

Interactive  
Comment

## ***Interactive comment on “On direct passive microwave remote sensing of sea spray aerosol production” by I. B. Savelyev et al.***

**I. B. Savelyev et al.**

ivan.savelyev@nrl.navy.mil

Received and published: 23 August 2014

Itemized Response to Anonymous Referee #1 is given below.

Reviewer: "This is an interesting paper that presents results from a field experiment where sea-salt aerosol (SSA) populations and microwave brightness temperatures were measured. The data are used to develop a proposed relationship for predicting the SSA flux across the air-sea interface from microwave brightness temperature. Interestingly, the obvious reason for the two quantities to be related, the foam coverage due to breaking waves, was found to be of less importance than sea surface roughness. One possible explanation for this are discussed in the paper, although the point is not resolved. Overall I think this is a nice piece of work, and the questions it raises

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper



Interactive  
Comment

will stimulate further work in this area, even if further measurements determine that the link between brightness temperature and SSA flux is not straightforward as presented. I recommend it be published after the points raised below are addressed.

In Figure 7, it is interesting that there appears to be a series of outlier measurements where  $U_{10}$  was relatively high yet  $F_{pms}$  was low. Were these data recorded in a contiguous time frame so that they represent a particular meteorological event? Would it be possible to color code them in some way so the equivalent data points could be shown in Figure 7b, 7c, and 7d? My suspicion is that there is some reason why these particular points have anomalously low fluxes (for example, perhaps there was swell running with the wind direction so that breaking was suppressed, or perhaps there were atmospheric stability issues?). Since the processes that drive  $T_b$  as function of wind speed are the same, mostly, as the processes that drive  $F_{pms}$ , and the correlation of  $U_{10}$  and delta- $T_b$  is so high (see Figure 9), I do not see why there should a series of outliers in 7a that are not also shown in 7d. Furthermore, if you exclude those outliers (the line of points to the lower right of panel 7a), a chi-by-eye suggests that the fit of  $F_{pms}$  to  $U_{10}$  would look almost identical to the fit of  $F_{pms}$  to delta- $T_b$  in panel 7d. It seems to me that the data in 7a and 7d warrant a bit deeper discussion into the sources of the variability shown in 7a."

Response: The outlier population in Figure 7a was identified, highlighted, and shown on other panels in Fig. 7 (see attached figure). It appears to correspond to the time frame (YD 118.5 – 119.2) of rapid wind growth, where the wave field is not fully developed and therefore does not produce as many whitecaps (and hence SSA Flux) as is expected from a mature wave field at the corresponding wind speed. Figure 7d does not show this population as an outlier because the corresponding controlling parameter is directly sensitive to the amount of breaking wave activity. A corresponding discussion emphasizing these points is now added to section 5.

Reviewer: "The authors provide an interesting hypothesis for why the active breaking fraction is more relevant to SSA production than total foam fraction. However, they con-

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper



clude that not enough is known about spray droplet production to draw any conclusions. Oddly, they do not cite Fairall et al. (Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison (2009), Investigation of the physical scaling of sea spray spume droplet production, *J. Geophys. Res.*, 114, C10001, doi:10.1029/2008JC004918.) which is likely the most detailed laboratory study of this process. It is possible that Fairall et al. might shed light on this situation. Additionally, there have been some studies relating the air-sea gas flux to brightness temperature, and although my recollection is they did not try to separate the foam impact from roughness, the reasoning used by the authors to justify roughness as the primary driver for the SSA flux might also apply to the gas flux. This is especially true in light of the work by Chris Zappa, who demonstrated that the roughness generated by microscale breaking waves (i.e., small scale breaking waves that do not visibly entrain air) correlates with the gas flux."

Response: The concluding paragraph of section 6.1, specifically the part regarding the lack of the literature on the subject was meant to address specifically the lack of the quantitative evidence of difference in aerosol production rates between active and passive phases of breaking waves, not the overall lack of literature on the subject. We agree that the phrasing we used was not clear and made appropriate modifications to the paragraph. The paper by Fairall et al. 2009 is indeed relevant to the discussion of the choice of the input parameter and is now added to the appropriate section (2.1.3). The effect of microbreaking on the air-sea gas exchange is primarily due to the enhanced subsurface mixing. We hesitate to suggest a similar effect on the aerosol production, because microbreakers do no entrain air (by definition), and therefore lack the ability to produce any aerosol in the coarse mode.

Reviewer: "Minor Issues: P15386, Line 4: Perhaps a more accurate way to state this is that the overall shape of the Smith et al. parameterization (SP) agrees with the empirical fluxes calculated using the dry deposition method (DDM). At the highest wind speed for large particles, the fluxes from the DDM are an order of magnitude larger than the SP fluxes. I would not necessarily call that agreeing "fairly well." Perhaps the

ACPD

14, C6143–C6148, 2014

Interactive  
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper



agreement would be clearer if some estimate of the uncertainty in the DDM fluxes were shown?"

Response: Correction made as suggested.

Reviewer: "Figure 7: Labeling the panels in a counterclockwise manner is confusing. Suggest relabeling as a(top left), b(top right), c(bottom left), d(bottom right). "

Response: Correction made as suggested.

Reviewer: "P15386, Line 14: Suggest substituting "decimating" for "rarefying." Decimation is the standard term for the procedure I think the authors are describing."

Response: Correction made as suggested.

Reviewer: "P15386, line 25: "greater linearity" It is not clear to me that the fit of 7d is in fact more linear than the fit in 7a (in the sense the fit is closer to a straight line. I think it might be better to say "more correlated" and provide an estimate of the coefficient of determination."

Response: Incorrectly used term "linearity" replaced with term "smoothness".

Reviewer: "P15389, L1-L4: I must be missing something in Figure 9. My experience suggests that the increase in Tb at h-pol due to foam and breaking waves is larger than the increase in Tb at v-pol. This is supported by the measurements of Padmanabhan et al. (2005, TGRS, Figure 13), showing that the increase in emissivity is larger at h-pol than at v-pol. Yet Figure 9 shows that the increase is larger for v-pol than h-pol. There should be some discussion in the text as to why the result shown is at odds with previous measurements. Furthermore, discussions such as found in Pandey and Kakar (1982, IEEE JOE) suggest that the effect of roughness on Tb at v-pol is relatively small. I feel I am missing something in interpreting Figure 9 with respect to the discussion in the text."

Response: The reviewer is correct to expect faster growth of H polarization, compared

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper



Interactive  
Comment

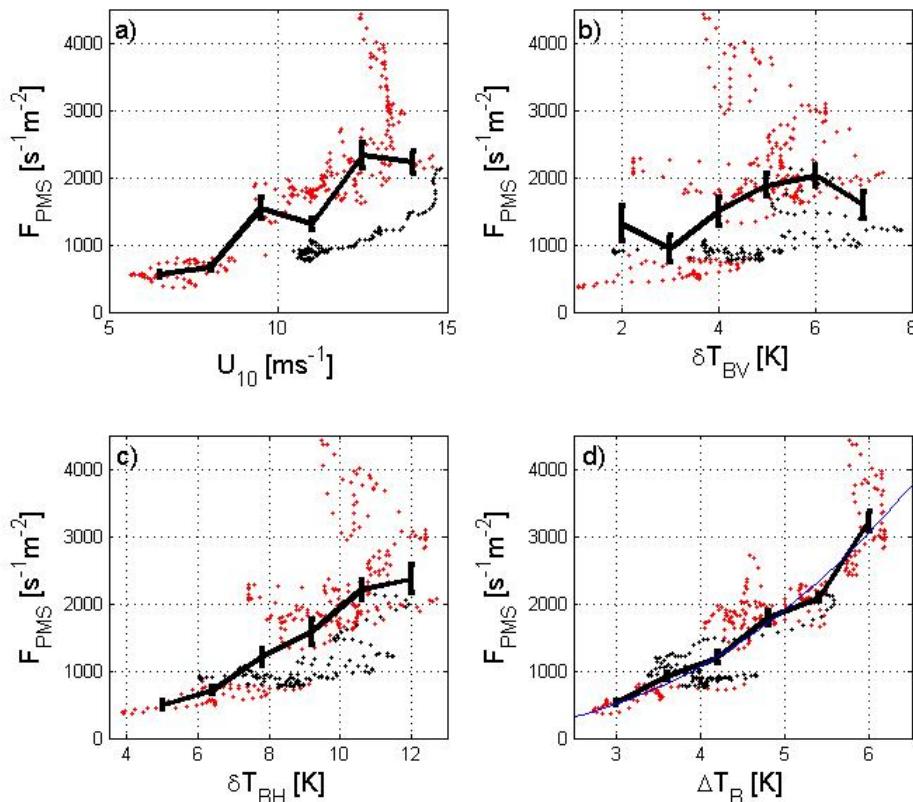
to V. Both panels of figure 9 actually support that expectation. Panel (a) shows H and V separately and it can be seen that both modeled and observed H values grow about twice faster than V. That is why H-V difference (defined by eq.10) shown in (b) has a positive slope, whereas it would have been negative if V grew faster than H.

Reviewer: "Finally, the authors state that the predicted functionality matches the data. However, the experimental Tb values look to be almost linear with respect to U10, whereas the model results predict an increase that will be nearly cubic. Perhaps the model curves could be shifted by the constant offset to more clearly show the observed dependence is the same as the model."

Response: The text has been changed to state that in Figure 9a the model indeed does NOT match the observation. Potential reasons for this difference are listed in section 6.1 (3rd paragraph) and appear to cancel out when polarizations difference is used (H-V), resulting in a much better agreement between the model and the observations, shown in figure 9b.

---

Interactive comment on *Atmos. Chem. Phys. Discuss.*, 14, 15363, 2014.


Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper



[Interactive Comment](#)**Fig. 1.**