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1 XRD pattern of the synthesized sample 
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Fig. S1.XRD pattern of the synthesized sample. 

 

The synthesized sample presented some diffraction peaks in the wide angle X-ray 

diffraction region. These characteristic peaks that emerged can be indexed according 

to the hematite crystalline phase, and no other crystalline phase was found in the 

peaks, indicating that the synthesized sample was a fairly pure ɑ-Fe2O3 sample. 

 

 

 

 

 

 

 

 

 



2 Schematic diagrams of DRIFTS and White Cell-FTIR apparatus 

 

 

 

 

 

 

 

 

 

Fig. S2. Schematic diagram of DRIFTS apparatus 

 

 
 

 

           Fig. S3. Schematic diagram of White Cell-FTIR apparatus 

 



3 The variations of the fitting peak areas with reaction time 

0 20 40 60 80 100 120 140 160 180

0

2

4

6

8

10

Time (min)

P
e
a
k
 a

re
a

 1156 cm
-1

 1222 cm
-1

 1261 cm
-1

 

 

 

 

Fig. S4. The variations of peak areas at 1261, 1222 and 1156 cm
-1

 with reaction time 

 

Upon exposure of SO2, the surface-adsorbed H2O was gradually consumed and the 

surface acidity of pure hematite sample was gradually enhanced. The transformation 

of the adsorption mode of the surface-formed sulfate would occur with the increase of 

the surface acidity, and then the peak at 1219 cm
-1

 appeared (Yamaguchi et al., 1986; 

Persson and Lovgren, 1996; Faguy and Marinković, 1996; Hug, 1997). The slight 

decrease in intensity of the peak at 1219 cm
-1

 after it reaches the maximum may be 

due to partial dissolution of hematite along with consumption of surface acidic species, 

which would lead to the formation of Fe
3+

 ions and some other surface species on the 

water-containing surface (Chun and Quon, 1973; Shi et al., 2011). 

In addition, it should be pointed that peak fitting can produce bias, and hence the 

fitting band at 1222 cm
-1

 corresponds to the band at 1219 cm
-1

 in Fig. 1. 

 



4 Peak heights of the main peaks observed on FN-24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5. Peak heights of the main peaks in different infrared spectral regions. 
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5 Chromatogram and EI mass spectrum of N2O 

 

 

 

Fig. S6.Chromatogram (0.1-0.8 min) of the gas-phase sample collected from the 

heterogeneous reaction of SO2 on FN-24 in a closed glass bottle in the dark (a) and 

corresponding EI mass spectrum of N2O (b).  
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6 Assignments of the broad peak in the region between 1100 and 900 cm
-1 

observed on pure hematite 

A broad peak containing several weak peaks, especially at the beginning of the 

reaction, is also observed between 1100 and 900 cm
-1

. Several peaks in this region can 

be assigned to the stretching motion of adsorbed sulfite and/or bisulfite based on 

previous studies on SO2 adsorption on different metal oxide surfaces (Zhang et al., 

2006; Wu et al., 2011; Nanayakkara, et al., 2012). These peaks can be overlapped by 

the symmetric stretching of sulfate in this region (Nanayakkara et al., 2012; Zhang et 

al., 2006), and it is difficult to distinguish these absorption peaks in this region 

because of the increase of surface sulfate species and the decrease of surface sulfite 

species during the reaction. These results indicate that surface S(IV) species such as 

adsorbed or surface-coordinated H2SO3, HSO3
-
 and SO3

2-
 species were converted to 

sulfate in the reaction process and some S(IV) species have not been completely 

oxidized to sulfate on the pure hematite surface after the experiment. 
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