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Abstract

In this study, the optical properties of aercsols in Penang, Malaysia were analyzed
for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon,
and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET)
from February 2012 to November 2013. The aerosol distribution patterns in Penang
for each monsoonal period were quantitatively identified according to the scattering
plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified
algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict
the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were
used in the model as predictor data to retrieve the missing AOD data from AERONET
because of frequent cloud formation in the equatorial region. The model coefficients
were determined through multiple regression analysis using selected data set from in
situ data. The predicted AOD of the model was generated based on the coefficients and
compared against the measured data through standard statistical tests. The predicted
AOD in the proposed model yielded a coefficient of determination R? of 0.68. The
corresponding percent mean relative error was less than 0.33 % compared with the
real data. The results revealed that the proposed model efficiently predicted the AOD
data. Validation tests were performed on the model against selected LIDAR data and
yielded good correspondence. The predicted AOD can beneficially monitor short- and
long-term AOD and provide supplementary information in atmospheric corrections.

1 Introduction

The direct and indirect radiative influences of aerosols have been significant sources
of uncertainty in climate change,based on the report by the Intergovernmental Panel
for Climate Change (IPCC, 2007, 2013). The consequences of aerosol-radiation and
aerosol—cloud interactions cannot be fully elucidated because of their uncertainties.
These interactions are increasingly complex and compounded by high degrees of
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variations in atmospheric aerosols because of meteorological and climatic factors (Reid
et al., 2012). The trans-boundary and long-range transport of aerosols interact with
their local counterparts {e.g.elend-droptets), enhance the microphysical properties of

aerosols, and affect their radiative properties and precipitation processes (Ichoku etal., \gvebog— <o
{ s 2004, Lin et al., 2013; Rosenfeld, 2007; Andreae and Rosenfeld, 2008). The global ef- < \"'
©n \ - fects of aerosols on the Earth's climate ar&pa;dly quantifiable because of the lack of : "-’ )

Ve C/:? st ~ extensive and reliable measurements in most world regions (Tripathi et al., 2005; Rus- f% Lon canS
sell et al., 2010; Hansen et al., 1997; Kaskaoutis and Kambezidis, 20(}8, Kaskaoutis D T ? x(rc-iL
etal, 2007y claracitryes =t

0~ Q_Aerosol optical depth (AOD}“ convenlently-aralyres-airquality/pefiution—radiation 4 '7’}

m@m@mmwmwmmmmmmm
( irg-from=space—and-acrosol-characteristics. The spatial and temporal variations in %
% AOD are large because of production sources, transport and removal processes, and =
prevalent meteorological conditions. Given the large uncertalntxhn aerosol character-  —
s ization, local analyses essentially verify thre satellite +mgodé‘§because the extraction
of aerosol optical properties from remote sensing data exhibits limited accuracy de-
spite its capability to provide global-scale coverage (Levy et al., 2005; Tripathi et al.,
2005; Yoram et al., 2002; Gupta et al., 2013; Zhong et al., 2007). Local studies on the
optical properties of aerosols have been conducted using sun photometers and sky
2 radiometers (Salinas et al., 2009 H_glben et al., 1998; Remer et al., 2008). However,
these methods are limited -in contrast to satellite imagery. There-
fore, ground- and space-based measurements complementarily perform reliable and
comprehensive studies on atmospheric aerosols.
The accuracy of satellite-derived daily AOD is often assessed by comparing satellite- o
» based AOD with the AErosol RObotic NETwork (AERONET), a network of ground- -
based sun photometers. AERONET is widely used to monitor, investigate, and char-
acterize the optical properties of aerosols (Holben et al., 1998). This network provides
a database to atmosphetieatty correct and validate satellite-based aerosol retrievals. ?
However, cloud-contaminated data should be removed from the AERONET database ;
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(Smirnov et al., 2000); the process is termed as cloud screening. Hence, only a limited .
dataset of ievel 2 ACD (data have been cloud screened and quality assured) eeRde— wHla

obtaimed. Meanwhile, AODs obtained from satellites, such as those from MODIS (Re- A

talis et al., 2010), are limited because these satellites are oxbitirg.£ontinuous retrieval Pl DA o o
s of AOD data is difficult. Thus, several models have been proposed to efficiently predi AR ST
and retrieve AOD. [LE & & N5s 2ai2s izl 1
Previous studies have used single parameters from ground measurements to esti-
mate the atmospheric columnar AOD, such as in situ horizontal visibility (Vis) yorpar- T
ticulate matter (PM) with diameters less than 10 or 2.5um (PM,, or PM, 5’}*The high n=es

w concentrations of atmospheric aerosols increase the AOD to effectively scatter light
and reduce Vis. PM,, and PM, 5 are used to physically quantify the concentration of
PM at ground level. High-quantity PM records imply high aerosol concentrations at
the ground surface. AOD is proportional to air quality (Mdller et al.,, 2012; Cordero
et al., 2012; Mogo et al., 2012; Mielonen et al., 2012; Wang and Christopher, 2003)

s but inversely proportional to Vis (Horvath, 1995; Baumer et al., 2008; Li and Lu, 1997: )
Peppler et al., 2000; Singh and Dey, 2012). Vis and air quality interact with columnar i Toeotlhete e
AOD; hence, these parameters should be considered into the algorithm to predict AOD 2

through multiple regression analysis. The complementary combination increases the 7}
relative accuracy of prediction. E \ ( (
2 Three types of measurement data were used in this study, namely (i) AOD, (ii) Vis St cleen £

and (iii) air pollution index (API). The AOD measurements were obtained through " (TS P PN o
C__—k—/f BV ~ AERONET site located in Universiti Sains Malaysia aysia (USM). The Vis and API data were cLre QT Y
- N taken from the meteorological stations at the Penang international airport and USM. ik
L All data were taken between 2012 and 2013. The aerosol characteristics in Penang L)__(_,_,,B
s were comprehensively analyzed based on changes in seasonal monsoons Anearreal- “
time AOD model was established based on multiple regressiog an IyS|s The accuracy i’

and efficiency of the model were validated and evaluated to assless tre atmospheric

pollution in Penang.
¢ Ke
oiS A L,:,u:\ N
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2 Methodology and statistical model

The present work was based on previous studies of Tan et al. (2014a, b)gﬁey predicted
AOD using multiple regression analysis based on meteorological and air quality data.
These studies have \s\uccessfully proven and validated the algorithm during the south-

“~__west monsoor(period. However, the following issues stoutd-be-addressed: (j) under- —

and overprediction of AOD were not validated because of the lack of available LIDAR
data to ebtaim the variations in the vertical profile of the aerosol drstnbutlon (i) the algo-
rithm was insufficiently robust because only the 4Tmdith dataset Were considered; and
(iii) seasonal changes in the southwest monsoon was only included. The present study
usés a two-year dataset (2012, 2013) B Penang to efficiently validate the algorithms
proposed by Tan et al. (2014a, b).

Penang is an island located in the northwestern region of Peninsular Malaysia and
lies within latitudes 5°12' to 5°30' N and longitudes 100°09' E to 100°26'E (Fig. 4),
whietrts near the equator. Seasons sUCh as wirTter, Spring, sumimer, and autamnare-
undefined;—instead “the weather is warm and humid year-round. However, two main
monsoon seasons exist inPerang, namely, noriheas{ and southwest monsoons. Con-
sidering ¥ analyses on aerosol or air quality (Suresh Babu et al., 2007; Krishna Moor-
thy et al., 2007; Kumar and Devara, 2012; Xian et al., 2013; Awang et al., 2000), the
monsoon period whs classified as follows: (i) northeast monsoon (December—March),
(ii) transition period of northeast to southwest monsoon or pre-monsoon (April-May),
(iii) southwest monsoon (June—September), and (iv) transition period of southwest to
northeast monsoon or post-monsoon (October—November).

The optical properties of aerosols were analyzed to identify the aerosol character-
istics in Penang i-each=monseen. The seasonal variations in AOD, Angstrom expo-
nent, and precipitable water (PW) based on the frequency distribution patterns were
identified. The aerosol types were seasonally discriminated from the scatter plot of
AOD against the Angstrom exponent. Threshold values in the scatter plot for aerosol
classification have been previously reported by Smirnov (2002, 2003, 2011), Pace
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et al. (2006), Kaskaotis (2007), Toledano et al. (2007), Salinas et al. (2009), and Jalal
et al. (2012). The data selection criteria proposed by Tan et al. (2014a) were used in
this study. The seven-day seasonal plot of the back-trajectory frequency from the Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4) model was used to
identify the original sources of aerosol and transported pathways
can-suitably-simulate-ai—massmovement. Subsequently, the obtained aerosol charac-
teristics were used to examine the algorithm accuracy among the datasets.
AERONET, API, and Vis data were selected according to the procedure of Tan
et al. (2014a) to generate #® predicted AOD data. The in situ data were retrieved
online from Weather Underground (http://www.wunderground.com) or from NOAA

&

o

satellite (http://www7.ncdc.noaa.gov/CDO/cdo). The-data-frormWeather Underground—

were—in-METAR-and-AAXX formats, whereas those from NOAA Were stightty-differ—
ent--Neverthetess, Thé information contents of both databases were essentially sim-
ilar—Only the data-i-METAR-format-were used-to—standardize—the—calculation pro=—
cedure—Hourly data free from rainfall, thunderstorms, or fog during the calculations
were utilized to predict the AOD data. Air quality in Malaysia is reported in terms
of APl %9&31 can be obtained from the Department of Environment in Malaysia
(http: //ap|ms doe.gov.my/apims/). API is calculated from carbon monoxide, ozone, ni-
trogen dioxide, sulfur dioxide and PM,, The Malaysian Department of Environment
provides a standardized procedure on how to calculate API values (DOE, 1997).

AERONET data were recorded at the Coordinated Universal-Time (UTC), whereas
in situ and AP| data were recorded at local t]me (UTC + 8h). All data were required
as inputs in the proposed algorlthm j (o] pfe’dlct the AOD data. To standardize the im-
plementation of the prop@d_alg ofithm, the data’ of-AERONET, in situ measurements,
and AP| were converted to Julian days according to the UTC\aneLc@pared with one
anothgc,beﬁﬁ they originated from different sources. Hence, the overlapped d data
within a time interval of £30 min were retained; otherwise, these data were discarded:;

A total of 790 data points from 2012 to 2013 were used. Initially, the datasets
were separated into (4 + 1) sets as follows: (i) December-March, (ii) April-May, (iii)
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June-September, and (iv) October—November. The fifth or “overall” set comprised
the annual data. The number of data points for December—March, April-May, June~
September, and October—November were 257, 132, 235, and 166, respectively. The
data for each seasonal monsoon were further divided into two subsets that were
s sourced from alternatively selected data (in temporal sequence) for cross-validation.
For example, consider that data with a particular seasonal monsoon period takes a se-
quential form (D1, D2, D3, D4, D5, ...). Thus, the subsets are in the form of (D1, D3,
D5, ...)and (D2, D4, D8,...). The first data subset was used to determine the correla-
tion between the parameters and AOD at 500 nm (Eq. 1), which was the original model
w of Tan et al. (2014a), and given as follows:

AOD =a, + a,(RH) + a,(RH)? + a5(RH)° + a4(Vis)+a5(Vis)® + ag(Vis)® -

+ a7(API)+ag(APN)Z + ag(API)° )

where RH is the relative humidityﬁ he second data subset was used to predict AOD
in each seasonal monsoon and validate the accuracy of the prediction based on

s the parameters (e.g., ag and a;) obtained from the correlation procedure. The algo-
rithm of Tan et al. (2014a) was tested to determine the correlation at 95% confi-
dence level for each seasonal monsoon. The root mean square error (RMSE), co-
efficient of determination (F?z), and percent mean relative error (%MRE) between
the measured and predicted AOD for each period were calculated. The %MRE

x parameter was used to quantify the systematic differences between the concen-
tration levels. This parameter is given as follows: %MRE = [(mean predicted AOD —
mean measured AOD)/mean measured AOD]x 100. The ability of the proposed model
to produce reliable AOD estimates for temporal air monitoring can be quantitatively jus-
tified or falsified based on the quality of the resultant %MRE. CoANAAL

2 Aerosols Sobil be hydrophilic or hydrophobic, and these properties ceuld give rise to
non-trivial contribution to AOD retrieval (Ramachandran and Srivastava, 2013; Singh
and Dey, 2012; de Meij et al., 2012; Tang, 1996, Song et al., 2007; van Beelen et al.,
2014; Wang et al., 2013). However, to discriminate whether the aerosols are hydrophilic

19753

or hydrophobic requires addition resources beyond the reach of the present study. On
the other hand, our pre-analysis showed that RH does not contribute significantly to
AOD prediction in the proposed model. If RH was considered as a predictor, its related
factors (e.g., aerosol stratification (dust or smoke aloft), convection, and hysteresis in

s particles) should be taken into account. The contribution of RH to the aerosol properties
was integrated in the aerosol model (Srivastava et al., 2012) because the net effect of
RH on aerosol and related factors were hardly quantifiable. The RH contribution can
be disregarded in the present model, yielding Eq. (2). Te {esults were obtained from
ta@ correlation analysis based on Eq. (2) given as follows:

0 AOD = ag + a, (Vis)+a,(Vis)? + a5(Vis)® + 24(AP)+a5(API)? + ag(API)® & @)

- Lee et al. (2012) excluded &2 days when the deviation between the measured and pre-
dicted values was greater than RMSE, or when the estimated AOD slope was negative
because of measurement errors and cloud-contaminated AOD. Given the previous find-

15 ings, the outliers in our model were removed using the approach of (Lee et al., 2012).
The predicted AOD was compared with the measured counterpart from AERONET
to determine the accuracy of the generated model. Equation (2) was applied to re-
trieve the AOD for specific days when no AOD values were available. The features of
predicted AOD were compared against those of the measured counterpart. The under-

2 and overpredicted AOD were examined by RAYMETRICS LIDAR system. However, ex-
amination can only be performed when LIDAR data were available. When LIDAR data
were available for examination, only the data that can clearly elucidate the under- and
over-predicted AOD were selected. The backscatter coefficients of the aerosol were
determined using the method of Fernald (1984). The LIDAR signals were pre-analyzed

s based on the published works of Tan et al. (2013, 2014c).
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3 Results and discussion
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Gwerf ts2 climatology results frem the—aerosotTobotic network (htip://aeronet.gsfc.
nasa.gov/new_web/V2/climo_new/USM_Penang_500.html), the monthly AOD (re-
s ferred to as AOD_500) in USM Penang showed that the lowest AOD ranged from
0.18-0.19 during the inter-monsoon period {October—November and May). During the
southwest monsoon period (June—-September), the smoke emitted by the local area
and large-scale open burning activities in Sumatra, Indonesia was transported by-he
monseer-wind to Malaysia and yielded the highest AOD at approximately 0.31-0.73.
w© However, the AOD was 0.21-0.24 during the northeast monsoon period (December—
February). Small aerosol particles primarily contributed to the air pollution in Penang,
s> beeause-the average Angstrom exponents (referred to as Angstromy,g_gz) were higher
than 1.1 in humid atmospheres, and the precipitable water values (referred to as PW)
were greater than 4.1.
| ]
s 3.2 Seasonal variations of AOD, Angstrom exponent, and PW based on
frequency distribution patterns
AdT bz \ Deve o s, La o
Tm-aeﬁeee%pemes were plotted fig 1) to reveal the relative frequency distribu-
-gin he-if Penang for each seasonal monsoon. Fae
quency histograms of AOD 500, Angstromgsg_gzo. and PW (Fig. 1a—c, respectlvely)
= Indicated changes in the optical properties of aerosols with seasonabvariatiens; These
histograms.helped identify tie aerosol types (Pace et al., 2006; Salinas et al., 2009;
WL“*-WW 2011, 2002a). Our results showed that the distributed AOD malnly
b vy ¢ ranged? from 0.2 to 0.4, amd contributsd to apprommatelyrﬂ % oj‘ the total occurrence
(Fig. 1a). Fig. 1b shows that the Angstrom exponent is Between 1.3 and 1.7, whigh-
2 translatésto ~ 72 % of the total occurrence. About 67 % of the total occurrence of PW
ranged from 4.5cm to 5.0cm (Fig. 1c).
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The maximum peak of AOD was centered & 0.2 for all seasons. The clearest season
was between October and Novembe W) Penang was most polluted
from June to September b.e.aausa‘-'el} th@actlve open burning activities in Sumatra. The
AOD peak was apprommately 1.4, with abest three peaks distributed from AOD_500 =
s 0.1 to AOD_500=1.4 @g—qa{-r)-«aﬁd-fﬁ) The multiple peaks |mp1ﬂ;l-the presence
of various aerosol populations, because AOD histograms follow log- hormal distribution
patterns (Salinas et al., 2009). By contrast, a single peak was observed for the clearest
season (October-November).
The frequency d|sm%utlons Jo;_ Ihe A strom expopregt displaye@ noticeable sea-
1w sonal trends (Fig. 1b). om 1 Y0 2 (gapp‘roxmately 95 % of the total occur- \
rence}. This result |mp||ed' that the effects of coarse partlcles (e g., dust) on the study oo PR

SIte was minimal, w P L‘—‘_Q g
. Tt

to-the-studysiter However two notlceab!e peaks were observed for the Angstrom ex- ‘ s v

s ponent during the northeast monsoon period (blue curve, Fig. 1b). The'aerosols orig- - I A AR Gt
inated from the northern part of Southeast Asia, particulariy Indochina, transported . C‘H\ e lewa g
by the monsoon wind; and mixed with locally emitted aerosols. Lin et al. (2013) ana-  ~ ez e
lyzed the aerosols in the northern region of Southeast Asia. They found that biomass ; o LA
burning aerosols from Indochina were transported in high- and low-level pathways-@&/rwu. ""'f*"&

» west and northeast monsoonsgtfence these aerosols were transported in the south- e
west direstier. The biomass burning aerosols were continuously transported to our

i

o AT .
e+ TN

/\lﬂ./ibfh \ i o k-v‘-_\( study site,as the wind circulation flows toward the southwest direction, according to

e R i the monthly mean streamline charts of Lin et al. (2013) from 1979 to 2010. During
N and before southwest m qsoo . the Angstrom exponents in Penang ranged between -

L’& S \ ! » 1.4 and 1.8, indicating the preseﬁge of biomass burning aerosols (Holben et al., 2001;
N [ ‘[re N ) Gerasopoulos et al., 2003 Toledano et al., 2007%) from Indonesia. @

Ui LR Although the southwest monsoon period the driest season in Malaysia, the-

-\-v‘ .cC ul® \ recorded PW frequency was approximately 21 % lower than that of the northeast  ~

g U i monsoon period for PW < 4.0 (Fig. 1c). Marked variations in the PW frequency were
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observed during the northeast monsoon period. Almost no frequency data were ob-
tained for PW < 3.5, except the northeast monsoon period with about 14 % less than
this value. The most humid period took place in April-May, with PW ranging from 5.0
to 5.5 (approximately 74 % of the total occurrence).

3.3 Seasonal discrimination of aerosol types based on the relationship between

AO[(J: Tl:ii qu}stromnent ol \_‘_*_\ e Lo ¥ \_«_\\S DG

Aerosols have been widely classified-by-te scatter plots of AOD and Angstrom expo-
nenmmdmmmgwwﬁmmm

“The_extinction of-radiation rate for.a specific wavelength. The-Angstrom-expencnt-des

termines-the-aeresel-size-in—coarse and fine modes fronm the-stope-with-wavelenagths.
thai_depend.gn—AOD_mhlegamhmmordmes M—A@Dﬂn’gs‘rrorrrexpo-

aemsol_t‘.peei-es Helated studies have been analyzed using AERDNET data; these
datasets have been applied at different locations, such as the Persian Gulf (Smirnov
et al., 2002a); Brazil, Italy, Nauru, and Saudi Arabia (Kaskaoutis et al., 2007); Spain
(Toledano et al., 2007); Singapore (Salinas et al., 2009); several oceanic regions
(Smirnov et al., 2011); Kuching (Jalal et al., 2012); and the Multi-filter Rotating Shad-
owband Radiometer in Central Mediterranean (Pace et al., 2008). The scatter plot of
AOD_500 or AOD_440 against Angstrom,,q_gzg Was used to identify the aerosol type.
The wavelength range of Angstromg,g_g7g Was used because of its neamness to the
typical size range of aerosol based on spectral AOD (Eck et al., 1999). The relation
between AOD values at 500 nm and Angstrom 440-870 is usually used for aerosol
classification in scatter plot diagram. The AOD values at 500 nm are normally used to
indicate the turbidity conditions (Cachorro et al., 2001; Smirnov et al., 2002b, 2003;
Kaskaoutis et al., 2007; Pace et al., 2006; Salinas et al., 2009). Optically, 500 nm is
an effective visible wavelength suitable for aerosol study (Stone, 2002). In this study,
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AOD_440-Angstromy,g g7 and AOD_500-Angstrom, g gs7o plots were used{o-classify

the-aeresols— el d ey

“Fhe Aerosols were classified into five types, -namely dust, maritime, continen-
tal/urban/industrial, biomass blg{r’yng, and mixed aerosols (Ilchoku et al., 2004); mixed
aerosols in practice represents indistinguishable aerosol type that cannot be catego-
rized into any of the previous types. To effectively identify the aerosol distribution types
in our study sites, the resul?s were compared using different threshold criteria (Table 2).
The s of fa are presented in
Fig. Z?Fg:e thresholds proposed by Kaskaoutis et al. (2007) and Pace et al. (2008)
failed fo determine the maritime aerosol (MA) and dust aerosol (DA) fogigach season.
Instead, they showed that mixed-type aerosols (MIXA) were dominant i Penang (50—
72%). Urban and industrial (UIA) and biomass burning (BMA) aerosols were grouped
into a single class (28-50 % of the total occurrence). Meanwhile, the threshold sug-
gested by Smirnov et al. (2002, 2003, 2011) failed to identify DA, UIA, and BMA, but
efficiently identified MA. As a result, a large amount of MIXA was obtained (> 80%
of the total occurrence). These results reveal the extent of uncertainty; the indistin-
guishable aerosol types in the study sites were large. Thusotireroptions-sheuid-be
consigered—

Salinas et al. (2009) suggested that the determination of DA and BMA did not corre-
spond entirely to the range of threshold used in our study, in which the amount of MIXA
(approximately 43 % of the total occurrence) was large. Jalal et al. (2012) efficiently
identified ##e aerosol types using an alternative threshold criterion. Using their thresh-
old, we yielded a low amount of MIXA, approximately 21 %. However, the determination
of DA was unsatisfactory. The threshold criteria of Toledano et al. (2007) provided the
least MIXA (< 5 %,; Fig. 2). All thresholds consistently increased from June to Septem-
ber (Fig. 2¢) and coincided with the occurrence of haze. UIA was constantly and highly
distributed over Penang. Overall, the thresholds provided by Toledano et al. (2007)

were propedy suited for our study site-to-determine-the-aeroseltypes.
="INN
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The thresholds of AOD—Angstrom,g_ g7 Scatterplets by Toledano et al. (2007) used
to classify-the-asroseHypes revealed that higher amount of pollutants in UIA class were
identified,-and-directly affected-the-airguality-in-Makaysia (Fig. 3). The MA observed in
Penang was high because of its geolocationdQ.e., surrounded by the Sed. The study

s site was minimally affected by cparse particles and DA, which were less than 5% in
each seasonal - monsoon. BMA Wés one of the major pollutants in Penang because of
dire 3 i ' urng =
ia. These results were in

study during the southwest monsoon were about 45, 24, and 19 %, respectively. Dur-

ing the northeast monsoon period, UIA (approximately 38 %) was the major aerosol in

Penang, followed by MA (30 %), BMA (20 %), dust (4 %), and unidentified substances

(8 %). However, MIXA reached 17 % from April to May, which was the highest among
the seasonal monsocns. MA and UIA were 38 %; the MA level was significant from

15 October to November (51 %), followed by UIA (40 %) and BMA (< 1%). The aerosol
distribution in Penang was highly seasor;fpependent.

3.4 Seasonal flow patterns of air parcel from the HYSPLIT_4 model for

identification of aerosol origins

Yo -

} seven-day seasonal plot of the back-trajectory frequency &y the HYSPLIT_4

» model, % flow patterns o#—the—aﬁr—pfﬁ'cr'ﬁ“élz"ﬁ_‘ééﬁﬁg site were obtained (Fig. 4) for
each monsoon season #-terms-of-pereentage averaged between the ground surface
up to an altitude of 5000 m. Residence time analysis was performed to generate the

frequency plot and determine the time percentage of a specific air parcel in a horizontal

grid cell across the domain. =
25 During the northeast monsoon period, #e air parcel flowe# southwestward from the
northern part of southeast Asia (Fig. 4a), whiehit : 050l § :

Penang were from-the-fermer{egerrbuming season, Cimetal;-2013), including In-
dochina, &g transported through South China Sea to reach Penang. The aerosols
= 19759

Y 3 Ca =Ne e

acas Al

= oo 2 %r\\'

claaiie, 4

during the northeast monsoon period were &sD chw prod}&:e& whereas those eb-
~taimed during’ Southwest monsoon period wefg ffom. Andaman Sea, Malacca Strait,
Sumatra (site of open active burning), and other%%%gu P
Thepatterns-in-seasonakrelative frequency-of air frovement.were signifieantly.
s different-{Fig™4a). Comparison with Fig. 1b indicateit e differences in the patterns of
the seasonal relative frequency of occurrence for Angstromyag_g7o during the northeast
monsoon. These differenceg‘\%/;gr-e1 éﬁraiﬂt;&aﬂ‘ ?oufhe mixing 431? \.?;i)ious aerosol sources
from the northern (e.g., Indochina, Philippines, Taiwan, and eastern China) and south-
ern (e.g., Malaysia and Indonesia) parts of Southeast Asia. As a result,i@ birmredeal
w0 pattern was only obtained during the northeast monsoon pericd (December—March)
beeadse e ed-with al-source om-lndoeRina
tl i izes compared with those from the southern countarpart—
Figure 1b reveals that the distribution patterns of Angstrom exponent between th
post-monsoon and northeast monsoon are similar. Figure 4a and d also indicate the
s similarities of the air flow patterns for these monsoon seascns. Hence, a clear corre-
spondence was observed between Fig. 1b with Fig. 4a and d. The similarity in the pat-

he loca ¥ da) 0 a ORI aVe

T

Ry RS

terns of Angstrom exponents for post-monsoon and northeast monsoon was-attributed- Mg“{— ot Lokale

to the mixture of aerosols from northern and southern parts of Southeast Asia. Given

the classification results (Fig. 3), MA was the major aerosol during ihe post-monsoon

» and northeast monsoon, Ehe large-amewnrt-ef-A-originateg from South China Sea
and Andaman Sea. ! PN

For the pre-monsoon period, tfe aerosols observed at Penang originated from the

Malacca Strait, Andaman Sea, the northern and some eastern areas of Sumatra, and

the western part of peninsular Malaysia, especially the local regions marked in yel-

s low (Fig. 4b). During this season, the air flow patterns were similar to those during

the southwest monsoon (Fig. 4c). However, a small percentage of aerosol was trans-

ported from the northern part of Boutheast Asia to Penang. A clear eerrespendence

i was observed between Fig. 1b with Fig. 4b and ¢ during pre-monsoon and southwest

monsoon.
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The dominant aerosol types were UIA and MA (Fig. 3). The yellow portions in
Fig. 4a—e indicate that Penang, the second largest city in Malaysia and one of the most
industrially “concentrated cities, was a major aeros t ap, ‘because of local and indus-
trial emissions. MA contribution to the overall aeros \trlbu'ﬂon eeu%d—be—&gﬁmeam

-5ea.

4RO f“-‘-
3.5 Examination of predicyd AOD values :

QAIE Y A ./r-‘t‘-\.p\' )
W%nﬁﬁ—%&m%gﬁ&@ﬁmm&ﬁnmﬂmﬂdﬁg%ﬂ&t&%th&t
each period exhibi | distributions-in-Pemang. Seasonal analysis oﬁ the

relative frequency occurrence of AOD_500, Angstromyg 70, @nd PW clearly distin-
guished the dominant o t|c_al operties of aerosol for each monsoonal season. We
hypothesize@ that thﬁ:posad modelxshould exhibit dsj'ferent accuracies each sea-
son because the sensiti ty“fﬁ‘r prediction depended on the distribution patterns
of the measured AOD; these values were used as inputs to derive the correlation pa-
rameters of the model. The sensitivity of AOD prediction wée affected when the major
occurrence frequengbwas clustered around small AOD values. The insensitivity of
the aerosol models 4m Clearigg atmospherlc coqd[tlons was also previously observed
(Zhong et al., 2007). Conversely, the model approprlately predicted the AOD data-when
the corresponding input data were clustered around large values.

The model performance for each monsocnal season was tested (Table 3). The
pre-monsoon and southwest periods exhibited R? of 0.65 (RMSE =0.114) and 0.77
(RMSE = 0.172). However, for the transition period between post-monsoon to north-
east monsoon, AZ < 0.45 and RMSE ranged from 0.06 to 0.11. The increased amount
of atmospheric aerosol anhaneedlh\predlcted AQOD and vice versg. This result was in

P \y
L% e '9\ C.u.,-xl
1 u“&l‘k‘fcﬁ-\'\-k_»._& VS
Ly

) pR e R UJ\A*\w

/}ul\/‘-—:‘)\-'\—-\_ékﬁ;‘

agreement -mth%he&ewous hypothesis. Meanwhile,-the ¢6verall® S Tonth data was oet_

satisfactory with R? = = 0.133. The low value of "/’MHE (< 1) indicated
that the model yielded accurate results for all seasons. Given the criteria that a low
%MRE corresponded to a good prediction, the “overall” dataset yielded the least bi-
ased prediction.

19761

‘ wtles High correlationg? mf-’observed between the measured and predlcted
AQOD for pre-monsoon and southwest monsoon, in which similar air flow patterns oc-
curred (Fig. 4b and c). Figure 1b displays the relative frequencies of th& occurrence of
Angstromy,g_g7- The frequency spectra for pre-monsoon and southwest monsoon also
indicated the same patterns for AOD (Fig. 4b and c). The spectrum of tf& Angstrom
frequency exhibited narrow peaks at 1.6 and 1.7 A for pre-monsoon and southwest
monsoon, respectively. s b

The accuracy of the prediction of the AOD model was moderateu the aerosols in
Penang were locally mixed with those from foreign sources because of the winds dur-
ing post-monsoon and northeast monsoon Gh&ractenzed—by*stmﬂar-aw—ﬂew—paﬂems
(Fig. 4a and d). Correlations between Fig. 1b with Fig. 4aandd were—ebservedfor’ ©
these monsoonal periods. The spectrum of the Angstrom frequency exhibited a broad

P A -_,‘-:‘(

region from 1.3 A to 1.7 A for post-monsoon and northeast monsoon. The-breadened—

region-impliea-that-the-particle-size-was-largely-distributed. The relationship between

AOD to the air quality at ground surface depended on environmental factors, such
as RH, aerosol size distribution, and chemical composition. These factors were dis-
rsagarded in the Pf@D model, yielding deviations in the predicted values (Gupta et al,,

2013; Lee et &, 2012). U

3.6 Validation of the predicted AOD

I\Faez;)mlmlzed coefficients, a; (Eq. 2) were obtained from the first subset in the over-

all* dataset. To validate tﬁe model accuracy, a; was used to predict thé AOD from

the second subset ofthe “overall” dataset (Fig. 5) The predicted AOD exhibited high
19762
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correlation to the measured AOD (R2 = 0.68). In addition, the temporal characteristics
of the predictions between 2012 and 2013 were similar to those of the measured AOD.

However-the-predicted-AOBvalues-were over- or underpredicted. To examine-thgse

biases, the approach proposed by Lee et al. (2012) was performed to remove the
s outliers when the deviation of the predicted AOD was larger than the calestated %verall”
RMSE (0.133). Approximately 21 % of the total data were removed using this method

1 —>(W|tﬁout the outliers, the meastired AOD data (subset 1) were against & (Eq. 2)(8 of

thls fitting significantly |ncreased to 0.92 with RMSE = 0.059 and % RME = 1.17x10
After filtering the outliers, R? and RMSE were enhanced, but % BRME remained at 10~ -4

level.

“Frie coeﬁlc:lents without the outliers were used to predict AOD data, which \ﬁé?e‘theﬂ-‘ :
compared against the measured counterpart (subset 2) for validation. The prediction
failed to improve in terms of R? between the predicted and measured AOD (Fig. 5).
However, the %MRE increased from 0.33 (with outliers) to 5.99 (without outhers} based

on the comparison between the predicted and measured AOD. R

We-;emeved—the_aume[s based on the suggestmn “of Lee et al. (2012_) fo |mp[ove

ana&ysrs The remoygd data m|ght not be the genuine outliers. The data exhibited large

RMSE that shodld be

& femoved {Lee et al,

2012); but in fact was attributed to the

non-uniformly loaded atmospheric aerosols at different altitudes. We believe that the
non-uniform atmospheric mixing caused the high deviations in our predicted results,
according to previous studies (Qiu and Yang, 2000).

Considering that the proposed model was established based on ground-based
sources, the aerosols should be well-mixed in the atmosphere to obey congruency with
the vertical measurement of the sun photometer. The predicted AOD were subjected
to some uncertamhe‘ﬁﬁﬁere quantified in terms of RMSE because the atmosphere

is not always well m|x\ d. 1n@wmwmmmmm

error of + BMSE. \,_,;, w«)’\

t
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Figure 5 indicates that most of the predicted AOD values were lower than the mea-
sured counterparts. Tan et al. (2014c) analyzed the underprediction in these values.
They used a LIDAR system to determine the vertical profile of aerosols in Penang and
found that the aerosol concentration decreased with height up to the planetary bound-
ary layer (PBL)’ﬁs layer was less than 2 km during the study period. The large amount

of transported aerosols yielded residual layers because-cf-canvection effects’

cant underestimation of AOD oc%urred for thick residual layers. Figure-5shows-good
AGBprediction. Only a fewk Phére' ST significantly underpredicted because of the aerosol
residual layer beyond PBL. Studies in Cyprus (Retalis et al., 2010) suggested that the
extent of atmospheric mixing was relatively homogeneous on scales of a few meters to
tens of kilometers. Hence, the predicted results were representative of the large sam-
ples. The predicted AOD was underestimated because all measured data were taken
from the ground. However, overprediction would be significant if local burning occurred

near the measurement station.

LIDAR da beused to independently validaie

the aval_ahJe_LiDAR-datahwaﬂm&ed To properly validate the prediction, these data
should coincide in time with those measured from API, Vis, and AOD level 2. In our
case, the LIDAR data coincided only once at 12 July 2013 (Fig. 6). Figure 6a shows
the vertical profile of the aerosol backscatter coefficient as a function of time (morn-
ing to evening). The brown vertical line represented the instance when both the mea-
sured and predicted AOD could be compared with the LIDAR data. Figure 6b illustrates
the normalized range corrected signal (RCS) at different altitudes from 10.00a.m. and

RCS was normalized through calibration based on the theoretical molecu-

lar backscatter (USSA976 standard atmospheric model) to calibrate the performance

of the LIDAR system.

Figure 6¢ displays the profiles of the a

tained at 10:00 and 11:00a.
10:00 a.m., which

The

N R
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erosol backscatter coefficient @% ob-
;@erosois“ﬁt‘gumulated near the ground surfaee at
ent with a slightly increased value in the predicted AOD of
0. 039 By corttrast, the-ascumulated aerosols at 11.00 a.m. were at a higher level
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than those-atthe-ground-tevel. This result wasin-accordance-with the lower value in the
predicted AOD of approximately 0.044, which-was-consistent-with-the-expected result.
Therefore, the predicted ACD values were acceptgb&sbecause they exhibited small
deviations against the measured AOD; this result was Valid as long as the aerosols did

s not considerablx_bgei_fdfg_r;%g_ altitude levels beneath the planetary boundary layer. The LI-
DAR data should be considered as an independent validation method for ground-based
prediction models. Gemparing-the-consistency-betweenthe predicied-resulis-against- -
LIDAR data could falsify orverifythe-eorrectness-of-the-predietion-modetwith-high-con—
fidence. In reality, aerosols are not frequently well mixed in the atmosphere; Several

w0 environmental factors can cause ambiguity in the predictions (Gupta et al., 2013; Lee
et al., 2012). The small group of highly underpredicted results (Fig. 5) was attributed
to the significant heterogeneity of aerosols in the atmosphere (e.g., aerosol residual -
layers) and the large amount of high-level transported aerosol (Tan et al., 2014b, c).

3.7 Applications of the proposed model in the absence of measured AOD data

i Our proposed model generates AOD data when those from AERONET are un-
available. We described the procedure to predict AOD data. Only the API data for
7.00a.m., 11.00a.m., and 5.00p.m. (local time) were available frem—the—web-sie—
(http://apims.doe.gov.my) before 24 June 2013. The API data were provided hourly
beyond this date .Any in situ-visibiity-crata wittTa vaiue of ~9999 and those recorded as

20 ;h%ain,_mhundexstgpmslwefmmeved. In this study, approximately 5 % of the data

- “were discarde% and only 4493 data points were retained. Figure 7 shows the predicted

cluﬂ'*‘: results from 2012 to 2013, which overlapped with the measured AOD data to simplify
the co rison. The average AOD was 0.31 based on 4493 predicted data for the
ire study period, which was near that of AERONET (about 0.29). The-geed-agree-_

y ; . . .. ! G ; 3
As an illustration, we selectively-zeem-to fhree separate data windows (28 Septem-
ber, 17 October, and 30-31 October 2013; Fig. 8a—c) to analyze ttie variations in the
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predicted and measured AOD values at-the-scale-of days. The predicted AOD and
CIMEL sun photometer data ﬁé‘i&‘shown as blue and red dotted lines, respectively.
availability of the measured data points are often limited because of the unavail-
ability o ET data caused by the presen obotic errors. The
predicted graphs exhi variation trends that tally with those measured at
! e scale (daye)y
..~ AOD variations were continuously generated by the proposed model based on the
hourly data from ground-based measurements. The unrecorded infermation by the sun
photometer could be reproduced by the proposed method (Fig. 8). The model coef-
w ficients were trained under cloud-free conditions. Hence, the hourly AOD data could
be generated anytime to compensate for the absence of measured AOD data during -
cloudy periods. In addition, the proposed model can generate daytime and nighttime ~ ~
temporal data in contrast to AERONET. Gtr-modet-canbe-highly-beneficial-in-moni=-—
toring-the-arconcentration cycle betauss T generates continuous hourty-data; hence;—
s camplementary information are provided. -
The proposed model was independently verified using four selective sets of LIDAR
data. We generated these data and compared them against the temporal plots of
the aerosol backscattering coefficient signal (Fig. 9). The rectangles in Fig. 9a cor-
responden to the window periods for the LIDAR signal (Fig. 9b). The variation-patieras L/ v ab N
2 in the retrieved AOD for the given window periods (Fig. 9a) corresponde®! well to the
intensity variations in the a .EOSc?l te ckscattering coefficient signal (Fig. 9b). The LI-
DAR signals reveales the e%fﬁﬁéess 58 of our predicted AOD, because the low (high)
intensities of aerosol backscattering coefficient signal corresponded to low (high) AOD. —
The high intensities at 1—1.5 km altitudes (low cloud distributions) are represented by
»s green ovals. Although clouds were present within the selected time windows, the re-
trieved AOD remained invariant. Therefore, this result strengthened the robustness of
the proposed model to perform reliable and accurate prediction and retrieval of AOD. =
Qur-modetcotidprovide-complementary retrieval of AOD data when AERONET data 7
are-unavaitable because of-the-presence-of-clobwds—
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3.8 Comparison with other linear regression models

Feugwmg.quamﬂa‘m_em_d'gu_aﬂmnmaﬁdaﬁeﬂﬁmmefﬁe proposed model was
compared against other AOD-predicting models in the literature, Table 4 shows the A?
values of seme selected AOD-predicting models calculated using the first data sub-
set by our model (Sect. 2). The R? values in Table 4 were compared with those of
the %overall® dataset (Table 3). Retalis et al. (2010) suggestet a simple linear regres-
sion analysis to predict AOD from the Vis data. Mahowald et al. (2007) suggested
a similar linear regression model for the AOD prediction model, in which the Vis data
were converted to surface extinction coefficients by, using the Koschmieder equation
Vis = K/bgy, where K (= 3.912) is the Koschmieder constant (Koschmieder, 1924).
Two other AOD-predicting models were also subjested-totomparison (Gao and Zha,
2010; Chen et al., 2013). In these models, linear regression analysis for AOD and PMy,
was carried out to predict the surface air quality. The approaches can also be used to
retrieve AOD after appropriate conversion procedures. Initially, we converted the API
data into PM,, via the guidance on air pollutant index from DOE (1997). The obtained
PM,, values were inputted into the linear regression formula to predict AOD. The lin-
ear regression yielded R? < 0.8, which was much lower than that of our model (20.72)
based on the comparison of R? values for the “overall” dataset in Table 3 against those
in Table 4. This result implied the dominance of the proposed model in terms of R2.

4 Conclusions

Seasonal variations in the primary aerosol types and their characteristics in Penang
were analyzed from February 2012 to November 2013. The aerosol types for a spe-
cific monsoonal period were determined by applying a threshold criteria on the scatter
plots between AOD and Angstromy,g_a7p. The threshold criteria from Smirnov (2002,
2003, 2011), Pace et at. (2006), Kaskaotis (2007), Toledano et al. (2007), Salinas
et al. (2009), and Jalal et al. (2012) determined the aerosol types. The testing resulis

o\ \
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indicated that the threshold criteria by Toledano et al. (2007) were the most reliable
because of the minimal value of the predicted MIXA. For the entire study period, the
BMA abruptly increased during the southwest monsoon period because of active open
burning activities in local areas and neighboring countries. During the northeast mon-
soon period, the optical properties (e.g., size distribution patterns) of the aerosols
were unique. Two noticeable peaks were observed in the occurrence frequency of
the Angstrom exponents compared with the single peaks for other monsoon seasons.
These results were attributed to the mixing of aerosols from local sources with those
from the northern part of Scutheast Asia caused by the northeast monsoon winds.
UIA and MA were the major pollutants in/Penang throughout the year. DA negligibly
contributed to the emissions in Penang because-deserts-werenonexistent-and-theto-
cation was-sufficiently Tar from Rnowrm desertareas. Fhe-smal-amount-of- DA-partieles
was caused by vehisles-and-consiruetion-activities. The variations in aerosol types for
different monsoon seasons yielded distinct optical properties.

The original prototype model of Tan et al. (2014a) feasibly predicted the AOD values
based on the measured API, Vis, and RH data through multiple regression analysis. In
this study, the algorithm of Tan et al. (2014a) was used and slightly modified by neglect-
ing the RH contribution. Our results suggested that the removal of the RH contribution
caused no changes in the predictability of the proposed model. The modified algorithm
was quantitatively and qualitatively validated. The retrieved AOD data in the proposed
model were in agreement with those measured.

Previous models used simple regression analysis between AOD and meteorological
parameters to predict the corresponding AOD data. In this study, multiple regression
analysis was used in the proposed model. Two predictors (APl and Vis) were introduced
to increase the statistical reliability. To verify the high robustness of multiple regression
analysis in contrast to the simple regression approach, AOD data based on previous
simple models were retrieved (Gao and Zha, 2010; Chen et al.,, 2013; Retalis et al.,
2010; Mahowald et al., 2007). The R? values in our model were compared with those
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previously proposed. The results indicated that the quality of AOD prediction of our
model was more dominant than those of the simple models.

Our algorithm could properly predict the AOD data during non-retrieval days caused
by the frequent occurrence of clouds in the equatorial region. The proposed model
yielded reliable and aptly real-time AOD data despite the availability of the measured
data for limited time points. The predicted AOD data are beneficial to monitor short- and
long-term behavior and provide supplementary information in atmospheric correction.
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