

1 Ergodicity Test of the Eddy Correlation Method

2 Jinbei CHEN¹ Yinqiao HU¹ Ye YU¹ Shihua LU¹

3 ¹ *Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions; Cold and*
4 *Arid Regions Environment and Engineering Institute, Chinese Academy of Sciences, Lanzhou 730000, P*
5 *R China.*

6 E-mail: chenjinbei@lzb.ac.cn

8 Abstract

9 In this paper, two sets of data from the Nagqu Station of Plateau Climate and
10 Environment (NaPlaCE) and the cooperative atmosphere-surface exchange study
11 1999 (CASES-99) were used to analyze and verify the ergodicity of turbulence
12 measured by the eddy covariance system. The results show that the eddies of
13 atmospheric turbulence that are smaller than the scale of the atmospheric boundary
14 layer (i.e. the spatial scale is less than 1,000 m and temporal scale is shorter than 10
15 min) can effectively satisfy the conditions of the average ergodic theorem, and belong
16 to a wide ergodic stationary random processes. Meanwhile, the eddies, of which the
17 spatial scale are larger than the scale of boundary layer, cannot satisfy the conditions
18 of the average ergodic theorem, and thus it involves non-ergodic stationary random
19 processes. Consequently, when the finite time average was used to substitute for the
20 ensemble average, a large rate of error would occur with use of the eddy correction
21 method due to the losing the low frequency component information of the larger
22 eddies. When the multi-station observation was compared with the single-station
23 observation, then the wide ergodic stationary random process originating from the
24 multi-station observation expanded from the eddies which were 1000 m smaller than a
25 boundary layer scale to the eddies, which were larger than the boundary layer scale of
26 2000 m. Therefore, the calculation of the turbulence average or variance and turbulent
27 flux could effectively satisfy the ergodic assumption, and the results would be
28 approximate to the actual values. Regardless of vertical velocity and temperature, if
29 the ergodic stationary random processes could be satisfied, then the variance of the
30 eddies in the different temporal scales could follow M-O similarity relations; in the
31 case of the non-ergodic random process, the eddies variance deviated from the M-O
32 similarity relations.

33 **Keywords:** Ergodic assumption; eddy correlation method; M-O similarity relations;

34 atmospheric surface layer (ASL); high-pass filtering

35

36 1 Introduction

37

38 The basic principle of the turbulence measurement average is the ensemble average of
39 space, time and state. However, it is impossible to set numerous observational
40 instruments in space and have enough time to obtain all states of the turbulent eddy to
41 realize the ensemble average in actual turbulence measurement experiments.
42 Therefore, based on the ergodic assumption that it is temporally steady and spatially
43 homogeneous, the time average of one spatial point, which is long enough for
44 observation, was used to substitute for the ensemble average (Stull 1988; Wyngaard
45 2010; Aubinet 2012). The ergodic assumption was first raised by Boltzmann
46 (Boltzmann 1871; Uffink 2004) in his study of ensemble theory of statistical
47 dynamics. He argued that an isolated system began from any initial state would
48 undergo all possible microstates after a certain amount of time. At the beginning of
49 the 20th century, the P. Ehrenfest duo proposed the quasi-ergodic hypothesis and
50 changed the term “experience” in the aforesaid ergodic hypothesis to “infinitely
51 approximate”. The basic point of the ergodic hypothesis or quasi-ergodic hypothesis
52 was recognizing that the macroscopic property of the system in the equilibrium state
53 was the average of the microcosmic quantity in a certain amount of time. Nevertheless,
54 the ergodic hypothesis or quasi-ergodic hypothesis was never proven theoretically.
55 The proof of the ergodic hypothesis in physics aroused the interest of mathematicians,
56 and Neumann et al. (1932) first theoretically proved the ergodic theorem (Birkhoff
57 1931) in topological space. Krengel (1985) then systematically summarized related
58 achievements. However, the ergodic theorem expressed in the time series by the
59 theory of stationary random process is further intuitionistic in physics. The stationary
60 random process is a random process in which the statistical properties do not vary
61 with time. When the limit of the autocorrelation function of the stationary random
62 process converges to its average square, this random process is ergodic, this is namely
63 the ergodic theorem of the stationary random process. The ergodic theorem also
64 provides the necessary and sufficient conditions for the ergodicity of the stationary
65 random process. Mattingly (2003) reviewed the research progress of ergodicity of
66 random Navier-Stokes equations which had been made in recent years, and Galanti
67 (2004) solved the random Navier-Stokes equation by numerical value simulation to

67 prove that the turbulence which was temporally steady and spatially homogeneous
68 was ergodic (Lennaert et al. 2006). However, he also indicated that such partially
69 turbulent flows acting as mixed layer, wake flow, jet flow, flow around and boundary
70 layer flow may be non-ergodic turbulence.

71 The ergodic hypothesis is a basic hypothesis in atmospheric turbulent experiment.
72 Stationarity, homogeneity, and ergodicity are routinely used to link the ensemble
73 statistics (mean and higher-order moments) of turbulence field measurements
74 collected in the ASL and CSL to land surface processes. Many literatures habitually
75 referred to the ergodic assumption, as some descriptions such as “when satisfying
76 ergodicity hypothesis,” or “something indicates that ergodicity hypothesis is
77 satisfied”. Though the evidence of the validity of the ergodic hypothesis in the ASL is
78 just the success of Monin-Obukhov (M-O) similarity theory for unstable and
79 near-neutral conditions, the success of similarity theory, as only a necessary condition
80 for ergodicity in the ASL, does not prove ergodicity (Katul et al., 2004). Katul et al.
81 (2004) qualitatively analyzed the problems in ergodicity regarding atmospheric
82 turbulence, and believed that it was common for neutral and unstable stratified
83 atmosphere in the surface layer to reach ergodicity, while it was difficult for the stable
84 layer to reach ergodicity. The lidar technique opens up new possibilities for
85 atmospheric measurements and analysis by providing simultaneous high-resolution
86 spatial and temporal atmospheric information (Eichinger et al., 2001). The stationarity
87 and ergodicity can be tested for such ensembles of experiments. Recent advances in
88 LIDAR (Light Detection and Ranging) measurements offer a promising first step for
89 direct evaluation of such hypotheses for ASL flows (Light Detection and Ranging)
90 measurements offer a promising first step for direct evaluation of such hypotheses for
91 ASL flows (Higgins et al., 2013). Higgins et al. (2013) apply a water vapor
92 concentration lidar to investigate the ergodic hypothesis of atmospheric turbulence for
93 the first time. But no author did perform quantitative testing or theoretical
94 demonstration of the eddy covariance system related to the ergodicity of the
95 atmospheric turbulence. Therefore, it is clear that there is a need to reevaluate
96 turbulence measurement technology, to test the ergodicity of atmospheric turbulence
97 quantitatively by means of observation experiments. Obviously, the advances of
98 research on the ergodicity in the mathematics and physics are far more quickly than
99 the atmospheric science. We try firstly to introduce the ergodic theorem of the

100 stationary random processes to atmospheric turbulence in surface layer in this paper to
101 analyze and verify the ergodicity of turbulence measured by the eddy covariance
102 system.

103 The land surface process, of which the core is mass-energy exchange, between
104 ecosystem and atmosphere under complicated conditions, has been a scientific issue
105 which urgently requires study in the fields of atmospheric science, ecology, geography
106 science, etc. (Running et al. 1999; Geider et al. 2001). A core goal of FLUXNET and
107 relevant scientific research is to determine the turbulent flux of mass (moisture and
108 CO₂) and energy (sensible heat and latent heat) between ecosystem and atmosphere,
109 and thus the eddy correlation method, which is used to measure atmospheric turbulent
110 flux, is widely applied (Balocchi et al. 2001). Being generally based on the assumed
111 constant flux layer, and Monin–Obukhov (M–O) similarity theory, the whole layer
112 atmospheric turbulent flux is determined by eddy correlation in the atmospheric
113 surface layer. According to the spectral gap (around 60 min) between the turbulence
114 scale and synoptic scale of the wind velocity spectrum in the atmospheric surface
115 layer, so firstly the trend correction of observational data (McMillen 1988; Moore
116 1986) is done to eliminate the interference of synoptic scale motion during the
117 turbulence observation. After the observation errors of the instruments had been
118 eliminated, the average, \bar{u} , was determined within 15-60 min, the turbulence
119 component, $u' = u - \bar{u}$, was obtained, and finally the turbulent flux of the mass and
120 energy between ecosystem and atmosphere was calculated and determined by means
121 of variance and covariance. With respect to the M–O similarity theory, the constant
122 flux layer requires that the flow field is steady and homogeneous, i.e. the average
123 vertical velocity does not exist. Therefore, many experiments of atmospheric
124 boundary layer focus on seeking ideal homogeneous surface as much as possible.
125 When the vertical velocity occurs in experiment, the coordinate rotation is highlighted
126 in the error correction of the eddy correlation method (Finnigan 1983; Wilczak et al.
127 2001) to eliminate it. The original motive of the coordinate rotation is to eliminate the
128 vertical velocity caused by the tilt of instrument installation. However, the turbulent
129 flux is often measured under complex terrain conditions in FLUXNET, and even the
130 large eddy can cause the vertical velocity over homogeneous surface. The
131 coordination rotation in the error correction will eliminates the effects of the average
132 vertical velocity caused by the terrain and large eddy in the turbulent flux. After

133 analysis, Finnigan (2004) found that the rotation of coordination eliminated the low
134 frequency effect caused by natural terrain. Evenly, the large eddy can cause the
135 vertical velocity over homogeneous surface. The rotation of the coordination in the
136 error correction will eliminates the effects of the average vertical velocity of terrain
137 and large eddy on the turbulent flux. When surface energy imbalance, NEE (Net
138 Ecosystem Exchange) estimation error, and other problems occurred, and it was
139 necessary to consider the low frequency effect (Foken et al. 2006; Segal et al. 1988;
140 Mahrt et al. 1993; Sun et al. 1997; Finnigan et al. 1995; Sakai et al. 2001; Malhi et al.
141 2004; Chen et al. 2006), and many methods were proposed to estimate the low
142 frequency effect of the transport flux eddy (Lee 1998; Zhang et al. 2010; Baldocchi
143 2000; Aubinet et al. 2003; Staebler et al. 2004; Hu 2003; Chen et al. 2007; Chen et al.
144 2013). In the rotation of coordinates for correction in the eddy correction method,
145 eliminating the average vertical velocity and estimating the low frequency effect of
146 the eddy of the transport flux were essentially contradictory. According to Kaimal and
147 Wyngaard (1990), the atmospheric turbulence theory and observation method were
148 feasible and led to success under ideal conditions (including a short period, steady
149 state and homogeneous underlying surface, and through observation in the
150 1950s-1970s) but these conditions are rare in reality. In the land surface process and
151 ecosystem, the observations must be implemented under conditions such as with
152 complex terrain, heterogeneous surface, long period and unsteady state. The above
153 experimental studies imply that the turbulence should be divided into some eddies
154 with different scales in the meticulous study. It is necessary that more modern
155 observational tools and theories will be applied with new perspectives in future
156 research.

157 In the spatial scale, the atmospheric turbulence from the dissipation range, inertial
158 sub-range to energy range, and further large eddy of turbulent flow is extremely broad
159 (Stull 1988). Such spatial and temporal size of eddies include the isotropous 3-D eddy
160 structure of high frequency turbulence and orderly coherent structure of low
161 frequency turbulence (Li et al. 2002). The eddies in different scales are also different
162 in terms of their spatial structure and physical properties, and even their transport
163 characteristics are not all the same. It is thus reasonable that the eddies with different
164 transport characteristics are separated, processed and studied by using different
165 methods (Zuo et al. 2012).

166 Based on the aforesaid analysis, in this study the data from the Nagqu Station of
167 Plateau Climate and Environment were used to measure turbulence by the eddy
168 correlation method under the homogeneous surface and the Fourier transform
169 band-pass filtering method was used to make filtering of different scales. Then the
170 ergodicity of different scale eddies of atmospheric turbulence were directly tested
171 quantitatively on the basis of the observational data. In addition, the cooperative
172 surface layer turbulence data of the Kansas, US prairie (CASES-99) were used to
173 verify the ergodicity of the turbulence measured by multi-station observations. The
174 characteristics of the M-O variance similarity relations of the eddies in different scales
175 were compared and analyzed to test the feasibility of the M-O similarity of the
176 ergodic and non-ergodic turbulence. The problems of the eddy correlation method in
177 the atmospheric turbulence observation in the surface layer were further explored on
178 the basis of the study on the ergodicity and M-O variance similarity relations of the
179 eddies in different scales in this paragraph in order to provide an experimental basis
180 for utilizing the M-O similarity theory and developing the transport theory of
181 turbulence in atmospheric boundary layers with complex underlying surfaces.

182 **2 Theories and methods**

183 **2.1 Ergodic theorem of stationary random process**

184 The stationary random process is a random process which will not vary with time, i.e.,
185 for observed quantity A , its spatial x_i and temporal t_i functions satisfy the following
186 conditions:

$$187 A(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n) = A(x_1, x_2, \dots, x_n; t_1 + \tau, t_2 + \tau, \dots, t_n + \tau), \quad (1)$$

188 where τ is a time period, defined as the relaxation time.

189 The average μ_A of random variable A and autocorrelation function $R_A(\tau)$ are
190 respectively defined as follows:

$$191 \mu_A = \lim_{T \rightarrow +\infty} \frac{1}{T} \int_0^T A(t) dt, \quad (2)$$

$$192 R_A(\tau) = \lim_{T \rightarrow +\infty} \frac{1}{T} \int_0^T A(t) A(t + \tau) dt. \quad (3)$$

193 Autocorrelation function $R_A(\tau)$ is a temporal second-order moment. In the case of $\tau=0$,
194 the autocorrelation function $R_A(\tau)$ is the variance of a random variable. The necessary
195 and sufficient condition of the stationary random process average to have ergodicity is
196 the average ergodic function $Ero(A)$ (Papoulis et al. 1991), as shown below:

197
$$\text{Ero}(A) = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau}{2T}\right) [R_A(\tau) - \mu_A^2] d\tau = 0. \quad (4)$$

198 The average ergodic function $\text{Ero}(A)$ is the time integral of variance between
 199 autocorrelation function $R_A(\tau)$ of variable A and its average, μ_A . If the average ergodic
 200 function $\text{Ero}(A)$ converges to zero, then the stationary random process will be ergodic.
 201 In other words, if the autocorrelation function $R_A(\tau)$ of variable A converges to the
 202 square of its average μ_A , this stationary random process is average ergodic. Equation
 203 (4) is the average ergodic theorem. For discrete variables, Eq. (4) can be rewritten as
 204 the following:

205
$$\text{Ero}(A) = \lim_{n \rightarrow \infty} \sum_{i=0}^n \left(1 - \frac{\tau_i}{n}\right) [R_A(\tau_i) - \mu_A^2] = 0. \quad (5)$$

206 Equation (5) is the average ergodic theorem of the discrete variable. Hence, Eqs. (4)
 207 and (5) can be used as the basis to determine the average ergodicity.

208 The necessary and sufficient condition of the stationary random process must
 209 satisfy for the autocorrelation ergodic theorem is the autocorrelation ergodic function
 210 $\text{Er}(A)$:

211
$$\text{Er}(A) = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau'}{2T}\right) [B(\tau') - |R_A(\tau)|^2] d\tau' = 0; \quad (6a)$$

212
$$B(\tau') = E \{ A(t + \tau + \tau') A(t + \tau') [A(t + \tau) A(t)] \}. \quad (6b)$$

213 where $B(\tau')$ is the temporal fourth-order moment of variable A . Autocorrelation
 214 ergodic function $\text{Er}(A)$ is the time integral of variance between the temporal
 215 fourth-order moment $B(\tau')$ of variable A and autocorrelation function $R_A(\tau)$. If the
 216 autocorrelation ergodic function $\text{Er}(A)$ converges to zero, then the stationary random
 217 process will be of autocorrelation ergodicity, and thus the autocorrelation ergodicity
 218 means that the fourth-order moment of the variable of the stationary random process
 219 will converge to the square of its autocorrelation function $R_A(\tau)$. Equation (6a) is the
 220 autocorrelation ergodic theorem. The autocorrelation ergodic function of the
 221 corresponding discrete variable can be determined as follows:

222
$$\text{Er}(A) = \lim_{n \rightarrow \infty} \sum_{i=0}^n \left(1 - \frac{\tau'_i}{n}\right) [B(\tau'_i) - |R_A(\tau_j)|^2] = 0, \quad (7a)$$

223
$$B(\tau'_i) = E \left\{ \sum_{j=0}^n A(t + \tau_j + \tau'_i) A(t + \tau'_i) [A(t + \tau_j) A(t)] \right\}. \quad (7b)$$

224 Equation (7a) is the ergodic theorem of the autocorrelation function of the discrete
 225 variable. Hence, Eqs. (6a) and (7a) can also be used as the basis to test the
 226 autocorrelation ergodicity.

227 The stationary random process conforms to Eqs. (4) and (5), viz. it satisfies the
 228 average ergodic theorem, or that the random process is of average ergodicity; if the
 229 stationary random process conforms to Eqs. (6a) and (7a), then it satisfies the
 230 autocorrelation ergodic theorem, or the random process is of autocorrelation
 231 ergodicity. If the stationary random process is only of average ergodicity, then it is a
 232 strict ergodic stationary random process or narrow ergodic stationary random process.
 233 If the stationary random process is of both average ergodicity and autocorrelation
 234 ergodicity, then it is a wide ergodic stationary random process. It is thus clear that the
 235 ergodic random process is stationary, but the stationary process may not be ergodic.

236 With respect to the random process theory, when its average and autocorrelation
 237 function are calculated, a large amount of repeated observations of the random
 238 process is required to determine sample function $A_k(t)$. If it is a stationary random
 239 process and satisfies the ergodic conditions, then the time average of a sample on the
 240 whole time shaft can be used to substitute for the overall or ensemble average. The
 241 conditions of Eqs. (4), (5), (6a) and (7a) can be used as the basis to judge whether or
 242 not the random variable satisfies the average and autocorrelation ergodicity. The
 243 ergodic random process must be stationary, and the stationary random process is
 244 defined as Eq. (1), and thus the random process is stationary in relaxation time τ . If
 245 conditions such as Eqs (4) and (5) of the average ergodicity are satisfied, then a time
 246 average in finite relaxation time τ can be used to substitute for the infinite time
 247 average to calculate average Eq. (2) of the random variable; similarly, the finite time
 248 average can be used for substitution to calculate the covariance or variance of random
 249 variable (Eq. (3)) if conditions such as Eqs. (6a) and (7a) of the autocorrelation
 250 ergodicity are satisfied. In a similar manner, the basic principle of the turbulence
 251 measurement average is the ensemble average of space, time and state, and it is
 252 necessary to conduct mass observation for a long period of time in the whole space.
 253 This observation requires a very large investment and is hardly feasible. If the
 254 turbulence signal satisfies the ergodic conditions, the time average in relaxation time τ

255 by multi-station observation, and even single-station observation, can be used to
 256 substitute for the ensemble average. In fact, the precondition to estimate the turbulent
 257 features (including turbulent flux) by the eddy correlation method is that the
 258 turbulence satisfies the ergodic conditions. Therefore, conditions such as Eqs. (4), (5),
 259 (6a) and (7a) will also be the basis for testing the authenticity of the observed results
 260 by the eddy correlation method.

261 **2.2 Band-pass filtering**

262 The turbulence in the atmospheric boundary layer is wide in scale. A major goal of
 263 our study is to understand what type of eddy in the scale can satisfy the ergodic
 264 conditions. Another goal is to use the time average of the signal measured by a single
 265 station for the accurate measurement of the turbulent features. In order to study the
 266 ergodicity of the eddies in different scales, Fourier transform was used as band-pass
 267 filtering to separate the eddies in different scales. That is to say, we set the frequency
 268 spectrum to be removed when filtering to zero in the Fourier transform, then
 269 determined the signal after filtering by means of Fourier inverse transformation. The
 270 specific formula is shown below:

$$271 \quad F_A(n) = \frac{1}{N} \sum_{k=0}^{N-1} A(k) \cos\left(\frac{2\pi nk}{N}\right) - \frac{i}{N} \sum_{k=0}^{N-1} A(k) \sin\left(\frac{2\pi nk}{N}\right), \quad (8)$$

$$272 \quad A(k) = \sum_{n=a}^{N-1} F_A(n) \cos\left(\frac{2\pi nk}{N}\right) + i^2 \sum_{n=a}^{N-1} F_A(n) \sin\left(\frac{2\pi nk}{N}\right). \quad (9)$$

273 In Eqs. (8) and (9), $A(k)$ indicates N data points from $k=0$ to $k=N-1$, and n is the cycle
 274 index of the observation time range. Through high-pass filtering (a is the lower limit
 275 wave-number of filtering) it is possible to cut off the low frequency turbulence and
 276 obtain a high frequency turbulence signal. Although the aliasing of a half high
 277 frequency turbulence after the Fourier transformation cannot be avoided, the
 278 correction for high frequency response will compensate for the loss. In order to
 279 acquire a purely high frequency signal, the band-pass filtering results from $n=j$ to
 280 $n=N-j$ of the high frequency signal were obtained in the filtering process. This is
 281 referred to as j time filtering in this paper. Finally, the ergodicity of the eddies in the
 282 different scales was analyzed using Eqs. (4)-(6).

283 **2.3 M-O similarity of turbulence variance**

284 The M-O similarity relations of the turbulence variance can be regarded as an
 285 effective measure to verify whether or not the turbulent flow field is steady and

homogeneous (Foken et al. 2004). Under ideal conditions, the local M-O similarity relations of variance of wind velocity, temperature and other factors can be expressed as follows:

$$\sigma_i/u_* = \phi_i(z/L), \quad (i = \mathbf{u}, \mathbf{v}, \mathbf{w}), \quad (10)$$

$$\sigma_s/|s_*| = \phi_s(z/L), \quad (s = \theta, q, \rho_c). \quad (11)$$

where σ is the turbulence variance; corner mark i is the wind velocity \mathbf{u} , \mathbf{v} or \mathbf{w} ; s stands for scalar, such as potential temperature θ , humidity q and CO₂ concentration ρ_c ; u_* is the friction velocity and defined as $u_* = (\overline{\mathbf{u}'\mathbf{w}'}^2 + \overline{\mathbf{v}'\mathbf{w}'}^2)^{1/4}$; s_* is the turbulent feature of the related scalar and is defined as $s_* = -\overline{\mathbf{w}'s'}/u_*$; and M-O length L is defined as shown below:

$$L = u_*^2 \theta / [\kappa g (\theta_* + 0.61 \theta q_* / \rho_d)]. \quad (12)$$

A large number of research results show that, in the case of unstable stratification, $\phi_i(z/L)$ and $\phi_s(z/L)$ can be expressed in the following forms (Panofsky et al. 1977; Padro 1993; Katul et al. 1999), under ideal conditions:

$$\phi_i(z/L) = c_1 (1 - c_2 z/L)^{1/3}; \quad (13)$$

$$\phi_s(z/L) = \alpha_s (1 - \beta_s z/L)^{-1/3}. \quad (14)$$

where c_1 , c_2 , α and β are the undetermined coefficients. In the case of stable stratification, $\phi_s(z/L)$ is approximate to the constant and $\phi_i(z/L)$ is still the 1/3 function of z/L . The turbulence characteristics of the eddies in the different temporal and spatial scales in the atmosphere are compared and analyzed with Eqs. (13) and (14), to test the feasibility of the M-O similarity under conditions of the ergodic and non-ergodic turbulence.

3 Observation site and data processing

Two sets of data were used in the study. The first included the atmospheric surface layer data measured by a 10 Hz 3-D ultrasonic wind and temperature tester (CSAT3) and infrared gas analyzer (Li7500) at the Nagqu Station of Plateau Climate and Environment, Chinese Academy of Sciences, from 23 July 2011 to 13 September 2011. The second data set was collected from the 20 Hz atmospheric surface layer at seven observation points (CASES-99) in the Kansas prairies (Poulos et al. 2002;

315 Chang et al. 2002). The two sets of data, collected for completely different purposes,
316 were compared to test the universality of the research results. The geographic
317 coordinate of Nagqu Station is 31.37°N, 91.90°E, and its altitude is 4509 m a.s.l. The
318 observation station is built on flat and wide area except for a hill of about 200 m at 2
319 km distance in the north, the ground surface is mainly composed of sandy soil mixed
320 with some fine stones, and an alpine meadow with vegetation of 10-20 cm in height
321 grows in the area (see Fig. 1a). The CASES-99 data used included the data measured
322 by a 10 m high 3-D wind and temperature tester (ATI) on the central tower (37.65°N,
323 96.74°W) of 55 m height; and other turbulence data were measured by a 10 m high
324 3-D ultrasonic wind velocity system (ATI) and infrared gas analyzer (Li7500) on six
325 small towers surrounding the main tower. The small towers, sn1, sn2 and sn3 were
326 located 100 m away from the main tower, the sn4 was 280 m away, and tower sn5 and
327 sn6 were located 300 m away. The specific positions were as shown in Fig. 1(b).
328 Similar to Nagqu Station, the CASES-99 observation field was flat and there were
329 grasses of 20-50 cm in height present during the test period. The displacement height
330 of the underlying surface of the Nagqu meadow was determined to 0.03 m by
331 calculation, while the displacement height of the CASES-99 underlying surface was
332 0.06 m (Martano 2002).

333 This study is conditioned to the stationary random process. So the inaccurate data in
334 the measurements caused by circuit were deleted before data analysis. Subsequently,
335 the collected data were divides into continuous sections of 5-hour, and the 1-hour high
336 frequency signals were obtained by applying Eqs. (8) and (9) on each 5-hour data. In
337 order to conform to the stationary random condition and to select the steady turbulent
338 data, the 12 fragments of 5-min velocity and temperature variances in 1-hour were
339 calculated and compared with each other. When their deviations were less than
340 $\pm 15\%$ (including an instrumental error of about $\pm 5\%$), the data were selected to
341 study the ergodicity of the observed eddies. In addition, ultrasonic temperature pulse
342 was corrected to absolute temperature pulse (Schotanus et al. 1983; Kaimal et al.
343 1991). Then the coordinate was rotated using the plane fitting method to improve the
344 installation level (Wilczak 2001). In the view that moisture and CO₂ were components
345 of the air, their pulsation was also a constituent part of the air density pulsation.
346 Therefore, there was no related correction on the humidity or CO₂ pulsation caused by
347 air density fluctuation. In addition, according to our preliminary analysis, such

348 correlation may also cause the results to unreasonably deviate from the prediction
349 shown in Eq. (14). The Webb correction (Webb et al. 1980) is the component of the
350 surface energy balance in physical nature, but not the component of the turbulent eddy.
351 We thus did not perform Webb correction on our research objectives of the ergodicity
352 of the eddies in the different scales.

353 **4. Result analysis**

354 **4.1 Verification of average ergodic theorem of eddies in different temporal scales**

355 Applying the two sets of data from Nagqu Station and CASES-99, we had tested the
356 average ergodicity of the eddies in different temporal scales under the condition of
357 stationary random and steady turbulence. Here, we carefully select the representative
358 data measured at the Nagqu Station at the height of 3.08 m during three time frames,
359 namely 3:00-4:00, 7:00-8:00 and 13:00-14:00 China Standard Time on 25 August, in
360 clear weather, as the case to test and demonstrate the average ergodicity of the eddies
361 in different temporal scales. These three time frames can represent three situations,
362 namely the nocturnal stable boundary layer, early neutral boundary layer and midday
363 convective boundary layer. It is noted that the data were not filtered when calculating
364 the stratification stability, since the signal of whole turbulence were needed. The
365 stratified stability is 0.02, -0.004 and -0.54 for 3:00-4:00, 7:00-8:00 and 13:00-14:00,
366 respectively.

367 The trend correction (McMillen 1988; Moore 1986) of the data measured in the
368 eddy correlation method has been widely accepted. In nature, this is a type of
369 high-pass filtering which is used to exclude the influence of the low frequency effect
370 of temperature and other diurnal variation on turbulent flux. In order to acquire the
371 effective information of the eddies in the different temporal scales, first Eqs. (8) and
372 (9) were used to perform band-pass filtering of the Nagqu 3.08 m turbulence data,
373 which was equivalent to the correction of the high-pass filtering. In addition, the
374 results of the time band-pass filtering from $n=j$ to $n=N-j$ corresponding to Eqs. (8) and
375 (9) indicated the information of the eddy in the corresponding temporal scale. The
376 band-pass filtering information of the different time frames was thereby utilized to
377 study the turbulence characteristics and the ergodicity of the eddies in the different
378 temporal scales of the six time frames, including 2 min, 3 min, 5 min, 10 min, 30 min
379 and 60 min.

380 The M-O stratification stability z/L describe a whole characteristic between the

381 mechanical and buoyancy effects in turbulence, but this study will decompose the
382 turbulence into the different scale eddies. Considering that the features of the different
383 scale eddies of atmospheric turbulence varied with the atmospheric stability parameter
384 z/L , a local M-O stratification stability parameter that was limited in the certain scale
385 range of eddies was defined as $(z-d)/L_c$, so as to analyze the relationship between the
386 stratification stability and average ergodicity of the wind velocity, temperature and
387 other factors of the eddies in the different scales. It is noted that the local stability is
388 different from the M-O stratification stability $(z-d)/L$.

389 We took the local stability of the eddies in the different temporal scales of the three
390 time frames from nighttime to daytime as an example, as shown in Table 1.

391 The results show that the local stability parameter $(z-d)/L_c$ of eddy below 2 min in
392 temporal scale during the time frame of 3:00-4:00 (nighttime) was 0.59, thus it was
393 stable stratification. For the eddy of which the temporal scale gradually increased
394 from 3 min, 5 min and 10 min to 60 min, the $(z-d)/L_c$ also gradually decreased to 0.31
395 and 0.28. In addition, beginning from the eddy of 10 min in the temporal scale, even
396 the local stability decreased, namely from -0.01 to -0.07. It seemed that the local
397 stability gradually varied from stability to instability as the temporal scale of eddy
398 increased. During the time frame of 7:00-8:00 (morning), the $(z-d)/L_c$ of the eddies
399 from 2 min to 60 min in the temporal scale eventually decreased from 0.52, 0.38, 0.16
400 and 0.15 to a minimum of -1.29, which meant that the eddy in the temporal scales of
401 30 min and 60 min had high local instability. However, during the time frame of
402 14:00-15:00 (midday), the $(z-d)/L_c$ of the eddy from 2 min to 60 min in the temporal
403 scale was unstable. As the scale of the eddy increased, the local instability of the
404 eddies on the scale from 2 min to 3 min also increased, and the instability value
405 reached the maximum of 0.44 when the scale of the eddy was 5 min; the scale of the
406 eddy continuously increased, but the local instability of the eddy decreased.

407 The M-O local stability of an eddy is not entirely the same as the M-O stratification
408 stability of the boundary layer in terms of physical significance, and the M-O
409 stratification stability of the boundary layer indicates that the overall effect of the
410 atmospheric stratification in the boundary layer on the stability of all eddies in integral
411 effect. The local stability of the eddy is only a local effect of the atmospheric
412 stratification on the stability of the eddy in a certain scale. As the scale of the eddy
413 increases, the local stability of the eddy will vary accordingly. The aforesaid results

414 indicate that the local stability of small-scale eddies was stable in the nocturnal stable
415 boundary layer, but the nocturnal stable boundary layer was possibly unstable for the
416 large-scale eddies, so as to result in a sink effect on the small-scale eddies but a
417 buoyancy effect on the large-scale eddies. However, in the diurnal unstable boundary
418 layer, the local stability of the eddy of 3 min in scale reached the maximum, the
419 instability of the smaller eddies decreased, but the instability gradually decreased as
420 the scale of the eddy increased. Therefore, the eddy of 3 min in the scale bore
421 maximum buoyancy, but the buoyancy of the eddy decreased as the scale of the eddy
422 increased. In addition, the small-scale eddies were more stable than the eddies in the
423 large scale in the nocturnal stable boundary layer; while the large-scale eddies were
424 more stable than the eddies in the small scales in the diurnal unstable and convective
425 boundary layers. The above observations signify that it is common for the small scale
426 eddies to exist in the nocturnal stable boundary layer, and it is also common for the
427 large-scale eddies to exist in the diurnal convective boundary layer. Therefore, it is
428 clear that the small-scale eddies are dominant in the nocturnal stable boundary layer,
429 while the large-scale eddies are dominant in the diurnal convective boundary layer.

430 Finally, we calculated the autocorrelation function of the eddies in the different
431 temporal scales using Eq. (5), as well as the variation of the average ergodic function
432 $Ero(A)$ with relaxation time τ if relaxation time $\tau_{i=n}$ was cut off, and verified the
433 ergodic theorem of average value. The average ergodic function $Ero(A)$ of the vertical
434 velocity, temperature and specific humidity of the eddies in the different scales of the
435 three time frames of 3:00-4:00, 7:00-8:00 and 13:00-14:00 China Standard Time were
436 measured at the Nagqu Station at the height of 3.08 m, and varied with relaxation time
437 τ , as shown in Figs. 2-4a, b and c, respectively. To facilitate comparison, Fig. 5 shows
438 the variation of the average ergodic function $Ero(A)$ of vertical velocity (a),
439 temperature (b) and specific humidity (c) before filtering during the time frame of
440 14:00-15:00 (midday) with relaxation time τ . Since the ergodic function varied within
441 a large range, the ergodic functions were normalized according to the features of their
442 variables ($A_* = u_*, |\theta_*|, |q_*|$). That is to say, the functions in the following figures are
443 dimensionless ergodic functions, $Ero(A)/A_*$.

444 The characteristics of the average ergodicity of turbulence, as well as
445 comprehensive analysis on related causes, are as follows:

446 1. Verifying average ergodic theorem of eddies in different scales: according to the

average ergodic theorem of eddies, Eq. (4), the average ergodic function $Ero(A)/A_*$ will converge to 0 when the time approaches infinite. This is a theoretical result of the stationary random process. However, the calculated average ergodic function was obtained under the condition that relaxation time $\tau_{i=n}$ was cut off. If the average ergodic function $Ero(A)/A_*$ is approximately 0 in relaxation time $\tau_{i=n}$, it will be considered that A approximately satisfies the average ergodic theorem; if the average ergodic function deviates more from zero, the average ergodicity will be far lower, so as to approximately determine whether or not the average ergodic theorem of the eddies in different scales is established. Figures. 2-4 clearly show that, regardless of vertical velocity, temperature or humidity, the $Ero(A)/A_*$ of eddies below 10 min in the temporal scale will fluctuate around zero within a small range; thus we may conclude that the average ergodic function $Ero(A)/A_*$ of the eddy below 10 min in the temporal scale converges to zero and can effectively satisfy the conditions of the average ergodic theorem. For the eddies of 30 min and 60 min, if the eddy is larger in scale, then the average ergodic function $Ero(A)/A_*$ will deviate further from zero. In particular, the average ergodic function $Ero(A)/A_*$ of the eddies of 30 min and 60 min of the temperature or humidity does not converge, and even diverges. The above results show that the average ergodic function of the eddies of 30 min and 60 min cannot converge to zero or satisfy the conditions of the average ergodic theorem.

2. Comparison of the convergence of the average ergodic function of vertical velocity, temperature and humidity: as seen from Figs. 2-4, if the dimensionless average ergodic function of the vertical velocity is compared with the function value of the temperature or humidity, it is 3-4 magnitudes less than those in the nocturnal stable boundary layer; 1-2 magnitudes less than those in the early neutral boundary layer; and around 2 magnitudes less than those in the midday convective boundary layer. For example, during the time frame of 3:00-4:00 (nighttime), the dimensionless average ergodic function of the vertical velocity is 10^{-5} in magnitude, while the respective magnitudes of the function value of the temperature and humidity are 10^{-1} and 10^{-2} ; during the time frame of 7:00-8:00 (morning), the magnitude of the dimensionless average ergodic function of the vertical velocity is 10^{-4} , while the respective magnitudes of the function value of

480 the temperature and humidity are 10^{-2} and 10^{-3} ; during the time frame of
481 13:00-14:00 (midday), the magnitude of the dimensionless average ergodic
482 function of the vertical velocity is 10^{-4} , while the magnitudes of the function
483 values of the temperature and humidity are both 10^{-2} . These results show that the
484 dimensionless average ergodic function of the vertical velocity converges to zero
485 more frequently than the function value of the temperature and humidity, and that
486 the vertical velocity satisfies the conditions of the average ergodic theorem more
487 easily than the temperature and humidity.

488 3. Temporal scale and spatial scale of turbulent eddy: for wind velocity of $1-2 \text{ ms}^{-1}$,
489 the spatial scale of the eddy of 2 min in the temporal scale is around 120-240 m,
490 and the spatial scale of the eddy of 10 min in the temporal scale is around
491 600-1200 m. The spatial scale of the eddy of 2 min in the temporal scale is
492 equivalent to the height of the surface layer, and the special scale of the eddy of
493 10 min in the temporal scale is equivalent to the height of the atmospheric
494 boundary layer. The spatial space of the eddy within 30-60 min in the temporal
495 scale is around 1800-3600 m, and this spatial scale clearly exceeds the height of
496 the atmospheric boundary layer. According to stationary random process
497 definition (1) and the average ergodic theorem, the stationary random process
498 must be stable in relaxation time τ . The eddy below 10 min in the temporal scale
499 in the height of the atmospheric boundary layer is a stationary random process,
500 and can effectively satisfy the conditions of the average ergodic theorem.
501 However, the eddies of 30 min and 60 min in the temporal scale exceed the
502 height of the atmospheric boundary layer and do not satisfy the conditions of the
503 average ergodic theorem, thus these eddies belongs to the nonstationary random
504 process.

505 4. Ergodicity of turbulence of all eddies in the possible scales of the atmospheric
506 boundary layer: Fig. 5 shows the unfiltered average ergodic function of the
507 eddies in possible scales in the atmospheric boundary layer. When Fig. 5 is
508 compared with Figs. 2c, 3c and 4c, for the turbulence of all eddies in possible
509 scales in the boundary layer, during the time frame of 14:00-15:00 (midday), the
510 average ergodic function $Ero(A)/A^*$ of the vertical velocity, temperature and
511 humidity of the convective boundary layer before filtering is greater than the
512 average ergodic function of the turbulence of the eddies in the different scales

513 after filtering. As shown in Figs. 2c, 3c and 4c, the magnitude of the vertical
514 velocity is 10^{-4} and the magnitudes of the temperature and specific humidity are
515 both 10^{-2} ; according to Fig. 5, the magnitude of the vertical velocity $Ero(A)/A^*$ is
516 10^{-3} and the magnitudes of the temperature and specific humidity are both 10^0 ,
517 therefore 1-2 magnitudes are almost improved. In addition, all trend upward
518 (vertical velocity and temperature) or downward (specific humidity), deviating
519 from zero. It is thus clear that, even if the time of day is 14:00-15:00, the average
520 ergodic function of all eddies in the possible scales in the convective boundary
521 layer cannot converge to zero before filtering, and thus local circulation in
522 convective boundary layer cannot satisfy the conditions of the average ergodic
523 theorem. We argue that, under general conditions, the eddy below 10 min in the
524 temporal scale or within 600-1200 m in the spatial scale within the height of the
525 atmospheric boundary layer is the ergodic stationary random process, and the
526 turbulence of the eddies in all possible scales including the boundary layer may
527 belong to the non-ergodic stationary random process.

528 5. Relation between ergodicity and local stability of eddies in different scales: the
529 corresponding local stability parameters $(z-d)/L_c$ of eddies at different times in
530 different scales (see Table 1) show that the local stability parameters $(z-d)/L_c$ of
531 the eddies in the different scales are different, due to the fact that the temperature
532 stratification in the atmospheric boundary layer has different effects on the
533 stabilities of the eddies in the different scales. Entirely different results can occur,
534 and the stratification which can cause the eddies in the large scale to rise may
535 cause the eddies in the small scale to descend at the same time. However, the
536 analysis results in Figs. 2-4 show that the ergodicity is mainly related to the eddy
537 scale, and its relation with the atmospheric temperature stratification is not
538 significant.

539 **4.2 Verification of autocorrelation ergodic theorem for eddies in different scales**

540 In the following section, Eqs. (7a) and (7b) are used to verify the autocorrelation
541 ergodic theorem. It was identified in Sect. 4.1 that the turbulent eddies below 10 min
542 in the temporal scale satisfy the average ergodic conditions in the various time frames,
543 i.e., the turbulent eddies below 10 min in the temporal scale are at least in strictly
544 stationary random processes or narrow stationary random processes in the nocturnal
545 stable boundary layer, early neutral boundary layer and midday convective boundary

layer. Then these eddies are used to further analyze whether or not the turbulent eddies in the different scales which satisfy the average ergodic conditions also satisfy the autocorrelation ergodic conditions, so as to verify whether atmospheric turbulence is in the narrow stationary random process or wide ergodic stationary random process. The ergodic theorem of the autocorrelation function of the turbulence variable under the condition of truncated relaxation time $\tau_{i=n}$ were calculated according to Eq. (7a) to determine the variation of the ergodic theorem of autocorrelation function $Er(A)$ with relaxation time τ . As with the average ergodic function $Ero(A)$, if the ergodic theorem of the autocorrelation function $Er(A)$ of the eddies of 2 min, 3 min, 5 min, 10 min, 30 min and 60 min in the temporal scale within the relaxation time $\tau_{i=n}$ is approximate to 0, then A shall be deemed to be approximately ergodic; the more the ergodic theorem of the autocorrelation function deviates from 0, the worse the autocorrelation ergodicity becomes. Therefore, this method should be used for approximating whether eddies in the different scales satisfy the conditions of the autocorrelation ergodic theorem or the ergodicity.

For example, Fig. 6 shows the variation of the ergodic theorem of normalized autocorrelation function $Ero(w)/u_*$ of the turbulent eddies of 2 min, 3 min, 5 min, 10 min, 30 min and 60 min in the temporal scale of vertical velocity during the time frames of 3:00-4:00, 7:00-8:00 and 13:00-14:00 with relaxation time τ . Some basic conclusions are drawn from Fig. 6:

1. After comparing Figs. 6a-c with Figs. 2a-c, the dimensionless average ergodic function $Ero(w)/u_*$ of the vertical velocity with the dimensionless ergodic theorem of autocorrelation function $Er(w)/u_*$ of the vertical velocity, two basic characteristics are very clear. First, the magnitudes of the dimensionless ergodic theorem of autocorrelation function $Er(w)/u_*$, regardless of whether in the nocturnal stable boundary layer, early neutral boundary layer or midday convective boundary layer, are all greatly reduced. In Figs. 2a-c, the magnitudes of $Ero(w)/u_*$ are respectively 10^{-5} , 10^{-4} and 10^{-4} , and the magnitudes of $Er(w)/u_*$ are respectively 10^{-7} , 10^{-5} and 10^{-5} , as shown in Figs. 6a-c. The magnitudes of $Er(w)/u_*$ reduce by 1-2 compared with those of $Ero(w)/u_*$. Second, all ergodic theorem of autocorrelation functions $Er(w)/u_*$ of the eddies of 30 min and 60 min in the temporal scale, regardless of whether they are in the stable boundary layer, natural boundary layer or convective boundary layer, are all reduced and

579 approximate to $Ero(\mathbf{w})/u_*$ of the eddy below 10 min in the temporal scale.

580 2. The above two basic characteristics imply that the ergodic theorem of the
581 autocorrelation function $Er(\mathbf{w})/u_*$ of the stable boundary layer, neutral boundary
582 layer or convective boundary layer converges to 0 faster than the average ergodic
583 function $Ero(\mathbf{w})/u_*$; the ergodic theorem of the autocorrelation function of the
584 eddies of 30 min and 60 min in the temporal scale also converge to 0 and satisfy
585 the conditions of the autocorrelation ergodic theorem, except for the fact that the
586 ergodic theorem of autocorrelation function $Er(\mathbf{w})/u_*$ of the eddy below 10 min in
587 the temporal scale can converge to 0 and satisfy the conditions of the
588 autocorrelation ergodic theorem.

589 3. According to the ergodic theorem of the autocorrelation function, both eddies of
590 30 min and 60 min and the eddy below 10 min in the temporal scale, regardless
591 of whether they are in the stable boundary layer, neutral boundary layer or
592 convective boundary layer, can satisfy the conditions of the ergodic theorem of
593 autocorrelation function Eq. (7a), i.e., they can satisfy the conditions of the
594 ergodic theorem. Therefore, in general the turbulence in the atmospheric
595 boundary layer is the autocorrelation ergodic stationary random process.

596 4. The above observation results show that the eddies below 10 min in the temporal
597 scale in the nocturnal stable boundary layer, early neutral boundary layer and
598 midday convective boundary layer can not only satisfy the conditions of the
599 average ergodic theorem, but they can also satisfy the conditions of the
600 autocorrelation ergodic theorem. Therefore, the eddies below 10 min in the
601 temporal scale are wide ergodic stationary random processes. Although the
602 eddies of 30 min and 60 min in the temporal scale in the stable boundary layer,
603 neutral boundary layer and convective boundary layer can satisfy the conditions
604 of the autocorrelation ergodic theorem, they cannot satisfy the conditions of the
605 average ergodic theorem. Therefore, the eddies of 30 min and 60 min in the
606 temporal scale are neither ergodic narrow stationary random processes, nor wide
607 ergodic stationary random processes.

608 **4.3 Verification of ergodic theorem of eddies in different scales measured by 609 multiple stations**

610 The basic principle of the turbulence measurement average is the ensemble average of
611 space, time and state. Sections 4.1 and 4.2 verify the average ergodic theorem and

612 ergodic theorem of the autocorrelation function of the atmospheric turbulence during
613 the stationary random process using observation data, so that the finite time average
614 of a single station is used to substitute for the ensemble average. This section
615 examines the ergodicity of the eddies in different scales according to the observational
616 data collected at the CASES-99 tower and six observation sites (seven stations). When
617 the data were selected, it was considered that if the eddy was not evenly distributed at
618 the seven stations, then the observation results at the seven stations may have
619 originated from many eddies in a large scale. For this reason, we first compared the
620 high frequency variance spectrum above 0.1 Hz. Based on the observational error, if
621 the difference of all high frequency variances does not exceed the average by $\pm 10\%$,
622 then it is assumed that the turbulence is evenly distributed at the seven observation
623 stations. Finally, 17 datasets were collected from among the turbulence observation
624 data from 5 to 30 October, and these data sets refer to the results of strong turbulence
625 at noon on a sunny day. As an example, the same method as described in Sections 4.1
626 and 4.2 is used to respectively calculate the variation of the average ergodic function
627 and ergodic theorem of the autocorrelation function of the vertical velocity at
628 10:00-11:00 on 7 October with relaxation time τ . Next, the observation data collected
629 from the seven stations are built into a data set, and the time series of the data set are
630 filtered at 2 min, 3 min, 5 min, 10 min, 30 min and 60 min, the variation of the
631 average ergodic function $Ero(w)/u^*$ and ergodic theorem of the autocorrelation
632 function $Ero(w)/u^*$ of the vertical velocity with relaxation time τ is analyzed to test the
633 ergodicity of eddies in the different scales in the multi-station observation data. Figure
634 7a shows the variation of the average ergodic function $Ero(w)/u^*$ of the vertical
635 velocity with relaxation time τ , and Fig. 7b shows the variation of the ergodic theorem
636 of the autocorrelation function $Ero(w)/u^*$ with relaxation time τ . The results are as
637 follows:

638 1. Ergodic characteristics of the eddies in the different scales measured at the
639 multi-stations: Fig. 7a shows that the average ergodic function of the eddies
640 below 30 min in the temporal scale converges to 0 very well, except for the fact
641 that the average ergodic function of eddy of 60 min in the temporal scale clearly
642 deviates upward from 0. Fig. 7b shows that all ergodic theorems of the
643 autocorrelation functions of the eddies in the different scales, including the eddy
644 of 60 min in the temporal scale, gradually converge to 0. Therefore, the eddies

645 below 30 min in the temporal scale measured at the multi-stations satisfy the
646 conditions of both the average and autocorrelation ergodic theorems, while the
647 eddy of 60 min in the temporal scale only satisfies the conditions of
648 autocorrelation ergodic theorem, but cannot satisfy the conditions of the average
649 ergodic theorem. These observations demonstrate that the eddies below 30 min in
650 the temporal scale are wide ergodic stationary random processes in the data series
651 composed of observation data collected from the seven stations. This signifies
652 that the temporal scale of the eddy during the wide ergodic stationary random
653 process has extended from below 10 min to 30 min in the data series composed
654 of observation data collected from multiple stations, compared with the
655 observation data collected from a single station. As analyzed above, if the eddy
656 below 10 min in the temporal scale is deemed to be a turbulent eddy in the 1000
657 m boundary layer and the eddy of 30 min in the temporal scale is deemed to be a
658 local circulated eddy in the greater than 2000 m boundary layer, then multiple
659 station observations can completely capture the local circulated eddy of 30 min in
660 the temporal scale in the boundary layer.

661 2. Average time problem of turbulent feature average: according to the average
662 ergodic theorem, if the condition of average ergodic theorems Eqs. (4) or (5) is
663 satisfied, then a time average of finite relaxation time τ is used to substitute for
664 the average of the infinite time and calculate the average random variable Eq. (2).
665 This signifies that the calculation of the turbulence average is restricted not only
666 by the average ergodic theorem, but also is closely related to the scale of the
667 turbulent eddy. The analysis on the ergodicity of eddies in the different scales in
668 the above two sections demonstrates that the eddies below 10 min in temporal
669 scale at $\tau=30$ min in the stable boundary layer, neutral boundary layer and
670 convective boundary layer can not only satisfy the conditions of the average
671 ergodic theorem, but can also satisfy the conditions of the autocorrelation ergodic
672 theorem. That is to say, they are namely wide ergodic stationary random
673 processes. Therefore, the finite time average of 30 min within relaxation time τ
674 can be used for substituting for the ensemble average to calculate average
675 random variable Eq. (2). However, the eddies of 30 min and 60 min in the
676 temporal scale in the stable boundary layer and neutral boundary layer are only
677 autocorrelation ergodic random processes, rather than narrow and wide sense

random processes. Therefore, when the finite time average of 30 min can be used for substituting for the ensemble average to calculate average random variable Eq. (2), it may capture the stationary random processes of the eddy below 10 min in the temporal scale, but not completely capture the nonstationary random process of the eddies above 30 min in the temporal scale. In the observation performed using the eddy correlation method, the substitution of the ensemble average with finite time average of 30 min inevitably results in a high level of error, due to lack of low frequency component information of the large-scale eddy. However, although the eddies of 30 min and 60 min in the temporal scale in the convective boundary layer are not wide ergodic stationary random processes, they are autocorrelation ergodic random processes. This may imply that the average random variable which is calculated with the finite time average in the convective boundary layer to substitute for the ensemble average is often superior to the results of the stable boundary layer and neutral boundary layer. In addition, the results in the previous sections also show that the dimensionless average ergodic function of the vertical velocity may more easily converge to 0 than the functions corresponding to the temperature and humidity, and the vertical velocity may more easily satisfy the conditions of average ergodic theorem than the temperature and humidity. Therefore, in the observation performed using the eddy correlation method, the results of the vertical velocity are often superior to those of the temperature and humidity. In this section, the results also point out that multi-station observation is capable of completely capturing the eddy of local circumfluence in the local boundary layer. Therefore, ergodic assumption is more likely to be satisfied, and its results are much closer to the true values when calculating the turbulence average, variance or turbulent flux with the multi-station observation data.

4.4 M-O similarity of turbulent eddies in different scales and its relation with ergodicity

Turbulent variance is the most basic turbulent feature. Turbulence velocity variance, which represents turbulence intensity, and the variance of scalars, such as temperature and humidity, effectively describes the structural characteristics of turbulence. In order to test the relation of the M-O similarity of the turbulent eddies in the different scales with ergodicity, and take it as an example of the above ergodic testing, the

711 vertical velocity and temperature data of Nagqu from 23 July to 13 September are
712 used to determine the M-O similarity of the vertical velocity and temperature
713 variances for the eddies in the different scales, and analyze its relation with the
714 ergodicity.

715 Figures 8 and 9 respectively shows the similarity curves of the eddies in the
716 different scales for the vertical velocity and temperature variances in Nagqu, where
717 (a), (b) and (c) are respectively the similarity curve of eddies of 10 min, 30 min and
718 60 min in the temporal scale; Table 2 also shows the below fitting curve of the
719 similarity of the vertical velocity variance and relevant parameters:

$$720 \phi_i(z/L) = c_1(1 - c_2 z/L)^{1/3}, \quad z/L < 0, \quad (15)$$

$$721 \phi_i(z/L) = c_1(1 + c_2 z/L)^{1/3}, \quad z/L > 0. \quad (16)$$

722 The correlation coefficient and residual in the fitting curve are respectively expressed
723 with R and S .

724 Figure 8 and Table 2 show that the parameters of the fitting curve are greatly
725 different, even if the fitting curve of similarity of the vertical velocity variance for the
726 eddies in the different temporal scales is the same. The correlation coefficients of the
727 fitting curve of similarity of the vertical velocity variance at unstable stratification are
728 large, but the correlation coefficients at stable stratification are small. At unstable
729 stratification, the correlation coefficient of the eddy of 10 min in the temporal scale
730 reaches 0.97, while the residual is only 0.16; at stable stratification, the correlation
731 coefficient reduces to 0.76, but the residual increases to 0.25. With the increase of the
732 temporal scale of the eddy from 10 min (Fig. 8a) to 30 min (Fig. 8b) and 60 min (Fig.
733 8c), the correlation coefficients of similarity of the vertical velocity variance gradually
734 reduce, but the residual increases. The correlation coefficient in 60 min is the
735 minimum; it is only 0.83 at unstable stratification, and only 0.30 at stable
736 stratification.

737 The temperature variance is shown in Fig. 9. The below function is fitted from the
738 eddy of 10 min in the temporal scale at unstable stratification:

$$739 \phi_\theta(z/L_c) = 4.9(1 - 79.7 z/L_c)^{-1/3}. \quad (17)$$

740 As shown in Fig. 9a, the correlation coefficient of the fitting curve is -0.91 and
741 residual is 0.38. With the increase of the temporal scale of the eddy, the discreteness
742 of similarity of the temperature variance is enlarged quickly, and an appropriate curve

743 is not fitted.

744 The above results show that the discreteness of similarity of the turbulence variance
745 is enlarged with the increase of temporal scale of the eddy for either the vertical
746 velocity or temperature. The data points collected during the stationary process
747 basically gather near the fitting curve of the variance similarity, while all data points
748 during the nonstationary process deviate significantly from the fitting curve. However,
749 the similarity of the vertical velocity variance is superior to the similarity of the
750 temperature variance. These observations are the same as the testing conclusions of
751 ergodicity for the eddies in the different scales described in Sections 4.1-4.3. The
752 ergodicity of the small-scale eddy is superior to that of the larger-scale eddy, and the
753 eddy of 10 min in the temporal scale has the best variance similarity function. These
754 observations also signify that when the eddy at the stationary random process satisfies
755 the ergodic conditions, then both the vertical velocity variance and temperature
756 variance of the eddies in the different temporal scales comply with the M-O similarity
757 theory very well; but, as for the eddy during nonstationary random process or with
758 poor ergodicity, the eddy variance deviates from the M-O similarity relation.

759 **5 Discussion**

760 The turbulence in the atmospheric boundary layer is a eddy structure; when the
761 temporal scale of the turbulent eddy in the atmosphere surface layer is about 2 min,
762 the corresponding spatial scale is about 120-240 m; when the temporal scale of the
763 turbulent eddy in the atmospheric boundary layer is about 10 min, the corresponding
764 spatial scale is about 600-1200 m. As for the eddies in the larger temporal and spatial
765 scale, such as the eddies of 30-60 min in the temporal scale, and the corresponding
766 spatial scale is about 1800-3600 m. Spatial scale exceeds the height of the
767 atmospheric boundary layer. As for the atmospheric turbulent eddy below the scale of
768 the atmospheric boundary layer, i.e. the eddy below 1000 m in the spatial scale and
769 below 10 min in the temporal scale, its average ergodic function $Ero(A)$ and ergodic
770 theorem of autocorrelation function $Er(A)$ converge to 0, and they can satisfy the
771 conditions of the average ergodic theorem and autocorrelation ergodic theorem.
772 However, as for the atmospheric turbulent eddy above 2000-3000 m in the spatial
773 scale and above 30-60 min in the temporal scale, its average ergodic function does not
774 converge to 0, that is, it cannot satisfy the conditions of the average ergodic theorem.
775 Therefore, atmospheric turbulent eddy below the scale of the atmospheric boundary

776 layer belongs to the wide ergodic stationary random process, but the atmospheric
777 turbulent eddy above the scale of the atmospheric boundary belongs to the
778 non-ergodic random process, or even the nonstationary random process. These results
779 are the success and offer a promising first step for direct evaluation of ergodic
780 hypotheses for ASL flows.

781 Galanti (2004) proved that the turbulence which was temporally steady and
782 spatially homogeneous was ergodic, but ‘partially turbulent flows’ such as the mixed
783 layer, wake flow, jet flow, flow around and boundary layer flow may be non-ergodic
784 turbulence. According to Galanti, it is clear that the turbulence in the atmospheric
785 boundary layer is ‘partially turbulent flow’, and it may be non-ergodic. However, it
786 has been proven through observational data that the ergodicity of turbulence is related
787 to the scale of the turbulent eddy. The average ergodic theorem and autocorrelation
788 ergodic theorem for the turbulent eddy in the small scale in the atmospheric boundary
789 layer is applicative, and the large-scale eddy was non-ergodic. Since the large-scale
790 eddy in the atmospheric boundary layer may be strongly influenced by the boundary
791 disturbance, it belongs to ‘partial turbulence’; however, since the small-scale eddy in
792 the atmospheric turbulence may be not influenced by boundary disturbance, then it
793 belongs to the ergodic stationary process, which is temporally steady and spatially
794 homogeneous.

795 Monin-Obukhov similarity theory is used for the measurement of atmospheric
796 turbulent flux, which is developed on the conditions of steady time and homogeneous
797 surface. The homogeneous and steady conditions are in line with the ergodic
798 conditions, i.e. temporally steady and spatially homogeneously, as described by
799 Galanti. Therefore, the eddy correlation method for turbulence measurement is based
800 on the ergodic assumption and similarity theory of the atmosphere surface layer. We
801 realized from the above conclusions that the eddy in the large scale may include
802 non-ergodic random process components which exceeded the height of the
803 atmospheric boundary layer. The eddy correlation method for the measurement and
804 calculation of turbulent variance and covariance may not capture the information of
805 the large-scale eddy outside the boundary layer, thus resulting in large error.

806 **6 Conclusion**

807 The below preliminary conclusions are drawn after the ergodicity of turbulence were
808 verified by partial observational data:

809 1. As for the atmospheric turbulent eddy below the scale of the atmospheric
810 boundary layer, i.e. the eddy below 1000 m in the spatial scale and below 10 min
811 in the temporal scale, they can satisfy the conditions of the average ergodic
812 theorem and autocorrelation ergodic theorem. However, as for the atmospheric
813 turbulent eddy above 2000-3000 m in the spatial scale and above 30-60 min in
814 the temporal scale, it cannot satisfy the conditions of the average ergodic
815 theorem.

816 2. Although the atmospheric temperature stratification has different effects on the
817 eddies in the different scales of stability, the ergodicity is mainly related to the
818 local stability of the eddies, and its relation with the stratification stability of the
819 atmospheric boundary layer is not significant.

820 3. When an average of finite time can be used for substituting for the ensemble
821 average of infinite time to calculate the average random variable of the
822 atmospheric turbulence, it may capture the stationary random process
823 information of the eddies below 10 min in the temporal scale and below 1000 m
824 of the atmospheric boundary layer in the spatial scale, which satisfies the
825 conditions of the average ergodic theorem, but it does not completely capture the
826 nonstationary random information of the turbulent eddy above 30 min in the
827 temporal scale and above 2000 m in the spatial scale magnitude. This will
828 inevitably cause a high level of error due to the lack of low frequency component
829 information of the large-scale eddy when the average of finite time is used to
830 substitute for the ensemble average in the observation using the eddy correlation
831 method.

832 4. In the data set composed of observation data collected from the seven stations, the
833 eddies below 30 min in the temporal scale belong to the wide ergodic stationary
834 random processes. The temporal scale and spatial scale of the eddy during the
835 wide ergodic stationary random process have extended from below 10 min to 30
836 min, and from below 1000 m to 2000 m in the data series composed of
837 observation data collected from many stations, compared with the observational
838 data collected from a single station. This signifies that the ergodic assumption is
839 more likely to be satisfied and the observational results produced with the eddy
840 correlation method are much closer to the true values when calculating the
841 turbulence average, variance or turbulent flux with multi-station observation data.

842 5. If the stationary random process of the ergodic conditions is more effectively
843 satisfied, then the turbulence variance of the eddies in the different temporal
844 scales can comply with M-O similarity theory very well; however, the turbulence
845 variance during the non-ergodic random process deviates from the M-O
846 similarity relation.

847

848 *Acknowledgements.* This study is supported by the National Natural Science
849 Foundation of China under Granted Nos. 91025011, 91437103 and National Program
850 on Key Basic Research Project (2010CB951701-2). This work was strongly supported
851 by the Heihe Upstream Watershed Ecology-Hydrology Experimental Research Station
852 and Pingliang Station of Lightning and Hail Research, Cold and Arid Regions
853 Environmental and Engineering Research Institute, Chinese Academy of Sciences. I
854 would like to express my sincere regards for their support, and also thank Dr. Gordon
855 Maclean of NCAR for providing the detailed CASES-99 data used in this study.

856

857 References

858 Aubinet, M., Heinesch, B., and Yernaux M.: Horizontal and vertical CO₂ advection in
859 a sloping forest, *Bound. Lay. Meteor.*, 108, 397-417, 2003.

860 Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance, a practical guide to
861 measurement and data analysis, Springer, Dordrecht, Heidelberg, London, New
862 York, pp438, 2012.

863 Baldocchi, D., Finnigan, J., Wilson, K., Paw, U., and Falge, E.: On measuring net
864 ecosystem carbon exchange over tall vegetation on complex terrain, *Bound. Lay.*
865 *Meteor.*, 96, 257-291, 2000.

866 Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P.,
867 Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B.,
868 Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K.,
869 Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., and
870 Richardson, F.: FLUXNET: a new tool to study the temporal and spatial

871 variability of ecosystem-scale carbon dioxide, water vapor, and energy flux
872 densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.

873 Birkhoff, G. D.: Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA. 18,
874 656-660, 1931.

875 Boltzmann, L.: Analytischer beweis des zweiten Haubtsatzes der mechanischen
876 Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft, Wiener
877 Berichte , 63, 712–732, in WAI, paper 20, 1871.

878 Chang, S. S. and Huynh, G. D.: Analysis of sonic anemometer data from the
879 CASES-99 field experiment. Army Research Laboratory, Adelphi, MD. July 2002.

880 Chen, J., Fan, S., Zhao, C., Xiao, X., Cai, X. and Liu, H.: The underestimation of the
881 turbulent fluxes in eddy correlation techniques, Chinese Journal of Atmospheric
882 Sciences (in Chinese), 30(3), 423-432, 2006.

883 Chen, J., Hu Y., and Zhang L.: Principle of cross coupling between vertical heat
884 turbulent transport and vertical velocity and determination of cross coupling
885 coefficient, Adv. Atoms. Sci., 23 (4), 639-648, 2007.

886 Chen, J., Hu, Y., Lu, S., and Yu, Ye.: Experimental demonstration of the coupling
887 effect of vertical velocity on latent heat flux, Sci. China. Ser. D-Earth Sci., 56,
888 1-9, 2013.

889 Eichinger, W. E., Parlange, M. B., Katul, G. G.: Lidar measurements of the
890 dimensionless humidity gradient in the unstable atmospheric surface layer,
891 Lakshmi, V., Albertson, J. and Schaake, J., Koster, R. D., Duan, Q., Land Surface
892 Hydrology, Meteorology, and Climate, American Geophysical Union,
893 Washington, D. C. 7–13, 2001.

894 Finnigan, J. J.: A streamline coordinate system for distorted turbulent shear flows, J.
895 Fluid Mech. 130, 241–258, 1983.

896 Finnigan, J. J. and Brunet, Y.: Turbulent airflow in forests on flat and hilly terrain. In:
897 Coutts, M P, Grace J (Eds.), Wind and trees. Cambridge University Press,
898 London, 1995.

899 Finnigan, J. J.: A re-evaluation of long-term flux measurement techniques part II:
900 coordinate systems, *Bound. Lay. Meteor.*, 113(1), 1-41, 2004.

901 Foken, T., G"ockede, M., Mauder, M., Mahrt, L., Amiro, B. D., and Munger, J. W.:
902 Post-field data quality control, in: *Handbook of micrometeorology: a guide for*
903 *surface flux measurement and analysis*, Lee, X., Massman, W. J., and Law, B.:
904 Kluwer, Dordrecht, 181-208, 2004.

905 Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of
906 the energy balance closure problem. *Atmos. Chem. Phys.*, 6, 4395-4402, 2006.

907 Galanti, B. and Tsinober, A.: Is turbulence ergodic? *Physics Letters A*, 330, 173–18,
908 2004.

909 Geider, R. J., Delucia, E. H., Falkowski, P. G., Finzi, A. C., Grime, J. P., Grace, J.,
910 Kana, T. M., La Roche, J., Long, S. P., Osborne, B. A., Platt, T., Prentice, I. C.,
911 Raven, J. A., Schlesinger, W. H., Smetacek, V., Stuart, V., Sathyendranath, S.,
912 Thomas, R. B., Vogelmann, T. C., Williams, P. and Woodward, F. I.: Primary
913 productivity of planet earth: biological determinants and physical constraints in
914 terrestrial and aquatic habitats, *Glob. Change Biol.*, 7(8), 849-882, 2001.

915 Higgins, C. W., Katul, G. G., Froidevaux, M., Simeonov, V. and Parlange, M. B.:
916 Atmospheric surface layer flows ergodic? *Geophy. Res. Let.*, 40, 3342-3346,
917 2013.

918 Hu, Y.: Convergence movement influence on the turbulent transportation in
919 atmospheric boundary layer, *Adv. Atoms. Sci.*, 20(5), 794-798, 2003.

920 Kaimal, J. C. and Gaynor, J. E.: Another look at sonic thermometry, *Bound. Lay.*

921 Meteor., 56, 401–410, 1991.

922 Kaimal, J. C. and Wyngaard, J. C.: The Kansas and Minnesota experiments, Bound.

923 Lay. Meteor., 50, 31-47, 1990.

924 Katul, G. G., Hsieh, C. I.: A note on the flux-variance similarity relationships for heat

925 and water vapour in the unstable atmospheric surface layer, Bound. Lay. Meteor., 90,

926 327–338, 1999.

927 Katul, G., Cava, D., Poggi, D., Albertson, J., and Mahrt, L.: Stationarity, homogeneity,

928 and ergodicity in canopy turbulence, Handbook of micrometeorology a guide for

929 surface flux measurement and analysis, Lee, X., Kluwer Academic Publishers,

930 New York, 161–180, 2004.

931 Krengel, U.: Ergodic theorems, de Gruyter, Berlin, New York, 363, 1985.

932 Lee, X.: On micrometeorological observations of surface-air exchange over tall

933 vegetation, Agric. For. Meteorol., 91, 39-49, 1998.

934 Lennaert van, V., Shigeo, K., and Genta, K.: Periodic motion representing isotropic

935 turbulence, Fluid Dyn. Res., 38, 19–46, 2006.

936 Li, X., Hu, F., Pu, Y., Al-Jiboori, M. H., Hu, Z., and Hong, Z.: Identification of

937 coherent structures of turbulence at the atmospheric surface layer, Adv. Atoms.

938 Sci., 19(4), 687-698, 2002.

939 Mahrt, L., Ek, M.: Spatial variability of turbulent fluxes and roughness lengths in

940 HAPEX-MOBILHY, Bound. Lay. Meteor., 65, 381-400, 1993.

941 Malhi, Y., McNaughton, K., and Von Randow, C.: Low frequency atmospheric

942 transport and surface flux measurements, in: Handbook of micrometeorology,

943 Lee, X., Massman, W. J., and Law, B., Springer, 101-118, 2004.

944 Martano, P.: Estimation of surface roughness length and displacement height from

945 single-level sonic anemometer data, J. Appl. Meteorol., 39(5), 708–715, 2002.

946 Mattingly, J. C.: On recent progress for the stochastic Navier Stokes equations,
947 Journées équations aux dérivées partielles, Univ. Nantes, Nantes, Exp. No. XI,
948 1-52, 2003.

949 McMillen, R. T.: An eddy correlation technique with extended applicability to non
950 simple terrain, *Bound. Lay. Meteor.*, 43, 231-245, 1988.

951 Moore, C. J.: Frequency response corrections for eddy correlation systems, *Bound.*
952 *Lay. Meteor.*, 37, 17-35, 1986.

953 Neumann, J. V.: Proof of the quasi-ergodic hypothesis, *Mathematics Proc. N. A. S.*,
954 18, 70-82, 1932.

955 Padro, J.: An investigation of flux-variance methods and universal functions applied
956 to three land-use types in unstable conditions, *Bound. Lay. Meteor.*, 66, 413–425,
957 1993.

958 Panofsky, H, A,, Lenschow, D, H,, and Wyngaard, J. C.: The characteristics of
959 turbulent velocity components in the surface layer under unstable conditions. *Bound.*
960 *Lay. Meteor.*, 11, 355–361, 1977.

961 Papoulis A. and Pillai S. U.: *Probability, random variables and stochastic processes.*
962 McGraw-Hill. New York. 666, 1991.

963 Poulos, G. S., Blumen, W., Fritts, D, C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo,
964 C., Banta, R., Newsom, R., Cuxart, J., Terradellas, E., and Balsley, Ben.: CASES-99:
965 a comprehensive investigation of the stable nocturnal boundary layer. *Bull. Amer.*
966 *Meteor. Soc.*, 83, 555–581, 2002.

967 Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., and
968 Hibbard, K. A.: A global terrestrial monitoring network integrating tower fluxes,
969 flask sampling, ecosystem modeling and EOS satellite data, *Remote Sens. Environ.*,
970 70(1), 108-127, 1999.

971 Sakai, R. K., Fitzjarrald, D. R., and Moore, K. E.: Importance of low-frequency
972 contributions to eddy fluxes observed over rough surfaces. *J. Appl. Meteorol.*, 40,
973 2178–2192, 2001.

974 Schotanus, P., Nieuwstadt, F. T. M., and de Bruin, H. A. R.: Temperature measurement
975 with a sonic anemometer and its application to heat and moisture fluxes, *Bound.*
976 *Lay. Meteor.*, 26, 81–93, 1983.

977 Segal, M., Avissar, R., McCumber, M. C., and Pielke, R. A.: Evaluation of vegetation
978 effects on the generation and modification of mesoscale circulations, *J. Atmos.*
979 *Sci.*, 45, 2268-2292, 1988.

980 Staebler, R. M., Fitzjarrald, D. R.: Observing subcanopy CO₂ advection, *Agric. Forest*
981 *Meteorol.* 122, 139-156, 2004.

982 Stull, R. B.: An introduction to boundary layer meteorology. Kluwer Academic Publ.
983 Dordrecht. 670, 1988.

984 Sun, J., Desjardins, R., Mahrt, L., MacPherson, I.: Transport of carbon dioxide, water
985 vapor and ozone over Candle Lake, *J. Geophys. Res.*, 103, 25873-25885, 1997.

986 Uffink, J.: Boltzmann'S wofk in statistical physics, *Stanford encyclopedia of*
987 *philosophy*, Edward, N. Z., 2004.

988 Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of the flux measurements for
989 density effects due to heat and water vapour transfer, *Q. J. R. Meteorol. Soc.*, 106,
990 85–100, 1980.

991 Wilczak, J. M., Oncley, S. P., Stage, S. A.: Sonic anemometer tilt correction
992 algorithms. *Bound. Lay. Meteor.*, 99(1), 127-150, 2001.

993 Wyngaard, J. C.: Turbulence in the atmosphere, *getting to know turbulence*,
994 Cambridge University Press, 2010.

995 Zhang Q. and Li H.: The relationship between surface energy balance unclosure and

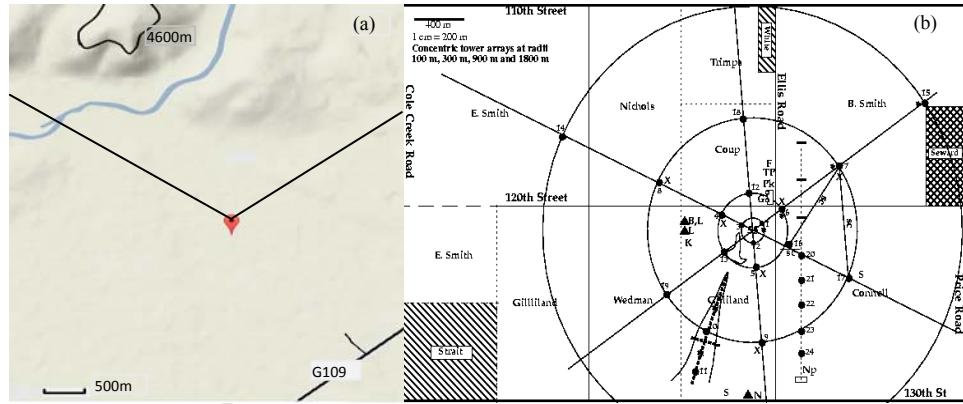

996 vertical sensible heat advection over the loess plateau, *Acta Phys. Sin.*, 59(8),
997 5888-5895, 2010.
998 Zuo, H., Xiao X., Yang Q., Dong L., Chen J., Wang S.: On the atmospheric movement
999 and the imbalance of observed and calculated energy in the surface layer, *Sci. China.*
1000 Ser. D-Earth Sci.

Table 1 Local Stability Parameter $(z-d)/L_c$ of the Eddies in Different Temporal Scales on August 25

Time	3:00-4:00	7:00-8:00	14:00-15:00
Eddy scale			
≤ 2 min	0.59	0.52	-0.38
≤ 3 min	0.31	0.38	-0.44
≤ 5 min	0.28	0.16	-0.40
≤ 10 min	-0.01	0.15	-0.34
≤ 30 min	-0.04	-0.43	-0.27
≤ 60 min	-0.07	-1.29	-0.30

Table 2 Parameters of Similarity and Fitting Curve of Vertical Velocity Variance

	10 min		30 min		60 min	
	$z/L < 0$	$z/L > 0$	$z/L < 0$	$z/L > 0$	$z/L < 0$	$z/L > 0$
c_1	1.08	1.17	1.06	1.12	0.98	1.06
c_2	4.11	3.67	3.64	3.27	4.62	2.62
R	0.97	0.76	0.94	0.56	0.83	0.30
S	0.19	0.25	0.17	0.27	0.25	0.31

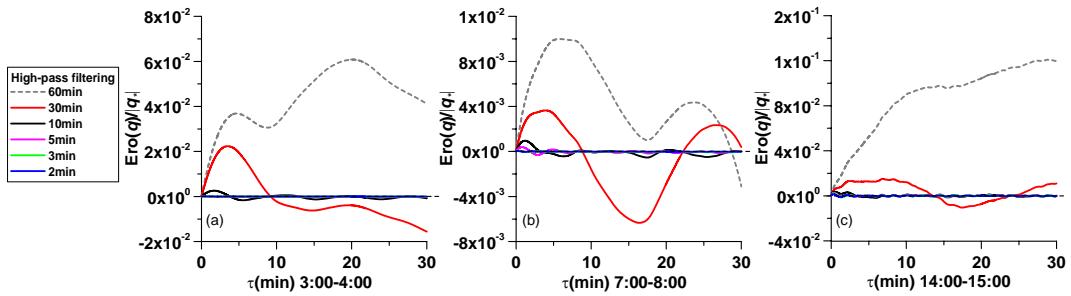


Figure 4. Variation of average ergodic function $Ero(q)$ of the eddies in the different scales of humidity with relaxation time.

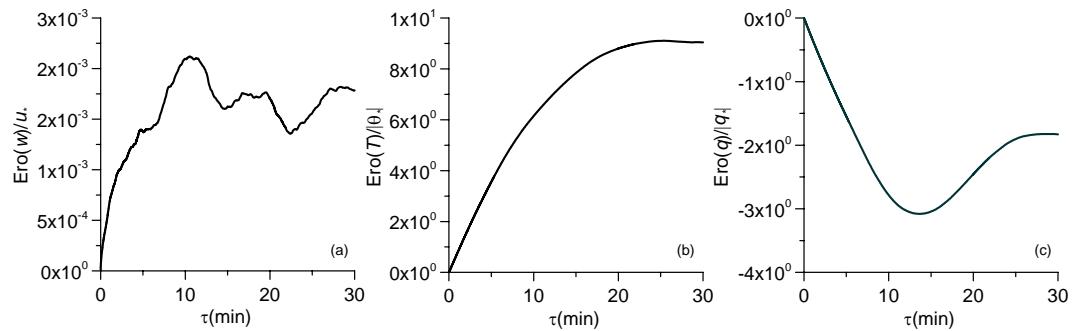


Figure 5. Variation of average ergodic function of unfiltered vertical velocity (a), temperature (b) and humidity (c) during 14:00-15:00 with relaxation time.

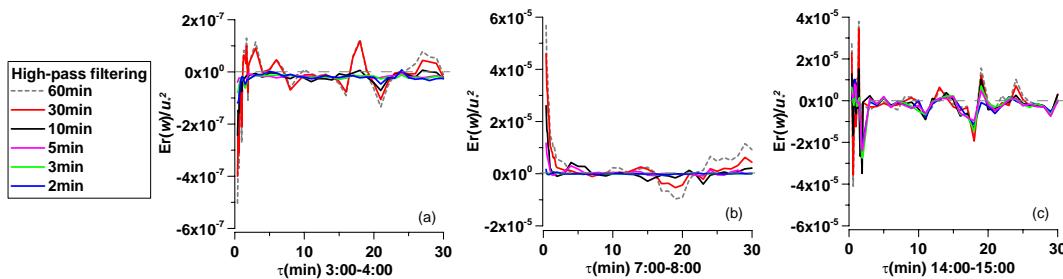


Figure 6. Variation of ergodic theorem of autocorrelation function of the eddies in the different scales of vertical velocity with relaxation time.

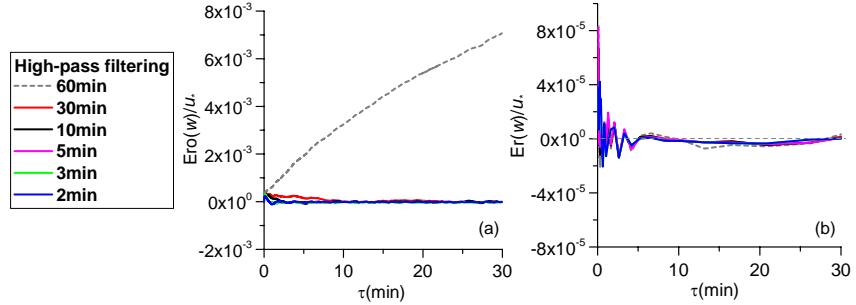


Figure 7. Variation of average ergodic function (a) and ergodic theorem of autocorrelation function (b) of the eddies in the different scales of the vertical velocity with relaxation time at the seven observation locations of CASES-99.

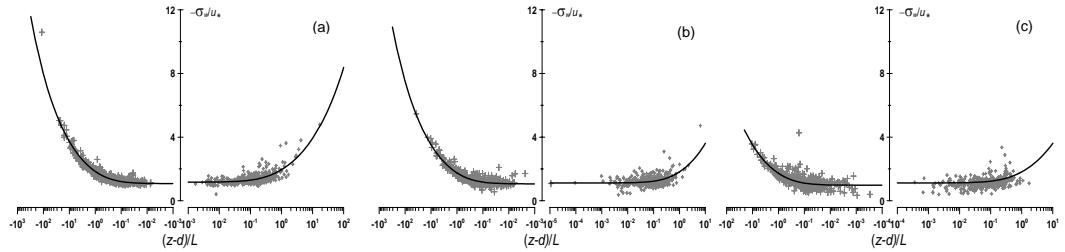


Figure 8. Similarity relation of vertical velocity variances of eddies in different scales of Nagqu; Panels (a), (b) and (c) respectively represent the similarity of eddies of 10 min, 30 min and 60 min in the temporal scale.

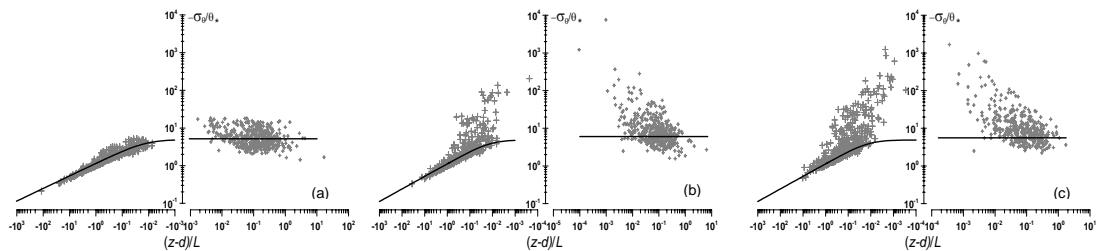


Figure 9. Similarity relations of temperature variance of eddies in different scales of Nagqu; Panels (a), (b) and (c) respectively represent the similarity of the eddies of 10 min, 30 min and 60 min in the temporal scale.