
Comments of referee #3. 
 

1. The authors state that their work was partially inspired by the work of Schmitt and 

Heymsfield 2010. While there are substantial similarities in some of the particle probe 

simulations, the work by Schmitt and Heymsfield did not use any remote sensing data. 

The authors of this work state that Schmitt and Heymsfield used remote sensing data 

from ARM to constrain the relationship between alpha and beta. The ARM data presented 

were another aircraft particle probe dataset. The authors should re-read the 

right column on page 1612 of Schmitt and Heymsfield to understand how the alpha 

factor was mathematically (not empirically) determined in that study.  

 

“Schmitt and Heymsfield (2010, hereafter SH2010) have simulated the aggregation of plates 

and columns. Fractal 2D and 3D analyses calculated from the box counting method (Tang 

and Marangoni 2006) stated that the fractal coefficient in the 3D space is equal to β. This 

allowed to derive a relationship that calculates the exponent β from the 2D fractal dimension 

of the 2D images. Once β has been fixed, the pre-factor α is calculated from the area 

measurement.” 

 

I would also encourage the authors to try this method and see how it compares to their alpha 

values. 

 

In our study presented, it is not stated that β is equal to the fractal dimension in the 3D space. 

Of course, we would be interested working with the authors of SH2010 to make a separate 

study on the comparison of our 2 methods. The comparison is beyond the scope of this study. 

 

2. The authors state that they only used the 2DS probe for area dimensional relationships 

even though PIP data was available. How much difference was there between 

2DS and PIP area measurements at the largest sizes that the 2DS was seeing?  

There will obviously be discrepancies at small (for the PIP) sizes, but there shouldn’t be too 

much difference at larger sizes (more than 20 pixels for the PIP).  

 

In general, differences between the mean projected surface from 2DS images and from PIP 

images within the overlapping size range do not show large discrepancies (figure 1).  

 



 
Figure 1 : Mean projected surface in cm2 on y-axis versus Dmax in µm on the x-axis. Black symbols represent the 2DS 
image data and red symbols the PIP data. The grey line would be the power law fit for spherical particles. The golden line 
is the power law which fits the 2DS data for Dmax larger than 250µm and the blue line fits the PIP data with a power law  
for Dmax larger than 950µm. 

My concern is that in not using the PIP area information for the largest sizes, you may be 

losing valuable information on the fractal properties of the particle population. The density 

values determined 

for large particles suggest that there should be a lot of graupels or hail present,  

and it is likely that the PIP would show that better. 

 

See also our detailed answer on similar referee #1 comments. 

 

Shortly, we now introduced a 2D-S plus PIP common σ exponent taking into account the 2DS 

and PIP 2D images. This σ exponent is calculated by weighting the two σ that are derived 

separately for 2D-S and PIP images, respectively, with the ratio of the surface covering the 

size range where each (for 2D-S and for PIP) S-D relationship has been calculated:  
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Also note, that aircraft probe data at large particle sizes aren’t necessarily randomly oriented. 

This could affect your results as well. Larger particles are naturally oriented due to 

aerodynamic affects and this orientation may not be disturbed enough by the airflows near the 

probe for the orientation to be considered random.  

 

For sure, the eventual orientation of particles during the measurement influences the 

resulting power laws (figure3). The fact that in our theoretical simulations, orientation is not 



favored, involves that all the orientations are equally possible. However, there is no study 

concerning an eventual orientation of particles during their recording with cloud probes 

mounted on the Falcon wing stations. To quantify this uncertainty, we may take for a given 

calculated mass of a crystal its minimum Dmax (which will be an underestimation with respect 

to its reel value) and a maximum Dmax (close to the real value) calculated with respect to the 

real Dmax. By modeling both types of projected Dmax according to the crystal mass and doing 

this for all simulated shapes, we obtain an uncertainty related to the projection of possibly 

oriented 3D hydrometeors projected on a 2D plane (figure 4). 

The model error has a standard deviation of 11%, which is the error between the β calculated 

with the linear fit and the β calculated through the 3D simulation. For ln(α) the model error 

has a standard deviation of 70%. By the way, this latter large error is the reason why the 

results obtained for pre-factors with the 3D simulations cannot be used.  



 
Figure 1 : Exemplary results obtained for a 3D simulation of columns characterized by Length=0.2*Height. a) S(D) 

plot: Blue points are the simulated data for the column, red lines are power law fits enclosing most of the data points 

for all possible orientations. The dashed black line is the mean of the two power laws (= the mean between two red 

lines when the orientation underestimates Dmax and when the orientation is close to the real Dmax). b) m(D) plot: same 

as for a) but with the mass of the simulated columns which is now on the y-axis; c) schematic of a 3D shape oriented in 

the 3D space when its orientation gives an underestimated value of the real Dmax of the ice crystals. d) Schematic of a 

3D shape oriented in the 3D space when its orientation gives a close value of the real Dmax of the ice crystals. 



 

Figure 2 : Black symbols are data points for single 3D habits. Error bars give the uncertainty due to the orientation of the 
ice crystals during arbitrary projection on 2D plane. Red line is the linear fit between the corresponding S(D) coefficients 
and the m(D) coefficients. The pink band takes into account the standard deviation of the error between the fit and the 
modeled values. a) is for pre-factors and b) is for the exponents. 

 

 

3. The choice of mostly pristine particle shapes for use in determining the relationship 

between the power is not really realistic. The shapes that you show in figure 6, how often to 

you see these shapes in the 2DS data or, more important, in the PIP data? This is probably 

part of the reason that your equation 11 is so substantially different from the results found in 

Schmitt and Heymsfield.  

 

In SH2010, the study is only reported on aggregates of columns and plates. Our study wants 

to cover the maximum of different habits. Now, in addition and according to this reviewer’s 

comment, additional simulations with various kinds of aggregates have been added to this 

study. These new simulations are also integrated to the figure 3 below. Accordingly, figure 7 

of the current version of the manuscript is updated.  

 

Table 4 is also updated to take into account the added habit types resembling aggregates and 

corresponding results. 

Then figure 6 of the current version is updated in order to take into account reviewer#1 

comments.  

 



 
Figure 3 : Exponent β of m(D) relationships as a function of the exponent σ of the respective S(D) relationships. Each data 
point either with red contours or without contours is deduced for a population of 1000 simulated 3D shapes and 
corresponding projections. Symbols with red contours are deduced for 3D aggregates of crystals of an elementary shape. 
Symbols with black contours stem from Mitchell (1996). The legend for symbols is given in table 4. A linear fit of all 
simulated data is shown by the black line. The grey band gives the mean standard deviation of 11%. 

 

 

 

 

 

 

 

 

 

 



Table 1: Ice crystal types and corresponding exponents (σ) and (β) of S(D)  and m(D) relations, respectively. The symbols 
in the left column are subsequently used in Fig. 8 for individual ice crystal shapes. The first part of the table stems from 
Mitchell (1996) where random orientation is assumed for particles with Dmax < 100µm, whereas for particles beyond 100 
µm horizontal orientation is assumed. The second part of the table stems from simulations. 

symbol Description 
Range 

σ β 

Ice crystal shapes from Mitchell (1996) 

 hexagonal plates 
15µm<Dmax<100µm 

1.85 2.45 

 hexagonal plates 
100<Dmax<3000µm 

2 2.45 

 hexagonal columns 
30<Dmax<100µm 

2 2.91 

 hexagonal columns 
100<Dmax<300µm 

1.5 1.91 

 hexagonal columns 
Dmax>300µm 

1.41 1.74 

 rimed long columns 
200<Dmax<2400µm 

1.41 1.8 

 crystals with sector-like branches(P1b) 
10<Dmax<40µm 

1.85 2.42 

 crystals with sector-like branches(P1b) 
40<Dmax<2000µm 

1.97 2.02 

 broad-branched crystals (Plc) 
10<Dmax<100µm 

1.85 2.42 

 broad-branched crystals (Plc) 
100<Dmax<1000µm 

1.76 1.8 

 stellar crystals with broad arms (P1d) 
10<Dmax<90µm 

1.85 2.42 

 stellar crystals with broad arms (P1d) 
90<Dmax<1500µm 

1.63 1.67 

 densely rimed dendrites (R2b) 
1800<Dmax<4000µm 

1.76 2.3 

 side planes (S1) 
300<Dmax<2500µm 

1.88 2.3 

 bullet rosettes, 5 branches at -42°C 
200<Dmax<1000µm 

1.57 2.26 

 aggregates of side planes 
600<Dmax<4100µm 

1.88 2.2 

 aggregates of side planes, columns & bullets (S3) 
800<Dmax<4500µm 

1.88 2.1 

 assemblies of planar polycrystals in cirrus clouds 
20<Dmax<450µm 

1.88 2.45 

 lump graupel (R4b) 
500<Dmax<3000µm 

2 2.8 

 hail 
5000<Dmax<25000µm 

2 3 

Simulations of Ice-Crystals shape 

 columns (H=5*L) 

100<Dmax<1000µm 1.86 2.53 

 columns (H=10*L) 

100<Dmax<1000µm 1.87 2.44 

 columns (L=160µm) 

100<Dmax<1000µm 1.06 1.04 

 columns ( HL  ) 

100<Dmax<1000µm 1.48 1.78 

 thick star (H = 0.2*L) 

200<Dmax<1200µm 1.98 2.89 

 thick star (H = 0.1*L) 

200<Dmax<1200µm 1.99 2.86 

 thick stars (H=40µm) 

200<Dmax<1200µm 1.49 2.06 

 thick stars  ( LH  ) 

200<Dmax<1200µm 1.76 2.48 

 thin stars (H=0.2*L) 

100<Dmax<1000µm 1.96 2.89 

 thin stars (H=0.1*L) 

100<Dmax<1000µm 1.94 2.75 

 Thin stars (H=40µm) 

100<Dmax<1000µm 1.39 2.06 

 thin stars ( LH  ) 

100<Dmax<1000µm 1.74 2.51 

 plates (H= 0.2*L) 

200<Dmax<2000µm 1.95 2.96 

 plates (H = 0.1*L) 

200<Dmax<2000µm 1.92 2.91 



 plates (H=40µm) 

200<Dmax<2000µm 1.65 2.03 

 plates ( LH  ) 

200<Dmax<2000µm 1.86 2.49 

 rosettes (L= 50µm ; Nmax=3) 

50<Dmax<500µm 1.37 1.04 

 rosettes ( HL   ; Nmax=3) 

50<Dmax<500µm 1.69 2.21 

 rosettes (L=100µm ; Nmax=4) 

100<Dmax<1000µm 1.39 1.26 

 rosettes ( HL  ; Nmax=4) 

100<Dmax<1000µm 1.65 2.16 

 rosettes (L=0.5H ; Nmax=5) 

500<Dmax<2000µm 1.83 2.9 

 rosettes (L=0.25H ; Nmax=6) 

500<Dmax<2500µm 1.78 2.97 

 rosettes(L=100µm ; Nmax=6) 

100<Dmax<1000µm 1.42 1.25 

 rosettes( HL  ; Nmax=6) 

100<Dmax<1000µm 1.66 2.16 

 capped columns (2 plates: L2=2.5L1; H= L1) 

150<Dmax<1400µm 1.79 2.21 

 capped columns (2 thick stars: L2=2.5L1; H= L1) 

150<Dmax<1400µm 1.92 2.43 

 

8<Nagg<30 thick stars  ( LH  ) 

individual diameter of thick stars : 30 < L < 40µm 

1000<Dmax<4000 1.79 1.92 

 

8<Nagg<30 plates (H = 0.1*L) 

individual diameter of plates : 20 < L < 30µm 

600<Dmax<2000 

1.8 1.81 

 

8<Nagg<30 plates ( LH  ) 

individual diameter of plates : 20 < L < 30µm 

600<Dmax<2500 

1.59 1.69 

 

2<Nagg<4 ; columns (L=160µm) 

individual diameter of columns : 40 < H < 60 

400<Dmax<1500 
1.26 1.75 

 

2<Nagg<4 ; columns ( HL  ) 

individual diameter of columns : 40 < H < 60 

200<Dmax<1000 
1.45 2.07 

 

2<Nagg<4 ; thick stars (H= 0.2*L) 

individual diameter of thick stars : 40 < L < 60µm 

400<Dmax<3000 
1.82 2.62 

 

2<Nagg<4 ; thick stars (H= 0.1*L) 

individual diameter of thick stars: 40 < L < 60µm 

400<Dmax<3000 
1.63 2.62 

 

2<Nagg<4 ; thick stars (H= 40µm) 

individual diameter of thick stars: 40 < L < 60µm 

400<Dmax<3000 
1.87 2.25 

 

2<Nagg<4 ; thick stars ( LH  ) 

individual diameter of thick stars: 40 < L < 60µm 

400<Dmax<3000 
1.72 2.46 

 

2<Nagg<4 ; thin stars (H= 0.2*L) 

individual diameter of thin stars: 30 < L < 60µm 

300<Dmax<2000 
1.64 2.52 

 

2<Nagg<4 ; thin stars (H= 0.1*L) 

individual diameter of thin stars: 30 < L < 50µm 

300<Dmax<1500 
1.72 2.52 

 

2<Nagg<4 ; thin stars (H= 40µm) 

individual diameter of thin stars: 30 < L < 50µm 

300<Dmax<1500 
1.46 2.14 

 

2<Nagg<4 ; thin stars ( LH  ) 

individual diameter of thin stars: 30 < L < 50µm 

300<Dmax<2000 
1.53 2.37 

 

2<Nagg<4 ; plates (H= 0.2*L) 

individual diameter of plates : 30 < L < 50µm 

300<Dmax<2000 
1.87 2.57 

 

2<Nagg<4 ; plates (H= 0.1*L) 

individual diameter of plates : 30 < L < 50µm 

250<Dmax<1500 
1.61 2.37 

 

2<Nagg<4 ; plates (H= 40µm) 

individual diameter of plates : 30 < L < 50µm 

250<Dmax<1500 
1.64 1.99 

 

2<Nagg<4 ; plates ( LH  ) 

individual diameter of plates : 30 < L < 60µm 

250<Dmax<1500 
1.76 2.29 

 

3 < Nagg < 20 ; spheres 

individual diameter of spheres : D = 60µm ; 

300<Dmax<2000µm 1.45 1.74 

 

3 < Nagg < 50 ; spheres 
individual diameter of spheres : D = 150µm ; 

100<Dmax<1000µm 1.54 1.84 



 
Figure 4 : On the left column are presented examples of 2D projections of randomly oriented 3D shapes of single 
hydrometeors with their corresponding symbols as they are represented in figure 7 and in table 4. In the middle column, 
examples of aggregates composed of single individual shapes as shown in the left column. The right column shows 
examples of crystals resembling what has been recorded in different aircraft measurement campaigns. 



 

For each random orientation, it is possible to calculate a density. How do those density values 

compare to those determined by your mass dimensional relationships?

 

Figure 5 : Blue dots show effective density calculated from 3D simulations, which are compared with linear fits of ln(α) as 
a function of β, found for MT2010 (red line) and MT2011 (black line). 



4. Using the alpha and beta values given in the summary for the mass dimensional 

relationship, I get m=0.0244*Dˆ2.44 or m=0.0266*Dˆ2.44. This is really heavy for large 

particles, and substantially different for published mass dimensional relationships. The 

authors need to explain why there is such a substantial difference. Is it specifically related to 

your dataset? Or, are all of the others wrong, and if so, why? 

 

Mass-diameter relationships are calculated in this study with the help of measured reflectivity 

at 94GHz. Subsequently CWC can be calculated from PSD and m(D). Most recently the 

international HAIC-HIWC campaign which took place during January- March 2014 out of 

Darwin allowed to confront the radar reflectivities of the RASTA radar and the direct 

measurements of the IWC using the IKP (isokinetic evaporator probe).This confrontation 

allowed to improve the method correcting the radar reflectivity  close to the aircraft within 

900m below and above the aircraft.  

We integrated into our answers to the reviewers and in the new version of the radar RASTA 

data these results taking into account the corrections of the reflectivity of RASTA in the 

vicinity of the aircraft.  

 

With the corrected new dataset of radar reflectivities we have then recalculated the mean m-

D coefficients. For example if the 2DS is solely used to calculate σ of the S-D power law, and 

then calculate the m-D exponent β and constrain , we find for: 
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And when σ is calculated from the 2DS plus the PIP images we receive : 
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These mean values of m-D relationships are presented in the revised manuscript and are 

compared with otherm-D relationships in the new manuscript. 

 

 

Further comments:  

Page 2984 line 2: Ice hydrometeors (without the word “ice” you could be talking about rain as 

well).  

 

“In this study the density of ice hydrometeors in tropical clouds is derived from a combined 

analysis of particle images of 2-D array probes…” 

 

Page 2987 lines 9-12: Relationships derived in  SH2010 were derived numerically, and tested 

with aircraft data. (See major point #1 above).  

Page 2987 line 13: There should be a period at the end of this line.  

 

“Schmitt and Heymsfield (2010, hereafter SH2010) have simulated the aggregation of plates 

and columns. Fractal 2D and 3D analyses calculated from the box counting method (Tang 

and Marangoni 2006) stated that the fractal coefficient in the 3D space is equal to β. This 

allowed to derive a relationship that calculates the exponent β from the 2D fractal dimension 

of the 2D images. Once β has been fixed, the pre-factor α is calculated from the area 

measurement.” 



 Heymsfield et al. (2010, herafter H10) demonstrate that a strong relationship exists between 

α and β coefficients and argue that the BF95 relationship overestimates the prefactor α for 

stratiform clouds, whereas α is underestimated for convective clouds. “ 

 

 

Page 2988 line 21: Was the Nevzorov probe used a standard version or modified with a 

deeper groove? The standard version likely underestimates CWC when there are high 

concentrations of larger particles which can shatter and partially bounce out on impact. 

(See Korolev’s 2011 BAMS article)  

 

Yes we use the deep cone version of the Nevzorov. 

 

 

Page 2990 line 8: TSD is not defined. Could you mean AsD?  

 

“Examples of PSD and AsD are presented in Fig. 1…” 

 

Page 2990 line 24: How do the measured aspect ratio values from the probe measurements 

compare to the average aspect ratio calculated for the theoretical particles (in the appendix)? 

(Densities as well)  

 

Average aspect ratio of theoretical simulations may not be entirely comparable with 

experimentally measured average As due to possible orientation of crystals. In case that 

crystals are sampled randomly oriented on the aircraft, simulations and observations of As 

are fully comparable.  

 

 

 

Page 2991 line 24: You assume that the reflectivity at the aircraft is the value linearly 

interpolated between the value 300m above and the value 300m below. How different are 

these values typically? Difference and standard deviation and how much uncertainty does this 

cause in the results? It might be interesting to look at the difference between 300 and 900 

meters above and see if that difference is similar to the difference between 300 above and 300 

below. 

 

Reflectivity differences between the Nadir antenna and Zenith antenna 300 m above and 300 

m below the aircraft are of the same order than the differences between 300 and 900 meters 

above and also below. These differences are in the range of about [1.6 - 3.5dBZ], with an 

exception for the flight 49 of MT2011. Clouds in this flight were very small isolated 

convective flight and were not taking into account to calculate the mean mass-diameters 

coefficients. 

A linear interpolation of measured reflectivities below and/or beyond the aircraft in order to 

estimate the reflectivity at the aircraft flight altitude,  would result in a maximum uncertainty 

of the estimated reflectivity at flight level of 2dBZ,, which means a maximum error of 20% on 

the retrieved CWC. 

 

 

 



Table 2: Mean difference in dBZ and standard deviation of RASTA reflectivities calculated between two radar gates 
having a distance of 600 meters.   

Flight ZZenith (300)-ZZenith(900m) ZNadir(300m)-ZNadir(900m) ZNadir(300m)-ZZenith(300m) 

Mean [dBZ] Std [dBZ] Mean [dBZ] Std [dBZ] Mean [dBZ] Std [dBZ] 

15 3.16 2.82 3.45 4.03 3.22 3.33 

17 2.94 2.81 3.00 3.06 2.56 2.59 

18 2.07 2.43 2.49 2.75 1.59 2.13 

19 4.33 3.82 2.98 3.51 3.46 3.52 

20 2.68 2.50 2.66 2.55 1.6 1.68 

45 4.24 4.01 3.69 3.93 3.33 3.28 

46 4.98 4.39 3.76 3.94 3.36 3.58 

49 6.43 5.41 7.34 6.77 5.11 5.69 

50 4.56 6.11 4.81 6.49 2.10 5.69 

 

 

 

 

Page 2992 & figure 4: Doesn’t 5 g/m3 CWC seem rather high? Your dBZ values are 

very high. My concern is that the Protat 2007 parameterization appears to include data 

only up to about 10dBZ. Could higher values be influenced by graupel or hail? This 

should show up in the PIP data.  

 

We do not understand why you refer the 5g/m
3
 to the Protat 2007 parametrisation, knowing 

that the Protat parameterization  was not used to calculate the retrieved CWC used in this 

study. 

 

However, as we can see in figure 6, during the high IWC (5g/m
3
), 2D images recorded by the 

PIP show few graupels with a size around 1mm to 2mm. 

 

 
Figure 6: Extract of PIP image catalogue of flight 18. Bars between 2 particles constitute 7mm in length. 

 

Figure 4 should also have the dBZ value derived for the pass.  

 

We do not understand the question. 

 



Page 2994 line 13: Suggest that you try the Schmitt and Heymsfield method for calculating 

alpha directly from the particle area data and compare to your results.  

 

Implementing the Schmitt and Heymsfield method is beyond the scope of this study. We are 

not sure of having all the details to implement and run the method. 

 

Page 2995: Sigma for each particle shape is calculated, but it is unclear how. 

 

The σ is calculated for the entire population of crystals imaged during 5 seconds with 2D-S 

plus PIP probes. The method is explained above in answering to your comment 2 in the 

beginning. 

 

Is the area and maximum dimension determined for each random orientation, then a fit 

done to maximum dimension versus area for all of the individual rotations?  If so, then your 

sigma value may be more related to the orientation rather than the size to area relationship. 

 

Each 3D crystal shape includes 1000 simulations where the crystal size and orientation 

varied in the 3D space. There is only one power fit for m(Dmax) and S(Dmax)  per single 3D 

crystal shape (including size and orientation variation) (see also answer to the comment 2 

and figure 1 and Appendix A on the current version of the paper). 

Of course the m(Dmax) and S(Dmax) are related to the 3D orientation, however, also Dmax is 

dependent on the 3D orientation. 

 

 Page 2995 line 21-22: using 1.0 for sigma yields a value of 0.6 for beta (outside the range 

presented on line 21).  

 

Taken into account the added simulations and orientations uncertainties now we have:  

02.193.1    (equation 11 in the current version), with σ in the range [1.05 ; 2]. 

 

Page 2995: How many of your theoretical particles are truly irregular? How many of your 

observed particles are truly irregular? 

 

See new version of figure 6 in the answer to the comment 3. 

 

Page 2997, line 17: Consider comparing either Brown and Francis and/or Heymsfield 

et al 2004. There are no assumptions on shapes in these as well.  

 

An extended study on the impact of the variability of m(D) coefficients on CWC and CWC-Z, 

including Brown & Francis has been added in the revised version of the manuscript; see also 

answer to the second reviewer for all the details. 

 

Page 2998 line 25: From here, there is a lot of discussion of the basic properties of the clouds 

measured during the campaigns. It isn’t clear why it is important to discuss this now. Much of 

it isn’t relevant to the study.  

 

This part has been removed in order to take into account, the comments of referee #2 and #3. 

 

Page 3001 line 3: It would be interesting to plot some typical density values from your alpha 

beta pairs as compared to density values from the literature.  

 



Averaged values of m(D) coefficients found for MT2010 and MT2011 with  determined from 

2DS only are relatively close. They give less mass for a same Dmax if they are compared with 

m(D)coefficients of H2010 for NAMMA. Average values for m(D) coefficients when 2DS plus 

PIP are used to determine  , show similar trends between H2010 for cloud convectively 

generated and MT2011. m(D) coefficients given by Mitchell 1996 give less mass for a same 

Dmax compared with the m(D) relationships cited before, with an exception for the lump 

graupel’s m(D) coefficients which give largest mass for particles beyond 1mm compared to 

all the other m(D) relationships. Mitchell’s lump graupel still give larger mass for particles 

beyond 500µm compared to MT2010 and MT2010 m(D) from T-matrix and H2010 

convectively generated m(D). 

Note that for MT2010 when using the 2DS plus PIP to determine  we find m(D) coefficients 

close to those found with 2DS with  α=0.0093 and β=2.25 

 

 
Figure 7 : Mass of ice crystals in gram on y axis, as a function of their Dmax in cm on the x axis. The red line represents 
mean values of m(D) coefficients for MT2010 when σ is determined from 2D-S plus PIP images  with α=0.0098 and 
β=2.26. Likewise, the black dashed line represents m(D) coefficients for MT2011 with α=0.0057 and β=2.06. The black 
line represents MT2011 when σ is determined from 2DS only with α=0.0082 and β=2.22. The blue line represents m(D) 
coefficients taken from H2010 for the NAMMA campaign with α=0.011 and β=2.1. Dashed blue line stands for H2010, but 
for convectively generated systems with α=0.0063 and β=2.1. Blue grey line is given by Mitchell 1996 for crystal with 
sector-like branches with α=0.00142 and β=2.02. Grey line (Mitchell 1996) represents hexagonal plates with α=0.00739 
and β=2.45. Brown grey line (Mitchell 1996) represents hexagonal columns with α=0.000907 and β=1.74. Purple grey line 
(Mitchell 1996) is for aggregates of side planes columns and bullets with α=0.0028 and β=2.1. Green line (Mitchell 1996) 
is for Lump Graupel with α=0.049 and β=2.8. 

 

Given the extremely high dBZ values recorded, can these results be generalized?  



 

Results presented in this study have been compared to other methods of m(D) estimations 

Details are given in the answer to reviewer nr.2 and in the revised version of the manuscript. 

The variability of m(D) coefficients from T-matrix retrievals as a function of the temperature 

is similar to the one presented by SH2010 (more details in answer to comments of Referee 1 

and 2),

 
Figure 8 : Vertical profile of m(D) coefficients constrained by T-matrix and the variability of S-D exponent  calculated 
from 2D-S plus PIP images. (a) ασ versus the temperature in K. (b) βσ versus the temperature in K. Pink circle show data 
points (5-seconds time step) of MT2010, grey crosses show MT2011 data. Red and black stars present mean values of 
m(D) coefficients in 5K temperature intervals for MT2010 and MT2011, respectively. Dashed red and black lines show 
standard deviations of MT2010 and MT2011, respectively, from the mean value. Blue solid and dashed lines show 
vertical profiles of SH2010 obtained for CRYSTAL-FACE, and for ARM, respectively. 

 

 

Page 3004 line 4-5: When I compare these alpha and beta pairs to BF, the results show a 

similar density predicted for 200 micron particles, then for larger (3000 um) up to a factor of 

5 higher density for your results. This difference (with BF and others) needs to be shown and 

explained.  

 

Brown and Francis relationships were calculated for D=(Lx+Ly)/2, where Ly is the size 

along the array diode and Lx the size perpendicular to Ly, whereas Dmax is the size of the 

circle which englobes the entire 2D image. Therefore, due to discrepancies in diameter 

definition, BF seems not appropriate to be compared on a same plot with mass versus Dmax. 

 

Page 3006 line 9: It would be good to show typical plots of the shape of the PSDs so that they 

can be compared to other data. Gamma fit parameters (lambda, mu, No) as are commonly 

shown would be helpful. 

 

PSD cannot be easily fitted with Gamma distributions, the concentration of small ice 

hydrometeors would be badly represented. Start fitting the PSD would end in adding a 



somewhat different topic to that manuscript. The idea should be followed up, preparing a 

separate study on fitting of PSD for available data sets. 

 


