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Abstract 

We estimate methane emissions from North America with high spatial resolution by 

inversion of SCIAMACHY satellite observations using the GEOS-Chem chemical transport 

model and its adjoint. The inversion focuses on summer 2004 when data from the INTEX-A 

aircraft campaign over the eastern US are available to validate the SCIAMACHY retrievals 

and evaluate the inversion. From the INTEX-A data we identify and correct a water vapor-

dependent bias in the SCIAMACHY data. We conduct an initial inversion of emissions on 

the horizontal grid of GEOS-Chem (1/2ox2/3o) to identify correction tendencies relative to the 

EDGAR v4.2 emission inventory used as a priori. We then cluster these grid cells with a 

hierarchical algorithm to extract the maximum information from the SCIAMACHY 

observations. A 1000-cluster ensemble can be adequately constrained, providing ~100 km 

resolution across North America. Analysis of results indicates that the Hudson Bay Lowland 

wetlands source is 2.1 Tg a-1, lower than the a priori but consistent with other recent 

estimates. Anthropogenic US emissions are 30.1 ± 1.3 Tg a-1, compared to 25.8 Tg a-1 and 

28.3 Tg a-1

 

 in the EDGAR v4.2 and EPA inventories respectively. We find that US livestock 

emissions are 40% greater than in these two inventories. No such discrepancy is apparent for 

overall US oil and gas emissions, although this may reflect some compensation between 

overestimate of emissions from storage/distribution and underestimate from production. We 

find that US livestock emissions are 70% greater than the oil and gas emissions, in contrast to 

the EDGAR v4.2 and EPA inventories where these two sources are of comparable 

magnitude. 
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1. Introduction 

Methane is the second most important anthropogenic greenhouse gas after carbon 

dioxide [Myhre et al., 2013]. Major anthropogenic sources include natural gas extraction and 

use, coal mining, landfills, livestock, rice cultivation, and biomass and biofuel burning. 

Wetlands are the largest natural source. The magnitude of global methane emissions is 

constrained within ±15% by knowledge of the global sink from oxidation by OH, but the 

magnitudes and trends of emissions from different source types and source regions are highly 

uncertain [Myhre et al., 2013; Hartmann et al., 2013; Kirschke et al., 2013]. Reducing 

methane emissions has been identified as a low-cost priority in greenhouse gas emissions 

reduction strategies [IEA World Energy Outlook 2013; van Vuuren et al., 2006; Weyant et 

al., 2006] but this requires that the sources be quantified. The United States (US) 

Environmental Protection Agency (EPA) provides national emission inventories for methane 

[EPA, 2013]. However, a number of studies using atmospheric observations from surface and 

aircraft suggest that these inventories may underestimate total emissions or emissions from 

various source types by a factor of two or more [Katzenstein et al., 2002; Xiao et al., 2008; 

Kort et al., 2008; Petron et al., 2012; Miller et al., 2013; Karion et al., 2013; G. W. Santoni 

manuscript submitted, 2014].  

Satellite observations of atmospheric methane provide a resource for constraining 

emissions, as first demonstrated by Bergamaschi et al. [2007]. Satellites deliver dense spatial 

coverage unachievable by surface networks or aircraft campaigns, albeit with lower 

precision. Methane has been retrieved from nadir satellite measurements of solar backscatter 

in the short-wave infrared (SWIR) and terrestrial radiation in the thermal infrared (TIR). 

SWIR retrievals are available from SCIAMACHY for 2003-2012 [Frankenberg et al., 2011] 

and GOSAT for 2009-present [Parker et al., 2011; Schepers et al., 2012]. TIR retrievals are 
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available from AIRS for 2002-present [Xiong et al., 2008], TES for 2004-2011 [Worden et 

al., 2012], and IASI for 2007-present [Xiong et al., 2013; Crevoisier et al., 2013].  SWIR 

retrievals provide total atmospheric columns. TIR retrievals provide vertical profiles but with 

low sensitivity to the lower troposphere due to lack of thermal contrast, and this limits their 

value for detecting regional sources [Wecht et al., 2012]. SCIAMACHY had full global 

coverage with a six-day return time. Current coverage by GOSAT is much sparser. 

Instrument degradation limited the value of the SCIAMACHY data after 2005 [Frankenberg 

et al., 2011]. The TROPOMI instrument to be launched in 2015 will provide SWIR methane 

data with global daily coverage and 7x7 km2

Here we use SCIAMACHY observations for July-August 2004 in an inversion of 

methane sources in North America with the adjoint of the GEOS-Chem chemical transport 

model (CTM) at 1/2

 nadir resolution [Veefkind et al., 2012].  

ox2/3o (~50x50 km2

A number of previous studies have used SCIAMACHY data for global inverse 

modeling of methane sources [Bergamaschi et al., 2007; Meirink et al., 2008; Bergamaschi et 

al., 2009; Bergamaschi et al., 2013; Monteil et al., 2013; Cressot et al., 2013; Houweling et 

al., 2013]. All have recognized the need for correcting bias in the SCIAMACHY data that 

otherwise propagates to the inverse solution. An early validation of SCIAMACHY using 

ground based Fourier transform spectrometers [Dils et al., 2006] failed to identify retrieval 

error related to inaccuracies in water vapor spectroscopic parameters [Frankenberg et al., 

) resolution. This time window takes advantage of 

concurrent methane observations from the NASA INTEX-A aircraft mission over the eastern 

US [Singh et al., 2006] that offer extensive vertical profile information (for satellite 

validation) and boundary layer mapping (for complementary source characterization). The 

EPA [2013] emission inventory shows no significant change from 2005 to 2011, implying 

that there is little interannual variability in US anthropogenic emissions and that constraints 

on 2004 emissions should therefore be relevant to present-day. 
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2008]. More recently, Houweling et al. [2013] show that bias in SCIAMACHY is correlated 

with tropospheric water vapor concentrations. As we show below, a water vapor correction 

enables successful validation of the SCIAMACHY data with the INTEX-A vertical profiles.  

Our work goes beyond the above studies in using SCIAMACHY for a continental-

scale optimization of methane sources with high resolution, including evaluation with aircraft 

data. The adjoint-based approach allows us to exploit the density of the satellite observations 

to optimize emissions at the 1/2ox2/3o

 

 native resolution of GEOS-Chem, but we show that too 

fine a resolution can inhibit successful inversion by diluting the information from the 

observations. Previous studies have proposed methods for coarsening the discretization of 

model emissions in a way that optimizes the inversion [Bocquet 2005; Bocquet 2009; 

Bocquet et al., 2011; Wu et al., 2011]. These methods require computationally intensive 

construction of the Jacobian of the CTM, which is precisely what we seek to avoid by using 

the adjoint method. Here we introduce a hierarchical clustering algorithm to optimize the 

discretization of emissions in the context of adjoint-based inverse modeling. 

2. Observations 

 SCIAMACHY is in a sun-synchronous polar orbit with an equator overpass local time 

of ~10:00. It retrieves methane from nadir SWIR spectra at 1.66-1.67 μm with a nadir 

footprint of 30 x 60 km2 and cross-track scanning. It achieves complete global coverage 

every 6 days. Observations are limited to daytime and land. We use the Iterative Maximium 

A Posteriori (IMAP) v5.5 retrieval from Frankenberg et al. [2011]. The retrieval first 

calculates the methane vertical column density ΩCH4 [molecules cm-2

 

]: 

ΩCH4 = ΩA + aT(ω – ωA

 

)          (1) 
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where ω is the true vertical profile of methane, consisting of 20 partial columns [molecules 

cm-2] on a vertical grid, ωA is the a priori profile provided by the TM5-4DVAR CTM 

[Meirink et al., 2008], ΩA is the corresponding a priori column concentration, and a is an 

averaging kernel vector that describes the sensitivity of the retrieved column to each partial 

column in ω. The sensitivity measured by a is nearly uniform throughout the troposphere and 

decreases with altitude in the stratosphere. To account for the impact of aerosols and partial 

cloud cover on the observed light path, ΩCH4 is normalized and converted to a column mixing 

ratio XCH4 [mol mol-1] using the CO2

 

 proxy method described in detail by Frankenberg et al. 

(2006): 

XCH4 = (ΩCH4 / ΩCO2) XCO2

 

         (2) 

where ΩCO2 is the vertical column density of CO2 also retrieved by SCIAMACHY, and XCO2 

is a modeled column mixing ratio of CO2. CO2

The IMAP v5.5 product was previously validated by Houweling et al. [2013], who 

used coincident observations from the Total Carbon Column Observing Network (TCCON) 

to identify a seasonally-dependent bias that they attributed to water vapor. Here we use in situ 

vertical profiles from the INTEX-A aircraft during summer 2004. The aircraft flew over the 

eastern US with extensive boundary layer coverage (Figure 1, right panel) and vertical 

profiles extending up to 12 km. Methane was measured using gas chromatography from 

whole air flask samples collected every 4 minutes with accuracy of 1.0 ppb and precision of 

0.1 ppb [Colman et al., 2001; http://www-air.larc.nasa.gov/cgi-bin/arcstat]. For 

SCIAMACHY validation we require vertical profiles that span from at least 900 to 400 hPa 

 is used for normalization because it is 

retrieved in a spectrally neighboring fitting window and its mixing ratio is known with much 

higher precision than methane. 
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and coincide with SCIAMACHY overpasses within ± 150 km and ±6 h. We find 9 profiles 

satisfying these criteria, each corresponding to 7 to 29 satellite observations. Further 

tightening the spatiotemporal requirements would exclude all INTEX-A profiles. We map the 

aircraft profiles on the 12 levels of the SCIAMACHY retrieval pressure grid, extrapolate 

above the DC-8 ceiling using the SCIAMACHY a priori profile, and apply equation (1) to 

simulate the SCIAMACHY retrieval. From there we derive XCH4 by dividing by the local air 

column density. Because the SCIAMACHY retrieval uses modeled XCO2, we use the same 

modeled XCO2 rather than INTEX-A observed XCO2. We average the coincident 

SCIAMACHY observations and compute the SCIAMACHY-INTEX difference ΔXCH4. 

Results indicate a mean bias ΔXCH4

Previous studies have demonstrated the need for a latitudinally dependent 

SCIAMACHY bias correction [Bergamaschi et al 2007; Meirink et al., 2008; Bergamaschi et 

al., 2009; Bergamaschi et al., 2013; Cressot et al., 2013]. Some have documented the 

interference of water vapor as the cause of the bias [Frankenberg et al., 2008; Houweling et 

al., 2013] and we seek such a relationship here. Figure 2 (left panel) shows the relationship of 

ΔX

 = -14.2 ppb (0.8%) and a residual standard deviation of 

29.2 ppb (1.6%) for individual SCIAMACHY observations. 

CH4 with the average pressure-weighted specific humidity in the 900-400 hPa column 

measured by the INTEX-A aircraft. There is a linear relationship (weighted R2 = 0.69) that 

implies a negative bias under dry conditions and a positive dependence of the bias on 

humidity.  We use this relationship to calculate a linear bias correction factor and apply it to 

the original IMAP v5.5 retrieval. After the correction we find a negligibly small mean bias 

ΔXCH4 = 2.5 ppb (0.1 %) and residual standard deviation of 28.2 ppb (1.6 %) for individual 

SCIAMACHY observations (Figure 2, right panel). The residual standard deviation (which 

we take to represent SCIAMACHY random measurement error) is consistent with the 

average IMAP v5.5 theoretical error of 30.9 ppb (1.7 %) reported by Frankenberg et al. 
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[2011]. All SCIAMACHY data shown here include the specific humidity correction applied 

with the local GEOS-5 meteorological data used to drive GEOS-Chem. 

Figure 1 (left) shows mean SCIAMACHY methane column mixing ratios during the 

INTEX-A period. Values are highest over the central US where there are large sources from 

livestock and from natural gas and oil (oil and gas) production. Values are also high over the 

Canadian wetlands in northern Ontario. The low values in the West reflect elevated terrain so 

that the stratosphere (where methane is depleted) makes a relatively large contribution to the 

column mixing ratio. Also shown in Figure 1 are the individual INTEX-A observations in the 

boundary layer (below 850 hPa). These show areas of high concentrations in the Midwest and 

East but with fine-scale structure that must reflect in part day-to-day variability in 

meteorology. We do not use the INTEX-A data for the inversion but use them instead for 

validation (as described above) and evaluation of the inversion results obtained from 

SCIAMACHY. 

 

3. Optimization of methane emissions 

 We optimize methane emissions in North America on the basis of SCIAMACHY 

observations by Bayesian inference, adjusting an initial (a priori) emission field in order to 

minimize the difference in XCH4 

 

between SCIAMACHY and GEOS-Chem with error 

weighting. We describe the procedure and its evaluation below. 

3.1 GEOS-Chem model and a priori emissions 

We use the GEOS-Chem CTM v9-01-02 

(http://acmg.seas.harvard.edu/geos/index.html) as the forward model for the inversion. 

GEOS-Chem is driven by GEOS-5 meteorological data from the NASA Global Modeling and 

Assimilation Office (GMAO). The GEOS-5 data have 1/2° latitude x 2/3° longitude 
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horizontal resolution and 6-h temporal resolution (3-h for surface variables and mixing 

depths). Here we use the native 1/2ox2/3o

 The GEOS-Chem methane simulation was originally described by Wang et al. [2004] 

and updated by Pickett-Heaps et al. [2011]. The main methane sink is tropospheric oxidation 

by OH, computed using a 3-D archive of monthly average OH concentrations from a GEOS-

Chem simulation of tropospheric chemistry [Park et al., 2004]. The mean mass-weighted 

tropospheric OH concentration is 10.8 x 10

 resolution for GEOS-Chem over North America 

and adjacent oceans (10-70°N, 40-140°W), with 3-h dynamic boundary conditions from a 

global simulation with 4° x 5° resolution. This nested North American functionality of 

GEOS-Chem has been used previously in a number of air quality studies including extensive 

evaluation with observations [Park et al., 2004, 2006; L. Zhang et al., 2011, 2012; Y. Zhang 

et al., 2011; van Donkelaar et al., 2012]. These show a good simulation of regional transport 

with no apparent biases. 

5 molecules cm-3

For the a priori emissions we use the 2004 anthropogenic inventory from EDGAR 

v4.2 with 0.1

. Additional minor sinks for 

methane are soil absorption (from Fung et al. [1991]) and oxidation in the stratosphere. We 

use stratospheric methane loss frequencies archived from the NASA Global Modeling 

Initiative (GMI) model [Considine et al., 2008; Allen et al., 2010] as described by Murray et 

al. [2012]. The resulting global mean atmospheric lifetime of methane is 8.9 years and the 

lifetime against oxidation by tropospheric OH is 9.9 years. Model intercomparisons in the 

literature give corresponding values of 8.6 ± 1.2 years and 9.8 ± 1.6 years [Voulgarakis et al., 

2013]. Prather et al. [2012] estimate corresponding values of 9.1 ± 0.9 years and 11.2 ± 1.3 

years from observational constraints. 

ox0.1o resolution and no seasonality [EC-JRC/PBL 2009]. Natural sources 

include temperature-dependent emissions from wetlands [Kaplan et al., 2002; Pickett-Heaps 

et al., 2011], termites [Fung et al., 1991], and daily GFED3 open fire emissions [van der Werf 
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et al., 2010; Mu et al., 2010]. Figure 3 shows total methane emissions for North America and 

the contributions from the five largest source types. 

Table 1 lists US anthropogenic emission totals by source type in the EDGAR v4.2 and 

EPA inventories (the EPA inventory is available only as a national total). Total US 

anthropogenic emissions from EDGAR v4.2 and EPA are 25.8 and 28.3 Tg a-1, respectively. 

EDGAR v4.2 and EPA give similar estimates for emissions by source type, except for oil and 

gas and coal mining. EDGAR reports oil and gas emissions of 6.3 Tg a-1, 30% lower than the 

EPA [2013] estimate of 9.0 Tg a-1. It reports US coal mining emissions of 3.9 Tg a-1, 40% 

higher than the EPA [2013] estimate of 2.7 Tg a-1

Figure 4 shows surface air methane concentrations from the global and nested GEOS-

Chem simulations with a priori emissions as described above, compared to observations from 

the NOAA Global Monitoring Division (GMD) network (http://www.esrl.noaa.gov/gmd/). 

Boundary concentrations for the nested grid are archived at the edge of the North America 

domain. Comparison of GEOS-Chem with the NOAA data over the remote oceans shows that 

the model simulates realistic latitudinal gradients, and this is further supported by comparison 

to HIPPO pole-to-pole aircraft observations over the Pacific [Wofsy et al., 2011; Turner et 

al., 2013].  

.  

 

3.2 Inversion Method 

We seek to use the SCIAMACHY observations over North America to optimize 

methane emissions on the 1/2ox2/3o GEOS-Chem grid. Consider the ensemble of 

SCIAMACHY observations (column mean methane mixing ratios) assembled into an 

observation vector y. We assemble the gridded emissions and the gridded boundary 

conditions for GEOS-Chem into a state vector x. Let F represent GEOS-Chem serving as 

forward model for the inversion. We have   
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 y = F(x) + ε         (3) 

 

where ε is the observational error and includes contributions from forward model error, 

representation error (sampling mismatch between observations and the model), and 

measurement error. Error statistics are represented by the observational error covariance 

matrix SO = E[εεT

Bayesian optimization weighs the constraints on x from the SCIAMACHY 

observations with the a priori estimates x

] where E[ ] is the expected value operator.  

A (error covariance matrix SA

 

). Applying Bayes’ 

theorem and assuming Gaussian errors leads to an optimized estimate for x by minimizing the 

cost function J(x) [Rodgers, 2000]: 

J(x) = (F(x) – y)T SO
-1 (F(x) – y) + (x – xa)T SA

-1 (x – xA

 

)     (4) 

Minimization of J(x) is done with the GEOS-Chem adjoint model, developed by Henze et al. 

[2007] and previously applied to methane source optimization by Wecht et al. [2012]. The 

adjoint calculates xJ(xA), passes it to a steepest-descent algorithm that returns an improved 

estimate x1 for  x, calculates xJ(x1), and iterates until convergence to find x

 The ability of the inversion to constrain methane emissions over North America is 

contingent on the model variability being driven by these emissions. Starting from initial 

conditions, we find that it takes about a week for variability of methane columns over North 

America in the nested model to be driven by fresh emissions and boundary conditions (as 

opposed to the initial conditions). We therefore initialize our simulation on 22 June 2004, 9 

days prior to assimilating the first observations on 1 July. The inversion period over which 

J(x) = 0. We 

describe below in more detail the different components of the inversion.  

∇

 

∇

 

∇
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we solve for emissions is 22 June – 14 August; observations are assimilated from 1 July to 14 

August. The lifetime of methane against oxidation by OH is sufficiently long to play no 

significant role in the variability of methane concentrations over the North America domain. 

Prescribed OH concentrations used in the model are therefore of no significant consequence 

to the inversion results.  

 We attempted at first to optimize North American emissions and boundary conditions 

as a single state vector in the inversion. This was not successful because boundary conditions 

have a much larger impact in determining methane concentrations, even if they are less 

important for determining variability. We therefore iteratively minimize two separate cost 

functions, J(xb) and J(xe

 

), to optimize boundary concentrations and emissions, respectively: 

 

J(xB) = (F(xB) − y)T SO
−1(F(xB) − y) + (xB − xB,A )T SB,A

−1(xB − xB,A )    (5) 

 

 

J(xE ) = (F(xE ) − y)T SO
−1(F(xE ) − y) + (xE − xE,A )T SE, A

−1(xE − xE,A )   (6) 

 

Here the state vectors are xB, scale factors of boundary concentrations at the edge of the 

North American model domain relative to the a priori, and xE, logarithms of scale factors of 

methane emissions relative to the a priori within the North America domain. We optimize the 

logarithms of the emission scale factors to ensure positivity in the optimized emissions. A 

priori values for xB and xE are labeled xB,A and xE,A, respectively, and the corresponding a 

priori error covariance matrices are SB,A and SE,A

Each element of x

. 

B represents a temporally averaged scale factor applied to a 4o x5o 

grid cell along the boundaries of the  North American model domain and extending over  47 

vertical levels, for a total of 3290 elements. A priori boundary concentrations are specified 

from the global GEOS-Chem simulation with a priori emissions (shown in figure 4). The a 



©2014 American Geophysical Union. All rights reserved. 

priori error covariance matrix SB,A

 Each element x

 is constructed using error statistics from HIPPO-GEOS-

Chem comparisons over the central Pacific presented by Turner et al. [2013]. The diagonal is 

populated with a model error standard deviation of 16 ppb (0.9%), and off-diagonal terms are 

parameterized with exponential error correlation length scales of 275 km in the horizontal 

and 78 hPa in the vertical [Wecht et al., 2012]. We assume that the above error statistics 

apply to all four boundaries. 

E,i.j of xE represents a temporally averaged scale factor applied to total 

emissions from each 1/2ox2/3o

 

 emitting grid cell (i,j) in North America for a total of 7906 

elements. It is expressed as follows: 

xE,i,j = ln( Ei,j / EA,i,j

 

 )          (7) 

where Ei,j is the true emission flux and EA,i,j

The a priori error covariance matrix for the emissions, S

 is the a priori described above.  

E,A

The observational error covariance matrix S

, is constructed by 

assuming a uniform relative error standard deviation of 30% for emissions from each model 

grid cell and no a priori error correlations (diagonal matrix). The sensitivity of the optimized 

solution to the specification of a priori error will be discussed later by considering an 

inversion without a priori constraints. 

O includes contributions from 

representation error, measurement error, and GEOS-Chem model error [Heald et al., 2004]. 

Representation error is assumed to be negligible because SCIAMACHY XCH4 observations 

have horizontal footprints (30 km x 60-120 km) comparable to the size of GEOS-Chem grid 

cells. We use reported IMAP v5.5 values for the measurement error (standard deviation 30.2 

ppb or 1.7%) since these are consistent with our INTEX-A validation (section 2). GEOS-

Chem comparison to HIPPO vertical profiles across the Pacific indicates a model error 
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standard deviation of 16 ppb for methane column mixing ratios and we assume that this holds 

for North America too. All errors are assumed to be Gaussian and are added in quadrature to 

calculate the observational error for each observation. We do not include error correlation 

between observations since the overall observational error variance is dominated by the 

measurement error for which no correlation is found in the validation presented above. 

The iterative optimization is implemented as follows. First, we perform five adjoint 

iterations to reduce J(xB). We then use the updated values of xB to calculate J(xE) and 

perform five iterations to reduce J(xE). We use the updated values of xE to recalculate J(xB) 

and repeat. When the reduction of the cost function at each iteration becomes small (0.5% of 

the cumulative cost function reduction up to that point), after 40 iterations, we hold xB

 

∇x E
J(xE )

 

constant, and iteratively solve  = 0. Optimization of xB corrects background 

methane for the inversion and is of peripheral interest here. We focus our discussion on the 

optimization of xE

 

. 

3.3 Clustering 

Figure 5 shows the results from the inversion described above as optimized correction 

factors to the a priori methane emissions at 1/2ox2/3o 

 

horizontal resolution. Correction factors 

are weak, less than 30% for 93% of grid cells. This is because the observations have 

insufficient information to constrain emissions at that resolution. As the discretization of 

emissions becomes finer, the observations become less sensitive to emissions from each grid 

cell. The inversion therefore has less ability to pull emissions in each grid cell away from 

their a priori value, and the optimal solution will be more tightly constrained by the a priori.  

This can be seen quantitatively from the minimization of (6):  

 

∇x E
J(xE ) = 2(∇x E

F)T SO
−1 (F(xE ) − y) + 2SE,A

−1 (xE − xE,A ) = 0     (8) 
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where 

 

∇x E
F  is the Jacobian matrix of the forward model. As the dimension of xE

 

(∇x E
F)T SO

−1 (F(xE ) − y)

 increases, 

the Jacobian matrix values become smaller and thus the individual terms of 

 decrease in magnitude as 

 

(∇x E
F)T  distributes 

 

SO
−1 (F(xE ) − y) over 

a larger number of state vector elements. By contrast, the magnitude of individual terms of 

 

SE,A
−1 (xE − xE,A ) does not change. Thus the a priori increases in importance relative to the 

observations.  

The problem could be mitigated by accurately specifying error correlations in the a 

priori or by imposing them in the solution, as is done in geostatistical inversions (Michalak et 

al., 2004). But there is little confidence to be had in the specification of error correlations for 

methane sources. It could also be avoided altogether by optimizing grid cell fluxes rather than 

scaling factors (equation (7)) in the inversion, but this would require specification of absolute 

rather than relative errors for each grid cell. 

 We opted therefore to reduce the dimension of our emission state vector by clustering 

of grid cells, taking advantage of the results from the native-resolution inversion (Figure 5) to 

group together neighboring grid cells with similar emission scale factors and thus minimize 

the aggregation error associated with clustering. We tried successively smaller numbers of 

clusters and repeated the inversion in the same manner described above for the native-

resolution inversion, seeking to find the best number of clusters for the inversion as measured 

by the fit to observations. As we initially decrease the number of clusters starting from the 

native resolution, we can expect an improved fit of the inversion results to the observations 

for the reasons discussed above. However, as the spatial resolution of the state vector 

becomes too coarse (too few clusters), the fit to observations degrades because of aggregation 

error. 

 We use a hierarchical clustering algorithm [Johnson, 1967] as a data-driven 
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aggregation technique to optimally define clusters from the native resolution emissions grid. 

The algorithm initially assigns each 1/2ox2/3o grid cell to its own region, calculates the 

“distance” to all other regions, and joins the two most similar. Distance is calculated as 

follows. We define the location for a region l by the vector vl=(p, 0.05s)T where p is the 

location of the region centroid on a sphere and s is the mean value of the optimized scale 

factor from the native resolution inversion presented in Figure 5. All variables are normalized 

to unit variance and zero mean. The factor 0.05 was selected to adjust the weight of scale 

factors relative to geographic distance. The distance between two regions l and m is 

calculated as the norm  ||vl – vm

 Figure 6 (black) shows the contribution of the observation term, 

||. The process of joining the two most similar regions 

proceeds iteratively, reducing the number of regions by one during each step. The algorithm 

can be stopped at any stage so that any number of clusters can be constructed. 

 

(F( ˆ x E ) − y)T SO
−1(F( ˆ x E ) − y), to the optimized cost function for inversions performed using 

different numbers of clustered regions. Here 

 

ˆ x E  is the optimal estimate from the inversion. 

We do not include the a priori term since it depends on the number of clusters used. The best 

results are achieved for 300-1000 clusters. As the number of clusters decreases from 7906 

(native resolution) to 1000, the observations become more sensitive to elements in the state 

vector, producing a better model fit. As the number of clusters decreases below 300, 

aggregation error degrades the model fit. The range in the cost function for the different 

inversions is relatively small because the measurement error dominates for any individual 

data point. We use the inversion with 1000 clusters as our best estimate in terms of 

optimization and spatial detail. Figure 7 shows the 1000 clusters used in this analysis. 

The right panel of Figure 5 shows the correction factors to the a priori methane 

emissions from the 1000-cluster inversion. Patterns are similar to the native-resolution 

inversion (left panel) but correction factors are much larger, reflecting the stronger influence 
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from the observations. Total US anthropogenic emissions are only weakly sensitive to the 

number of clusters used. The variability of inversion results using different numbers of 

clusters will be used in section 4 to derive uncertainty estimates for our optimal emissions. 

 

3.4 Evaluation with SCIAMACHY and INTEX-A data 

 Figure 8 shows optimized emissions, calculated as the product of optimized correction 

factors and prior emissions in each grid cell. We checked for improvement of the model fit to 

the SCIAMACHY data by comparing GEOS-Chem simulations with optimized vs. a priori 

emissions and boundary conditions. For this we calculated the GEOS-Chem – SCIAMACHY 

root-mean-square difference (RMSD) and correlation coefficient (R) for the ensemble of 

1/2ox2/3o

 We further used the boundary layer observations from INTEX-A (Figure 1) to provide 

verification of the inversion results. The model-observation RMSD for individual 

observations decreases from 33.5 to 28.5 ppb, while R increases slightly from 0.73 to 0.74. 

Here the improvement appears to be limited by small-scale model and representation error for 

individual observations. Averaging of the data allows us to reduce that error and is a more 

useful comparison. Figure 9 shows boundary layer (>850 hPa) GEOS-Chem – INTEX-A 

differences averaged on an 8°x10° horizontal grid and for the INTEX-A period. The resulting 

model-observation RMSD weighted by the number of INTEX-A observations in each 8°x10° 

grid cell decreases 23.2 to 12.3 ppb when using optimized instead of a priori emissions. The 

correlation coefficient R increases from 0.69 to 0.88. 

 grid cells with SCIAMACHY data, averaged over the July 1 – August 14, 2004 

period and weighted by the number of SCIAMACHY observations in each grid cell. We find 

that the inversion reduces the model-observation RMSD from 11.6 to 9.7 ppb, while R 

increases from 0.65 to 0.76. This demonstrates improvement, limited by the random noise in 

the individual SCIAMACHY measurements. 
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We performed sensitivity inversions to investigate the effects of a priori constraints on 

emissions and model bias. A native-resolution inversion without a priori constraints on 

emissions shows similar signs and patterns of emission corrections to the inversion with a 

priori constraints, but the magnitudes of corrections are larger. Evaluation using INTEX-A 

data averaged into 8°x10° regions as above does not show as good a fit to observations, with 

an RMSD of 14.5 ppb and R of 0.77. This indicates that the a priori inventory contributes 

useful information. A sensitivity inversion including a uniform positive bias correction of 15 

ppb in GEOS-Chem on the basis of INTEX-A free tropospheric data shows negligible effect 

on the correction factors to emissions because most of the bias is absorbed by correction to 

the boundary conditions. 

 

4. Optimized Methane Emissions 

The optimized correction factors in Figure 5 show patterns of increases and decreases 

relative to the a priori emissions in Figure 3. There is a large decrease in emissions from 

natural wetlands in northern Ontario and western Canada, which drives a slight decrease in 

total North American emissions (85.3 Tg a-1 in the optimized emissions vs. 90.2 Tg a-1

  Table 1 shows US anthropogenic emission estimates from EPA, EDGAR v4.2, and 

this work. The adjoint inversion method does not return uncertainties on optimized values, 

but we can estimate uncertainties from the ensemble of inversions with different numbers of 

clusters in Figure 6 (excluding the too-coarse 3-cluster inversion). Our optimized US 

 in 

EDGAR v4.2). There is also a broad decrease in the eastern US, particularly in Appalachia, 

suggesting an overestimate of emissions from coal mining and waste management. Emissions 

in the central US and the Canadian Great Plains increase, suggesting an underestimate of 

emissions from livestock and also possibly from natural gas and oil extraction. Mexico City 

emissions increase. We elaborate below on source attribution for the US. 
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anthropogenic emissions are thus 30.1 ± 1.3 Tg a-1

Our inversion optimizes the geographic distribution of emissions without a priori 

information on source type. It is of interest to determine whether the corrections can be 

attributed to the particular source types of Figure 3. To do so, we multiply the optimized 

emission correction factors by the a priori source estimates for each source type and grid cell. 

This approach assumes that the EDGAR v4.2 partition of source categories in each grid cell 

is correct. It does not assume that a priori spatial distributions of sources are correct because 

spatial patterns will change after applying the correction factors. Figure 8 shows the resulting 

spatial distributions of the five largest source types. Results in Table 1 include uncertainties 

from the inversions with different numbers of clusters as described above. These 

uncertainties are likely underestimates because they do not include contributions from errors 

in the a priori location of sources, in the CTM transport, and in the SCIAMACHY 

measurements. 

, where the best estimate is from the 1000-

cluster inversion. This is 17% higher than EDGAR v4.2 and 6% higher than EPA (2013) 

though within the stated EPA 95% confidence interval of 14%.  

To calculate annual emissions from our inversion results, we must assume knowledge 

of the seasonality of emissions. Most anthropogenic emissions are assumed to be aseasonal, 

as in the EDGAR v4.2 inventory. The EPA [2013] inventory, however, estimates livestock 

emissions during the summer (JJA) to be 16% higher than the annual average, driven by 

temperature sensitivity of emissions from manure management. We account for this 

seasonality when estimating annual emission rates in this study. Uncharacterized seasonality 

in sources may contribute to overall uncertainty in extrapolating our inversion results to 

annual emissions, particularly from potential seasonality in distribution of natural gas and 

maintenance of natural gas systems. 

 Results in Table 1 show that our emission estimate for livestock is 40% higher than 
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the EDGAR v4.2 and EPA inventories and represents the largest US source. Our oil and gas 

source is intermediate between EDGAR v4.2 and EPA and is smaller than the livestock 

source. Other sources are also smaller, across all inventories. Our landfills source is 

consistent with both EDGAR v4.2 and EPA while our coal mining source is smaller than 

EDGAR v4.2 but consistent with EPA.  

 The patterns of correction factors from our inversion in Figure 5 reveal structure that 

cannot be simply explained by the EDGAR v4.2 source types. A multiple linear regression of 

absolute corrections on the distributions of individual a priori source types yields an R2

 

 of 

only 0.21. For example, our correction factors in Figure 5 indicate a large EDGAR 

underestimate of livestock emissions in parts of Iowa and southern Minnesota, where hog 

manure is important, but a decrease in eastern North Carolina where hog manure is important 

too. This could reflect differences in manure management practices. Our inversion also calls 

for a large increase in emissions from the Permian Basin in western Texas, a major oil and 

gas production region, but the EDGAR v4.2 inventory is very low there. This suggests that 

oil and gas emissions in EDGAR are too heavily weighted by the distribution and end use 

sectors relative to the production sector. 

5. Comparison to previous studies 

A number of previous studies have used methane observations from surface sites and 

aircraft as top-down constraints on methane emissions in North America. We discuss here the 

consistency of our results with these studies. 

There has been much interest in quantifying wetland emissions from the Hudson Bay 

Lowlands (HBL) of northern Ontario, the second largest area of boreal wetlands in the world 

after western Siberia. Pickett-Heaps et al. [2011] reviewed previous studies and estimated an 

HBL source of 2.3 Tg a-1 from aircraft and surface observations. Miller et al. [2014] 
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estimated a source of 2.4 Tg a-1 using tall tower observations. We find here a consistent 

estimate of 2.1 Tg a-1

The CalNex aircraft campaign in May-June 2010 provided constraints on methane 

emissions from California through a series of boundary layer flights across the state. Inverse 

analyses of the CalNex data by Santoni et al. [submitted] and Wecht et al. [2014] indicate 

statewide emissions of 2.4-2.8 Tg a

, accounting for the seasonality given by Pickett-Heaps et al. [2011] 

with strong peak in June-August. This estimate may not be directly applicable to other years 

as HBL emissions exhibit significant interannual variability [Zhu et al., 2009]. 

-1, Los Angeles Basin emissions of 0.3-0.4 Tg a-1, and a 

factor of 2-4 underestimate of livestock emissions in the EDGAR v4.2 inventory for the 

Central Valley. Our inversion of the SCIAMACHY data is closely consistent with these 

results indicating a statewide emission of 2.1 Tg a-1 in California, 0.2 Tg a-1

Miller et al. [2013] estimated methane emissions across the US using a network of 

surface and aircraft data from 2007-2008. Their optimal estimate for US anthropogenic 

emissions is 44.5 Tg a

 in the Los 

Angeles Basin, and a factor of 2.6 underestimate in livestock emissions relative to EDGAR 

v4.2. The livestock underestimate is larger for California than the national underestimate of 

40% reported earlier, and provides further evidence of spatial errors in emission factors in the 

EDGAR inventory.  

-1, much higher than our value of 30.1 Tg a-1. They increase emissions 

in the central US relative to EDGAR and decrease emissions in Appalachia, similar to the 

spatial patterns reported here. Their observations, however, are relatively sparse east of the 

Great Plains and may not adequately characterize the emissions reductions throughout 

Appalachia and the Northeast that are required by SCIAMACHY and consistent with the 

INTEX-A data. Miller et al. [2013] estimate a factor of 2.3 increase relative to EDGAR v4.2 

for the northern plains (Nebraska, Iowa, Wisconsin, Minnesota, and South Dakota), a region 

of high livestock density and few other sources of methane. This compares well to our factor 
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of 2.2 increase for the region, again higher than the national average for livestock emissions.  

Katzenstein et al. [2003] measured methane concentrations on a road survey across 

Texas, Oklahoma, and Kansas. Assuming a mean boundary layer height and a characteristic 

ventilation time for the region, they estimated a methane emission of 4-6 Tg a-1 for that tri-

state region. Assuming that these emissions are mainly from natural gas and oil, they 

concluded that EPA emission estimates are too low by a factor of 2.5. Our inversion indicates 

a methane emission of 8.7 Tg a-1 for the region, greater than the Katzenstein et al. [2003] 

estimate and possibly reflecting their oversimplified ventilation model. In any case, their 

assumption that oil and gas dominate sources in the region may not be valid as the EDGAR 

v4.2 inventory for the region (4.0 Tg a-1) assigns 52% of methane emissions to livestock and 

only 29% to oil and gas. Miller et al. [2013] estimate emissions of 10.8 Tg a-1

Xiao et al. [2008] derived a US ethane emission of 2.4 Tg a

 for the region 

and attribute the underestimate to both livestock and oil and gas. Most of the emission 

correction for the region in our inversion is from livestock.  

-1 from analysis of 

INTEX-A observations and combined this with independent estimates of ethane-to-methane 

emission ratios to deduce a US fossil fuel methane emission of 16 Tg a-1. This would include 

contributions from natural gas, oil, and coal mining. By comparison, EPA and EDGAR v4.2 

estimate US fossil fuel emissions of 11.7 and 10.1 Tg a-1, respectively. Using the source-type 

distributions provided by EDGAR, we calculate a fossil fuel methane source of 9.6 Tg a-1

 Kort et al. [2008] used Lagrangian modeling of observations from the COBRA-NA 

aircraft campaign across North America in 2003 to evaluate US and Canada emissions. From 

a single linear regression of modeled vs. observed methane they estimated US anthropogenic 

emissions of 41±6 Tg a

. 

Ethane-to-methane emission ratios are highly variable and may be a major uncertainty in the 

Xiao et al. [2008] estimate.  

-1, larger than our best estimate of 30.1 Tg a-1. Their observations, 
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however, are only sensitive to emissions from a relatively small fraction of the US and 

Canada.  

Petron et al. [2012] and Karion et al. [2013] used in situ observations to estimate 

methane leak rates of 4% and 6-12% of total natural gas production Weld County, CO and 

Uintah County, UT, respectively. In contrast, the EDGAR v4.2 and EPA inventories assume 

a national average leak rate of 1.0-1.4%. Our inversion of the SCIAMACHY data does not 

indicate EDGAR v4.2 natural gas emissions to be underestimated from these two counties, 

but this would not account for post-2004 growth. Methane leakage rates can vary 

considerably by basin [US Government Accountability Office, 2010]. 

Brandt et al. [2014] indicate that methane emissions from natural gas systems across 

the US appear larger than estimated by the EPA. However, most studies cited by Brandt et al. 

[2014] focused on natural gas producing regions. While we do not find a significant 

continental scale underestimate of emissions from natural gas, the spatial pattern of our 

correction factors suggests that a priori emissions are too heavily weighted by distribution 

relative to production. 

 

6. Conclusions 

We used SCIAMACHY satellite observations in a high-resolution continental-scale 

inversion of methane emissions in North America driven by the GEOS-Chem chemical 

transport model (CTM) and its adjoint at 1/2ox2/3o horizontal resolution. The inversion 

focused on summer 2004, when concurrent observations from the INTEX-A aircraft 

observations are available to both validate the SCIAMACHY data and evaluate the inversion. 

The high density of observations available from SCIAMACHY enables finer spatial detail in 

constraining methane emissions on the continental scale than had been achievable by surface 

and aircraft observations.  
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Removal of measurement bias is essential for a successful inversion. Our validation of 

the SCIAMACHY observations (IMAP v5.5) with INTEX-A vertical profiles identified a 

systematic bias correlated with water vapor, consistent with previous studies.  We found that 

we could successfully correct for this bias, and the residual error is consistent with the 

theoretical error estimate from the IMAP v5.5 retrieval. 

Continental-scale inversion for methane required accurate specification of the 

boundary conditions in GEOS-Chem. This was accomplished by optimizing both the North 

American emissions and the boundary conditions as part of the inversion.  We found that the 

information content from the SCIAMACHY data was insufficient to constrain emissions at 

the native 1/2ox2/3o

Our optimized methane emissions for the Canadian wetlands are lower than the a 

priori but consistent with recent studies.  Our optimized methane emissions for the US are 

lower than the EDGAR v4.2 inventory for the eastern US but higher for the central US. Our 

best estimate of US anthropogenic emissions is 30.1 ± 1.3 Tg a

 horizontal resolution of GEOS-Chem. We solved this problem by using a 

hierarchical clustering algorithm to identify 1000 geographical clusters for which the 

inversion provides optimal results. The optimized emissions obtained from the 1000-cluster 

inversion were evaluated by GEOS-Chem simulation of the INTEX-A aircraft data. This 

demonstrated a major improvement over the simulation driven by a priori emissions. 

-1, compared to 25.8 Tg a-1 and 

28.3 Tg a-1 in the EDGAR v4.2 and EPA inventories respectively. Source attribution of our 

optimized methane emissions on the basis of the EDGAR patterns suggests that the above 

inventories underestimate livestock emissions by 40%, with smaller discrepancies for other 

sources. We find that livestock emissions in the US are 70% higher than oil and gas 

emissions, whereas the EPA inventory reports these two sources to be of comparable 

magnitude. However, we find in a regression analysis that the EDGAR patterns can account 

for only 21% of the variability in the source correction from the inversion. This implies large 
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inventory errors in the geographic variability of emission factors (e.g., livestock management 

practices) and activity rates (e.g., oil and gas production in the West).   

Our finding that US livestock emissions are underestimated in current inventories is 

consistent with previous regional studies. The degree of underestimate seems highly variable 

for different parts of the country, suggesting large variability in emission factors. Our finding 

that oil and gas emissions are not underestimated in current inventories is at odds with 

previous studies and may partly reflect variability in leakage rates and assumptions made in 

all studies to perform source type attribution. 

Emissions of methane in North America may be rapidly changing in the future as a 

result of increasing oil and gas production, changes in recovery practices, evolving 

regulations, and climate change affecting wetlands. The GOSAT satellite observations (2009-

present) may be useful to track recent trends but are relatively sparse. The TROPOMI 

instrument to be launched in 2015 will provide global daily coverage with 7x7 km2

 

 nadir 

spatial resolution and accuracy and precision of 2.0 and 0.6%, respectively [Veefkind et al., 

2012; Butz et al., 2012]. This will provide a tremendous boost to monitoring methane 

emissions from space.  
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