::::
previous

:::::::
iteration.

:

The GMM allows each native-resolution state vector element to be represented by a unique linear335

combination of the Gaussians through the RBFs. For a state vector of a given dimension, defined by

the number of Gaussian pdfs, we can achieve high resolution for large localized sources by sacrific-

ing resolution for weak or uniform source regions where resolution is not needed. This is illustrated

in Fig. 2 with the resolution of southern
:::::::
Southern California in an inversion of methane sources for

North America. The figure shows the three dominant Gaussians describing emissions in Southern340

California and the corresponding RBF weights for each native-resolution grid square. Gaussian 1 is

centered over Los Angeles and is highly localized, Gaussian 2 covers the Los Angeles Basin, and

Gaussian 3 is a Southern California background. The sum of these three Gaussians accounts for most

of the emissions in southern
::::::::
Southern California and Nevada (which is mostly background). Addi-

tional Gaussians (not shown) resolve the southern San Joaquin Valley (large livestock and oil/gas345

emissions) and Las Vegas (large emissions from waste).

5 Application

We apply the aggregation methods described above to our example problem of estimating methane

emissions from satellite observations of methane concentrations, focusing on selecting a reduced-

dimension state vector that minimizes aggregation and smoothing errors. The inversion is described350

in detail in Turner et al. (2015) and uses GOSAT satellite observations for 2009–2011 over North

America. The forward model for the inversion is the GEOS-Chem CTM with 1
2
� ⇥ 2

3
� grid resolu-

tion. The native-resolution state vector of methane emissions as defined on that grid includes 7366

elements.

For purpose of selecting an aggregated state vector for the inversion we consider a subset of355

observations for May 2010 (m= 6070) so that we can afford to construct the corresponding Jaco-

bian matrix K at the native resolution; this is necessary to derive the aggregation error covariance

matrix following Eq. (17). The prior error covariance matrix is specified as diagonal with 100 %

uncertainty at the native resolution, decreasing with aggregation following the central limit theo-

rem (Turner et al., 2015). The observational error covariance matrix is also diagonal and specified as360

the scene-specific retrieval error from Parker et al. (2011), which dominates the total observational
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error as shown by Turner et al. (2015). We compare the three methods presented in Sect. 4 for aggre-

gating the state vector in terms of the implications for aggregation and smoothing errors for different

state vector dimensions. In addition to the GMM with RBFs, we also consider a “GMM clustering”

method where each native resolution state vector element is assigned exclusively to its dominant365

Gaussian pdf. This yields sharp boundaries between clusters (Fig. 1) as in the grid coarsening and

PCA methods.

Figure 3 shows the mean error SD
::::::
standard

:::::::::
deviation in the aggregation and smoothing error

covariance matrices, computed as the square root of the
::::
mean

:::
of

:::
the diagonal terms, as a function

of state vector dimension. The aggregation error is zero by definition at the native resolution (7366370

state vector elements), and increases as the number n of state vector elements decreases, following

a roughly n�0.7 dependence. Conversely, the smoothing error increases as the number of state vec-

tor elements increases, following roughly a log(n) dependence. The different aggregation methods

of Sect. 4 yield very similar smoothing errorsbut the aggregation ,
:::::::::
suggesting

::::
that

:::
any

::::::::::
reasonable

:::::::::
aggregation

:::::::
scheme

:::::
(such

:::
as

:
k

::::::
-means

:::::::::
clustering

::::::::::::::::
(cf. Bishop, 2007) )

::::::
would

:::::::
perform

:::::::::::
comparably.375

:::
The

::::::::::
aggregation

:
error is somewhat improved using the GMM method. RBF weighting performs

slightly better than GMM clustering (sharp boundaries). As discussed above, a major advantage of

the GMM method is its ability to retain resolution of large localized sources after aggregation.

Figure 4 shows the sum of contributions from aggregation, smoothing, and observational error SD

:::::::
standard

:::::::::
deviations as a function of state vector aggregation using the GMM with RBF weighting.380

In this application, aggregation error dominates for small state vectors (n < 100), but drops below

the observation error for n > 100 and below the smoothing error for n > 1000. The smoothing error

remains smaller than the observational error even at the native resolution (n= 7366). The obser-

vational error is not independent of aggregation, as shown in Eq. (29), but we find here that the

dependence is small.385

From Fig. 4 we can identify a state vector dimension for which the total error is minimum (n=

2208; circle in Fig. 4). However, error growth is small until n⇡ 200, below which the aggregation

error grows rapidly. A state vector of 369 elements, as adopted by Turner et al. (2015), does not

incur significant errors associated with aggregation or smoothing, and enables computation of an

analytical solution to the inverse problem with full error characterization.390

:::::::
Previous

::::
work

:::
by

::::::::::::::
Bocquet (2009) ,

::::::::::::::::::
Bocquet et al. (2011) ,

:::::::::::::::::::::
Bocquet and Wu (2011) ,

::::::::::::::
Wu et al. (2011) ,

:::
and

::::::::::::::::::::::::::
Koohkan et al. (2012) analyzed

:::
the

:::::::::::::::
scale-dependence

::
of

::::::::
different

:::::
grids

:::::
using

:::
the

:::::::
degrees

:::
of

:::::::
freedom

::
for

::::::
signal:

::::::::::::::::::::
DFS = Tr(I�S�1

a,!
ˆS!).:::::

These
::::
past

:::::
works

:::::
found

::::
this

::::
error

:::::
metric

::
to

:::
be

::::::::::::
monotonically

:::::::::
increasing.

::::
This

::::::
implies

::::
that

:::
the

:::::
native

:::::::::
resolution

::::
grid

:::
will

::::
have

:::
the

:::::
least

::::
total

::::
error

::::
and

::::
there

::
is

:::
no

::::::
optimal

:::::::::
resolution,

::::::
except

:::::
from

:
a
:::::::::
numerical

::::::::
efficiency

::::::::::
standpoint.

::::
Here

:::
we

::::
find

::
a

::::
local

:::::::::
minimum395

:::
that

::
is,

::::::::::
seemingly,

::
at

::::
odds

::::
with

:::
this

::::::::
previous

:::::
work.

::::::::
However,

:::
the

:::::::::
reasoning

::
for

::::
this

::::
local

:::::::::
minimum

:
is
::::
that

:::
we

::::
have

:::::::
allowed

::
the

::::::::::
aggregation

::
to

:::::::
account

:::
for

:::::
spatial

:::::
error

::::::::::
correlations

:::
that

:::
we

:::
are

::::::
unable

::
to

::::::
specify

::
at

:::
the

:::::
native

:::::::::
resolution.

:::
As

::::
such,

:::
we

:::
are

:::::
taking

:::::
more

::::::::::
information

::::
into

::::::
account

::::
and

::::::::
obtaining
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:
a
::::::::
minimum

::::
total

:::::
error

::
at

::
a

::::
state

::::::
vector

:::
size

::::
that

::
is

::::::
smaller

:::::
than

:::
the

:::::
native

:::::::::
resolution.

::
If
:::
the

::::::
native

::::::::
resolution

::::
error

:::::::::
covariance

::::::::
matrices

::::
were

::::::
correct

:::::
then,

::
as

:::::::
previous

:::::
work

:::::::
showed,

:::
the

::::
only

::::::
reason

::
to400

::::::
perform

::::::::::
aggregation

::::::
would

::
be

::
to

::::::
reduce

:::
the

::::::::::::
computational

:::::::
expense

:::
and

:::
the

::::
grid

::::
used

::::
here

:::::
would

:::
be

:::::::::
suboptimal

:::::::
because

:
it
::::
does

::::
not

::::::
depend

::
on

:::
the

::::::::::::::
native-resolution

::::
grid.

:

6 Conclusions

We presented a method for optimizing the selection of the state vector in the solution of the in-

verse problem for a given ensemble of observations. The optimization involves minimizing the total405

error in the inversion by balancing the aggregation error (which increases as the state vector dimen-

sion decreases), the smoothing error (which increases as the state vector dimension increases), and

the observational error. We further showed how one can reduce the state vector dimension within

the constraints from the aggregation error in order to facilitate an analytical solution to the inverse

problem with full error characterization.410

We explored different methods for aggregating state vector elements as a means of reducing the

dimension of the state vector. Aggregation error can be minimized by grouping state vector elements

with the strongest correlated prior errors. We showed that a Gaussian mixture model (GMM), where

the state vector elements are multi-dimensional Gaussian pdfs constructed from prior error correla-

tion patterns, is a powerful aggregation tool. Reduction of the state vector dimension using the GMM415

retains fine-scale resolution of important features in the native-resolution state vector while merging

weak or uniform features.

Acknowledgements. For advice and discussions, we thank Kevin Wecht (Harvard University). Special thanks to

Robert Parker and Hartmut Boesch (University of Leicester) for providing the GOSAT observations. This work

was supported by the NASA Carbon Monitoring System and by a Department of Energy (DOE) Computational420

Science Graduate Fellowship (CSGF) to AJT. We also thank the Harvard SEAS Academic Computing center for

access to computing resources.
::
We

:::
also

:::::
thank

::
Dr.

:::::
Marc

::::::
Bocquet

:::
and

::
an

:::::::::
anonymous

:::::::
reviewer

::
for

::::
their

:::::::
thorough

::::::::
comments.

14



References

Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, 1st Edn., New York, 2007.425

::::::
Bocquet,

:::
M.:

:::::::
Towards

::::::
optimal

::::::
choices

::
of

:::::
control

:::::
space

:::::::::::
representation

::
for

:::::::::
geophysical

::::
data

:::::::::
assimilation,

:::::
Mon.

::::
Wea.

::::
Rev.,

:::
137,

:::::::::
2331–2348,

::::
doi:10.1175/2009MWR2789.1,

:::::
2009.

Bocquet, M., Wu, L., and Chevallier, F.: Bayesian design of control space for optimal assimilation of observa-

tions. Part I: Consistent multiscale formalism, Q. J. Roy. Meteor. Soc., 137, 1340–1356, doi:10.1002/qj.837,

2011.430

::::::
Bocquet,

:::
M.

::::
and

::::
Wu,

::
L.:

::::::::
Bayesian

:::::
design

:::
of

::::::
control

:::::
space

:::
for

::::::
optimal

:::::::::
assimilation

:::
of

::::::::::
observations.

:::
II:

:::::::::
Asymptotics

:::::::
solution,

::
Q.

::
J.

:::
Roy.

::::::
Meteor.

::::
Soc.,

::::
137,

:::::::::
1357–1368,

:::
doi:10.1002/qj.841

:
,
::::
2011.

:

::::::::
Bousserez,

:::
N.,

:::::
Henze,

:::
D.

:::
K.,

::::::
Perkins,

:::
A.,

:::::::
Bowman,

:::
K.

:::
W.,

::::
Lee,

:::
M.,

:::
Liu,

::
J.,
:::::

Deng,
:::

F.,
:::
and

:::::
Jones,

:::
D.

::
B.

:::
A.:

:::::::
Improved

::::::::::
analysis-error

::::::::
covariance

::::::
matrix

::
for

:::::::::::::
high-dimensional

::::::::
variational

::::::::
inversions:

:::::::::
application

::
to

:::::
source

::::::::
estimation

::::
using

:
a
:::
3D

:::::::::
atmospheric

:::::::
transport

::::::
model,

::
Q.

::
J.

::::
Roy.

::::::
Meteor.

::::
Soc.,

::::::
n/a–n/a,

:::
doi:10.1002/qj.2495

:
,435

::::
2015.

:

Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P., and Tans, P. P.: Regional changes in carbon

dioxide fluxes of land and oceans since 1980, Science, 290, 1342–1346, doi:10.1126/Science.290.5495.1342,

2000.

::::
Chen,

:::
Z.,

::::::
Haykin,

:::
S.,

::::::::
Eggermont,

::
J.
::
J.,

:::
and

::::::
Becker,

:::
S.:

::::::::
Correlative

::::::::
Learning:

::
A

::::
Basis

:::
for

::::
Brain

::::
and

:::::::
Adaptive440

::::::
Systems,

::::
John

:::::
Wiley

:
&

::::
Sons,

:::
1st

::::
Edn.,

::::
New

::::
York,

:::::
2007.

Chevallier, F., Breon, F. M., and Rayner, P. J.: Contribution of the Orbiting Carbon Observatory to the estimation

of CO2 sources and sinks: theoretical study in a variational data assimilation framework, J. Geophys. Res.-

Atmos., 112, D09307, doi:10.1029/2006jd007375, 2007.

::::::
Courtier,

:::
P.,

::::::
Thepaut,

::
J.,

:::
and

::::::::::::
Hollingsworth,

::
A.:

::
A
::::::
strategy

:::
for

::::::::
operational

::::::::::::
implementation

::
of

::::::
4D-Var,

:::::
using

::
an445

::::::::
incremental

::::::::
approach,

::
Q.

::
J.

::::
Roy.

::::::
Meteor.

::::
Soc.,

:::
120,

:::::::::
1367–1387,

:::
doi:10.1002/qj.49712051912,

:::::
1994.

Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error

statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, doi:10.1256/qj.05.108, 2005.

Gourdji, S. M., Mueller, K. L., Schaefer, K., and Michalak, A. M.: Global monthly averaged CO2 fluxes recov-

ered using a geostatistical inverse modeling approach: 2. Results including auxiliary environmental data, J.450

Geophys. Res., 113, D21115, doi:10.1029/2007jd009733, 2008.

Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos. Chem.

Phys., 7, 2413–2433, doi:10.5194/acp-7-2413-2007, 2007.

Kaminski, T. and Heimann, M.: Inverse modeling of atmospheric carbon dioxide fluxes, Science, 294, 259,

doi:10.1126/science.294.5541.259a, 2001.455

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation errors in atmospheric transport

inversions, J. Geophys. Res., 106, 4703, doi:10.1029/2000jd900581, 2001.

:::::::
Koohkan,

:::
M.

:::
R.,

:::::::
Bocquet,

:::
M.,

::::
Wu,

:::
L.,

:::
and

::::::
Krysta,

:::
M.:

:::::::
Potential

:::
of

:::
the

::::::::::
International

:::::::::
Monitoring

::::::
System

:::::::::
radionuclide

::::::
network

:::
for

:::::
inverse

::::::::
modelling,

::::::
Atmos.

::::
Env.,

::
54,

::::::::
557–567,

:::
doi:10.1016/j.atmosenv.2012.02.044

:
,

::::
2012.

:
460

Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geostatistical approach to surface flux estimation of atmo-

spheric trace gases, J. Geophys. Res., 109, D14109, doi:10.1029/2003jd004422, 2004.

15

http://dx.doi.org/10.1175/2009MWR2789.1
http://dx.doi.org/10.1002/qj.837
http://dx.doi.org/10.1002/qj.841
http://dx.doi.org/10.1002/qj.2495
http://dx.doi.org/10.1126/Science.290.5495.1342
http://dx.doi.org/10.1029/2006jd007375
http://dx.doi.org/10.1002/qj.49712051912
http://dx.doi.org/10.1256/qj.05.108
http://dx.doi.org/10.1029/2007jd009733
http://dx.doi.org/10.5194/acp-7-2413-2007
http://dx.doi.org/10.1126/science.294.5541.259a
http://dx.doi.org/10.1029/2000jd900581
http://dx.doi.org/10.1016/j.atmosenv.2012.02.044
http://dx.doi.org/10.1029/2003jd004422


Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W., and Tans, P. P.: Maximum likelihood

estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions, J. Geophys.

Res., 110, D24107, doi:10.1029/2005jd005970, 2005.465

Miller, S. M., Kort, E. A., Hirsch, A. I., Dlugokencky, E. J., Andrews, A. E., Xu, X., Tian, H., Nehrkorn, T.,

Eluszkiewicz, J., Michalak, A. M., and Wofsy, S. C.: Regional sources of nitrous oxide over the United States:

seasonal variation and spatial distribution, J. Geophys. Res., 117, D06310, doi:10.1029/2011jd016951, 2012.

Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., Messerschmidt, J., Deutscher, N., Grif-

fith, D. W. T., Notholt, J., Wennberg, P. O., and Wunch, D.: Methane observations from the Greenhouse470

Gases Observing SATellite: comparison to ground-based TCCON data and model calculations, Geophys.

Res. Lett., 38, L15807, doi:10.1029/2011gl047871, 2011.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, Singapore, 2000.

Schuh, A. E., Denning, A. S., Uliasz, M., and Corbin, K. D.: Seeing the forest through the trees: recover-

ing large-scale carbon flux biases in the midst of small-scale variability, J. Geophys. Res., 114, G03007,475

doi:10.1029/2008jg000842, 2009.

Turner, A. J., Jacob, D. J., Wecht, K., Maasakkers, J. D., Biraud, S. C., Boesch, H., Bowman, K. W.,

Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, R.,

Payne, V. H., Sussmann, R., Velazco, V. A., Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating

global and North American methane emissions with high spatial resolution using GOSAT satellite data, At-480

mos. Chem. Phys.
:::::::
Discuss.,

::
15,

:::::::::
4495–4536,

::::
doi:10.5194/acpd-15-4495-2015, available at: , submitted, 2014.

::::
2015.

:

von Clarmann, T.: Smoothing error pitfalls, Atmos. Meas. Tech., 7, 3023–3034, doi:10.5194/amt-7-3023-2014,

2014.

Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., and Blake, D. R.: Mapping of North American methane485

emissions with high spatial resolution by inversion of SCIAMACHY satellite data, J. Geophys. Res.-Atmos.,

119, 7741–7756, doi:10.1002/2014jd021551, 2014.

:::
Wu,

:::
L.,

:::::::
Bocquet,

::::
M.,

:::::::
Lauvaux,

:::
T.,

:::::::::
Chevallier,

::
F.,

:::::::
Rayner,

::
P.,

::::
and

:::::
Davis,

:::
K.:

:::::::
Optimal

:::::::::::
representation

:::
of

::::::::
source-sink

:::::
fluxes

:::
for

:::::::::
mesoscale

:::::
carbon

:::::::
dioxide

:::::::
inversion

::::
with

:::::::
synthetic

:::::
data,

::
J.

:::::::
Geophys.

:::::
Res.,

::::
116,

::::::
D21304,

::::
doi:10.1029/2011jd016198

:
,
::::
2011.

:
490

16

http://dx.doi.org/10.1029/2005jd005970
http://dx.doi.org/10.1029/2011jd016951
http://dx.doi.org/10.1029/2011gl047871
http://dx.doi.org/10.1029/2008jg000842
http://dx.doi.org/10.5194/acpd-15-4495-2015
http://dx.doi.org/10.5194/amt-7-3023-2014
http://dx.doi.org/10.1002/2014jd021551
http://dx.doi.org/10.1029/2011jd016198


Table 1. Similarity vectors for inverting methane emissions in North Americaa.

Similarity Weighting

Vector factorb

1. Latitudec 1.00

2. Longituded 1.00

3. Initial scaling factorse 0.15

4. Wetland f 0.31

5. Livestock f 0.22

6. Oil/gas f 0.16

7. Waste f 0.15

8. Coal f 0.06

9. Soil absorption f 0.05

10. Termites f 0.02

11. Biomass burning f 0.02

12. Biofuel f 0.01

13. Rice f 0.01

14. Other f 0.01

a The K = 14 similarity vectors describe prior error correlation criteria for the native-resolution state vector,

representing here the methane emission in North America at the 1
2
� ⇥ 2

3
� resolution of the GEOS-Chem chemical

transport model. The criteria are normalized and then weighted (weighting factor). Criteria 4-14 are prior emission

patterns used in the GEOS-Chem model (Wecht et al., 2014; Turner et al., 2015) .
b The weighting factors (dimensionless) measure the estimated relative importance of the different similarity criteria in

determining prior error correlations in the state vector. For the prior emission patterns these weighting factors are the

fractional contributions to total prior emissions in North America.
c Distance in kilometers from the equator.
d Distance in kilometers from the prime meridian.
e Initial scaling factors from one iteration of an adjoint inversion at the native resolution.
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Figure 1. Illustration of different approaches for aggregating a state vector. Here the native resolution state

vector is a field of gridded methane emissions at 1
2
�⇥ 2

3
� resolution over North America. Extreme reduction to

8 state vector elements is shown with individual elements distinguished by color.
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Figure 2. Gaussian Mixture Model (GMM) representation of methane emissions in southern
::::::
Southern

:
Cali-

fornia with Gaussian pdfs as state vector elements. The Gaussians are constructed from a similarity matrix for

methane emissions on the 1
2
� ⇥ 2

3
� horizontal resolution of the GEOS-Chem CTM used as forward model for

the inversion. The figure shows the dominant three Gaussians for southern
::::::
Southern

:
California with contours

delineating the 0.5, 1.0, 1.5, and 2.0 � spreads for the latitude–longitude dimensions. The RBF weights w1,

w2, and w3 of the three Gaussians for each 1
2
� ⇥ 2

3
� grid square are also shown along with their sum.
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Figure 3. Aggregation and smoothing error dependences on the aggregation of state vector elements in an in-

verse model. The application here is to an inversion of methane emissions over North America using satellite

methane data with 7366 native-resolution state vector elements (Sect. 5 and Turner et al., 2015). Results are

shown as the square roots of the means of the diagonal terms (mean error SD
::::::
standard

:::::::
deviation) in the aggre-

gation and smoothing error covariance matrices. Different methods for aggregating the state vector (Sect. 4) are

shown as separate lines. Note the log-scale on the x axis.
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Figure 4. Total error budget from the aggregation of state vector elements in an inverse model. The applica-

tion here is to an inversion of methane emissions over North America using satellite methane data with 7366

native-resolution state vector elements (Sect. 5 and Turner et al., 2015). Results are shown as the square roots

of the means of the diagonal terms (mean error SD
::::::
standard

:::::::
deviation) in the aggregation, smoothing, and ob-

servational error covariance matrices, and for the sum of these matrices. Aggregation uses the GMM with RBF

weighting (Sect. 4). There is an optimum state vector size for which the total error is minimum and this is

shown as the circle. Gray shading indicates the 90 % confidence intervals
::::
range for the total error

::
on

::::::::
individual

::::::
elements

:
as diagnosed from the 5th and 95th quantiles of diagonal elements in the total error covariance matrix.

Note the log-scale on the x axis.
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