Missing SO₂ oxidant in the coastal atmosphere? Evidence from high resolution measurements of OH and atmospheric sulfur compounds

Berresheim et al., Atmos. Chem. Phys. Discuss., 14, 1159-1190, 2014

Comment by Daniel Stone, School of Chemistry, University of Leeds

The authors describe measurements of OH and H_2SO_4 at the Mace Head atmospheric research station which indicate an unknown oxidant responsible for the oxidation of SO_2 in the atmosphere. Calculated concentrations of H_2SO_4 , based only on SO_2 oxidation by OH, were lower than observations by a factor of ~5. A number of potential additional oxidants of SO_2 are considered in the manuscript, including stabilised Criegee intermediates. However, calculations regarding oxidation of SO_2 by Criegee intermediates are focussed on the C₂ Criegee intermediate (CH₃CHOO). While the authors do comment on our recent results regarding CH₂OO + SO₂ kinetics,¹ and the formation of CH₂OO following solar photolysis of CH₂I₂,² we believe this could be explored further.

Owing to the experimental techniques used in our work, we were able to report a lower upper limit for the rate coefficient for CH₂OO + H₂O than has been reported previously³ ($k_{CH2OO+H2O} < 9 \times 10^{-17}$ cm⁻³ s⁻¹ for our work¹), and lower than that reported for the corresponding *syn*-CH₃CHOO + H₂O reaction (we note that the reaction between *anti*-CH₃CHOO and H₂O has been observed, with $k_{anti-CH3CHOO+H2O} = 1 \times 10^{-14}$ cm⁻³ s⁻¹). Oxidation of SO₂ by CH₂OO may therefore be more significant than indicated by the calculations reported for CH₃CHOO (similarly, the calculated impact of *syn*-CH₃CHOO is very dependent on the upper limit for $k_{syn-CH3CHOO+H2O}$).

Moreover, our work has shown that solar photolysis of CH_2I_2 yields ~17 % CH_2OO at atmospheric pressure, providing a route for Criegee intermediate formation not involving ozonolysis reactions. Previous measurements of CH_2I_2 have indicated that CH_2I_2 photolysis is the dominant source of atmospheric I atoms at Mace Head.^{4,5} A photolysis source of CH_2OO could explain the observed diurnal profile of the missing oxidant. Additionally, given the dependence of CH_2I_2 emissions on tidal activity,^{4,5} a significant photolytic source of CH_2OO from CH_2I_2 could explain the observed increases in the activity of the missing oxidant at low tide.

References

¹ D. Stone, M. Blitz, L. Daubney, N.U.M. Howes, P. Seakins, Kinetics of CH_2OO reactions with SO_2 , NO_2 , NO, H_2O and CH_3CHO as a function of pressure, Phys. Chem. Chem. Phys., 16, 1139-1149, 2014

² D. Stone, M. Blitz, L. Daubney, T. Ingham, P. Seakins, CH_2OO Criegee Biradical Yields Following Photolysis of CH_2I_2 in O_2 , Phys. Chem. Chem. Phys., 15, 19119-19124, 2013

³ C.A. Taatjes, O. Welz, A.J. Eskola, J.D. Savee, A.M. Scheer, D.E. Shallcross, B. Rotavera, E.P.F. Lee, J.M. Dyke, D.K.W. Mok, D.L. Osborn, C.J. Percival, Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH₃CHOO, Science, 340, 177-180, 2013

⁴ L.J. Carpenter, W.T. Sturges, S.A. Penkett, P.S. Liss, B. Alicke, K. Hebestreit, U. Platt, Short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources and halogen oxide production, J. Geophys. Res. 104, D1, 1679-1689, 1999

⁵ L.J. Carpenter, Iodine in the Marine Boundary Layer, Chem. Rev., 103, 12, 4953-4962, 2003