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This paper reports experimental results of the changes in the mole fraction of the trace 

gas components (CO2, CH4 and H2O) filled in the steel and aluminum cylinders in 

accordance with the changes in pressure and temperature. The CO2 and H2O mixing 

ratios in the cylinders increased with decreasing the pressure; the changes were 

accelerated at the low pressure and the changes are greater for steel cylinders than for 

aluminum cylinders. These changes are attributed to the gas adsorption/desorption effect 

on/from the inner wall of the cylinder. The authors explained the observed change 

associated with the pressure by adopting Langmuir’s adsorption isotherm. In the 

greenhouse gas measurement community, it is known by experience that the standard 

gases is more stable in the aluminum cylinders than in the steel cylinders and the mixing 

ratios in the cylinders are not reliable when the residual pressure is close to zero. This 

study is the first attempt to quantify the changes in the mole fraction in terms of the 

pressure-induced adsorption/desorption effect. The authors also examine the influence 

of the ambient temperature change on the adsorption equilibrium. Since these 

experimental results are useful for evaluating the stability of standard gas in cylinders, 

this paper is certainly worthy of publication in Atmospheric Chemistry and Physics. 

However, I think there are several mistakes in formulations and calculations and 

insufficient and ambiguous descriptions in the manuscript. Therefore, the manuscript is 

published after the authors and editors consider the following points. 

 

General comments: 

 

The amount of the adsorbed CO2 estimated from the emptying experiments is 0.3 ppm 

for aluminum cylinder and 9 ppm for steel cylinder. This result means that when CO2 

standard gas is compressed into a cylinder, a significant decrease in the CO2 mixing 
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ratio occurs due to the adsorption effect. It would causes serious problem on preparation 

of gravimetric standard gas; the CO2 mole fraction of the gravimetric standard gas, 

which is a mixture of pure CO2 gas and CO2-free ambient air prepared in an evacuated 

aluminum cylinder, would be by about 0.3 ppm lower than the CO2 mole fraction 

calculated from the masses of individual gases. The decrease in the CO2 mole fraction 

caused by the adsorption effect may be larger than 0.3 ppm because smaller aluminum 

cylinders (~10L) are usually used for the gravimetric standard gas preparation and the 

volume-to-surface ratio decreases with the volume of the cylinder. However, such 

degradation of the gravimetric standard has not been reported, as far as I know. In 

addition, it is reported that the gravimetrically determined CO2 mole fractions agree 

well with those determined by the barometric measurement technique, which is another 

absolute measurement technique (Zhao and Tans, 2006, JGR, 111, D08S09, 

doi:10.1029/2005JD006003) . These facts seem to indicate that the adsorption effect is 

no so large. 

 

I think the Eq. (4) in the manuscript does not express correctly the change in the CO2 

mole fraction in the cylinder for the emptying experiment because the equation does not 

take the influence of the released air into account. For accurate discussion, I define 

values as follows: Standard air with known CO2 mole fraction, CO2,0, is compressed 

into a cylinder to pressure of P0. After reaching the adsorption equilibrium, the CO2 

mole fraction in the cylinder is reduced to CO2,1 and the difference (CO2,0-CO2,1) is 

denoted by CO2,ad. Here, the CO2 amount in the gas phase of the cylinder, Q, is 

expressed as a product of the pressure P and the mole fraction CO2 (Q=P×CO2). 

Assuming that the CO2 adsorption/desorption follows Eq. (2) (Langmuir’s adsorption 

isotherm), the change in the adsorbed amount, Qad, is expressed according to 
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where K represents the equilibrium constant (K=k/k-1). Thus, the change in the CO2 

amount in the gas phase of the cylinder according to the pressure change is expressed by 

the following differential equation: 
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Note that it is assumed that the desorbed CO2 from the inner wall is mixed quickly and 
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homogeneously in the cylinder. The first term on the right hand-hand side of Eq. (B) 

represents the effect of the gas release, and the second term represents the effect of the 

CO2 desorption from the inner wall, which is derived from the derivative of Eq. (A) 

(-dQad/dP). Solving the differential equation (A) with the boundary condition 

Q(P0)=P0×CO2,1 yields 

( ) ( ) ( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

++
+
−

= 1,2
0

0
0

0
,2 1

1ln1
1

CO
PKP

KPPKP
KP

PPKCOPQ ad   (C) 

Therefore, the measured CO2 mole fraction of the cylinder gas during the emptying 

experiment (CO2,meas=Q/P) is expressed according to 
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The Eq. (D) can reproduce well the experimental results shown in this paper for the 

pressure range from 100 to 1 bar (Fig. 1). Roughly evaluated CO2,ad and K values by 

matching the curves based on Eq. (D) with the curves based on Eq. (4) with the CO2,ad 

and K values reported in the manuscript (the blue curves shown in Fig. 2 and Fig. 4 in 

the manuscript) are also shown in Fig. 1 together with the reported values in this study. 

The CO2,ad based on Eq. (D) are considerably small, especially for the aluminum 

cylinders. This result, suggesting that the adsorption effect is insignificant for the 

preparation of gravimetric standard gases as long as the aluminum cylinders are used, 

seems to be consistent with our experience of the standard gas preparation. Therefore, I 

think the authors should re-examine Eq. (4) and re-analyze the experimental results of 

this paper. 
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Fig 1. Estimated changes in the CO2 mole fraction during the emptying experiment for 

(left) the steel cylinder and (right) the aluminum cylinder. The solid curves are 

expressed by Eq. (4) and broken curves are expressed by Eq. (D) with the parameters 

shown in the legends.   

 

Specific comments 

 

1) P. 19294, L. 14-15: The amounts of the absorbed H2O on the inner wall of the steel 

and aluminum cylinders (0 ppm and 30 ppm) are not discussed in the text. And the 

amount of the absorbed CO2 for the steel cylinder is 6 ppm here, but is 9 ppm in the 

following text. Which value is correct? 

2) P. 19296, L. 13-14: “Freundlich and Küster (1894)” is not listed in Reference. 

3) P. 19297, L. 25-26: I think that the surface condition of the cylinders also affects the 

adsorption ability as well as storage stability. How was the inner surface of the 

cylinders washed and treated? Such information is useful to the community of the 

greenhouse gas measurements.  

4) P. 19299, L. 2-20: In this paragraph (the first paragraph of Section 3), only result of 

the emptying experiment for the steel cylinder is discussed. Therefore, the first 

sentence of the paragraph, “Figures 2 and 4 display … cylinder”, should be 

changed to like “Figure 2 displays the CO2 … for a stainless cylinder.” Following 

this change, it would be good to cite Figure 4 in the first sentence of the second 

paragraph of Section 3. 

5) P. 19299, L. 15-16: I think there is an error in calculation. The number of CO2 

molecule corresponding to 9 ppm change in the steel cylinder is about 1.2 × 1021 

(=(50×100/22.4)×9×10-6×6.02×1023). But, the number of the CO2 molecule 

occupying the inner surface of 1.09 m2 with the diameter of 3.4×10-10m is about 

1.2×1019 (=1.09/{(1.7×10-10)2×3.14}), which is by two order smaller than above 

number. 

6) P. 19299, L. 25-26: Did the authors use two different aluminum cylinders for the 

two emptying experiments with the different decanting rates? Are those cylinders 

listed in Table 1? If the only one aluminum cylinder was used, it would be better to 

explain the difference in the estimated K values, 2 bar-1 and 10 bar-1. 

7) P. 19300, L. 1-2: Was the instrument (CRDS) calibrated against other standard gases 
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to detect the trends during the emptying experiments or, at least, before and after 

the experiments? 

8) P. 19300, L. 6-9: Table 1 should be referred to here. 

9) P. 19300, L. 17-22: I think that Eq. (5) is derived from Eq. (3), but it cannot be 

obtained simply by taking the natural logarithm of Eq. (3). So, it should be 

explained how to obtain Eq. (3). Similarly, it would be better to briefly explain how 

to calculate the desorption energies from the slopes in Fig. 8 and Fig. 10. 

10) P. 19300, L. 25-26: I’m not sure what the sentence “This might point to …(Keeling 

et al., 2007)” mean. Please explain why the authors consider the influence of 

thermal diffusion is small. 

11) P. 19303, Table 1: There is no mention of Table 1 in the manuscript. Are the values 

of the second decimal place significant? 

12) P. 19308, Fig. 4: Is the blue curve in the top panel expressed only by Eq. (4)? Isn’t it 

the combination of Eq. (4) and a linear function corresponding to the gradual 

increasing trend? 

13) P. 19308, Fig. 4 caption: How were the desorption energies (EA,des) calculated from 

the emptying experiments? 

14) P. 19311, Fig. 7 caption: Does the steel cylinder 5a correspond to the cylinder 5 

(LK548528)? 

15) Fig. 6, 7, and 9: There is no mention of these figures in the manuscript. 


