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3National Institute of Information and Communications Technology, 4-2-1 Nukui-kitamachi,
Koganei, Tokyo, Japan

Correspondence to: P. Eriksson
(patrick.eriksson@chalmers.se)

Abstract. Retrievals of cloud ice mass and humidity from the SMILES and Odin-SMR sub-millimetre

limb sounders are presented and example applications of the data are given. SMILES data give an

unprecedented view of the diurnal variation of cloud ice mass. Mean regional diurnal cycles are

reported and compared to some global climate models. Some improvements in the models regarding

diurnal timing and relative amplitude were noted, but the models’ mean ice mass around 250 hPa is

still low compared to the observations. The influence of the ENSO state on the upper troposphere is

demonstrated using 12 years of Odin-SMR data.

The same retrieval scheme is applied for both sensors, which gives low systematic differences

between the two datasets. A special feature of this Bayesian retrieval scheme, of Monte Carlo

integration type, is that values are produced for all measurements but for some atmospheric states

retrieved values only reflect a priori assumptions. However, this “all-weather” capability allows a

direct statistical comparison to model data, in contrast to many other satellite datasets. Another

strength of the retrievals is the detailed treatment of “beam filling” that otherwise would cause large

systematic biases for these passive cloud ice mass retrievals.

The main retrieval input are spectra around 635/525 GHz from tangent altitudes below 8/9 km for

SMILES/Odin-SMR, respectively. For both sensors, the data cover the upper troposphere between

30◦S and 30◦N. Humidity is reported both as relative humidity and volume mixing ratio. The vertical

coverage of SMILES is restricted to a single layer, while Odin-SMR gives some profiling capability

between 300 and 150 hPa. Ice mass is given as the partial ice water path above 260 hPa, but for

Odin-SMR ice water content, estimates are also provided. Beside a smaller contrast between most
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dry and wet cases, the agreement to Aura MLS humidity data is good. In terms of tropical mean

humidity, all three datasets agree within 3.5 %RHi. Mean ice mass is about a factor 2 lower compared

to CloudSat. This deviation is caused by the fact that different particle size distributions are assumed,

combined with saturation and a priori influences in the SMILES and Odin-SMR data.

1 Introduction

Atmospheric ice particles constitute a key factor in Earth’s climate system for two main reasons.

First, clouds consisting of such particles have a strong impact on the radiation balance. For example,

the presence of high altitude ice clouds decreases the average outgoing longwave radiation over

extensive areas by > 40 Wm−2, especially around the Inter-tropical Convergence Zone (see e.g.

Hartmann, 1993). At night the resulting effect is a heating, while during day time the simultaneous

increase in albedo causes a similar or even larger counteracting cooling effect. Hence, it is important

to characterise and understand diurnal cycles in the processes generating these clouds. Second, ice

particles are an essential part of the atmospheric water cycle, as e.g. they take part in the initiation of

rain via the Bergeron process, and at higher altitudes ice can be a significant water reservoir (Ekström

and Eriksson, 2008). To investigate the partitioning between gas and solid water in the atmosphere,

simultaneous observations of both phases are, of course, advantageous, but this capability is rarely

found among present satellite retrievals.

A better understanding of the processes discussed above, including the associated validation of

atmospheric models, requires global observations by satellites. The direct radiative impact of ice

clouds is best quantified using measurements in the optical and infrared regions. This is due to the

fact that the main climatic radiative fluxes are found in these two wavelength regions. On the other

hand, as cloud signatures in the optical and infrared regions are dominated by small particles in

the top cloud layer, these measurements have limitations when determining total ice masses. Cloud

penetration is achieved by microwave sensors, such as the CloudSat radar (Stephens et al., 2002),

that is providing the first global measurements of ice water content.

CloudSat operates at 94 GHz. Sufficient sensitivity at this relatively low frequency can be ob-

tained for active sounding. Passive measurements below 200 GHz provide mainly detection of ice

particles that can be classified as “snow” (see e.g. Evans and Stephens, 1995), whereas sensitivity to

“cloud ice” particles requires shorter wavelengths. Accordingly, instruments dedicated to cloud ice

mass retrieval that have channels above 200 GHz have been proposed (Evans et al., 1999; Buehler

et al., 2007). Following these mission proposals the Ice cloud Imager (ICI) is now considered as an

instrument for the second series of Metop satellites. ICI will extend the usage of microwaves for

operational observations by including channels up to 664 GHz (D’Addio et al., 2014). A secondary

objective of ICI is to improve on measurements of upper tropospheric water.

Satellite measurements at frequencies above 200 GHz are not completely new. The wavelength
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region around 600 GHz (λ= 0.5 mm) has for some time been used for limb sounding by the Odin-

SMR (since 2001, Murtagh et al. (2002)), Aura MLS (since 2004, Waters et al. (2006)) and SMILES

(2009-2010, Kikuchi et al. (2010)) instruments. These limb sounders perform vertical scanning

sequences where the tangent point is moved from about 100 km down to about 0 km. Cloud ice

mass retrievals have been presented for all three instruments (Wu et al., 2006; Eriksson et al., 2007;

Millán et al., 2013). These retrievals change character around a tangent altitude of about 10 km (Wu

et al., 2005; Eriksson et al., 2011b), and the range below this altitude limit is in this paper denoted

as low tangent altitudes. In short, for high tangent altitudes, the radiative background is cold space

and the presence of clouds results in higher brightness temperatures. On the other hand, for low

tangent altitudes, clouds cause a decrease in brightness temperatures as they redirect comparably

high emission from the lower troposphere.

This study considers the low tangent altitude data recorded by SMILES and Odin-SMR, and uses

a common retrieval algorithm that provides combined estimates of humidity and ice water mass.

This algorithm was introduced by Rydberg et al. (2009) and applied to Odin-SMR. For SMILES,

earlier retrievals are restricted to Millán et al. (2013), who only reported ice masses using a less

advanced retrieval methodology.

Both Odin-SMR and Aura MLS, as well as most existing space-based microwave radiometers,

are in sun-synchronous orbits and thus produce observations at fixed local solar times. This gives

poor coverage of diurnal variations. Data from different sensors have been combined to obtain

better sampling of diurnal cycles (e.g. Eriksson et al., 2010), but this approach is very sensitive to

differences in systematic errors of the sensors included. SMILES differs in this regard as it flew on

the International Space Station (ISS). While this does not give an instantaneous full diurnal coverage,

over some months the measurements inside a region are fairly equally distributed in local time over

24 hours. Hence, seasonally averaged diurnal cycles can be obtained by SMILES. In addition,

SMILES employed superconducting technology to achieve very low noise and stable measurement

data (Ochiai et al., 2013).

The objective of this paper is two-fold. The first is to introduce the new SMILES dataset, and

at the same time provide updated results for Odin-SMR. Both these datasets are relatively small in

size but complement other similar satellite measurements in regards to local time of measurements

(particularly SMILES) and the length of the time-series (Odin-SMR). Agreement to the Aura MLS

(relative humidity) and CloudSat (ice mass) datasets is analysed carefully. The second objective is

simply to demonstrate that the SMILES and Odin-SMR retrievals are of interest for various appli-

cations. Emphasis is given to regional diurnal cycles of humidity and cloud ice mass, where some

results from Eriksson et al. (2010) are assessed and updated. The impact of the ENSO (El Niño -

Southern Oscillation) state on upper tropospheric humidity and ice mass is also considered.

3



2 Satellite data

2.1 SMILES

The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the Interna-

tional Space Station (ISS) measured atmospheric emission around 625 and 650 GHz from October

12 2009 until April 21 2010. SMILES was developed by National Institute of Information and

Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA). The main

scientific objectives of SMILES were to obtain highly precise measurements of middle atmospheric

minor constituents, such as O3 (including isotopologues), HCl, ClO, HO2, BrO, HNO3, and HOCl,

and to determine the diurnal variation of these species. It was also known prior to launch that

SMILES was sensitive to upper tropospheric humidity and ice clouds, but the instrument was not

optimised for such observations. Kikuchi et al. (2010) provides an overview of the SMILES mission,

Ochiai et al. (2013) gives an overview of the calibration of SMILES, and standard level 2 products

are described by Takahashi et al. (2010) and Baron et al. (2011).

The inclination of the ISS orbit is 51.6◦ to the equator, and ISS had at the time of SMILES’

operation an altitude between 333 and 370 km. SMILES measurements cover latitudes between

approximately 38◦S to 65◦N, but only measurements within 30◦S to 30◦N are considered for this

study. A unique characteristic of the measurement coverage of SMILES is the local time variation.

The local time of observations for a given region shifts by 24 hour in about 2 months.

SMILES measured in three 1.2 GHz wide frequency bands: 624.32 - 625.52 (Band A), 625.12 -

626.32 (Band B), and 649.12 - 650.32 GHz (Band C), but only two of them were measured simulta-

neously, with two acousto-optical spectrometers. Band combinations were altered on a time-share

basis. Frequencies selected for this study are presented in Table 1. The receiver noise temperature

was about 350 K. The size of the antenna beam at the tangent point was about 3 and 6 km in the

vertical and horizontal direction, respectively. The scanning was performed from altitudes below the

surface up to around 100 km, at an angle of about 45◦ from the orbital plane and with a repetition

period of 53 s (∼1630 scans/day). The retrievals presented are based on individual spectra from the

tangent heights between -30 and 8 km. There is little overlap in covered air volume between the

spectra, which is due to the out-of-orbit scanning.

SMILES L1b data used are of calibration version 008. In this version, the determination of both

brightness temperatures and tangent heights has been improved compared to earlier versions (Ochiai

et al., 2013). The tangent height accuracy is now about 140 m but occasionally, the errors can be

larger than 200 m. The largest error source in the intensity calibration scheme is the gain non-

linearity (∼1 K), which is well above the thermal noise level and is ≈ 0.15 K over the frequency

bands selected. The SMILES level 2 data introduced in this article, as well as further documentation

(Kasai et al., 2014), can be downloaded from smiles.nict.go.jp/pub/data/.
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Table 1. SMILES and SMR frequency bands used expressed in GHz. Radiative transfer calculations are

performed only for the centre frequency, while the measured radiances are averaged over the ranges specified.

Sensor Frequency Band name

624.61±0.005 A

SMILES 626.23±0.005 B

649.61±0.005 C

SMR 501.38±0.20 1

544.43±0.10 2

2.2 Odin-SMR

When launched 2001, SMR became the first satellite instrument to observe our atmosphere in the

frequency range above 300 GHz. Murtagh et al. (2002) gives an overview of Odin’s atmospheric

mission, and the performance of the SMR (Sub-Mm Radiometer) instrument regarding its standard

strato- and mesospheric retrievals is summarised by Merino et al. (2002). The measurements used

for these retrievals and the most relevant technical details are presented in Ekström et al. (2007)

and Eriksson et al. (2007). These two articles describe version 1 of the retrievals. Version 2.0

was introduced by Rydberg et al. (2009). The present version is 2.1, and these SMR retrievals are

available at odin.rss.chalmers.se/special-datasets.

Odin is in a sun-synchronous orbit with an altitude of about 600 km and an ascending node around

18:00 h. SMR has four receiver chains operating at frequencies between 486 and 581 GHz. The two

autocorrelator spectrometers give an instantaneous frequency coverage of 1.6 GHz. A number of

observation modes are applied to observe all spectroscopic features of interest. For these retrievals,

only data from the “stratospheric mode”, frequency mode 1 and 2, are used. Exact frequencies are

found in Table 1. The size of the antenna beam at the tangent point is about 2 km in both the vertical

and horizontal direction. Odin scans the atmosphere by a rotation of the complete platform, mea-

suring during both down- and upward direction. A scan sequence from mesospheric altitudes down

to 0 km and back takes about 250 s. The retrievals presented use single spectra for tangent altitudes

below 9 km. Due to the scanning pattern, such spectra are found in groups covering partly overlap-

ping air-volumes. These groups of spectra are separated by about 250 s (or ∼2000 km horizontally).

In addition, the stratospheric mode is operated only roughly 30 % of the time. This gives in total a

relatively low data volume. On the other hand, the Odin satellite has a long time coverage, it has

so far been operational over 12 years. The results presented cover the period Jan 1 2002 to Dec 31

2013.
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2.3 CloudSat

CloudSat, launched 2006, carries the first space-based cloud radar. Sensitivity to cloud ice and liquid

particles is achieved by using a higher frequency, 94 GHz, compared to radars targeting precipitation.

The footprint of the radar has a diameter around 1.5 km, and the vertical resolution is 500 m. No

across-track scanning is performed. See Stephens et al. (2002) for further technical details. The

CloudSat 2B-CWC-RO retrieval product (Austin et al., 2009) was selected for this study. This

dataset is solely based on the CloudSat radar, which is an advantage as it gives a sensitivity with

respect to ice particle sizes similar to the one for SMR and SMILES (Eriksson et al., 2008). The

2B-CWC-RO can be downloaded from www.cloudsat.cira.colostate.edu. CloudSat is presently only

performing measurements during day light conditions, due to a battery failure 2011, but is otherwise

fully functional.

2.4 Aura MLS

Aura MLS is to date the most ambitious microwave limb sounding mission, covering frequency

bands around 118, 190, 240, 640 and 2500 GHz (Waters et al., 2006). The Aura satellite was

launched in 2004 and MLS is still in operation. Aura, as well as CloudSat, is part of the A-train

satellite constellation. Among all MLS retrieval quantities, only the relative humidity product is used

in this study. An introduction to the dataset is found at mls.jpl.nasa.gov/products/rhi product.php,

and detailed information is given by Read et al. (2007). The vertical resolution of these retrievals

is roughly 4 km, and the along-track resolution ∼200 km. For altitudes around 200 hPa, the sys-

tematic errors are estimated to 30 % (a relative value). The data were quality filtered according to

instructions in the associated documentation.

3 The retrievals

3.1 Quantities

The target of the retrievals is atmospheric water, both in its gaseous and ice phase. Water vapour

is primarily retrieved as the relative humidity with respect to ice, in percent (%RHi), but volume

mixing ratio (ppm) retrievals are also considered. Cloud ice mass is throughout the paper reported

as partial ice water paths (pIWP; gm−2). That is, the vertical integral of the ice water content (IWC;

gm−3) above some altitude is given. Two altitude limits are used, 260 hPa and 12.5 km, with the

corresponding column value denoted as pIWP260hPa and pIWP12.5km, respectively.

3.2 Method

Rydberg et al. (2009) applied a Bayesian inversion strategy, where the solution is found by Monte

Carlo integration (MCI) using a “retrieval database”. More precisely, the retrieved state vector, x̂, is
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calculated as (Evans et al., 1995; Kummerow et al., 1996)

x̂=

∑n
i=1wixi∑n
i=1wi

, (1)

where n is the size of the database and xi is the state vector for each case in the database. The

weights, wi, can be seen as (non-normalised) a posteriori probabilities for each database case. These

are calculated as

wi = exp

(
− (y−yi)

TS−1e (y−yi)

2

)
, (2)

where y is the measurement to be inverted, yi is the simulated measurement for database case i and

Se is the covariance matrix of observational errors. This general retrieval approach is commonly

applied for microwave precipitation retrievals (e.g. Petty and Li, 2013).

The same database is applied for both humidity and ice mass, and it contains simulations covering

both “clear-sky” and “cloudy” conditions. The measurement vector y is discussed for each sensor

below. The MCI method is very flexible with regard to the state vector (x), e.g. it can include the

same quantity expressed in several units simultaneously with very little extra calculation burden. In

our implementation all quantities of interest are retrieved in parallel. More precisely, the state vector

contains the vertical profile of humidity, in both %RHi and volume mixing ratio, and the vertical

profile of ice water content, as well as pIWP260hPa. For Odin-SMR also pIWP12.5km is appended to

x.

For MCI, the inversion performance is largely determined by how closely the database mimics the

conditions of the real atmosphere. In this context, the main challenge is to incorporate realistic cloud

structures in the database. The retrievals can be performed without any a priori information about

vertical cloud correlations (Eriksson et al., 2007), but such information is still beneficial. Much more

critical is a priori knowledge of horizontal structures to decrease any systematic impact of “beam

filling” (see e.g. Davis et al., 2007). The origin to the beam filling effect is horizontal inhomogeneity

of the cloud field inside the footprint, but the final effect of beam filling depends on the degree of non-

linearity between the cloud variables and changes in radiance. If horizontally homogeneous cloud

fields are assumed, the beam filling results in that cloud mass retrievals systematically underestimate

the corresponding true footprint averaged value. This is the case as if some amount of ice is gathered

in a small volume, this gives a smaller impact on measured brightness temperature than if the same

ice mass is evenly distributed over the sensor’s footprint.

The beam filling problem is decreased by incorporating CloudSat observations. Three dimen-

sional (3-D) cloud fields are created from the CloudSat two dimensional soundings by a stochastic

method assuming horizontally isotropic statistics (Venema et al., 2006). This approach in combina-

tion with the limb sounding geometry imposes a constraint on a forward model capable of handling

3-D radiative transfer in a spherical geometry. This is handled by version 2 of ARTS (Atmospheric

Raditaive Transfer System, Eriksson et al. (2011a)). ARTS is applied, using the reversed Monte

Carlo scattering (Davis et al., 2005) and absorption lookup (Buehler et al., 2011) modules. That is,
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series of CloudSat profiles of backscattering data form the basis to generate local 3-D atmospheric

scenarios. For each such scenario, Odin-SMR and SMILES measurements are simulated, consider-

ing both vertical and horizontal structures in the atmosphere by performing 3-D radiative transfer.

The retrieval database contains simulations for 12 040 scenarios. CloudSat data were picked ran-

domly between 30◦S and 30◦N and, accordingly, the database aims at reflecting the true atmospheric

variability inside the Tropics. Radiative transfer calculations are only performed for the centre fre-

quencies listed in Table 1, while the satellite observations are averaged over the frequency ranges to

decrease the impact of thermal noise. The vertical variation of the antenna response (integrated in

the azimuth dimension) is considered.

No CloudSat retrievals are involved, it is the basic observation of backscattering that forms the

basis for the final 3-D cloud fields. These 3-D fields are converted to radiative properties (i.e. single

scattering properties) by assuming all particles to be solid ice spheres and that the particle size

distribution follows the parametrisation derived by McFarquhar and Heymsfield (1997). However,

these steps result in that an alternative ice water content retrieval is obtained, that is used in Sec. 4.2.1.

3.3 Special considerations for Odin-SMR

As in Rydberg et al. (2009), the measurement vector (y in Eq. 2) has four elements. First two

elements are the brightness temperatures at 501.38 and 544.43 GHz (Table 1). The corresponding

variance in Se is for 501.38 GHz set to 22 K2, and for 544.43 GHz it is set to 3.52 or 2.52 K2

depending on integration time. Ideally, these variances should follow the thermal noise (and would

then be much lower), but is for frequency averaged SMR data mainly determined by remaining

effects of gain variations.

The satellite pointing obtained from attitude data is treated as a measurement and is inserted as

element three in y. In terms of tangent altitude, the uncertainty of the pointing is assumed to have

a standard deviation (1σ) of 200 m. The temperature at the point where the satellite line-of-sight

passes 200 hPa is used as an external measurement. The temperature is taken from ECMWF’s

analysis and is assumed to have an uncertainty of 1 K (1σ). The matrix Se is set to be diagonal, i.e.

the observational errors are assumed to be uncorrelated.

A rough relation between cloud types and measured brightness temperatures is included in Fig. 1.

In Rydberg et al. (2009) vertical profiles of %RHi and IWC were retrieved. These quantities are still

produced, but are not considered in this article. Instead the SMILES retrieval products (see below)

were added to the output. These retrievals are obtained as a direct output from MCI (not through a

post-processing of the %RHi and IWC profiles).

The main difference between Rydberg et al. (2009) and this version of the Odin-SMR retrievals is

that a new version of L1b data is used. SMR has an internal hot load target used for calibration. This

target is observed at the upper and lower end points of the vertical scans. Consequently, a calibration

observation is performed in the middle of each group of spectra used here. The movement of an
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internal mirror can affect the calibration, with a negative impact on final atmospheric spectra. Com-

pared to previous L1b version, a more adequate and standardised removal of spectra that are possibly

affected of the mirror movement is now performed. The software also provides more information

about the calibration of each spectrum, thereby providing a basis for additional quality filtering.

A strong ozone transition (544.86 GHz) in the frequency mode 2 band allows further quality

filtering. For the tangent altitudes considered in this study, the brightness temperature around the

centre of this transition shows relatively small variations. This is a consequence of several factors

including that this part of frequency mode is not affected by tropospheric clouds due to high ozone

absorption in the stratosphere. As a consequence, the transition allows to check that spectra have

radiances of expected magnitude. Further details of this filtering approach are found in Kasai et al.

(2014).

All remaining data are kept, giving 0.68 million retrievals for the period 2002 - 2013. Versions

2.1 and 2.0 of the retrievals agree closely with respect to mean values. Differences are limited to a

smaller set of individual data points.

3.4 Special considerations for SMILES

For a more detailed discussion we refer to Kasai et al. (2014). This theoretical basis document is

found at the same web site as the SMILES level 2 data (see Sec. 2.1).

For tropospheric altitudes, the measurement information within the SMILES bands is highly cor-

related. The centre panel of Fig. 1 shows that the brightness temperatures of band A and B are almost

identical. This is not surprising as the band A and B frequencies are separated by less than 2 GHz,

and are not close to any significant water vapour transition. Hence, the two bands provide basically

identical information. Some differences are found between band A and C (Fig. 1, right panel). The

main reason for the differences is that the sensitivity of band C is shifted downward in altitude by

about 500 m. The fact that the scattering is stronger in band C, having a higher frequency, can also be

involved. This means that band C together with band A or B (A+C or B+C) give more information

than A+B, or any of the bands alone, but still less than provided by the two SMR frequencies.

Simulations were performed to identify suitable retrieval parameters. It was confirmed that there

is no basis for profile retrievals. Instead, it was judged that the column ice mass above 260 hPa

(pIWP260hPa) and the mean relative humidity (%RHi) between 260 and 200 hPa are the most suit-

able parameters for these SMILES data.

The retrieval database was created from the same 3-D atmospheric scenarios as used for SMR

and the same overall calculation procedure was applied. The size of the 3-D scenarios was selected

originally to just cover simulations of tangent altitudes between -5 and 14 km from a single sensor

position (the propagation path of lower and higher tangent altitudes ends up outside the atmospheric

volume having detailed 3-D data). As SMILES covers a wider tangent height range (-30 to 8 km

considered here) than SMR, it was necessary to perform simulations from different sensor positions,
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and for practical reasons the simplest solution was then to form three retrieval databases, each appli-

cable for a range of tangent altitudes: -30 to -4, -4 to 4, and 4 to 8 km, respectively. The relatively

small size of the two uppermost altitude ranges is a consequence of that the antenna pattern has a

vertical extension and that the databases must also contain spectra for tangent altitudes outside the

nominal range. At each simulation position, SMILES is placed 350 km above ground. The gas

species included in the forward model calculations are H2O, N2, N2O, O2, O3, ClO, and HNO3.

The measurement vector and its covariance matrix, to be applied in Eq.2, are almost identical to

the ones for SMR. The first two elements are the brightness temperatures from two SMILES bands.

The estimated uncertainty for these values is 1 K (1σ). The third and fourth elements are treated

exactly as for SMR.

The spectra are quality filtered using several variables that are part of the L1b data. As for SMR, an

ozone transition is also used to identify erroneous data. The ozone transition is found at 625.37 GHz,

a frequency covered by both band A and B. However, this ozone transition has a lower optical thick-

ness than the one used for SMR, and the filtering must consider some influence from tropospheric

altitudes. Spectra removed by this quality check are judged to correspond to outliers in determination

of the pointing.

3.5 Error estimates

3.5.1 Relative humidity

The errors of SMR relative humidity data are estimated and discussed in Ekström et al. (2007) and

Rydberg et al. (2009). This is repeated for SMILES in Kasai et al. (2014). This section is a summary

that focuses on SMILES. The humidity data displayed in this paper are best estimates of the mean

%RHi between 260 and 200 hPa, but the actual vertical resolution is about 5 km (Rydberg et al.,

2009).

The precision of SMILES is around 10 %RHi, or 15 % in relative terms, for values around 70 %.

This is around a factor of two better than SMR. The systematic error (root sum square) of SMILES

was estimated to be better than 12 %RHi for relative humidities of 70 % and below. The error in

the %RHi product depends mainly on accuracy of the calibration (intensity and pointing) and the

spectroscopic setup of the forward model simulations. A statistical comparison between clear-sky

simulations for the states in the retrieval database and real measurements for SMILES indicated an

agreement better than 1 K. An effective 1 K error translates into a ∼10 %RHi systematic error. In

addition, for both SMILES and SMR the usage of a priori impacts on the accuracy of the retrieval,

as values are biased towards the retrieval database mean. This effect is largest for high %RHi values.

For relative humidities around 120 % retrieved values are underestimated by 20 %RHi. However, for

averaged data this error can be reduced as described in Rydberg et al. (2009).
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3.5.2 Partial IWP

The SMR and SMILES pIWP observations are very similar in nature and so are also the estimated

errors. Kasai et al. (2014) analyse the errors of the SMILES pIWP and these results are also valid

for pIWP from SMR. Errors for other SMR cloud ice data are estimated and discussed in Eriksson

et al. (2007) and Rydberg et al. (2009). In all cases, the errors have been estimated by performing

radiative transfer calculations, or by making test inversions using simulated measurements. The

errors are reported as relative values with respect to expectation value.

pIWP260hPa is a measure of the amount of cloud ice mass above 260 hPa within the sampled

volume, converted to a vertical column value. The estimated precision (root sum square) for SMR

and SMILES is around 70 % for this quantity and for values above a few gm−2. The main error

sources are related to the natural variability of cloud particle size distribution (PSD, ∼40 % error)

and particle shape, or single scattering properties (SSP, ∼15 % error), and cloud structure variability

within the sampled volume (beam-filling problem, ∼40 %).

The estimated systematic error for the pIWP product is around 40 %. One part of this error comes

from the assumed PSD (∼30 % error) and particle ensemble SSP (∼15 % error) in the atmospheric

states of the retrieval database (Rydberg et al., 2009), and how well these assumptions match the

average tropical conditions. A second error source is related to the the beam-filling problem. Cloud

inhomogeneities are incorporated into the retrieval algorithm, but it is also likely that the effects are

not fully captured (∼15 %). A third error comes from the a priori usage which biases the retrieval

towards the a priori mean (∼20 % error). For most high pIWP, above ∼1000 gm−2, the retrievals

have a strong low bias that is not yet fully understood, but it is likely caused by a saturation effect

in the observations, that does not occur in the simulations due to incorrect assumptions on PSD and

particle shape.

4 Results and discussion

SMILES was operational between October 12 2009 and April 21 2010. If nothing else is stated,

MLS and CloudSat data are taken from this time period of about 6 months, and only SMILES band

combinations A+C and B+C are included. To obtain more stable results for SMR, i.e. to compensate

for its low sampling rate, data between Oct 12 and Apr 21 for all years available for 2002 to 2013

are merged. This option is also used for MLS in some figures.

The properties of the SMR observations are explored by Ekström et al. (2007) and Eriksson et al.

(2007). The character of the SMILES radiance data matches quite closely the radiative properties at

501 GHz, and e.g. the weighting functions found for this SMR band found in Ekström et al. (2007)

are approximately valid also for SMILES. As also shown in Ekström et al. (2007), the difference

in brightness temperature between dry and wet conditions (but still “clear-sky”) is ∼ 10 K, while

the dynamic range corresponding to cloud extinction is ∼ 100 K (Eriksson et al., 2007). Hence,
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it is suitable to first consider %RHi as these retrievals are much more sensitive to instrumental or

modelling problems.

4.1 Relative humidity

4.1.1 Probability density functions

A concise method to compare different datasets of retrieved data is to consider their probability

density functions (PDFs), as done in Fig. 2. The a priori PDF for the SMILES and SMR retrievals

is included (black line). The origin to these data is ECMWF (European Center for Medium Range

Weather Forecasts), obtained through the ECMWF-AUX CloudSat product (files downloaded 2008).

Those old ECMWF data showed too little variability compared to the observations summarised in

Ekström et al. (2008) and a random scaling factor was applied (Rydberg et al., 2009) to obtain a

broader a priori PDF. More recent data from ECMWF are included for comparison (green line).

These ECMWF (analysis) data are obtained with start august 2012 (IFS cycle 38 and later) and are

sampled for each SMR measurement and averaged between 260 and 200 hPa. The new data give a

significant PDF down to at least 5 %. In addition, the ECMWF system now allows supersaturation

with respect to ice (Tompkins et al., 2007), that comes out as a peak in the PDF around 100 %RHi.

For the a priori PDF, the tail above 100 %RHi is a result of the randomisation of the data.

The a priori PDF is significant as the SMR retrievals show a clear impact of a priori, causing

a wet bias for dry conditions and the opposite for wet conditions (Rydberg et al., 2009). That is,

the a priori biases the retrievals towards the a priori mean. This effect is present also for SMILES,

but is considerably smaller due to the more precise measurements. Considering this fact, it appears

that the basic SMILES and SMR observations agree well. The two PDFs peak at 20 and 30 %RHi,

respectively. SMILES shows a slightly higher degree of supersaturation, but these differences are

fully consistent with the higher a priori influence for SMR. This indicates that errors due to instru-

mental issues and uncertainties in spectroscopic parameters differ with less than 1 K, expressed as

an uncertainty in brightness temperature. However, this consistency estimate covers only differences

between the instruments, and does not reflect the absolute accuracy.

Data for the 215 hPa level from both MLS level 2 version 2.2 and 3.3 are included. At this altitude

there is little difference between the two versions, but V3 is slightly drier. The MLS PDFs, as well

as ECMWF, peak between 15 and 20 %RHi. The first version of the SMR %RHi retrievals did not

use any a priori. In this case, PDFs peaking at 20 %RHi were obtained (Ekström et al., 2008). This

points towards that SMILES has a wet bias at low %RHi but a considerably smaller one than SMR.

This wet bias is then partly caused by an under-representation of %RHi below 20 % in the a priori

applied (black line).

For both MLS versions, the PDF extends far above 120 %RHi. There is no doubt supersaturation

with respect to ice exists in the upper troposphere (see e.g. Lamquin et al., 2012). However, to what
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Table 2. Mean value between 30◦S to 30◦N for considered retrieval datasets.

Retrieval RHi pIWP260hPa pIWP12.5km

dataset [%] gm−2 gm−2

SMILES 46.9 9.2 -

SMR 45.0 9.7 2.8

MLS 43.4 - -

CloudSat - 22.1 8.6

MI2013 - - 0.9

extent mean relative humidity, averaged over large atmospheric volumes, matches strong supersatu-

ration must still be treated as an open question. Only MLS version 3.3 is considered for the reminder

of this paper.

The secondary peak in the SMILES and SMR PDFs around 85 %RHi corresponds to observations

affected by cloud scattering, which is the case for less than 10 % of the data points. With cloud

scattering present, all direct measurement information for water vapour is lost and the inversion has

to rely on a priori information. The outcome is the mean %RHi of the databases cases causing the

same amount of scattering as observed. It is not probable that the complete measurement volume

is fully covered by clouds, and the retrieved value becomes an average of %RHi inside and outside

cloudy air volumes. Hence, it is not totally sure that the PDF peak shall occur exactly at 100 %RHi,

despite that the new ECMWF data give exactly such a peak. The difference of 15 %RHi between

the two PDF peaks can be taken as an estimate for the error of mean retrieved %RHi in most cloudy

regions, where Odin-SMR and SMILES most likely have a low bias.

Fig. 2 includes data for SMILES A+B. As discussed in Sec. 3.4, this band combination contains

less measurement information than the ones labelled together as “SMILES”. Accordingly, a higher

a priori influence could be expected and this is consistent with less retrievals around 30 %RHi and a

more pronounced peak around 85 %RHi. An alternative explanation could be a cold bias in bright-

ness temperature in bands A and B and an opposing bias for band C, but a comparison between

measured data and the a priori database gives no indications of such biases (Kasai et al., 2014).

4.1.2 Geographical distributions and impact of ENSO

Mean relative humidities are displayed in Fig. 3. The overall means of the datasets are given in

Table 2. In the SMILES and SMR retrievals data are excluded only for technical reasons and the

means can be considered as “all-weather” estimates. In the MLS processing, some data are excluded

due to poor inversion convergence. Such cases mainly match strong scattering, and associated high

humidity, a fact that contributes to the somewhat lower MLS mean.

Regional averages differ more. Dry regions are drier and wet regions are wetter in the MLS
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averages than compared to SMILES and SMR. These features could be expected from the PDFs

discussed above. The difference for most wet regions is on the order of 15 %RHi, which matches

the error estimate found in the previous section.

Besides this difference in contrast between wet and dry areas, the agreement between SMILES and

MLS is high. SMR shows a different geographical distribution with the most clear deviation around

the Equator in the western Pacific. The SMR data are averaged over thirteen years but is matched

seasonally with the SMILES period. The difference in temporal coverage becomes especially im-

portant as the operational time of SMILES happens to coincide with a period of exceptionally high

ENSO index. In fact, the complete SMILES period is characterised by high MEI (multivariate

ENSO index, see http://www.esrl.noaa.gov/psd/enso/mei/ where also the MEI data used below were

obtained), including the highest values since the 1998 El Niño.

The ENSO state is known to have a profound influence on the climate in parts of the tropics.

This impact reaches also the upper troposphere, as illustrated by Fig. 4. The average humidities

for all dates having positive and negative MEI have been determined and the difference is shown.

The overall mean of the differences is +1.5 and 0.0 %RHi for MLS and SMR, respectively. Despite

covering a longer time period, the SMR difference field has a more noisy appearance due to the

considerably lower data volume. Some zonally aligned structures can also be discerned for SMR,

such as a stripe of low values across Africa. This should be a consequence of the fact that Odin’s

scanning does not a have fixed latitude pattern and the sampling frequency of a region can vary

between seasons and years.

The overall spatial patterns in Fig. 4 agree between SMR and MLS, with e.g. the highest positive

correlation between MEI and mean humidity exactly where SMR deviates from SMILES and MLS

in Fig. 3 (western equatorial Pacific). The maximum negative correlation is consistently placed east

of Australia, and both instruments show also negative values over the Peruvian coast and between

Indonesia and Australia.

However, there is a clear difference in how MLS and SMR capture the strongest changes in mean

humidity. For example, MLS gives a larger increase in western Pacific, while SMR shows higher

negative values east of Australia. These differences should originate in different impact of a priori

and cloud interference, but also temporal drifts in the instruments could be involved. The latter issue

is under investigation. A first, simple analysis based on overall tropical means revealed small trends

for the two instruments, but of opposite signs.

4.2 Partial IWP

4.2.1 Probability density functions

PDFs of pIWP260hPa are shown in Fig. 5. All the datasets show a similar smooth decrease in PDF

with increased pIWP260hPa. Between ∼15 and ∼150 gm−2, all the PDFs agree closely. For lower
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pIWP260hPa, the a priori PDF is the highest, while for highest pIWP260hPa, the CloudSat PDF is the

highest. Similar PDF comparisons are found in e.g. Wu et al. (2008, 2009).

The logarithmic scales in Fig. 5 make it difficult to judge how differences in the PDFs affect mean

values. The mean value for one dataset, m̄, can be calculated as

m̄=

∫ ∞
0

p(m)mdm, (3)

where m stands for pIWP, p is the PDF and m̄ is the average pIWP. The quantity p(m)m is shown

in Fig. 6. The area under each curve in this figure corresponds to the overall m̄ for each dataset.

This shows that the PDF differences above ∼200 gm−2 are the most relevant with respect to average

mass.

Table 2 gives the overall mean of the retrieval datasets. The slightly higher mean for SMR com-

pared to SMILES seems to originate in the 200 to 500 gm−2 range (Fig. 6), but to some extent is

counteracted by SMILES’ higher PDF below 10 gm−2 (Fig. 5).

The CloudSat mean is about a factor 2.3 higher than SMILES and SMR. The higher Cloud-

Sat mean was partly expected due to different particle size distribution (PSD) assumptions. As

mentioned in Sec. 3.2, the PSD of McFarquhar and Heymsfield (1997, below MH97) is applied to

SMILES and SMR. In Eriksson et al. (2008), CloudSat retrievals based on MH97 were made and

compared to the corresponding 2B-CWC-RO data. Besides IWC, Eriksson et al. (2008) considered

a pIWP that should match pIWP260hPa quite closely, and it was found that applying the MH97 PSD

resulted in a mean a factor of 1.5 lower than 2B-CWC-RO.

The remaining factor, also ∼1.5, is partly caused by a bias towards the a priori mean similar to the

one noted for %RHi above. As discussed in Sec. 3.5.2 it is likely that there exists a saturation effect

at high pIWP values, and this could be the main cause to the remaining part of the low bias. It has

not been established to what extent the PSD assumptions contribute to the pronounced differences

to CloudSat above 1000 gm−2 (Fig. 5).

4.2.2 Geographical distributions and impact of ENSO

Mean pIWP260hPa as function of latitude and longitude is shown in Fig. 7. As noted already above,

SMILES and SMR exhibit lower overall means than CloudSat and a scaling factor is applied in

order to use a common colour scale in the figure. Despite the scaling, SMILES is still lower than

CloudSat. The difference is most pronounced in areas having high convective activity, where the

highest pIWP values are found. Beside these aspects, there is a good agreement in the geographical

distribution between CloudSat and SMILES. This fit with CloudSat is purely due to measurement

information, as a single retrieval database is applied for all geographical positions (for both SMILES

and Odin-SMR).

As for %RHi, there are some deviations in the SMR field due to variations related to the ENSO.

The impact of ENSO on pIWP260hPa was derived for the complete tropical area and the regions
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defined in Fig. 8. The data were sorted according to MEI, and the mean for four ranges of MEI was

determined (Fig. 9). The total tropical mean seems unaffected by MEI, i.e. indicating that the overall

convective activity is not changed dramatically by the ENSO state. However, the region denoted as

“Tropical Pacific” shows a clear positive correlation between pIWP260hPa and MEI, fully consistent

with the higher mean for SMILES in this region compared to the SMR one (Fig. 7).

The other regions show also some influence of MEI. The noticeable high pIWP260hPa for “South

America” and lowest MEI should correspond to a real change in pIWP260hPa, but smaller variations

in Fig. 7 must be treated with some care. The main consideration is if the mean PSD and/or the

diurnal phase of convection also vary with MEI, and the apparent change in pIWP260hPa is in part, or

fully, caused by such changes. Diurnal changes could possibly be analysed by combining different

retrievals, but CloudSat’s battery failure 2011 complicates the situation as it changed the diurnal

coverage of the dataset. PSD influences are even harder to determine as none of the existing satellite

sensors is capable of actually determining the mass-relevant part of the PSD.

In summary, our judgement is that SMILES and SMR provide stable, and very similar, measure-

ment information with respect to pIWP260hPa, the differences noted above are mainly related to

influences by ENSO and diurnal cycles (Sec. 4.3). However, significant limitations originate in the

retrieval process, but these are common for the two instruments as a single methodology is used.

4.2.3 Comparison to Millán et al. (2013)

SMILES cloud ice retrievals were first provided by Millán et al. (2013, below MI2013). They based

the retrievals on a merge of Calipso and CloudSat IWC data and considered a higher range of tangent

altitudes, where measurements at higher altitudes were mapped to IWC. That part of the dataset is

not considered here. For “low tangent” altitudes the retrieval product is a partial ice water path, as

in this study, but MI2013 set the limit at 12.5 km (pIWP12.5km), instead of 260 hPa (pIWP260hPa,

matching ≈ 10.5 km).

We did not see the point of creating a second SMILES pIWP12.5km dataset, but wanted to offer

a possibility to combine the MI2013 data with SMR retrievals. Hence, pIWP12.5km was added to

the SMR state vector and these retrievals were added to the publicly available data files. Relevant

PDFs are found in Fig. 10. The SMR PDF follows roughly the CloudSat one, but the deviation is

here larger. The CloudSat mean pIWP12.5km is a factor 3.1 higher than SMR (Table 2), compared to

2.3 for pIWP260hPa. An increase in this factor is expected as the impact of differences in the PSD

assumptions gets more pronounced with height (Eriksson et al., 2008).

The differences in shape of the MI2013 and SMR PDFs are not caused by PSD issues, as MH97

is used in both cases. The mean of MI2013 is 0.8 / 0.8 / 1.0 gm−2 for band A / B / C, respectively,

i.e. a factor ∼10 below the CloudSat mean. The lower MI2013 means are clearly associated with

a lack of retrievals having values above ∼60 gm−2. Several factors could be involved in explaining

the lower MI2013 means. “Beam filling” is one such factor (Sec 3.2). A particular strength of the
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methodology of Rydberg et al. (2009) is the detailed handling of beam filling, while MI2013 handles

this aspect less in detail. Further, in MI2013 the impact on the measurements for a given pIWP12.5km

is over-estimated as the forward model applied (Wu et al., 2008) makes use of a single scattering

assumption. In addition, the relationship between Tb and pIWP is assumed to be linear, while for

higher ice masses the relationship is rather linear with respect to log(pIWP), see e.g. Eriksson et al.

(2007, Fig. 5). The combined effect appears to be a strong underestimation at higher pIWP12.5km.

4.3 Diurnal variations

The orbit of ISS gives SMILES among limb sounders a unique opportunity to study diurnal effects.

This feature is valid for all the quantities measured by SMILES (e.g. Kreyling et al., 2013). For a

particular region, there is not an instantaneous complete coverage in local time and only seasonal

mean variations can be derived. Here the data from the complete SMILES period are combined.

4.3.1 Relative humidity

Results for relative humidity are found in Fig. 11. The regions considered (Fig. 8) are taken from

Eriksson et al. (2010, below ER2010), to allow comparison with that study. To compensate for

ENSO influences and the fact that ER2010 considered a slightly higher layer than the one selected

for the SMILES retrievals, the mean of the ER2010 results are adjusted to match the ones derived

for SMILES. Hence, the comparison ignores mean levels, and focuses on diurnal phases and ampli-

tudes. As reference, the long-term MLS and SMR means for the season are included, indicating the

sampling achieved by sun-synchronous orbiting sensors. The estimates in ER2010 were based on

MLS and SMR, but then for a shorter and common time period. In addition, SMR mean values were

adjusted to compensate for a priori influences, following Rydberg et al. (2009).

The results in Fig. 11 vary between the regions. The best agreement between the datasets is found

for “Tropical Indian”. This is probably also the region with the lowest degree of observations with

significant cloud scattering (Eriksson et al., 2007, Fig. 9) and this region shows low influence of MEI

(Figs. 4 and 9). These aspects are more important for the other regions considered, and deviations

between the datasets can be observed.

ER2010 found the strongest diurnal cycles over the two land regions (≈±7 %RHi), and also the

updated SMR and MLS averages indicate the same. Taking into account that SMR means have a dry

bias for wet regions like these, the land diurnal cycle stands out mainly through a higher mean of

the 01:30 MLS data point. SMILES confirms the ER2010 results for “Africa”, while for unknown

reason basically no cycle at all is found for “South America”.

The SMILES and ER2010 diurnal amplitudes agree well also above the “Maritime Continent”

(≈±3 %RHi). The SMILES and ER2010 max points are also quite close, 02:00 and 04:30 respec-

tively, but the SMILES diurnal variation shows not a distinct single diurnal maximum. For “Tropical

Pacific”, there is an about 15 %RHi difference in diurnal mean value between SMILES and the
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long-term SMR and MLS averages, as expected from Fig. 4. ER2010 found a ≈±2 %RHi diurnal

amplitude and SMILES indicates a slightly higher value. SMILES gives a minimum around 09:00

and a basically constant, higher, value between 13:00 and 05:00 the next day. This kind of diurnal

variation could not be captured by ER2010, that only could estimate the first harmonic of the diur-

nal cycle. In fact, the minimum around 09:00 is largely missed by MLS and SMR, despite the two

instruments together give a very even coverage of the range of local times.

4.3.2 Partial IWP, observations

Diurnal variations of pIWP260hPa as observed by SMILES are illustrated in Fig. 12. These results

are also displayed in Fig. 13, but then as the relative deviation to the mean of each region in order to

facilitate comparison with ER2010 and MI2013.

ER2010 did not consider any pIWP, only IWC for a ≈ 4 km thick layer around 190 hPa. In Fig. 13

it is assumed that the relative amplitudes and phases for IWC in this layer are valid approximately

also for pIWP260hPa. The most pronounced cycles in absolute cloud ice mass were found over

land. SMILES confirms this for both “Africa” and “South America” (Fig. 12), and also reveals

that the rise from low values during morning to the peak around 18:00 occurs quicker (Fig. 13)

than implied by the single harmonic fit used by ER2010. According to SMILES, the evening peak

in pIWP260hPa is broader (in time) over “Africa” than over “South America”, causing the fit of

ER2010 to be acceptable for “Africa” but giving an underestimation of the diurnal amplitude for

“South America”. The SMR data points fit with the discussion above (Fig. 12), indicating that the

SMILES results should be of general validity and not only represent the particular observation period

of SMILES.

Both SMILES and ER2010 find that the “Tropical Indian” region has its peak pIWP around sun-

rise, and that the diurnal amplitude is high in relative terms, ≈±50 %. For “Tropical Pacific”, there

is a rough match in the size of the amplitude (≈±25 %), but there is a disagreement around the peak

time. As for %RHi, a diurnal variation for SMILES stands out primarily due to a period over lower

values, around 21:00 for pIWP260hPa. The “Maritime Continent” shows a limited diurnal variation,

≈±10 %. This is probably explained by the fact that the region covers both land and ocean ar-

eas, and these more large scale means are created by a combination of local cycles having different

diurnal phases.

It shall be remembered that SMILES did not have instantaneous diurnal coverage and different

parts of the diurnal cycles are sampled during different months. This means that seasonally variabil-

ity (such as movement of the ITCZ) during the SMILES period have an impact on the diurnal cycles

derived. The same is true for changes in the ENSO state during the period. Such aspects could have

contributed to the less smooth cycles for “Tropical Pacific” and “Maritime Continent”.

Also MI2013 (Millán et al., 2013) considered regional mean diurnal cycles of pIWP. They reported

the relative deviation from the local mean pIWP12.5km. The selection of regions is similar to the one
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here, but in MI2013 the cycles have hourly time resolution. MI2013 found a general agreement

with earlier studies, including ER2010. Hence, there is also a high similarity between the diurnal

cycles based on SMILES data in Fig. 13 and the ones found in MI2013. However, there is one

noticeable deviation, the amplitude for “Tropical Indian” is considerable smaller in MI2013, about

±25 % compared to the ±50 % found in this study.

The fit between MI2013 and Fig. 13 is particularly good for the land regions, including the more

narrow afternoon peak over “South America”, compared to “Africa” as already discussed above.

This feature stands out better in the analysis of MI2013, where less time averaging is applied. This

indicates that convective activity lasts longer, or the diurnal cycle is less regular, over “Africa”.

Potentially, different ice particle fall speeds could also be involved. However, SMILES covered

only 6 months and any discussion of such differences based on these results alone becomes highly

speculative.

4.3.3 Partial IWP, model results

Unfortunately, it is not a simple task to compare observational and model cloud ice mass data.

Satellite sensors have direct sensitivity only to a limited range of ice particle sizes. The satellite

retrievals presented here aim at giving the complete ice mass, but the sensors (including CloudSat)

have in fact little sensitivity to ice particles smaller than 100 µm (Eriksson et al., 2008). However,

more problematic is that climate models normally only include “cloud ice” (or “non-precipitating”

ice) in their IWC output. This model output is below denoted as CI (cloud ice). Extraction of

“precipitating” ice (or “snow”) requires, in general, special runs, where internal diagnostic variables

are stored. In addition, the conversion of “snow fluxes” to IWC can involve assumptions of ice

particle fall speeds (for a more detailed discussion, see e.g. Waliser et al. (2009) and Johnston et al.

(2012)).

ER2010 included a comparison to data from the CAM3, ECHAM5 and EC-Earth2 global climate

models. The conclusion was that these models underestimated the cloud ice mass. As a consequence,

the generated diurnal variation in absolute pIWP became also too small, but there were also problems

in some of the models regarding the phase of the diurnal cycles. Adding “precipitating” ice to the

models’ CI gave some improvement for the mean ice mass (particularly for ECHAM5), but had

marginal impact on relative amplitude and diurnal phase.

Figs. 12 and 13 include data from later versions of the same models. These data are taken from

Johnston et al. (2014), where also details around the model versions are found. The model data

displayed include only the CI part. Hence, a direct comparison to the satellite data is not possible,

and mainly changes compared to ER2010 are discussed. The model data cover the parts of 2007 -

2008 that match seasonally with SMILES.

In ER2010, EC-Earth2 had the highest CI mean value for all the five regions, and this is still

the case. As a consequence, EC-Earth3 is the only model showing an absolute diurnal variation in
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pIWP260hPa above 4 gm−2. The relative diurnal amplitudes are more similar between the models.

These amplitudes agree roughly with the observations, except for “Tropical Indian” where all the

models exhibit a very weak diurnal cycle. In ER2010, CAM3 and EC-Earth2 showed a relative

amplitude that exceeded the observed for the land regions, but this is not the case in Fig. 13 for the

newer model versions.

The diurnal timing of convection is a known problematic area for climate models (e.g. Johnston

et al., 2014), and this deficiency impacts negatively on the diurnal cycles of concern here. Some

differences to ER2010 can be noted. In that study, ECHAM5 stood out as the best model with

respect to diurnal timing. In fact, ECHAM5 was inside the observational uncertainty range for all

five regions, but in Fig. 13 ECHAM6 lags somewhat in time for both “South America” and “Tropical

Indian”. This is a change in ECHAM6 at least for the CI part. In ER2010 maxima in ECHAM5’s CI

and IWC were throughout close in local time, but that could have changed and there could still be

an agreement with the observations for total model IWC.

In ER2010, CAM3 showed a very similar diurnal phase for all regions (throughout between 20:00

and 24:00). There is now a higher variability for CAM5 between the regions, but the fit with the ob-

servations is still limited. EC-Earth2 had a too early phase in ER2010 for both land regions (around

11:00). This is still the case for “Africa”, where the diurnal cycle shows a step like feature around

09:00. On the other hand, an improvement can be discerned in EC-Earth3 for “South America”

where the agreement with the observations in Fig. 13 now is better.

As only CI is included, the models should be low when compared to observational estimates of

(total) ice mass, as in Fig. 12. However, ER2010 found that adding the missing precipitating part

did not bring the model mean IWC up to the observed values. This issue was analysed further for

EC-Earth2 in Johnston et al. (2012), and it was found that CI dominates in this model above 200 hPa

(but the situation is reversed below 300 hPa). In addition, the models are here compared to SMILES

and SMR estimates that have a considerably low bias compared to CloudSat retrievals. Accordingly,

it is highly likely that the models still under-estimate the total ice mass at altitudes above 250 hPa.

5 Conclusions

A new dataset of SMILES retrievals is introduced. The dataset contains estimates of the mean rel-

ative humidity between 260 and 200 hPa and the (partial, vertical) ice water path above 260 hPa

(pIWP260hPa). Humidities are also available as volume mixing ratios (VMR), but those retrievals

are not considered in this paper as they are less accurate and the relative humidity product is recom-

mended for scientific use. For both SMILES and SMR, the VMR retrievals are found on the same

website as the standard data (see Sec. 2.1 and 2.2).

A retrieval methodology (Rydberg et al., 2009) developed for the similar Odin-SMR instrument is

used. The approach is applied in a basically identical manner for the two instruments. In this paper,
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the SMR retrievals are extended to cover 2002 - 2013, and VMR and the SMILES data products are

added as retrieval quantities. The latter to facilitate comparisons and combining the SMILES and

SMR data. Both datasets are publicly available.

The SMILES receiver had an excellent noise performance, and this results in a lower impact of

a priori assumption on the relative humidities retrievals. Beside this, it is judged that SMR and

SMILES provide highly matching data. Measurements are filtered only according to possible tech-

nical problems (incorrect calibration etc.). For each measurement, both humidity and ice mass are

retrieved, but in case of significant scattering the humidity reported reflects only a priori. Accord-

ingly, the retrievals can be classified as “all-weather” and averaged values can be directly compared

to means derived for e.g. an atmospheric model, which is in contrast to many other satellite retrievals.

There is a good agreement between these humidity retrievals and Aura MLS with respect to overall

mean and geographical distribution. However, the SMILES and SMR retrievals show lower fractions

of very low and high humidities. This lower spread in retrieved %RHi is only partly explained by a

priori influences, other causes for the deviations at most dry and wet conditions should be considered

for all involved instruments.

The consistency between the retrievals presented and CloudSat is good regarding the geographical

distribution of cloud ice mass, but the SMILES and SMR retrievals result in lower mean values. It

is clear that SMILES and SMR have a low bias due to a priori influences and saturation effects,

particularly for high pIWP. On the other hand, the difference to CloudSat originates also partly in

particle size distributions (PSDs) assumptions and on this point it is likely that all involved retrievals

have systematic errors. An even stronger low bias, compared to CloudSat, was found for the SMILES

retrievals presented by Millán et al. (2013). The PSD of McFarquhar and Heymsfield (1997) was

selected both for this study and by Millán et al. (2013). Recent results in Wu et al. (2014) indicate

that this PSD is less realistic than what is assumed in the CloudSat retrievals, at least for altitudes

around 15 km.

The main drawback of the retrievals is the limited size of the datasets. The spatial coverage is

restricted to the tropical (30◦S to 30◦N) upper troposphere. SMILES provided relatively dense mea-

surements (to be a limb sounder), but only for a bit more than 6 months. The sampling frequency

of SMR is low, but the total time coverage has now passed 12 years. However, both the satellites

complement other more established measurements in regards of local time sampling. The measure-

ments of SMILES drifted in local time, and full sampling of seasonally averaged diurnal cycles can

be achieved. This fact was used to improve on results from Eriksson et al. (2010) where SMR was

combined with Aura MLS and CloudSat to obtain a rough sampling of the diurnal cycle of humidity

and ice mass for a number of regions. The main results from Eriksson et al. (2010) were confirmed,

amplitude and phase of the diurnal cycles agree in general between the two studies. The main ex-

ception is that SMILES shows no diurnal variation for relative humidity over the “South America”

region.
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In addition, SMILES shows that the diurnal cycles are more complex than the single harmonics

assumed by Eriksson et al. (2010), implying that observations from sensors not locked into sun-

synchronous orbits are required for detailed investigations of diurnal cycles. Geostationary satellites

are in principle ideal for diurnal studies, but these platforms still lack the microwave sensors needed

to penetrate the dense cloud decks covering the regions where the most pronounced diurnal cycles

are found.

Model data on “cloud ice” from CAM5, ECHAM6 and EC-Earth3 were considered, and some

progress compared to Eriksson et al. (2010) were noted. The improvements were found for diurnal

timing and relative amplitudes, while the models’ are judged to still exhibit too low total ice mass.

However, clear conclusions on these issues are still very difficult to reach due to limitations on both

model and measurement side. The long time coverage of SMR was used to exemplify the impact

of the ENSO state on water in the tropical upper troposphere. Clear signatures were found for both

humidity and cloud ice mass, with the highest increase during El Niño conditions in the western

tropical Pacific for both quantities. These initial results on diurnal cycles and correlation with ENSO

were mainly included to demonstrate possible applications of the SMILES and SMR datasets, and

more detailed analyses and comparisons with model data will follow.

A new version of the retrieval database will be considered. The main points for improvements

are then: revise the PSD assumptions, to use single scattering properties for more realistic ice par-

ticle shape(s), include a higher fraction of cases having a humidity below 20 %RHi, and revise the

assumption on humidity in and around cloudy regions.
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Diagnosing the average spatio-temporal impact of convective systems - Part 2: A model intercomparison

using satellite data, Atmos. Chem. Phys., 14, 8701–8721, doi:10.5194/acp-14-8701-2014, 2014.
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Fig. 1. Bivariate distributions of SMR (left) and SMILES (centre and right) measured brightness temperatures.

Data for tangent altitudes between 3 and 8km are included.

Fig. 2. Probability density function (PDF) for a number of %RHi datasets (see text for comments). The data

cover slightly different layers around 220hPa. The geographical area considered is latitudes between 20◦S and

20◦N.
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Fig. 3. Average %RHi around 220hPa for some satellite datasets. The data represent a running average over

6◦/12◦ in latitude/longitude.

Fig. 4. Difference in average %RHi around 220hPa between data corresponding to positive and negative MEI

(positive minus negative). Data between Oct 12 and Apr 21 from complete SMR and MLS periods are included.

The data represent a running average over 6◦/12◦ in latitude/longitude.
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Fig. 5. PDFs of pIWP260hPa retrievals, i.e. estimated ice column above 260hPa. The geographical area

considered is latitudes between 30◦S and 30◦N. The CloudSat data are averaged over 30 km to roughly match

the footprint size of SMR and SMILES.

Fig. 6. As Fig. 5, but PDFs weighted mean mass of each bin. The quantity displayed is part of Eq. 3.
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Fig. 7. Average pIWP260hPa for some satellite datasets. The data represent a running average over 8◦/16◦ in

latitude/longitude. SMILES and SMR means are multiplied with a factor 2.

Fig. 8. Definition of regions used in some of the later figures.
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Fig. 9. Total tropical and some regional means of SMR pIWP260hPa as a function of modified ENSO index.

The regions are defined in Fig. 8.

Fig. 10. PDFs of pIWP12.5km-data. Data from Millán et al. (2013) are denoted as “SMILES/JPL”. Otherwise

as in Fig. 5.
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Fig. 11. Diurnal variations of %RHi around 220hPa. Solid lines are 6 hour running means of the SMILES

data. Dashed lines are given the same mean as the corresponding solid line, but diurnal phase and amplitude are

taken from Eriksson et al. (2010). For MLS and SMR, data between Oct 12 and Apr 21 from complete mission

periods are included.
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Fig. 12. Diurnal variations of pIWP260hPa. Solid lines are 6 hour running means of the SMILES data. For

SMR, data between Oct 12 and Apr 21 from complete mission period are included. Black markers are global

climate model results, only covering “cloud ice”, where ♦ is CAM5, × is ECHAM6 and + is EC-Earth3 (all

uncoupled, 2007 - 2008).
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Fig. 13. Diurnal variations of pIWP260hPa, expressed as the relative deviation from the local mean of each

dataset. Solid lines are 6 hour running means of the SMILES data. Dashed lines represent the relative variation

in ice water content derived in Eriksson et al. (2010). Black markers are global climate model results, only

covering “cloud ice”, where ♦ is CAM5, × is ECHAM6 and + is EC-Earth3 (all uncoupled, 2007 - 2008).
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